Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 1 Issue 4

Exact solutions of the newton-schrödinger equation, infinite derivative gravity and schwarzschild atoms

Carlos Castro Perelman

Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Georgia

Correspondence: Carlos Castro Perelman, Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, GA 30314, Georgia,

Received: October 07, 2017 | Published: November 13, 2017

Citation: Perelman CC. Exact solutions of the Newton-Schrödinger equation, infinite derivative gravity and Schwarzschild atoms. Phys Astron Int J.2017;1(4):131-137. DOI: 10.15406/paij.2017.01.00024

Download PDF

Abstract

Exact solutions to the stationary spherically symmetric Newton-Schrödinger equation are proposed in terms of integrals involving generalized Gaussians. The energy eigenvalues are also obtained in terms of these integrals which agree with the numerical results in the literature. A discussion of infinite derivative-gravity follows which allows generalizing the Newton-Schrödinger equation by replacing the ordinary Poisson equation with a modified non-local Poisson equation associated with infinite-derivative gravity. We proceed to replace the nonlinear Newton-Schrödinger equation for a non-linear quantum-like Bohm-Poisson equation involving Bohm’s quantum potential, and where the fundamental quantity is no longer the wave-function Ψ but the real-valued probability density ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHbpGCaaa@3864@ . Finally, we discuss how the latter equations reflect a nonlinear feeding loop mechanism between matter and geometry which allows us to envisage a “Schwarzschild atom” as a spherically symmetric probability cloud of matter which curves the geometry, and in turn, the geometry back-reacts on this matter cloud perturbing its initial distribution over the space, which in turn will affect the geometry, and so forth until static equilibrium is reached.

Keywords: quantum mechanics, Newton-Schrödinger equation, infinite derivative gravity, de Broglie-Bohm theory, Schwarzschild metric

Introduction

The Newton-Schrödinger equation

Various arguments have been put forward from time to time to support the view that quantum state reduction is a phenomenon that occurs objectively, because of some gravitational influence.16 According to a particular argument put forward by Penrose,1 a superposition of two quantum states, each of which would be stationary on its own, but for which there is a significant mass displacement between the two states, ought to be unstable and reduce to one state or the other within a certain characteristic average timescale T G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWaaSbaaeaacaWGhbaabeaaaaa@386A@ . This argument is motivated by a conflict between the basic principles of quantum mechanics and those of general relativity. It is accordingly proposed that T G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWaaSbaaeaacaWGhbaabeaaaaa@386A@  can be calculated in situations for which velocities and gravitational potentials are small in relativistic units, so that a Newtonian approximation is appropriate, and T G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWaaSbaaeaacaWGhbaabeaaaaa@386A@ is the reciprocal, in Planckian units, of the gravitational self-energy E G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbWaaSbaaeaacaWGhbaabeaaaaa@385B@  of the difference between the mass distributions of the two states.

There is of course a substantial literature on the problem of wave-function collapse and the related measurement problem. See, for example46 and references therein. For a different idea about gravitationally-induced wave-function collapse see.3 It has been pointed out by Penrose R et al.1,2 that one can regard the basic stationary states, into which a superposition of such states is to decay into (on a timescale of order / E G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeS4dHG geaaaaaaaaa8qacaGGVaGaamyramaaBaaabaGaam4raaqabaaaaa@3A37@ ), as stationary solutions of the Schrödinger equation where there is an additional term provided by a certain gravitational potential. The appropriate gravitational potential is the one which arises from the mass density given by the expectation value of the mass distribution in the state determined by the wave-function. In the practical situations under consideration in1 (such as with the proposed class of experiments put forward there), it would be sufficient to consider Newtonian gravity. This leads us to consider what Penrose termed the Schrödinger-Newton equation. This equation has had a long history since the 1950"s.717 It is the name given to the system coupling the Schrödinger equation to the Poisson equation. In the case of a single particle, this coupling is effected as follows: for the potential energy term in the Schrödinger equation take the gravitational potential energy determined by the Poisson equation from a matter density proportional to the probability density obtained from the wave-function. For a single particle of mass m the system consists of the following pair of partial differential equations:

The Newton-Schrödinger equation is nonlinear and nonlocal modification of the Schrödinger equation given by

i Ψ( r ,t) t = 2 2m 2 Ψ( r ,t)+V( r ,t)Ψ( r ,t)+m V G ( r ,t)Ψ( r ,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGPbGaeS4dHG2aaSaaaeaacqGHciITcqqHOoqwpaGaaiik a8qaceWGYbGbaSaacaGGSaGaamiDa8aacaGGPaaapeqaaiabgkGi2k aadshaaaGaeyypa0JaeyOeI0YaaSaaaeaacqWIpecAdaahaaqcfasa beaacaaIYaaaaaqcfayaaiaaikdacaWGTbaaaiabgEGirpaaCaaaju aibeqaaiaaikdaaaqcfaOaeuiQdK1daiaacIcapeGabmOCayaalaGa aiilaiaadshapaGaaiykaiabgUcaRiaadAfacaGGOaWdbiqadkhaga WcaiaacYcacaWG0bWdaiaacMcapeGaeuiQdK1daiaacIcapeGabmOC ayaalaGaaiilaiaadshapaGaaiykaiabgUcaR8qacaWGTbGaamOvam aaBaaajuaibaGaam4raaqcfayabaWdaiaacIcapeGabmOCayaalaGa aiilaiaadshapaGaaiyka8qacqqHOoqwpaGaaiika8qaceWGYbGbaS aacaGGSaGaamiDa8aacaGGPaaaaa@6BFC@   (1)

Where V( r ,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb GaaiikaabaaaaaaaaapeGabmOCayaalaGaaiilaiaadshapaGaaiyk aaaa@3B9A@  is the external potential acting on the particle and m V G ( r ,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGTbGaamOvamaaBaaajuaibaGaam4raaqcfayabaWdaiaa cIcapeGabmOCayaalaGaaiilaiaadshapaGaaiykaaaa@3E53@  is the self- gravitational potential energy arising due a mass density obtained from the wave function of the particle itself. Given the Poisson equation sourced by a mass density ρ=m | Ψ( r ,t) | 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHbpGCcqGH9aqpcaWGTbWaaqWaaeaacqqHOoqwpaGaaiik a8qaceWGYbGbaSaacaGGSaGaamiDa8aacaGGPaaapeGaay5bSlaawI a7amaaCaaajuaibeqaaiaaikdaaaaaaa@4462@

2 V G ( r ,t)=4πGm | Ψ( r ,t) | 2    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0daahaaqabKqbGeaacaaIYaaaaKqbakaadAfadaWg aaqcfasaaiaadEeaaKqbagqaa8aacaGGOaWdbiqadkhagaWcaiaacY cacaWG0bWdaiaacMcacqGH9aqpcaaI0aGaeqiWdaNaam4raiaad2ga peWaaqWaaeaacqqHOoqwpaGaaiika8qaceWGYbGbaSaacaGGSaGaam iDa8aacaGGPaaapeGaay5bSlaawIa7amaaCaaajuaibeqaaiaaikda aaGaaiiOaKqbakaacckaaaa@52AC@   (2)

It leads to a self-gravitational potential

V G ( r ,t)=G m | Ψ( r ,t) | 2 | r r | d 3 r    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbWaaSbaaKqbGeaacaWGhbaabeaajuaGpaGaaiika8qa ceWGYbGbaSaacaGGSaGaamiDa8aacaGGPaGaeyypa0JaeyOeI0Iaam 4raiabgUIiYpaalaaabaGaamyBa8qadaabdaqaaiabfI6az9aacaGG OaWdbiqadkhagaWcaiaacYcacaWG0bWdaiaacMcaa8qacaGLhWUaay jcSdWaaWbaaeqajuaibaGaaGOmaaaaaKqba+aabaWdbmaaemaabaGa bmOCayaalaGaeyOeI0IabmOCayaalyaafaaacaGLhWUaayjcSdaaa8 aacaWGKbWaaWbaaKqbGeqabaGaaG4maaaajuaGpeGabmOCayaafaGa aiiOaiaacckaaaa@59CA@   (3)

Inserting equation (3) into equation (1) leads to the integro differential form of the nonlinear and

nonlocal Newton-Schrödinger equation

i Ψ( r ,t) t = 2 2m 2 Ψ( r ,t)+V( r ,t)Ψ( r ,t)( G m 2 m | Ψ( r ,t) | 2 | r r | d 3 r )Ψ( r ,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGPbGaeS4dHG2aaSaaaeaacqGHciITcqqHOoqwpaGaaiik a8qaceWGYbGbaSaacaGGSaGaamiDa8aacaGGPaaapeqaaiabgkGi2k aadshaaaGaeyypa0JaeyOeI0YaaSaaaeaacqWIpecAdaahaaqabeaa jugWaiaaikdaaaaajuaGbaGaaGOmaiaad2gaaaGaey4bIe9aaWbaae qajuaibaGaaGOmaaaajuaGcqqHOoqwpaGaaiika8qaceWGYbGbaSaa caGGSaGaamiDa8aacaGGPaGaey4kaSIaamOvaiaacIcapeGabmOCay aalaGaaiilaiaadshapaGaaiyka8qacqqHOoqwpaGaaiika8qaceWG YbGbaSaacaGGSaGaamiDa8aacaGGPaGaeyOeI0YaaeWaaeaacaWGhb GaamyBamaaCaaajuaibeqaaiaaikdaaaqcfaOaey4kIi=aaSaaaeaa caWGTbWdbmaaemaabaGaeuiQdK1daiaacIcapeGabmOCayaalaGaai ilaiaadshapaGaaiykaaWdbiaawEa7caGLiWoadaahaaqabKqbGeaa caaIYaaaaaqcfa4daeaapeWaaqWaaeaaceWGYbGbaSaacqGHsislce WGYbGbaSGbauaaaiaawEa7caGLiWoaaaWdaiaadsgadaahaaqcfasa beaacaaIZaaaaKqba+qaceWGYbGbauaaa8aacaGLOaGaayzkaaWdbi abfI6az9aacaGGOaWdbiqadkhagaWcaiaacYcacaWG0bWdaiaacMca aaa@819A@   (4)

Relevant work pertaining pseudo differential and hyper differential operators, nonlinear partial differential equations and their applications can be found in.1820

This equation is based on the assumption that the point-particle is smeared over space such that its mass is distributed according to its wave function. Namely, there is a mass cloud over space whose net mass m=m | Ψ( r ,t) | 2 d 3 r . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGTbGaeyypa0Zdaiaad2gadaWdbaqaa8qadaabdaqaaiab fI6az9aacaGGOaWdbiqadkhagaWcaiaacYcacaWG0bWdaiaacMcaa8 qacaGLhWUaayjcSdWaaWbaaeqajuaibaGaaGOmaaaajuaGpaGaamiz amaaCaaabeqcfasaaiaaiodaaaqcfa4dbiqadkhagaqbaaWdaeqabe Gaey4kIipapeGaaiOlaaaa@4A9B@ coincides with the mass of the point-particle. The mass cloud is self-gravitating and experiences a gravitational potential energy given by equation (3).1

More recently, the authors21 showed that nonlinear Schrödinger equations (NSEs) for individual particles do not follow from general relativity (GR) plus quantum field theory (QFT). Contrary to what is commonly assumed, the NSEs are not the weak-field, non-relativistic limit of the semi-classical Einstein equation. The wave-function in the NSEs makes sense only as that for a mean field describing a system of N particles as N   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGobGaaeiiaiabgkziUkaabccacqGHEisPaaa@3C1B@ , not that of a single or finite many particles. They concluded that the origins and consequences of NSEs are very different, and should be clearly demarcated from those of the semi-classical Einstein equation, the only legitimate representative of semi classical gravity, based on GR+QFT. Bearing this in mind, we proceed to find solutions to the NSE’s.

Solutions to the Newton-Schrödinger equation

Let us set the external potential to zero and look for stationary solutions Ψ( r ,t)= e -iEt/ Φ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHOoqwpaGaeyikaGYdbiqadkhagaWcaerbdfwBIjxAHbac faGaa8hlaiaa=rhapaGaeyykaKIaeyypa0Jaa8xzamaaCaaabeqcKv aG=haajugWaiaa=1cacaWFPbGaa8xraiaa=rhacaWFVaGaeS4dHGga aGGaaKqbakab+z6agnaabmaabaWdbiqadkhagaWcaaWdaiaawIcaca GLPaaaaaa@4EAD@ such that the gravitational potential becomes time independent. Φ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuyTjMCPf gaiuaajuaGcaWFMoWaaeWaaeaaqaaaaaaaaaWdbiqadkhagaWcaaWd aiaawIcacaGLPaaaaaa@3D41@ obeys the equation

EΦ( r )= 2 2m 2 Φ( r )( G m 2 | Φ( r ) | 2 | r r | d 3 r )Φ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyrae rbdfwBIjxAHbacfaGaa8NPdmaabmaabaaeaaaaaaaaa8qaceWGYbGb aSaaa8aacaGLOaGaayzkaaGaeyypa0JaeyOeI0YdbmaalaaabaGaeS 4dHG2aaWbaaeqajuaibaGaaGOmaaaaaKqbagaacaaIYaGaamyBaaaa cqGHhis0daahaaqcfasabeaacaaIYaaaaKqba+aacaWFMoWaaeWaae aapeGabmOCayaalaaapaGaayjkaiaawMcaaiabgkHiTmaabmaabaGa am4raiaad2gadaahaaqcfasabeaacaaIYaaaaKqbakabgUIiYpaala aabaWdbmaaemaabaWdaiaa=z6adaqadaqaa8qaceWGYbGbaSaaa8aa caGLOaGaayzkaaaapeGaay5bSlaawIa7amaaCaaajuaibeqaaiaaik daaaaajuaGpaqaa8qadaabdaqaaiqadkhagaWcaiabgkHiTiqadkha gaWcgaqbaaGaay5bSlaawIa7aaaapaGaamizamaaCaaajuaibeqaai aaiodaaaqcfa4dbiqadkhagaqbaaWdaiaawIcacaGLPaaacaWFMoWa aeWaaeaapeGabmOCayaalaaapaGaayjkaiaawMcaaaaa@69E3@   (5)

The authors2226 found numerical spherically-symmetric solutions to equation (5). Variational forms of the stationary Newton-Schrödinger equation to find a lower bound for the ground state energy have been studied by several authors, see references in27 and co,mpared to numerical values in the literature.

1This may be in conflict with Born’s rule of interpreting | Ψ( r ,t ) | 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaabdaqaaiabfI6aznaabmaabaGabmOCayaalaGaaiilaiaa dshaaiaawIcacaGLPaaaaiaawEa7caGLiWoadaahaaqabeaacaaIYa aaaaaa@406E@ as the probability density of finding a particle at the point r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGYbGbaSaaaaa@37AD@ if one has abandoned the notion of point-particles. At the moment we shall not be concerned with this.

If one replaces a delta function point-mass source distribution m δ 3 ( r )=mδ( r )/4π r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGTbGaeqiTdq2aaWbaaKqbGeqabaGaaG4maaaajuaGdaqa daqaaiqadkhagaWcaaGaayjkaiaawMcaaiabg2da9iaad2gacqaH0o azdaqadaqaaiaadkhaaiaawIcacaGLPaaacaGGVaGaaGinaiabec8a WjaadkhadaahaaqcfasabeaacaaIYaaaaaaa@48B6@  for a normalized Gaussian mass distribution of width

ρ( r )= m π 3/2 e r 2 / σ 2 σ 3 m= 0 ρ( r ) 4π r 2 dr                     ( 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHbpGCdaqadaqaaiaadkhaaiaawIcacaGLPaaacqGH9aqp daWcaaqaaiaad2gaaeaacqaHapaCdaahaaqcfasabeaacaaIZaGaai 4laiaaikdaaaaaaKqbaoaalaaabaGaamyzamaaCaaajuaibeqaaiab gkHiTiaadkhajuaGdaahaaqcfasabeaacaaIYaaaaiaac+cacqaHdp WCjuaGdaahaaqcfasabeaacaaIYaaaaaaaaKqbagaacqaHdpWCdaah aaqabKqbGeaacaaIZaaaaaaajuaGcqGHshI3caWGTbGaeyypa0Zaa8 qCaeaacqaHbpGCdaqadaqaaiaadkhaaiaawIcacaGLPaaaaeaacaaI WaaabaGaeyOhIukacqGHRiI8aiaaisdacqaHapaCcaWGYbWaaWbaaK qbGeqabaGaaGOmaaaajuaGcaWGKbGaamOCaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOamaabmaabaGaaGOnaaGaayjkaiaawMcaaaaa@7CB1@   (6)

The solution to Poisson's equation

2 V G ( r )=4πGρ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0daahaaqabKqbGeaacaaIYaaaaKqbakaadAfadaWg aaqcfasaaiaadEeaaKqbagqaamaabmaabaGaamOCaaGaayjkaiaawM caaiabg2da9iaaisdacqaHapaCcaWGhbGaeqyWdi3aaeWaaeaacaWG YbaacaGLOaGaayzkaaaaaa@4755@   (7)

Is given in terms of the error function Erf ( r ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaamOCaiaadAgapaWaaeWaaeaapeGaamOCaaWdaiaa wIcacaGLPaaadaahaaqcfasabeaacaaIYaaaaaaa@3D0A@ as follows

V G ( r )= Gm r Erf( r σ )= Gm r 1 π r/σ r/σ e t 2 dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbWaaSbaaKqbGeaacaWGhbaabeaajuaGdaqadaqaaiaa dkhaaiaawIcacaGLPaaacqGH9aqpcqGHsisldaWcaaqaaiaadEeaca WGTbaabaGaamOCaaaacaWGfbGaamOCaiaadAgadaqadaqaamaalaaa baGaamOCaaqaaiabeo8aZbaaaiaawIcacaGLPaaacqGH9aqpcqGHsi sldaWcaaqaaiaadEeacaWGTbaabaGaamOCaaaadaWcaaqaaiaaigda aeaadaGcaaqaaiabec8aWbqabaaaamaapehabaGaamyzamaaCaaabe qcfasaaKqzadGaeyOeI0IaamiDaSWaaWbaaKqbGeqabaqcLbmacaaI YaaaaaaaaKqbagaacqGHsislcaWGYbGaai4laiabeo8aZbqaaiaadk hacaGGVaGaeq4WdmhacqGHRiI8aiaadsgacaWG0baaaa@61CA@   (8)

In the asymptotic regime r,Erf( )1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbGaeyOKH4QaeyOhIuQaaiilaiaadweacaWGYbGaamOz a8aadaqadaqaa8qacqGHEisPa8aacaGLOaGaayzkaaGaeyOKH4QaaG ymaiaac6caaaa@44D7@ , the potential recovers the Newtonian form G m 2 r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHsisldaWcaaqaaiaadEeacaWGTbWaaWbaaeqajuaibaGa aGOmaaaaaKqbagaacaWGYbaaaaaa@3BF0@ . Because the error function Erf( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaamOCaiaadAgapaWaaeWaaeaapeGaamOCaaWdaiaa wIcacaGLPaaaaaa@3BFE@  admits a series expansion around r=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbGaeyypa0JaaGimaaaa@395B@ as

Erf( r ) 2r π r 3 π + 11 r 5 20 π 241 r 7 840 π +...    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaamOCaiaadAgapaWaaeWaaeaapeGaamOCaaWdaiaa wIcacaGLPaaacqWIdjYodaWcaaqaaiaaikdacaWGYbaabaWaaOaaae aacqaHapaCaeqaaaaacqGHsisldaWcaaqaaiaadkhadaahaaqcfasa beaacaaIZaaaaaqcfayaamaakaaabaGaeqiWdahabeaaaaGaey4kaS YaaSaaaeaacaaIXaGaaGymaiaadkhadaahaaqcfasabeaacaaI1aaa aaqcfayaaiaaikdacaaIWaWaaOaaaeaacqaHapaCaeqaaaaacqGHsi sldaWcaaqaaiaaikdacaaI0aGaaGymaiaadkhadaahaaqcfasabeaa caaI3aaaaaqcfayaaiaaiIdacaaI0aGaaGimamaakaaabaGaeqiWda habeaaaaGaey4kaSIaaiOlaiaac6cacaGGUaWdbiaacckacaGGGcGa aiiOaaaa@5E9D@   (9)

The potential V G ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbWaaSbaaKqbGeaacaWGhbaabeaajuaGdaqadaqaaiaa dkhaaiaawIcacaGLPaaaaaa@3BA8@ is no longer singular at the origin r=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbGaeyypa0JaaGimaaaa@395B@ , but it behaves as

V G ( r ) 2Gm π σ [1 r 2 2 σ 2 + 11 r 4 40 σ 4 +...]     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbWaaSbaaKqbGeaacaWGhbaajuaGbeaadaqadaqaaiaa dkhaaiaawIcacaGLPaaapaGaeS4qISJaeyOeI0YdbmaalaaabaGaaG OmaiaadEeacaWGTbaabaWdamaakaaabaGaeqiWdahabeaacqaHdpWC aaWdbiaacUfacaaIXaGaeyOeI0YaaSaaaeaacaWGYbWaaWbaaeqaju aibaGaaGOmaaaaaKqbagaacaaIYaGaeq4Wdm3aaWbaaeqajuaibaGa aGOmaaaaaaqcfaOaey4kaSYaaSaaaeaacaaIXaGaaGymaiaadkhada ahaaqcfasabeaacaaI0aaaaaqcfayaaiaaisdacaaIWaGaeq4Wdm3a aWbaaKqbGeqabaGaaGinaaaaaaqcfaOaey4kaSIaaiOlaiaac6caca GGUaGaaiyxaiaacckacaGGGcGaaiiOaiaacckaaaa@5F9A@   (10)

The normalized Gaussian wave function

Φ( r ) 1 π 3/4 e r 2 /2 σ 2 σ 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuOPdy 0aaeWaaeaaceWGYbGbaSaaaiaawIcacaGLPaaacqGHHjIUdaWcaaqa aiaaigdaaeaacqaHapaCdaahaaqabKqbGeaacaaIZaGaai4laiaais daaaaaaKqbaoaalaaabaGaamyzamaaCaaajuaibeqaaiabgkHiTiaa dkhajuaGdaahaaqcfasabeaacaaIYaaaaiaac+cacaaIYaGaeq4Wdm xcfa4aaWbaaKqbGeqabaGaaGOmaaaaaaaajuaGbaGaeq4Wdm3aaWba aeqajuaibaGaaG4maiaac+cacaaIYaaaaaaaaaa@504E@   (11)

Satisfies

0 | Φ( r ) | 2 4π r 2 dr=1  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWdXbqaamaaemaabaGaeuOPdy0damaabmaabaGabmOCayaa laaacaGLOaGaayzkaaaapeGaay5bSlaawIa7amaaCaaajuaibeqaai aaikdaaaaajuaGbaGaaGimaaqaaiabg6HiLcGaey4kIipacaaI0aGa eqiWdaNaamOCamaaCaaajuaibeqaaiaaikdaaaqcfaOaamizaiaadk hacqGH9aqpcaaIXaGaaiiOaaaa@4DD8@   (12)

Let us minimize the energy functional

E= 2 2m 0 ( Φ( r ) 2 Φ( r ) ) 4π r 2 dr +  0 m V G [Φ( r )] | Φ( r ) | 2 4π r 2 dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaeyypa0ZaaSaaaeaacqWIpecAdaahaaqabKqbGeaa caaIYaaaaaqcfayaaiaaikdacaWGTbaaamaapehabaWaaeWaaeaacq qHMoGrpaWaaeWaaeaaceWGYbGbaSaaaiaawIcacaGLPaaapeGaey4b Ie9aaWbaaKqbGeqabaGaaGOmaaaajuaGcqqHMoGrpaWaaeWaaeaace WGYbGbaSaaaiaawIcacaGLPaaaa8qacaGLOaGaayzkaaaabaGaaGim aaqaaiabg6HiLcGaey4kIipacaaI0aGaeqiWdaNaamOCamaaCaaabe qcfasaaiaaikdaaaqcfaOaamizaiaadkhacaGGGcGaey4kaSIaaiiO amaapehabaGaamyBaiaadAfadaWgaaqcfasaaiaadEeaaKqbagqaaa qaaiaaicdaaeaacqGHEisPaiabgUIiYdGaai4waiabfA6ag9aadaqa daqaaiqadkhagaWcaaGaayjkaiaawMcaa8qacaGGDbWaaqWaaeaacq qHMoGrpaWaaeWaaeaaceWGYbGbaSaaaiaawIcacaGLPaaaa8qacaGL hWUaayjcSdWaaWbaaeqajuaibaGaaGOmaaaajuaGcaaI0aGaeqiWda NaamOCamaaCaaabeqcfasaaiaaikdaaaqcfaOaamizaiaadkhaaaa@7636@   (13)

Using this Gaussian as a trial function, and which generates the regular potential at the origin V G [Φ( r )]= Gm r Erf( r σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbWaaSbaaKqbGeaacaWGhbaajuaGbeaacaGGBbGaeuOP dy0damaabmaabaGabmOCayaalaaacaGLOaGaayzkaaWdbiaac2facq GH9aqpdaWcaaqaaiaadEeacaWGTbaabaGaamOCaaaacaWGfbGaamOC aiaadAgadaqadaqaamaalaaabaGaamOCaaqaaiabeo8aZbaaaiaawI cacaGLPaaaaaa@49DD@  given by equation (8) after solving Poisson's equation (7).2 The integrals to be evaluated in equation (13) are of the form

0 ( x 4 3 x 2 )   e x 2 dx= 3 8 π Erf( x ) 1 4 e x 2 x( 2 x 2 3 )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWdXbqaamaabmaabaGaamiEamaaCaaajuaibeqaaiaaisda aaqcfaOaeyOeI0IaaG4maiaadIhadaahaaqabKqbGeaacaaIYaaaaa qcfaOaayjkaiaawMcaaaqaaiaaicdaaeaacqGHEisPaiabgUIiYdGa aiiOaiaacwgadaahaaqabeaacqGHsislcaWG4bWaaWbaaKqbGeqaba GaaGOmaaaaaaqcfaOaamizaiaadIhacqGH9aqpcqGHsisldaWcaaqa aiaaiodaaeaacaaI4aaaamaakaaabaGaeqiWdahabeaacaWGfbGaam OCaiaadAgapaWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyOeI0Ya aSaaaeaacaaIXaaabaGaaGinaaaapeGaaiyzamaaCaaabeqaaKqzad GaeyOeI0IaamiEaSWaaWbaaKqbagqajuaibaqcLbmacaaIYaaaaaaa juaGcaWG4bWaaeWaaeaacaaIYaGaamiEamaaCaaajuaibeqaaiaaik daaaqcfaOaeyOeI0IaaG4maaGaayjkaiaawMcaaiaacckaaaa@685D@   (14)

2Which is also related to the incomplete gamma function γ( 1 2 ;r )= π Erf( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHZoWzdaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaGa ai4oaiaadkhaaiaawIcacaGLPaaacqGH9aqpdaGcaaqaaiabec8aWb qabaGaamyraiaadkhacaWGMbWdamaabmaabaGaamOCaaGaayjkaiaa wMcaaaaa@451F@

0 x Erf( x ) e x 2 dx= 1 4 ( 2 Erf( 2 x )2 e x 2 Erf( x ) )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWdXbqaaiaadIhaaeaacaaIWaaabaGaeyOhIukacqGHRiI8 aiaadweacaWGYbGaamOza8aadaqadaqaaiaadIhaaiaawIcacaGLPa aapeGaaiyzamaaCaaabeqaaiabgkHiTiaadIhadaahaaqabKqbGeaa caaIYaaaaaaajuaGcaWGKbGaamiEaiabg2da98aadaWcaaqaaiaaig daaeaacaaI0aaaamaabmaabaWaaOaaaeaacaaIYaaabeaapeGaamyr aiaadkhacaWGMbWaaeWaaeaadaGcaaqaaiaaikdaaeqaaiaadIhaai aawIcacaGLPaaacqGHsislcaaIYaGaaiyzamaaCaaajuaibeqaaiab gkHiTiaadIhajuaGdaahaaqcfasabeaacaaIYaaaaaaajuaGcaWGfb GaamOCaiaadAgapaWaaeWaaeaacaWG4baacaGLOaGaayzkaaaacaGL OaGaayzkaaWdbiaacckaaaa@604D@   (15)

After performing the definite integrals we find that

E( σ )= 3 π 4 2 m σ 2 2 π G m 2 σ    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbWaaeWaaeaacqaHdpWCaiaawIcacaGLPaaacqGH9aqp daWcaaqaaiaaiodadaGcaaqaaiabec8aWbqabaaabaGaaGinaaaada Wcaaqaaiabl+qiOnaaCaaabeqcfasaaiaaikdaaaaajuaGbaGaamyB aiabeo8aZnaaCaaajuaibeqaaiaaikdaaaaaaKqbakabgkHiTmaaka aabaWaaSaaaeaacaaIYaaabaGaeqiWdahaaaqabaWaaSaaaeaacaWG hbGaamyBamaaCaaajuaibeqaaiaaikdaaaaajuaGbaGaeq4Wdmhaai aacckacaGGGcaaaa@5133@   (16)

σ m i n = 3π 2 2 2 G m 3   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHdpWCdaWgaaqcfasaaiaad2gaaeqaaKqbaoaaBaaajuai baGaamyAaaqabaqcfa4aaSbaaKqbGeaacaWGUbaabeaajuaGcqGH9a qpdaWcaaqaaiaaiodacqaHapaCaeaacaaIYaWaaOaaaeaacaaIYaaa beaaaaWaaSaaaeaacqWIpecAdaahaaqabKqbGeaacaaIYaaaaaqcfa yaaiaadEeacaWGTbWaaWbaaKqbGeqabaGaaG4maaaaaaqcfaOaaiiO aaaa@4A39@   (17)

And inserting this value of σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHdpWCaaa@3867@  into E( σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbWaaeWaaeaacqaHdpWCaiaawIcacaGLPaaaaaa@3ABA@  gives

E m i n = 2 3 π 3/2 G 2 m 5 2 =0.119  G 2 m 5 2    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbWaaSbaaKqbGeaacaWGTbaabeaajuaGdaWgaaqcfasa aiaadMgaaeqaaKqbaoaaBaaajuaibaGaamOBaaqabaqcfaOaeyypa0 ZaaSaaaeaacaaIYaaabaGaaG4maiabec8aWnaaCaaajuaibeqaaiaa iodacaGGVaGaaGOmaaaaaaqcfa4aaSaaaeaacaWGhbWaaWbaaKqbGe qabaGaaGOmaaaajuaGcaWGTbWaaWbaaKqbGeqabaGaaGynaaaaaKqb agaacqWIpecAdaahaaqabeaacaaIYaaaaaaacqGH9aqpcqGHsislca aIWaGaaiOlaiaaigdacaaIXaGaaGyoaiaacckadaWcaaqaaiaadEea daahaaqabKqbGeaacaaIYaaaaKqbakaad2gadaahaaqcfasabeaaca aI1aaaaaqcfayaaiabl+qiOnaaCaaabeqaaiaaikdaaaaaaiaaccka caGGGcaaaa@5B4A@   (18)

Which is a satisfactory value since it is above the lower energy bound

E bound = 32 9 π 2 G 2 m 5 2 =0.360 G 2 m 5 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbWcdaWgaaqcfayaaKqzadGaamOyaiaad+gacaWG1bGa amOBaiaadsgaaKqbagqaaiabg2da9maalaaabaGaaG4maiaaikdaae aacaaI5aGaeqiWda3aaWbaaKqbGeqabaGaaGOmaaaaaaqcfa4aaSaa aeaacaWGhbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGTbWaaWbaaK qbGeqabaGaaGynaaaaaKqbagaacqWIpecAdaahaaqcfasabeaacaaI YaaaaaaajuaGcqGH9aqpcqGHsislcaaIWaGaaiOlaiaaiodacaaI2a GaaGimamaalaaabaGaam4ramaaCaaabeqcfasaaiaaikdaaaqcfaOa amyBamaaCaaajuaibeqaaiaaiwdaaaaajuaGbaGaeS4dHG2cdaahaa qcfasabeaajugWaiaaikdaaaaaaaaa@5B0F@   (19)

Derived by.27 and it is also close to the value 0.163( G 2 m 5 / 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHsislcaaIWaGaaiOlaiaaigdacaaI2aGaaG4mamaabmaa baGaam4ramaaCaaabeqcfasaaiaaikdaaaqcfaOaamyBamaaCaaaju aibeqaaiaaiwdaaaqcfaOaai4laiabl+qiOTWaaWbaaKqbGeqabaqc LbmacaaIYaaaaaqcfaOaayjkaiaawMcaaaaa@4662@  obtained numerically by.2226 We can also verify that the value of σ min MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqVajuaGqa aaaaaaaaWdbiabeo8aZnaaBaaajuaibaGaamyBaiaadMgacaWGUbaa juaGbeaaaaa@3D10@  given by equation (17) is consistent with the virial theorem | U  |= 2T, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqVajuaGda abdaqaaabaaaaaaaaapeGaamyvaiaabccaa8aacaGLhWUaayjcSdWd biabg2da9iaabccacaaIYaGaamivaiaacYcaaaa@4049@ stating that the absolute value of the potential energy is twice the kinetic energy. It is also worth mentioning that a trial exponential ψ( r )= ( k 3 /π ) 1/2 e kr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqVajuaGqa aaaaaaaaWdbiabeI8a59aadaqadaqaa8qacaWGYbaapaGaayjkaiaa wMcaa8qacqGH9aqppaWaaeWaaeaapeGaam4AamaaCaaabeqaaiaaio daaaGaai4laiabec8aWbWdaiaawIcacaGLPaaapeWaaWbaaeqabaGa aGymaiaac+cacaaIYaaaaiaadwgadaahaaqabeaacqGHsislcaWGRb GaamOCaaaaaaa@4961@  leads to an upper energy bound for the ground state of27

E 0     75 512    G 2 m 5 2  = 0.146   G 2 m 5 2      MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbWaaSbaaeaajugWaiaaicdaaKqbagqaaiaacckacqGH KjYOcaGGGcGaeyOeI0IaaiiOamaalaaabaGaaG4naiaaiwdaaeaaca aI1aGaaGymaiaaikdaaaGaaiiOaiaacckadaWcaaqaaiaadEeadaah aaqcfasabeaacaaIYaaaaKqbakaad2gadaahaaqcfasabeaacaaI1a aaaaqcfayaaiabl+qiOnaaCaaajuaibeqaaiaaikdaaaaaaKqbakaa cckacqGH9aqpcaGGGcGaeyOeI0IaaGimaiaac6cacaaIXaGaaGinai aaiAdacaGGGcGaaiiOamaalaaabaGaam4ramaaCaaajuaibeqaaiaa ikdaaaqcfaOaamyBamaaCaaajuaibeqaaiaaiwdaaaaajuaGbaGaeS 4dHG2aaWbaaeqajuaibaGaaGOmaaaaaaqcfaOaaiiOaiaacckacaGG GcGaaiiOaaaa@6469@   (20)

Which is close to the value found numerically by.2226 However the series expansion of e kr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWaaWbaaKqbGeqabaGaeyOeI0Iaam4Aaiaadkhaaaaa aa@3AB2@  involves even and odd powers of r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbaaaa@379B@  which is not the case of the numerical solutions provided by.2226 The spherically-symmetric solutions of the stationary Schrödinger-Newton equations have been solved numerically by many authors.2226 They have demonstrated numerically the existence of a discrete set of “bound-state” solutions which are everywhere finite and smooth (and which are associated with finite energy eigenvalues), but which separate ever decreasing intervals of partial solutions which diverge alternately to plus or minus infinity.

The value found for the ground state energy turned out to be

E 0  =  0.163   G 2 m 5 2  = 0.163  ( m M planck ) 5 M planck   c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbWaaSbaaKqbGeaacaaIWaaabeaajuaGcaGGGcGaeyyp a0JaaiiOaiaacckacqGHsislcaaIWaGaaiOlaiaaigdacaaI2aGaaG 4maiaacckacaGGGcWaaSaaaeaacaWGhbWaaWbaaeqajuaibaGaaGOm aaaajuaGcaWGTbWaaWbaaKqbGeqabaGaaGynaaaaaKqbagaacqWIpe cAdaahaaqcfasabeaacaaIYaaaaaaajuaGcaGGGcGaeyypa0JaaiiO aiabgkHiTiaaicdacaGGUaGaaGymaiaaiAdacaaIZaGaaiiOamaabm aabaWaaSaaaeaacaWGTbaabaGaamytamaaBaaajuaibaGaamiCaiaa dYgacaWGHbGaamOBaiaadogacaWGRbaabeaaaaaajuaGcaGLOaGaay zkaaWaaWbaaKqbGeqabaGaaGynaaaajuaGcaWGnbWaaSbaaKqbGeaa caWGWbGaamiBaiaadggacaWGUbGaam4yaiaadUgaaKqbagqaaiaacc kacaWGJbWaaWbaaKqbGeqabaGaaGOmaaaaaaa@6AE7@   (21)

These numerical values for the energy are very small for masses much smaller than the Planck mass.

 

The width (spread) σ of the Gaussian wave-function is measured in units of ( 2 / G 2 m 5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGOaGaeS4dHG2aaWbaaeqajuaibaGaaGOmaaaajuaGcaGG VaGaam4ramaaCaaajuaibeqaaiaaikdaaaqcfaOaamyBamaaCaaaju aibeqaaiaaiwdaaaqcfaOaaiykaaaa@4068@ , which translated into Planckian units is ( L P  / L S ) 3 ( 2 L P ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaqaaaaaaaaaWdbiaadYeadaWgaaqcfasaaiaadcfaaKqbagqaaiaa bccacaGGVaGaamitamaaBaaajuaibaGaam4uaaqabaaajuaGpaGaay jkaiaawMcaa8qadaahaaqabKqbGeaacaaIZaaaaKqba+aadaqadaqa a8qacaaIYaGaamitamaaBaaajuaibaGaamiuaaqcfayabaaapaGaay jkaiaawMcaaaaa@453C@ , where L P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGmbWaaSbaaKqbGeaacaWGqbaajuaGbeaaaaa@3927@ is the Planck length (2G/ c 3 ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGOaGaaGOmaiabl+qiOjaadEeacaGGVaGaam4yamaaCaaa beqcfasaaiaaiodaaaqcfaOaaiykamaaCaaajuaibeqaaiaaigdaca GGVaGaaGOmaaaaaaa@405E@ , and L S  = 2Gm/ c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGmbWaaSbaaKqbGeaacaWGtbaajuaGbeaacaGGGcGaeyyp a0JaaiiOaiaaikdacaWGhbGaamyBaiaac+cacaWGJbWaaWbaaeqaju aibaGaaGOmaaaaaaa@4199@ is the Schwarzschild radius. It was argued by the authors22 that for a nucleon mass m the value of σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHdpWCaaa@3867@  is vast and is of order of 10 24  cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaaGimamaaCaaabeqaaiaaikdacaaI0aaaaiaabcca caWGJbGaamyBaaaa@3C32@ . The corresponding time Δt = /ΔE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWG0bGaaiiOaiabg2da9iaacckacqWIpecAcaGG VaGaeuiLdqKaamyraaaa@405D@  for the largest (in magnitude) energy is about of 1053 seconds for the mass of the nucleon, and is of the order of 1 second for 1011 nucleon masses. This is perfectly satisfactory for the state vector reduction of,1 because it tells us that the state of a single nucleon will not self-reduce on a timescale of relevance to any actual particle, in agreement with observation. For large collections of particles, on the other hand, the reduction time can become important.

The coupled system of differential equations (1,2) can be recast after integrating twice, and using dimensionless variables S, V , as22

S( r ) =  S 0   1 l 2   0 r x ( 1   x r )  S( x ) V( x ) dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaaiiOaiab g2da9iaacckacaGGtbWaaSbaaKqbGeaacaaIWaaajuaGbeaacaGGGc GaeyOeI0YaaSqaaeaacaaIXaaabaGaamiBamaaCaaabeqcfasaaiaa ikdaaaaaaKqbakaacckadaWdXbqaaiaadIhacaGGGcWaaeWaaeaaca aIXaGaaiiOaiabgkHiTiaacckadaWcaaqaaiaadIhaaeaacaWGYbaa aaGaayjkaiaawMcaaaqcfasaaiaaicdaaeaacaWGYbaajuaGcqGHRi I8aiaacckacaWGtbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaiiO aiaadAfadaqadaqaaiaadIhaaiaawIcacaGLPaaacaGGGcGaamizai aadIhaaaa@60B1@   (22)

V( r ) =  V 0   1 l 2   0 r x ( 1   x r )   S 2 ( x ) dx   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaaiiOaiab g2da9iaacckacaWGwbWaaSbaaKqbGeaacaaIWaaajuaGbeaacaGGGc GaeyOeI0YaaSqaaeaacaaIXaaabaGaamiBamaaCaaabeqcfasaaiaa ikdaaaaaaKqbakaacckadaWdXbqaaiaadIhacaGGGcWaaeWaaeaaca aIXaGaaiiOaiabgkHiTiaacckadaWcaaqaaiaadIhaaeaacaWGYbaa aaGaayjkaiaawMcaaaqcfasaaiaaicdaaeaacaWGYbaajuaGcqGHRi I8aiaacckacaWGtbWaaWbaaKqbGeqabaGaaGOmaaaajuaGdaqadaqa aiaadIhaaiaawIcacaGLPaaacaGGGcGaamizaiaadIhacaGGGcGaai iOaaaa@6015@   (23)

The value of V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbWaaSbaaKqbGeaacaaIWaaajuaGbeaaaaa@3916@  must be V 0  > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbWaaSbaaKqbGeaacaaIWaaajuaGbeaacaGGGcGaeyOp a4JaaiiOaiaaicdaaaa@3D20@  to ensure convergence of S( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaaaaa@39FC@ and V( r )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaaiiOaaaa @3B23@ at r   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbGaaeiiaiabgkziUkaabccacqGHEisPaaa@3C3F@ . Scaling arguments allow one to choose V 0  = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbWaaSbaaKqbGeaacaaIWaaajuaGbeaacaGGGcGaeyyp a0JaaiiOaiaaigdaaaa@3D1F@ . The numerical solutions to equations (22,23) foundby,22 when V 0  = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbWaaSbaaKqbGeaacaaIWaaajuaGbeaacaGGGcGaeyyp a0JaaiiOaiaaigdaaaa@3D1F@ , are

S( r ) =  S 0  ( 1  1 6   r 2 l 2  +  ( S 0 2  + 1) 120   r 4 l 4  + ....    ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaaiiOaiab g2da9iaacckacaGGtbWaaSbaaKqbGeaacaaIWaaajuaGbeaacaGGGc WaaeWaaeaacaaIXaGaeyOeI0IaaiiOamaalaaabaGaaGymaaqaaiaa iAdaaaGaaiiOamaalaaabaGaamOCamaaCaaabeqcfasaaiaaikdaaa aajuaGbaGaamiBamaaCaaabeqcfasaaKqzadGaaGOmaaaaaaqcfaOa aiiOaiabgUcaRiaacckadaWcaaqaaiaacIcacaWGtbWaa0baaKqbGe aacaaIWaaabaGaaGOmaaaajuaGcaGGGcGaey4kaSIaaiiOaiaaigda caGGPaaabaGaaGymaiaaikdacaaIWaaaaiaacckadaWcaaqaaiaadk hadaahaaqabKqbGeaacaaI0aaaaaqcfayaaiaadYgadaahaaqabKqb GeaacaaI0aaaaaaajuaGcaGGGcGaey4kaSIaaiiOaiaac6cacaGGUa GaaiOlaiaac6cacaGGGcGaaiiOaiaacckaaiaawIcacaGLPaaaaaa@6BC1@   (24)

V( r ) =  ( 1  S 0 2 6   r 2 l 2  +  S 0 2   60   r 4 l 4  + ....    )   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaaiiOaiab g2da9iaacckacaGGGcWaaeWaaeaacaaIXaGaeyOeI0IaaiiOamaala aabaGaam4uamaaDaaajuaibaGaaGimaaqaaiaaikdaaaaajuaGbaGa aGOnaaaacaGGGcWaaSaaaeaacaWGYbWaaWbaaeqajuaibaGaaGOmaa aaaKqbagaacaWGSbWaaWbaaeqajuaibaqcLbmacaaIYaaaaaaajuaG caGGGcGaey4kaSIaaiiOamaalaaabaGaam4uamaaDaaajuaibaGaaG imaaqaaiaaikdaaaqcfaOaaiiOaaqaaiaaiAdacaaIWaaaaiaaccka daWcaaqaaiaadkhadaahaaqabKqbGeaacaaI0aaaaaqcfayaaiaadY gadaahaaqabKqbGeaacaaI0aaaaaaajuaGcaGGGcGaey4kaSIaaiiO aiaac6cacaGGUaGaaiOlaiaac6cacaGGGcGaaiiOaiaacckaaiaawI cacaGLPaaacaGGGcGaaiiOaaaa@693E@   (25)

The wave-functions are Ψ( r ) = α l 2 S( r )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHOoqwdaqadaqaaiaadkhaaiaawIcacaGLPaaacaGGGcGa eyypa0ZaaSaaaeaacqaHXoqyaeaacaWGSbWaaWbaaeqajuaibaGaaG OmaaaaaaqcfaOaam4uamaabmaabaGaamOCaaGaayjkaiaawMcaaiaa cckaaaa@4593@ , and where α,β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHXoqycaGGSaGaeqOSdigaaa@3A94@ are defined by

α    [ 2 8πG m 2 ] 1/2 , β    2 2m   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHXoqycaGGGcGaeyyyIORaaiiOaiaacckadaWadaqaamaa laaabaGaeS4dHG2aaWbaaeqajuaibaGaaGOmaaaaaKqbagaacaaI4a GaeqiWdaNaam4raiaad2gadaahaaqabKqbGeaacaaIYaaaaaaaaKqb akaawUfacaGLDbaadaahaaqcfasabeaacaaIXaGaai4laiaaikdaaa qcfaOaaiilaiaacckacqaHYoGycaGGGcGaeyyyIORaaiiOaiaaccka daWcaaqaaiabl+qiOnaaCaaabeqcfasaaiaaikdaaaaajuaGbaGaaG Omaiaad2gaaaGaaiiOaaaa@596B@   (26)

And l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGSbaaaa@3795@ is a physical length parameter (the gravitational analog of the Bohr’s radius) given by l =  2 / G m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGSbGaaiiOaiabg2da9iaacckacqWIpecAdaahaaqabKqb GeaacaaIYaaaaKqbakaac+cacaGGGcGaam4raiaad2gadaahaaqabK qbGeaacaaIZaaaaaaa@4248@ , such that β /  l 2 =  1 2  ( G 2 m 5 /  2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHYoGycaGGGcGaai4laiaacckacaWGSbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGH9aqpcaGGGcWaaSaaaeaacaaIXaaabaGaaG OmaaaacaGGGcWaaeWaaeaacaWGhbWaaWbaaeqajuaibaGaaGOmaaaa juaGcaWGTbWaaWbaaeqajqwba+FaaKqzadGaaGynaaaajuaGcaGGVa GaaiiOaiabl+qiOnaaCaaabeqcfasaaiaaikdaaaaajuaGcaGLOaGa ayzkaaGaaiilaaaa@5159@ .

The energy eigenvalues are E = U( r ) +  β l 2  V( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaaiiOaiabg2da9iaacckacaWGvbWaaeWaaeaacaWG YbaacaGLOaGaayzkaaGaaiiOaiabgUcaRiaacckadaWcaaqaaiabek 7aIbqaaiaadYgadaahaaqabKqbGeaacaaIYaaaaaaajuaGcaGGGcGa amOvamaabmaabaGaamOCaaGaayjkaiaawMcaaaaa@49FB@ .Because U( r= 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGvbWaaeWaaeaacaWGYbGaeyypa0JaaiiOaiaaicdaaiaa wIcacaGLPaaaaaa@3CE2@  is of the form  × 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHEisPcaGGGcGaey41aqRaaiiOaiaaicdaaaa@3D2E@  which is undefined, it is more convenient to evaluate the energy at r =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbGaaiiOaiabg2da9iaacckacqGHEisPaaa@3C5A@ where  U() MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaamyvaiaacIcacqGHEisPcaGGPaaaaa@3B6C@ vanishes, as follows2226,28

E = U(r = )  +   β l 2  V( r =  ) =  β l 2   ( V 0    1 l 2    0 x  S 2 ( x )  dx ),   V 0  =  1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGfbGaaiiOaiabg2da9iaacckacaWGvbGaaiikaiaadkha caGGGcGaeyypa0JaaiiOaiabg6HiLkaacMcacaGGGcGaaiiOaiabgU caRiaacckacaGGGcWaaSaaaeaacqaHYoGyaeaacaWGSbWaaWbaaKqb GeqabaGaaGOmaaaaaaqcfaOaaiiOaiaadAfadaqadaqaaiaadkhaca GGGcGaeyypa0JaaiiOaiabg6HiLcGaayjkaiaawMcaaiaacckacqGH 9aqpcaGGGcWaaSaaaeaacqaHYoGyaeaacaWGSbWaaWbaaeqajuaiba GaaGOmaaaaaaqcfaOaaiiOaiaacckadaqadaqaaiaadAfadaWgaaqc fasaaiaaicdaaKqbagqaaiaacckacqGHsislcaGGGcWaaSaaaeaaca aIXaaabaGaamiBamaaCaaabeqcfasaaiaaikdaaaaaaKqbakaaccka caGGGcWaa8qCaeaacaWG4bGaaiiOaiaadofadaahaaqcfasabeaaca aIYaaaaKqbaoaabmaabaGaamiEaaGaayjkaiaawMcaaaqcfasaaiaa icdaaeaacqGHEisPaKqbakabgUIiYdGaaiiOaiaadsgacaWG4baaca GLOaGaayzkaaGaaiilaiaacckacaGGGcGaamOvamaaBaaajuaibaGa aGimaaqcfayabaGaaiiOaiabg2da9iaacckacaGGGcGaaGymaaaa@8622@   (27)

The values of S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGtbWaaSbaaKqbGeaacaaIWaaajuaGbeaaaaa@3912@  are fine-tuned such that the ground state wave-function has no zeros, it is bounded at the origin and vanishes at infinity. By demanding that Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHOoqwaaa@3833@ and U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGvbaaaa@377E@ are finite and smooth everywhere, the authors showed that the n-th eigen function has n zeros and the wave-functions are normalizable. The corresponding energy eigenvalues are negative, converging monotonically to zero as n increases. Each bound-state is unstable in the sense that infinite precision is required in the initial value of S ( r= 0 ) =  S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbGaaiiOamaabmaabaGaamOCaiabg2da9iaacckacaaI WaaacaGLOaGaayzkaaGaaiiOaiabg2da9iaacckacaGGtbWaaSbaaK qbGeaacaaIWaaajuaGbeaaaaa@43C0@  to ensure that the solutions do not diverge to infinity as r increases. For the ground state, the numerical value of S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGtbWaaSbaaKqbGeaacaaIWaaajuaGbeaaaaa@3912@ fell in the range given by 1.088<  S 0  <1.090 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaaiOlaiaaicdacaaI4aGaaGioaiabgYda8iaabcca caGGtbWaaSbaaKqbGeaacaaIWaaajuaGbeaacaGGGcGaeyipaWJaaG ymaiaac6cacaaIWaGaaGyoaiaaicdaaaa@4430@  and it led to the ground state energy E 0  =  0.163   G 2 m 5 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbWaaSbaaKqbGeaacaaIWaaajuaGbeaacaGGGcGaeyyp a0JaaiiOaiaacckacqGHsislcaaIWaGaaiOlaiaaigdacaaI2aGaaG 4maiaacckacaGGGcWaaSaaaeaacaWGhbWaaWbaaeqajuaibaGaaGOm aaaajuaGcaWGTbWaaWbaaeqajuaibaGaaGynaaaaaKqbagaacqWIpe cAdaahaaqabKqbGeaajugWaiaaikdaaaaaaaaa@4CB8@ .

For further details of how to obtain other energy eigen values and eigen functions by choosing different values for S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGtbWaaSbaaKqbGeaacaaIWaaajuaGbeaaaaa@3912@ we refer to.2336 The study of the Newton-Schrödinger equations in D dimensions other than D= 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGebGaeyypa0Jaaeiiaiaaiodaaaa@39D3@ can be found in.28

A careful inspection of the work by2226,28 inspired us to find the remarkable numerical coincidence provided by the definite integral

0 e ( y 2 + y 4 ) y 2 dy = 0.160 0.163 = 1 2 ( 1 1 l 2 0 x S 2 (x) dx )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaaGiiaiaaiccadaWdXbqaaiaadwgadaahaaqcfasabeaacqGHsisl caaIOaGaamyEaKqbaoaaCaaajuaibeqaaiaaikdaaaGaey4kaSIaam yEaKqbaoaaCaaajuaibeqaaiaaisdaaaGaaGykaaaacaaIGaqcfaOa amyEamaaCaaabeqcfasaaiaaikdaaaqcfaOaaGiiaiaadsgacaWG5b aajuaibaGaaGimaaqaaiabg6HiLcqcfaOaey4kIipacaaIGaGaaGii aiaai2dacaaIGaGaeyOeI0IaaGiiaiaaicdacaaIUaGaaGymaiaaiA dacaaIWaGaaGiiaebbfv3ySLgzGueE0jxyaGqbaiab=nKi7iaaicca cqGHsislcaaIWaGaaGOlaiaaigdacaaI2aGaaG4maiaaiccacaaI9a GaaGiiamaalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaacaaIGaGa aGymaiaaiccacqGHsisldaWcaaqaaiaaigdaaeaacaWGSbWaaWbaae qabaGaaGOmaaaaaaGaaGiiamaapehabaGaamiEaiaaiccacaWGtbWa aWbaaKqbGeqabaGaaGOmaaaajuaGcaaIOaGaamiEaiaaiMcacaaIGa GaamizaiaadIhaaKqbGeaacaaIWaaabaGaeyOhIukajuaGcqGHRiI8 aiaaiccaaiaawIcacaGLPaaaqaaaaaaaaaWdbiaacckaaaa@7D49@   (28)

(We set V o =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvam aaBaaajuaibaGaam4BaaqcfayabaGaeyypa0JaaGymaaaa@3AF1@ ). The normalization of the wave function Ψ= α l 2 S(r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiQdK LaaGypamaalaaabaGaeqySdegabaGaamiBamaaCaaajuaibeqaaiaa ikdaaaaaaKqbakaadofacaaIOaGaamOCaiaaiMcaaaa@4048@

α 2 l 4 0 4π r 2 S 2 dr = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqaHXoqydaahaaqabKqbGeaacaaIYaaaaaqcfayaaiaadYgadaah aaqabKqbGeaacaaI0aaaaaaajuaGcaaIGaWaa8qCaeaacaaI0aGaeq iWdaNaamOCamaaCaaabeqcfasaaiaaikdaaaqcfaOaaGiiaiaadofa daahaaqabKqbGeaacaaIYaaaaKqbakaaiccacaWGKbGaamOCaiaaic cacaaI9aGaaGiiaiaaigdaaKqbGeaacaaIWaaabaGaeyOhIukajuaG cqGHRiI8aaaa@4FC4@   (29a)

Allows to recast the right-hand side of (28) as

α 2 2 l 4 0 4π r 2 S 2 dr 1 2 l 2 0 x S 2 (x) dx    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqaHXoqydaahaaqabKqbGeaacaaIYaaaaaqcfayaaiaaikdacaWG SbWaaWbaaeqajuaibaGaaGinaaaaaaqcfaOaaGiiamaapehabaGaaG inaiabec8aWjaadkhadaahaaqabKqbGeaacaaIYaaaaKqbakaaicca caWGtbWaaWbaaeqajuaibaGaaGOmaaaajuaGcaaIGaGaamizaiaadk haaKqbGeaacaaIWaaabaGaeyOhIukajuaGcqGHRiI8aiaaiccacaaI GaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaiaadYgadaahaaqabe aajugWaiaaikdaaaaaaKqbakaaiccadaWdXbqaaiaadIhacaaIGaGa am4uamaaCaaabeqcfasaaiaaikdaaaqcfaOaaGikaiaadIhacaaIPa GaaGiiaiaadsgacaWG4baajuaibaGaaGimaaqaaiabg6HiLcqcfaOa ey4kIipacaaIGaaeaaaaaaaaa8qacaGGGcGaaiiOaaaa@66FC@   (29b)

After relabeling the variable r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCaa aa@377B@  for x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEaa aa@3781@  in the above expression, equation (28) becomes

0.160 = 0 e ( y 2 + y 4 ) y 2 dy 1 2    0 ( 4π α 2 l y 1 ) y S 2 (y) dy = 0.163 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaaGiiaiaaicdacaaIUaGaaGymaiaaiAdacaaIWaGaaGiiaiaai2da caaIGaGaeyOeI0IaaGiiamaapehabaGaamyzamaaCaaajuaibeqaai abgkHiTiaaiIcacaWG5bqcfa4aaWbaaKqbGeqabaGaaGOmaaaacqGH RaWkcaWG5bqcfa4aaWbaaKqbGeqabaGaaGinaaaacaaIPaaaaKqbak aaiccacaWG5bWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaaIGaGaamiz aiaadMhacaaIGaqeeuuDJXwAKbsr4rNCHbacfaGae83qISJaaGiiai aaiccadaWcaaqaaiaaigdaaeaacaaIYaaaaaqcfasaaiaaicdaaeaa cqGHEisPaKqbakabgUIiYdaeaaaaaaaaa8qacaGGGcGaaiiOa8aada WdXbqaamaabmaabaGaaGiiamaalaaabaGaaGinaiabec8aWjaaicca cqaHXoqydaahaaqcfasabeaacaaIYaaaaaqcfayaaiaadYgaaaGaaG iiaiaadMhacaaIGaGaeyOeI0IaaGymaiaaiccaaiaawIcacaGLPaaa caaIGaGaamyEaiaaiccacaWGtbWaaWbaaeqajuaibaGaaGOmaaaaju aGcaaIOaGaamyEaiaaiMcacaaIGaGaamizaiaadMhaaKqbGeaacaaI WaaabaGaeyOhIukajuaGcqGHRiI8aiaaiccacaaIGaGaaGypaiaaic cacqGHsislcaaIGaGaaGimaiaai6cacaaIXaGaaGOnaiaaiodaaaa@8596@   (30)

Which allows to identify the variables y x l = r l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyEai abggMi6oaalaaabaGaamiEaaqaaiaadYgaaaGaaGypamaalaaabaGa amOCaaqaaiaadYgaaaaaaa@3E08@ , and basically equate the dimensionless integrals. However this does not mean that the integrands are the same. The integral in the right-hand side of equation (30) is evaluated after inserting the value of 4π α 2 /l= 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGinai abec8aWjabeg7aHnaaCaaabeqcfasaaiaaikdaaaqcfaOaaG4laiaa dYgacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaaaaaaa@4030@ . The expression for S 2 (r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uam aaCaaajuaibeqaaiaaikdaaaqcfaOaaGikaiaadkhacaaIPaaaaa@3B52@ corresponding to the ground state is derived from equation (24) after inserting a value of S o 1.088 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uam aaBaaajuaibaGaam4BaaqcfayabaqeeuuDJXwAKbsr4rNCHbacfaGa e83qISJaaGymaiaai6cacaaIWaGaaGioaiaaiIdaaaa@429F@ (lying in the interval [1.088,1.090] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4waS LaeyymaeJaeyOla4IaeyimaaJaeyioaGJaeyioaGJaeyilaWIaeyym aeJaeyOla4IaeyimaaJaeyyoaKJaeyimaaJaeyyxa0faaa@4356@ ). The other “bound" states require different values of S o,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uam aaBaaajuaibaGaam4BaiaaiYcacaWGUbaabeaaaaa@3A48@  yielding different expressions for S n (r)  ( S n (r=0)= S o,n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uam aaBaaajuaibaGaamOBaaqcfayabaGaaGikaiaadkhacaaIPaaeaaaa aaaaa8qacaGGGcGaaiiOa8aadaqadaqaaiaadofadaWgaaqcfasaai aad6gaaKqbagqaaiaaiIcacaWGYbGaeyypa0JaaGimaiaaiMcacqGH 9aqpcaWGtbWaaSbaaKqbGeaacaWGVbGaaGilaiaad6gaaKqbagqaaa GaayjkaiaawMcaaaaa@4BA4@ , and which have n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBaa aa@3777@  nodes (zeros). Next we shall present the novel and most salient results of this section. To our knowledge these findings below are new. The following remarkable numerical coincidences for the values of the remaining (negative) energy eigenvalues E 1 , E 2 , E 3 ,..... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaBaaajuaibaGaaGymaaqcfayabaGaaGilaiaadweadaWgaaqcfasa aiaaikdaaKqbagqaaiaaiYcacaWGfbWaaSbaaKqbGeaacaaIZaaaju aGbeaacaaISaGaaGOlaiaai6cacaaIUaGaaGOlaiaai6caaaa@4367@ have also been found. To obtain the values for the first excited state we replace the integral in the left-hand side of (28) for:

n=1: 1 2 2 0 e ( y 2 + y 4 + y 6 ) y 2 dy = 0.0302 0.0308 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai abg2da9iabggdaXiabgQda6iabgccaGiabgccaGiabgkHiTmaalaaa baGaeyymaedabaGaeyOmaiZaaWbaaeqajuaibaGaeyOmaidaaaaaju aGcaaIGaGaaGiiamaapehabaGaamyzamaaCaaajuaibeqaaiabgkHi TiaaiIcacaWG5bqcfa4aaWbaaKqbGeqabaGaaGOmaaaacqGHRaWkca WG5bqcfa4aaWbaaKqbGeqabaGaaGinaaaacqGHRaWkcaWG5bqcfa4a aWbaaKqbGeqabaGaaGOnaaaacaaIPaaaaKqbakaaiccacaWG5bWaaW baaeqajuaibaGaaGOmaaaajuaGcaaIGaGaamizaiaadMhaaKqbGeaa caaIWaaabaGaeyOhIukajuaGcqGHRiI8aiaaiccacaaI9aGaaGiiai abgkHiTiaaiccacaaIWaGaaGOlaiaaicdacaaIZaGaaGimaiaaikda caaIGaqeeuuDJXwAKbsr4rNCHbacfaGae83qISJaaGiiaiabgkHiTi aaicdacaaIUaGaaGimaiaaiodacaaIWaGaaGioaaaa@6F2F@   (31)

To get the second one

n=2: 1 3 2 0 e ( y 2 + y 4 + y 6 + y 8 ) y 2 dy = 0.0120 0.0125 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai abg2da9iabgkdaYiabgQda6iabgccaGiabgccaGiabgkHiTmaalaaa baGaeyymaedabaGaey4mamZaaWbaaeqajuaibaGaeyOmaidaaaaaju aGcqGHGaaidaWdXbqaaiaadwgadaahaaqcfasabeaacqGHsislcaaI OaGaamyEaKqbaoaaCaaajuaibeqaaiaaikdaaaGaey4kaSIaamyEaK qbaoaaCaaajuaibeqaaiaaisdaaaGaey4kaSIaamyEaKqbaoaaCaaa juaibeqaaiaaiAdaaaGaey4kaSIaamyEaKqbaoaaCaaajuaibeqaai aaiIdaaaGaaGykaaaajuaGcaaIGaGaamyEamaaCaaajuaibeqaaiaa ikdaaaqcfaOaaGiiaiaadsgacaWG5baajuaibaGaaGimaaqaaiabg6 HiLcqcfaOaey4kIipacaaIGaGaaGypaiaaiccacqGHsislcaaIGaGa aGimaiaai6cacaaIWaGaaGymaiaaikdacaaIWaGaaGiiaebbfv3ySL gzGueE0jxyaGqbaiab=nKi7iaaiccacqGHsislcaaIWaGaaGOlaiaa icdacaaIXaGaaGOmaiaaiwdaaaa@7226@   (32)

The third one

n=3: 1 4 2 0 e ( y 2 + y 4 + y 6 + y 8 + y 10 ) y 2 dy  =   0.00641    0.00675      MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai abg2da9iabgodaZiabgQda6iabgccaGiabgccaGiabgkHiTmaalaaa baGaeyymaedabaGaeyinaqZaaWbaaeqajuaibaGaeyOmaidaaaaaju aGcqGHGaaidaWdXbqcfasaaiaadwgajuaGdaahaaqcfasabeaacqGH sislcaaIOaGaamyEaKqbaoaaCaaajuaibeqaaiaaikdaaaGaey4kaS IaamyEaKqbaoaaCaaajuaibeqaaiaaisdaaaGaey4kaSIaamyEaKqb aoaaCaaajuaibeqaaiaaiAdaaaGaey4kaSIaamyEaKqbaoaaCaaaju aibeqaaiaaiIdaaaGaey4kaSIaamyEaKqbaoaaCaaajuaibeqaaiaa igdacaaIWaaaaiaaiMcaaaaabaGaaGimaaqaaiabg6HiLcqcfaOaey 4kIipacaaIGaGaamyEamaaCaaajuaibeqaaiaaikdaaaqcfaOaaGii aiaadsgacaWG5baeaaaaaaaaa8qacaGGGcWdaiaaiccacaaI9aGaaG iia8qacaGGGcWdaiabgkHiTiaaiccacaaIWaGaaGOlaiaaicdacaaI WaGaaGOnaiaaisdacaaIXaGaaGiia8qacaGGGcqeeuuDJXwAKbsr4r NCHbacfaWdaiab=nKi7iaaiccapeGaaiiOa8aacqGHsislcaaIWaGa aGOlaiaaicdacaaIWaGaaGOnaiaaiEdacaaI1aWdbiaacckacaGGGc GaaiiOaiaacckacaGGGcaaaa@82C3@   (33)

The fourth one

n=4: 1 5 2 0 e ( y 2 + y 4 + y 6 + y 8 + y 10 + y 12 ) y 2 dy = 0.00399 0.00421 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai abg2da9iabgsda0iabgQda6iabgccaGiabgccaGiabgkHiTmaalaaa baGaeyymaedabaGaeyynauZaaWbaaeqajuaibaGaeyOmaidaaaaaju aGcqGHGaaicaaIGaWaa8qCaKqbGeaacaWGLbqcfa4aaWbaaKqbGeqa baGaeyOeI0IaaGikaiaadMhajuaGdaahaaqcfasabeaacaaIYaaaai abgUcaRiaadMhajuaGdaahaaqcfasabeaacaaI0aaaaiabgUcaRiaa dMhajuaGdaahaaqcfasabeaacaaI2aaaaiabgUcaRiaadMhajuaGda ahaaqcfasabeaacaaI4aaaaiabgUcaRiaadMhajuaGdaahaaqcfasa beaacaaIXaGaaGimaaaacqGHRaWkcaWG5bqcfa4aaWbaaKqbGeqaba GaaGymaiaaikdaaaGaaGykaaaaaeaacaaIWaaabaGaeyOhIukajuaG cqGHRiI8aiaaiccacaWG5bWaaWbaaeqajuaibaGaaGOmaaaajuaGca aIGaGaamizaiaadMhacaaIGaGaaGypaiaaiccacqGHsislcaaIGaGa aGimaiaai6cacaaIWaGaaGimaiaaiodacaaI5aGaaGyoaiaaiccarq qr1ngBPrgifHhDYfgaiuaacqWFdjYocaaIGaGaeyOeI0IaaGimaiaa i6cacaaIWaGaaGimaiaaisdacaaIYaGaaGymaaaa@7CC5@   (34)

And so forth..... The pre-factors in front of the integrals for the n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBaa aa@3777@ -th energy eigenvalue are (n+1) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyikaG IaamOBaiabgUcaRiabggdaXiabgMcaPmaaCaaabeqcfasaaiabgkHi TiabgkdaYaaaaaa@3D2E@ , which are “reminiscent” of the Balmer series for the Hydrogen atom, and the arguments of the negative exponentials are y 2 + y 4 ++ y 2(y+2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyEam aaCaaabeqcfasaaiaaikdaaaqcfaOaey4kaSIaamyEamaaCaaajuai beqaaiaaisdaaaqcfaOaey4kaSIaeS47IWKaey4kaSIaamyEamaaCa aabeqcfasaaiabgkdaYiabgIcaOiaadMhacqGHRaWkcqGHYaGmcqGH Paqkaaaaaa@4712@ . The authors22 plotted the ten energy eigenvalues as functions of n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBaa aa@3777@ and found that the slope of log(n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiBai aad+gacaWGNbGaaGikaiaad6gacaaIPaaaaa@3BAD@  versus log(E(n)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiBai aad+gacaWGNbGaaGikaiaadweacaaIOaGaamOBaiaaiMcacaaIPaaa aa@3DDC@ was not 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaaGOmaaaa@382D@ .22 However, the slope is asymptotically close to 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaaGOmaaaa@382D@ .35 which would be the exact value for the Hydrogen atom as previously note by Bernstein et al.2326

Using these expressions in equation (28), and equations (31-34), we find that energy values are remarkably close to the numerical results obtained in,35 and given by the numbers in the right-hand side of equations (28, 31-34). We don"t believe this is a numerical coincidence and could point to the fact that integrability may underlie the solutions of the stationary spherically symmetric Newton-Schrödinger equations. It was emphasized by2226,28 that one would need to know the values of S n (r=0)= S o,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uam aaBaaajuaibaGaamOBaaqabaqcfaOaaGikaiaadkhacqGH9aqpcqGH WaamcqGHPaqkcqGH9aqpcaWGtbWaaSbaaKqbGeaacaWGVbGaaGilai aad6gaaKqbagqaaaaa@42FD@  with infinite precision in order to ensure that S n (r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uam aaBaaajuaibaGaamOBaaqcfayabaGaaGikaiaadkhacaaIPaaaaa@3B88@  does not shoot off to ± MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyySae RaeyOhIukaaa@39E3@  at a finite value of r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCaa aa@377B@ . All the numerical results appearing in the right-hand side of equations (28, 31-34) are obtained by narrowing in the values of S o,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uam aaBaaajuaibaGaam4BaiaaiYcacaWGUbaajuaGbeaaaaa@3AD6@  within certain domains. For this reason we find the analytical results in the left-hand side of equations (28,31-34) very appealing.

To conclude this section we shall recur to the virial theorem <U>=2<Τ> MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGipai aadwfacqGH+aGpcqGH9aqpcqGHsislcqGHYaGmcqGH8aapcqqHKoav cqGH+aGpaaa@3FA1@   E=<T+U>=<T> MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyO0H4 TaaGiiaiaadweacaaI9aGaaGipaiaadsfacqGHRaWkcaWGvbGaaGOp aiaai2dacqGHsislcaaI8aGaamivaiaai6daaaa@435A@  to write the most general expression for the energy after integration by parts, in the form

E n = <T > n = 2 2m ( Ψ n ( r )) * 2 Ψ n ( r ) d 3 r = 2 2m |( Ψ n ( r ))| 2 d 3 r 1 (n+1) 2 G 2 m 5 2 0 e ( y 2 + y 4 + y 6 + + y 2(n+2) ) y 2 dy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca WGfbWaaSbaaKqbGeaacaWGUbaajuaGbeaacaaIGaGaaGypaiaaicca cqGHsislcaaI8aGaamivaiaai6dadaWgaaqcfasaaiaad6gaaeqaaK qbakaaiccacaaI9aGaaGiiamaalaaabaGaeS4dHG2aaWbaaKqbGeqa baGaaGOmaaaaaKqbagaacaaIYaGaamyBaaaacaaIGaWaa8qCaeaaca aIOaGaeuiQdK1aaSbaaKqbGeaacaWGUbaajuaGbeaacaaIOaGabmOC ayaalaGaaGykaiaaiMcadaahaaqcfasabeaacaaIQaaaaKqbakaaic cacqGHhis0daahaaqabKqbGeaacaaIYaaaaKqbakaaiccacqqHOoqw daWgaaqcfasaaiaad6gaaeqaaKqbakaaiIcaceWGYbGbaSaacaaIPa GaaGiiaiaadsgadaahaaqabKqbGeaacaaIZaaaaKqbakaadkhaaKqb GeaacqGHsislcqGHEisPaeaacqGHEisPaKqbakabgUIiYdGaaGiiai aaiccacaaI9aGaaGiiaiabgkHiTiaaiccacaaIGaWaaSaaaeaacqWI pecAdaahaaqabKqbGeaacaaIYaaaaaqcfayaaiaaikdacaWGTbaaai aaiccadaWdXbqaaiaaiYhacaaIOaGaey4bIeTaeuiQdK1aaSbaaKqb GeaacaWGUbaajuaGbeaacaaIOaGabmOCayaalaGaaGykaiaaiMcaca aI8bWaaWbaaeqajuaibaGaaGOmaaaajuaGcaaIGaGaamizamaaCaaa juaibeqaaiaaiodaaaqcfaOaamOCaaqcfasaaiabgkHiTiabg6HiLc qaaiabg6HiLcqcfaOaey4kIipacaaIGaqeeuuDJXwAKbsr4rNCHbac faGae83qISdabaGaeyOeI0IaaGiiamaalaaabaGaaGymaaqaaiaaiI cacaWGUbGaey4kaSIaaGymaiaaiMcadaahaaqabKqbGeaacaaIYaaa aaaajuaGcaaIGaWaaSaaaeaacaWGhbWaaWbaaeqajuaibaGaaGOmaa aajuaGcaWGTbWaaWbaaeqajuaibaGaaGynaaaaaKqbagaacqWIpecA daahaaqabKqbGeaacaaIYaaaaaaajuaGcaaIGaWaa8qCaeaacaWGLb WaaWbaaKqbGeqabaGaeyOeI0IaaGikaiaadMhajuaGdaahaaqcfasa beaacaaIYaaaaiabgUcaRiaadMhajuaGdaahaaqcfasabeaacaaI0a aaaiabgUcaRiaadMhajuaGdaahaaqcfasabeaacaaI2aaaaiabgUca RiaaiccacqWIVlctcaaIGaGaey4kaSIaaGiiaiaadMhajuaGdaahaa qcfasabeaacaaIYaGaaGikaiaad6gacqGHRaWkcaaIYaGaaGykaaaa caaIPaaaaiaaiccajuaGcaWG5bWaaWbaaeqajuaibaGaaGOmaaaaju aGcaaIGaGaamizaiaadMhaaKqbGeaacaaIWaaabaGaeyOhIukajuaG cqGHRiI8aaaaaa@C3AD@   (35)

The wave-functions must be normalized and vanish at ± MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyySae RaeyOhIukaaa@39E3@ . One must emphasize that one is comparing (roughly equating) the values of the integrals in (35) and not the integrands.

It is clear that one cannot equate the integrands in equation (35). By a simple inspection one can see that there are zeros (besides r=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai abg2da9iabgcdaWaaa@396D@ ) in the left hand side, while in the right hand side one has zeros only at r=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai abg2da9iabgcdaWaaa@396D@ . If one were to equate the integrands one would arrive at another contradiction. In the spherically symmetric case, for real-valued wave-functions, and after setting y=r/l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyEai aai2dacaWGYbGaaG4laiaadYgaaaa@3AEA@ , it gives

2l2myΨny2πy21n+2G2m52ey2+y4+y6++yn+y21n+212πl3ey2+y4+y6++yn+   (36)

Given Ψ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiQdK 1aaSbaaKqbGeaacaWGUbaajuaGbeaaaaa@39E3@ an even, or an odd function, for n= even, odd, respectively, the left hand side is always even due to the squaring of the derivatives, as it should, since the right hand side of (36) is an even functions.3 For this reason, if one is going to take the square root of equation (36) we must choose n=odd Ψ= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyO0H4 TaeyOaIyRaeuiQdKLaaGypaaaa@3C9D@ even. Hence

y Ψ n (y) 1 (n+1) 1 2π l 3 e 1 2 ( y 2 + y 4 + y 6 + + y 2(n+2) ) , n=odd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOaIy 7aaSbaaKqbGeaacaWG5baajuaGbeaacqqHOoqwdaWgaaqcfasaaiaa d6gaaKqbagqaaiaaiIcacaWG5bGaaGykaiaaiccarqqr1ngBPrgifH hDYfgaiuaacqWFdjYocaaIGaWaaSaaaeaacaaIXaaabaGaaGikaiaa d6gacqGHRaWkcaaIXaGaaGykaaaacaaIGaWaaSaaaeaacaaIXaaaba WaaOaaaeaacaaIYaGaeqiWdaNaamiBamaaCaaabeqcfasaaiaaioda aaaajuaGbeaaaaGaaGiiaiaadwgalmaaCaaajuaGbeqcfasaaSWaaS aaaKqbagaajugWaiabgkHiTiaaigdaaKqbagaajugWaiaaikdaaaGa aGikaiaadMhalmaaCaaajuaibeqaaKqzadGaaGOmaaaacqGHRaWkca WG5bWcdaahaaqcfasabeaajugWaiaaisdaaaGaey4kaSIaamyEaSWa aWbaaKqbGeqabaqcLbmacaaI2aaaaiabgUcaRiaaiccacqWIVlctca aIGaGaey4kaSIaaGiiaiaadMhalmaaCaaajuaibeqaaKqzadGaaGOm aiaaiIcacaWGUbGaey4kaSIaaGOmaiaaiMcaaaGaaGykaaaajuaGca aISaGaaGiiaiaaiccacaWGUbGaaGypaiaad+gacaWGKbGaamizaaaa @7B53@ y Ψ n (y) 1 (n+1) 1 2π l 3 e 1 2 ( y 2 + y 4 + y 6 + + y 2(n+2) ) , n=odd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOaIy 7aaSbaaKqbGeaacaWG5baajuaGbeaacqqHOoqwdaWgaaqcfasaaiaa d6gaaKqbagqaaiaaiIcacaWG5bGaaGykaiaaiccarqqr1ngBPrgifH hDYfgaiuaacqWFdjYocaaIGaWaaSaaaeaacaaIXaaabaGaaGikaiaa d6gacqGHRaWkcqGHXaqmcqGHPaqkaaGaaGiiamaalaaabaGaaGymaa qaamaakaaabaGaaGOmaiabec8aWjaadYgadaahaaqabKqbGeaacaaI ZaaaaaqcfayabaaaaiaaiccacaWGLbWcdaahaaqcfayabKqbGeaalm aalaaajuaGbaqcLbmacqGHsislcaaIXaaajuaGbaqcLbmacaaIYaaa aiaaiIcacaWG5bWcdaahaaqcfasabeaajugWaiaaikdaaaGaey4kaS IaamyEaSWaaWbaaKqbGeqabaqcLbmacaaI0aaaaiabgUcaRiaadMha lmaaCaaajuaibeqaaKqzadGaaGOnaaaacqGHRaWkcaaIGaGaeS47IW KaaGiiaiabgUcaRiaaiccacaWG5bWcdaahaaqcfasabeaajugWaiaa ikdacaaIOaGaamOBaiabgUcaRiaaikdacaaIPaaaaiaaiMcaaaqcfa OaaGilaiaaiccacaaIGaGaamOBaiaai2dacaWGVbGaamizaiaadsga aaa@7BB1@   (37)

Integrating (37) between 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGimaa aa@373E@ and y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyEaa aa@3782@ we arrive finally

Ψ n (y) Ψ n (0) 1 (n+1) 1 2π l 3 0 y e 1 2 ( y 2 + y 4 + y 6 + + y 2(n+2) ) dy, n=odd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiQdK 1aaSbaaKqbGeaacaWGUbaajuaGbeaacaaIOaGaamyEaiaaiMcacaaI GaGaeyOeI0IaaGiiaiabfI6aznaaBaaajuaibaGaamOBaaqcfayaba GaeyikaGIaeyimaaJaeyykaKIaeyiiaaseeuuDJXwAKbsr4rNCHbac faGae83qISJaaGiiamaalaaabaGaaGymaaqaaiaaiIcacaWGUbGaey 4kaSIaeyymaeJaeyykaKcaaiaaiccadaWcaaqaaiaaigdaaeaadaGc aaqaaiaaikdacqaHapaCcaWGSbWaaWbaaKqbGeqabaGaaG4maaaaaK qbagqaaaaacaaIGaWaa8qCaeaacaWGLbWaaWbaaeqajuaibaWcdaWc aaqcfayaaKqzadGaeyOeI0IaaGymaaqcfayaaKqzadGaaGOmaaaaca aIOaGaamyEaSWaaWbaaKqbGeqabaqcLbmacaaIYaaaaiabgUcaRiaa dMhalmaaCaaajuaibeqaaKqzadGaaGinaaaacqGHRaWkcaWG5bWcda ahaaqcfasabeaajugWaiaaiAdaaaGaey4kaSIaaGiiaiabl+Uimjaa iccacqGHRaWkcaaIGaGaamyEaSWaaWbaaKqbGeqabaqcLbmacaaIYa GaaGikaiaad6gacqGHRaWkcaaIYaGaaGykaaaacaaIPaaaaaqcfasa aiaaicdaaeaacaWG5baajuaGcqGHRiI8aiaaiccacaaIGaGaamizai aadMhacaaISaGaaGiiaiaaiccacaWGUbGaaGypaiaad+gacaWGKbGa amizaaaa@87B1@   (38)

We still need to check that vanishes at , and include normalization constant to enforce. |Ψ | 2 d 3 r=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8qaae qabeqabiabgUIiYdGaaGiFaiabfI6azjaaiYhadaahaaqcfasabeaa caaIYaaaaKqbakaadsgadaahaaqcfasabeaacaaIZaaaaKqbakaadk hacqGH9aqpcqGHXaqmaaa@430C@ .When n=odd, Ψ(0)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiQdK LaeyikaGIaeyimaaJaeyykaKIaeyypa0Jaeyimaadaaa@3CAB@  because anti symmetric functions must vanish at the origin. 3This assumes that one can extend to extend r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCaa aa@377B@  to negative values r<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai abgYda8iabgcdaWaaa@396B@ , which is not unreasonable because r=± x 2 + y 2 + z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai aai2dacqGHXcqSdaGcaaqaaiaadIhadaahaaqabKqbGeaacaaIYaaa aKqbakabgUcaRiaadMhadaahaaqabKqbGeaacaaIYaaaaKqbakabgU caRiaadQhadaahaaqabKqbGeaacaaIYaaaaaqcfayabaaaaa@43CC@ . Black-hole solutions can be extended to r<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai abgYda8iabgcdaWaaa@396B@ . The Schwarzschild metric solution is invariant under rr,mm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai abgkziUkabgkHiTiaadkhacaaISaGaamyBaiabgkziUkabgkHiTiaa d2gaaaa@40C0@ .

Here is where the contradiction arises. The integral in the right-hand side is not zero when y= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyEai aai2dacqGHEisPaaa@39BA@ . It is given by a finite number. This would force Ψ n () = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiQdK 1aaSbaaKqbGeaacaWGUbaabeaajuaGcaaIOaGaeyOhIuQaaGykaiqa i2dagaGfaiaaicdaaaa@3E57@  since Ψ n (0)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiQdK 1aaSbaaKqbGeaacaWGUbaajuaGbeaacqGHOaakcqGHWaamcqGHPaqk cqGH9aqpcqGHWaamaaa@3E7B@ , for n = odd. Since the wave-functions do not vanish at MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOhIu kaaa@37F5@  these solutions are unphysical. For this reason one cannot equate the integrands in equation (35) only the integrals which can be equated.

To conclude this section, based on the numerical results by2226,28 we have arrived at the integrals.

0 y ( y Ψ n (y)) 2 y 2 dy 1 (n+1) 2 1 2π l 3 0 y e ( y 2 + y 4 + y 6 + + y 2(n+2) ) y 2 dy, n=0,1,2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8qCae aacaaIOaGaeyOaIy7aaSbaaKqbGeaacaWG5baajuaGbeaacqqHOoqw daWgaaqcfasaaiaad6gaaKqbagqaaiaaiIcacaWG5bGaaGykaiaaiM cadaahaaqabKqbGeaacaaIYaaaaKqbakaaiccacaWG5bWaaWbaaKqb GeqabaGaaGOmaaaajuaGcaaIGaGaamizaiaadMhaaKqbGeaacaaIWa aabaGaamyEaaqcfaOaey4kIipacaaIGaqeeuuDJXwAKbsr4rNCHbac faGae83qISJaaGiiamaalaaabaGaaGymaaqaaiaaiIcacaWGUbGaey 4kaSIaeyymaeJaeyykaKYaaWbaaeqajuaibaGaeyOmaidaaaaajuaG caaIGaWaaSaaaeaacaaIXaaabaGaaGOmaiabec8aWjaadYgadaahaa qcfasabeaacaaIZaaaaaaajuaGcaaIGaWaa8qCaeaacaWGLbWaaWba aKqbGeqabaGaeyOeI0IaaGikaiaadMhajuaGdaahaaqcfasabeaaca aIYaaaaiabgUcaRiaadMhajuaGdaahaaqcfasabeaacaaI0aaaaiab gUcaRiaadMhajuaGdaahaaqcfasabeaacaaI2aaaaiabgUcaRiaaic cacqWIVlctcaaIGaGaey4kaSIaaGiiaiaadMhajuaGdaahaaqcfasa beaacaaIYaGaaGikaiaad6gacqGHRaWkcaaIYaGaaGykaaaacaaIPa aaaKqbakaaiccacaWG5bWaaWbaaeqajuaibaGaaGOmaaaajuaGcaaI GaGaamizaiaadMhacaaISaGaaGiiaiaaiccacaWGUbGaeyypa0Jaey imaaJaeyilaWIaeyymaeJaeyilaWIaeyOmaiJaeyilaWIaeyOjGWla juaibaGaaGimaaqaaiaadMhaaKqbakabgUIiYdaaaa@91CC@  (39)

Which furnish implicitly the stationary spherically symmetric wave-function solutions to the Newton-Schrödinger equation in terms of integrals involving generalized Gaussians. The energy eigen values are provided by the left hand side of equations (28,31-34). Equations (39) must be supplemented by the normalization condition of the wave-function. The time-dependent evolution of the Schrödinger-Newton equations has been studied by many authors, in particular.3639 The experimental tests of the validity of the nonlinear Newton-Schrödinger equation pose a technologically formidable challenge due to the weakness of gravity and the difficulty of controlling quantum coherence.39

Infinite derivative gravity, modified Newton-Schrödinger equation and Schwarzschild atoms

Since Quantum Mechanics is notoriously non-local, it is not farfetched that a theory of Quantum Gravity may require modifying Einstein’s theory of gravity (and other local theories of gravitation) to include a modified gravitational theory involving infinite derivatives, which by construction, is non-local. It turned out that the infinite derivative gravity (IDG) can resolve the problem of massive ghosts as well as it may avoid the singularity of the Newtonian potential at the origin, when one chooses the exponential of an entire function. This model is also named super-renormalizable quantum gravity.4042 However, one does not understand fully how this non-local gravity could provide a regular potential. It was argued that the cancellation of the singularity at the origin is an effect of an infinite amount of hidden ghost-like complex poles.42,43

A regular potential at the origin of the form (8) has been studied by several authors44 in connection to infinite derivative gravity42,43 which is ghost-free and renormalizable when one chooses the exponential of an entire function in the construction of the infinite-derivative gravitational (IDG) action S IDG MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uam aaBaaajuaqbaGaamysaiaadseacaWGhbaajuaGbeaaaaa@3ABC@ .42,43 For this IDG case, the corresponding Newtonian potential generated from the delta function is non-singular at the origin. However, the authors44 explicitly showed that the source generating this non-singular potential is given not by the delta-function due to the point-like source of mass, but by the Gaussian mass distribution. This explains clearly why the IDG with the exponential of an entire function yields the finite potential at the origin. The infinite-derivative (non-local) modified Poisson equation associated to a point-mass particle at r =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmOCay aalaGaeyypa0Jaeyimaadaaa@397F@ is given by4244

( e σ 2 4 2 2 ) V = 4π Gm δ 3 ( r ) = Gm δ(r) r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadwgadaahaaqabKqbGeaajugWaiabgkHiTiaaiccalmaalaaajuaG baqcLbmacqaHdpWClmaaCaaajuaGbeqcfasaaKqzadGaaGOmaaaaaK qbagaajugWaiaaisdaaaGaey4bIe9cdaahaaqcfasabeaajugWaiaa ikdaaaaaaKqbakabgEGirpaaCaaajuaibeqaaiaaikdaaaqcfaOaaG ykaiaaiccacaWGwbGaaGiiaiaai2dacaaIGaGaaGinaiabec8aWjaa iccacaWGhbGaamyBaiaaiccacqaH0oazdaahaaqabKqbGeaacaaIZa aaaKqbakaaiIcaceWGYbGbaSaacaaIPaGaaGiiaiaai2dacaaIGaGa am4raiaad2gacaaIGaWaaSaaaeaacqaH0oazcaaIOaGaamOCaiaaiM caaeaacaWGYbWaaWbaaKqbGeqabaGaaGOmaaaaaaaaaa@65BA@

σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm haaa@3847@  Is a length scale which can be taken to be equal to the Planck-scale. Such equation (40) leads to identical solutions for the potential V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvaa aa@375F@  as the solutions for the potential in the ordinary Poisson equation sourced by a Gaussian mass distribution,44 and which is a smeared version of the delta function mass distribution. This can be shown by taking the 3D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaG4mai aadseaaaa@380A@  Fourier transform of equation (40)

e σ 2 4 k 2 k 2 V ˜ (k)= Gm V ˜ (k) = Gm e σ 2 4 k 2 k 2   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyzam aaCaaabeqcfasaaSWaaSaaaKqbagaajugWaiabeo8aZTWaaWbaaKqb agqajuaibaqcLbmacaaIYaaaaaqcfayaaKqzadGaaGinaaaajuaica aIGaqcLbmacaWGRbWcdaahaaqcfasabeaajugWaiaaikdaaaaaaKqb akaaiccacaWGRbWaaWbaaeqajuaibaGaaGOmaaaajuaGcaaIGaGabm OvayaaiaGaaGikaiaadUgacqGHPaqkcqGH9aqpcqGHGaaicaWGhbGa amyBaiaaiccacqGHshI3caaIGaGabmOvayaaiaGaaGikaiaadUgacq GHPaqkcqGHGaaicqGH9aqpcaaIGaWaaSaaaeaacaWGhbGaamyBaiaa iccacaWGLbWcdaahaaqcfasabeaajugWaiabgkHiTiaaiccalmaala aajuaGbaqcLbmacqaHdpWClmaaCaaajuaGbeqcfasaaKqzadGaaGOm aaaaaKqbagaajugWaiaaisdaaaqcfaIaaGiiaKqzadGaam4AaSWaaW baaKqbGeqabaqcLbmacaaIYaaaaaaaaKqbagaacaWGRbWaaWbaaeqa juaibaGaaGOmaaaaaaqcfaieaaaaaaaaa8qacaGGGcaaaa@73DD@

And then performing the inverse 3D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaG4mai aadseaaaa@380A@  Fourier transform it yields V G (r) = Gm r Erf( r σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvam aaBaaajuaibaGaam4raaqcfayabaGaaGikaiaadkhacaaIPaGaaGii aiaai2dacaaIGaGaeyOeI0YaaSaaaeaacaWGhbGaamyBaaqaaiaadk haaaGaaGiiaiaadweacaWGYbGaamOzaiaaiIcadaWcaaqaaiaadkha aeaacqaHdpWCaaGaaGykaaaa@48B6@ , see44 for further details. One can generalize the Newton-Schrödinger coupled system of equations (1,2) by replacing the ordinary Poisson equation with the modified non-local Poisson equation associated with infinite-derivative gravity (IDG)

( e σ 2 4 2 2 ) V IDG ( r ) = 4π Gρ = 4π Gm |Φ( r )| 2   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadwgadaahaaqcfasabeaajugWaiabgkHiTKqbGiaaiccalmaalaaa juaGbaqcLbmacqaHdpWClmaaCaaajuaGbeqcfasaaKqzadGaaGOmaa aaaKqbagaajugWaiaaisdaaaqcfaIaaGiiaKqzadGaey4bIe9cdaah aaqcfasabeaajugWaiaaikdaaaaaaKqbakaaiccacqGHhis0daahaa qcfasabeaacaaIYaaaaKqbakaaiMcacaaIGaGaamOvamaaBaaajuai baGaamysaiaadseacaWGhbaajuaGbeaacaaIOaGabmOCayaalaGaey ykaKIaeyiiaaIaeyypa0JaeyiiaaIaeyinaqJaeqiWdaNaaGiiaiaa dEeacqaHbpGCcaaIGaGaaGypaiaaiccacaaI0aGaeqiWdaNaaGiiai aadEeacaWGTbGaaGiiaiaaiYhacqqHMoGrcaaIOaGabmOCayaalaGa aGykaiaaiYhadaahaaqcfasabeaacaaIYaaaaKqbacbaaaaaaaaape GaaiiOaaaa@6F83@   (42)

In this case

V IDG ( r ) = Gm |Φ( r ')| 2 | r r '| d 3 r     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvam aaBaaajuaibaGaamysaiaadseacaWGhbaajuaGbeaacaaIOaGabmOC ayaalaGaaGykaiaaiccaceaI9aGbaybacaaIGaGaaGiiaiaadEeaca WGTbGaaGiiamaapeaabeqabeqacqGHRiI8aiaaiccadaWcaaqaaiaa iYhacqqHMoGrcaaIOaGabmOCayaalaGaaG4jaiaaiMcacaaI8bWaaW baaeqajuaibaGaaGOmaaaaaKqbagaacaaI8bGabmOCayaalaGaeyOe I0IabmOCayaalaGaaG4jaiaaiYhacaaIGaaaaiaadsgadaahaaqabK qbGeaacaaIZaaaaKqbakqadkhagaqbaabaaaaaaaaapeGaaiiOaiaa cckacaGGGcaaaa@5AAD@

Therefore to find (numerical) solutions of the highly nonlinear and nonlocal modified Newton-Schrödinger equation

E Φ( r ) = 2 2m 2 Φ( r ) + m V IDG [Φ( r )] Φ( r )   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyrai aaiccacqqHMoGrcaaIOaGabmOCayaalaGaaGykaiaaiccacaaI9aGa aGiiaiabgkHiTmaalaaabaGaeS4dHG2aaWbaaeqajuaibaGaaGOmaa aaaKqbagaacaaIYaGaamyBaaaacqGHhis0daahaaqcfasabeaacaaI YaaaaKqbakabfA6agjaaiIcaceWGYbGbaSaacaaIPaGaaGiiaiabgU caRiaaiccacaWGTbGaamOvamaaBaaajuaibaGaamysaiaadseacaWG hbaabeaajuaGcaaIBbGaeuOPdyKaaGikaiqadkhagaWcaiaaiMcaca aIDbGaaGiiaiabfA6agjaaiIcaceWGYbGbaSaacaaIPaaeaaaaaaaa a8qacaGGGcGaaiiOaaaa@5E62@

Becomes more problematic. However, solutions to the infinite-derivative modified Poisson equation are not that difficult to find. For example, in the case when ρ(r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi NaaGikaiaadkhacaaIPaaaaa@3AA0@  is given by a Gaussian profile, after performing the Fourier transform procedure it gives V IDG = G m 2 r Erf( r 2 σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvam aaBaaajuaibaGaamysaiaadseacaWGhbaabeaajuaGcaaI9aGaeyOe I0YaaSaaaeaacaWGhbGaamyBamaaCaaajuaibeqaaiaaikdaaaaaju aGbaGaamOCaaaacaaIGaGaamyraiaadkhacaWGMbGaaGikamaalaaa baGaamOCaaqaamaakaaabaGaaGOmaaqabaGaeq4WdmhaaiaaiMcaaa a@4903@ , which is almost identical to G m 2 r Erf( r σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 YaaSaaaeaacaWGhbGaamyBamaaCaaajuaibeqaaiaaikdaaaaajuaG baGaamOCaaaacaaIGaGaamyraiaadkhacaWGMbGaaGikamaalaaaba GaamOCaaqaaiabeo8aZbaacaaIPaaaaa@4355@ , the main difference being that Erf( r σ ) = Erf( r 2 σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyrai aadkhacaWGMbGaaGikamaalaaabaGaamOCaaqaaiabeo8aZbaacaaI PaGabGypayaawaGaamyraiaadkhacaWGMbGaaGikamaalaaabaGaam OCaaqaamaakaaabaGaaGOmaaqabaGaeq4WdmhaaiaaiMcaaaa@45EA@ .

Bohm’s quantum potential V Q = 2 2m ( 2 ρ / ρ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvam aaBaaajuaibaGaamyuaaqcfayabaGaaGypaiabgkHiTmaalaaabaGa eS4dHG2aaWbaaKqbGeqabaGaaGOmaaaaaKqbagaacaaIYaGaamyBaa aacaaIOaGaey4bIe9aaWbaaeqajuaibaGaaGOmaaaajuaGdaGcaaqa aiabeg8aYbqabaGaaG4lamaakaaabaGaeqyWdihabeaacaaIPaaaaa@4825@  has a geometrical description as the Weyl scalar curvature produced by an ensemble density of paths associated with one, and only one particle45,46 This geometrization process of quantum mechanics allowed to derive the Schrödinger, Klein-Gordon45,46 and Dirac equations.47,48 M.ost recently, a related geometrization of quantum mechanics was proposed49 that describe the time evolution of particles as geodesic lines in a curved space, whose curvature is induced by the quantum potential. This formulation allows therefore the incorporation of all quantum effects into the geometry of space-time, as it is the case for gravitation in the general relativity. Based on these results we propose the following nonlinear quantum-like Bohm-Poisson equation for static solutions ρ=ρ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi NaaGypaiabeg8aYjaaiIcaceWGYbGbaSaacaaIPaaaaa@3D39@ .

2 V Q = 4πGmρ 2 2m 2 ( 2 ρ ρ ) = 4πGmρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe 9aaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGwbWaaSbaaKqbGeaacaWG rbaajuaGbeaacaaIGaGaaGypaiaaiccacaaI0aGaeqiWdaNaam4rai aad2gacqaHbpGCcaaIGaGaeyO0H4TaaGiiaiabgkHiTiaaiccadaWc aaqaaiabl+qiOnaaCaaajuaibeqaaiaaikdaaaaajuaGbaGaaGOmai aad2gaaaGaaGiiaiabgEGirpaaCaaabeqcfasaaiaaikdaaaqcfaOa aGiiaiaaiIcadaWcaaqaaiabgEGirpaaCaaabeqcfasaaiaaikdaaa qcfa4aaOaaaeaacqaHbpGCaeqaaaqaamaakaaabaGaeqyWdihabeaa aaGaeyykaKIaeyiiaaIaeyypa0JaaGiiaiaaisdacqaHapaCcaWGhb GaamyBaiabeg8aYbaa@6358@   (45)

Such that one could replace the nonlinear Newton-Schrödinger equation for the above non-linear quantum-like Bohm-Poisson equation (45) where the fundamental quantity is no longer the wave-function Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiQdK faaa@3813@  (complex-valued in general) but the real-valued probability density ρ= Ψ * Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi NaaGypaiabfI6aznaaCaaajuaibeqaaiaaiQcaaaqcfaOaeuiQdKfa aa@3DBB@ .

It has been proposed by2931 to give up the description of physical states in terms of ensembles of state vectors with various probabilities, relying instead solely on the density matrix as the description of reality. The time evolution of ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@  is governed by the Lindblad equation.4 The authors31 also investigated a number of unexplored features of quantum theory, including an interesting geometrical structure- which they called subsystem space-that they believed merits further study.

The infinite-derivative-gravity generalization of equation (45) is

2 2m ( e σ 2 4 2 2 ) ( 2 ρ ρ ) = 4πGmρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGiiai abgkHiTiaaiccadaWcaaqaaiabl+qiOnaaCaaajuaibeqaaiaaikda aaaajuaGbaGaaGOmaiaad2gaaaGaaGiiaiaaiIcacaWGLbWaaWbaae qajuaibaGaeyOeI0Iaeq4Wdmxcfa4aaWbaaKqbGeqabaGaaGOmaaaa caaI0aGaey4bIeDcfa4aaWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaaG iiaiabgEGirpaaCaaabeqcfasaaiaaikdaaaqcfaOaaGykaiaaicca caaIOaWaaSaaaeaacqGHhis0daahaaqcfasabeaacaaIYaaaaKqbao aakaaabaGaeqyWdihabeaaaeaadaGcaaqaaiabeg8aYbqabaaaaiab gMcaPiabgccaGiabg2da9iabgccaGiaaisdacqaHapaCcaWGhbGaam yBaiabeg8aYbaa@5EB0@

The above equation is nonlinear and nonlocal. If one wishes to introduce a temporal evolution to ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@  via a Linblad-like equation, for instance, this would lead to an over determined system of differential equations for ρ( r ,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi NaaGikaiqadkhagaWcaiaaiYcacaWG0bGaaGykaaaa@3C61@ . This problem might be another manifestation of the problem of time in Quantum Gravity. Naively replacing 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe 9aaWbaaKqbGeqabaGaaGOmaaaaaaa@3916@  in equations (45-46) for the D’Alambertian operator μ μ ,μ=0,1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe 9aaSbaaKqbGeaacqaH8oqBaKqbagqaaiabgEGirpaaCaaabeqcfasa aiabeY7aTbaajuaGcaaISaGaeqiVd0Maeyypa0JaaGimaiaaiYcaca aIXaGaaGilaiaaikdacaaISaGaaG4maaaa@4739@ has the caveat that in QFT ρ( x μ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi NaaGikaiaadIhadaahaaqabKqbGeaacqaH8oqBaaqcfaOaaGykaaaa @3D3A@ no longer has the interpretation of a probability density (it is now related to the particle number current). For the time being we shall just focus on static solutions ρ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi NaaGikaiqadkhagaWcaiaaiMcaaaa@3AB2@ . Integrating (45) gives the integral-differential equation for ρ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi NaaGikaiqadkhagaWcaiaaiMcaaaa@3AB2@

2 2m ( 2 ρ ρ ) = Gm ρ( r ) | r r | d 3 r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaaGiiamaalaaabaGaeS4dHG2aaWbaaeqajuaibaGaaGOmaaaaaKqb agaacaaIYaGaamyBaaaacaaIGaGaaGikamaalaaabaGaey4bIe9aaW baaeqajuaibaGaaGOmaaaajuaGdaGcaaqaaiabeg8aYbqabaaabaWa aOaaaeaacqaHbpGCaeqaaaaacaaIPaGaaGiiaiaai2dacaaIGaGaey OeI0IaaGiiaiaadEeacaWGTbGaaGiiamaapeaabeqabeqacqGHRiI8 aiaaiccadaWcaaqaaiabeg8aYjaaiIcaceWGYbGbaSGbauaacaaIPa aabaGaaGiFaiqadkhagaWcaiabgkHiTiqadkhagaWcgaqbaiaaiYha caaIGaaaaiaadsgadaahaaqabKqbGeaacaaIZaaaaKqbakqadkhaga qbaaaa@5BB3@

4To be more precise it is the Gorini-Kossakowski-Sudarshan-Lindblad equation

The right hand side of (47) can be written as

Gm M eff ( r ) r , M eff ( r ) = r ρ( r ) | r r | d 3 r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGiiai abgkHiTiaaiccadaWcaaqaaiaadEeacaWGTbGaamytamaaBaaajuai baGaamyzaiaadAgacaWGMbaajuaGbeaacaaIOaGabmOCayaalaGaaG ykaaqaaiaadkhaaaGaaGilaiaaiccacaaIGaGaamytamaaBaaajuai baGaamyzaiaadAgacaWGMbaabeaajuaGcaaIOaGabmOCayaalaGaaG ykaiaaiccacaaI9aGaaGiiaiaadkhacaaIGaWaa8qaaeqabeqabiab gUIiYdGaaGiiamaalaaabaGaeqyWdiNaaGikaiqadkhagaWcgaqbai aaiMcaaeaacaaI8bGabmOCayaalaGaeyOeI0IabmOCayaalyaafaGa aGiFaaaacaaIGaGaamizamaaCaaajuaibeqaaiaaiodaaaqcfaOabm OCayaafaGaaGiiaiaaiccaaaa@607C@

Where extreme caution must be taken because M eff ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytam aaBaaajuaibaGaamyzaiaadAgacaWGMbaajuaGbeaacaaIOaGabmOC ayaalaGaaGykaaaa@3D61@  is not the same as the enclosed mass inside a spherical region of radius r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCaa aa@377B@  encircling the origin. It is convenient to write (47) in this form (48) because it reminds us of a “Schwarzschild atom" analog in the spherically symmetric case, where the g 00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4zam aaBaaabaWaaSbaaKqbGeaacaaIWaGaaGimaaqcfayabaaabeaaaaa@39E2@ metric component for signature (+,,,) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai abgUcaRiaaiYcacqGHsislcaaISaGaeyOeI0IaaGilaiabgkHiTiaa iMcaaaa@3DB4@ , and c=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4yai abg2da9iabggdaXaaa@3960@ , is

g 00 (r) = (1 2G M eff (r) r ), g rr = 1 g 00 (r) , M eff ( r )= M eff (r), c=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4zam aaBaaajuaibaqcfa4aaSbaaeaajugWaiaaicdacaaIWaaajuaGbeaa aeqaaiaaiIcacaWGYbGaeyykaKIaeyiiaaIaeyypa0JaaGiiaiaaiI cacaaIXaGaeyOeI0YaaSaaaeaacaaIYaGaam4raiaad2eadaWgaaqc fasaaiaadwgacaWGMbGaamOzaaqabaqcfaOaaGikaiaadkhacaaIPa aabaGaamOCaaaacaaIPaGaaGilaiaaiccacaaIGaGaam4zamaaBaaa juaibaqcfa4aaSbaaKqbGeaacaWGYbGaamOCaaqabaaajuaGbeaaca aIGaGaaGypaiaaiccacqGHsislcaaIGaWaaSaaaeaacaaIXaaabaGa am4zamaaBaaabaWaaSbaaKqbGeaacaaIWaGaaGimaaqcfayabaaabe aacaaIOaGaamOCaiaaiMcaaaGaaGilaiaaiccacaaIGaGaamytamaa BaaajuaibaGaamyzaiaadAgacaWGMbaajuaGbeaacaaIOaGabmOCay aalaGaaGykaiaai2dacaWGnbWaaSbaaKqbGeaacaWGLbGaamOzaiaa dAgaaKqbagqaaiabgIcaOiaadkhacqGHPaqkcqGHSaalcaaIGaGaaG iiaiaadogacqGH9aqpcaaIXaaaaa@738C@   (49)

See33,34 for many references related to the solutions (49). In the weak field limit, for slowing moving masses, one has g 00 η 00 + h 00 =1+2V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4zam aaBaaabaWaaSbaaKqbGeaacaaIWaGaaGimaaqcfayabaaabeaarqqr 1ngBPrgifHhDYfgaiuaacqWF8iIocqaH3oaAdaWgaaqcfasaaKqbao aaBaaajuaibaGaaGimaiaaicdaaeqaaaqcfayabaGaey4kaSIaamiA amaaBaaabaWaaSbaaKqbGeaacaaIWaGaaGimaaqcfayabaaabeaacq GH9aqpcqGHXaqmcqGHRaWkcaaIYaGaamOvaaaa@4D23@ , (c=1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aadogacqGH9aqpcaaIXaGaaiykaaaa@3A86@ , and from equations (47-49) one arrives at the relation between the temporal components of h μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiAam aaBaaajuaibaGaeqiVd0MaeqyVd4gabeaaaaa@3B2E@  and the matter/probability distribution

h 00 (r) = 2 m 2 ( 2 ρ (r) ρ (r) ) = 2G M eff (r) r , c=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiAam aaBaaajuaibaGaaGimaiaaicdaaKqbagqaaiaaiIcacaWGYbGaaGyk aiaaiccacaaI9aGaaGiiaiabgkHiTiabl+qiOnaaCaaajuaibeqaai aaikdaaaqcfaOaamyBamaaCaaabeqcfasaaiaaikdaaaqcfaOaaGii aiaaiIcadaWcaaqaaiabgEGirpaaCaaabeqcfasaaiaaikdaaaqcfa 4aaOaaaeaacqaHbpGCaeqaaiaaiIcacaWGYbGaaGykaaqaamaakaaa baGaeqyWdihabeaacaaIOaGaamOCaiaaiMcaaaGaaGykaiaaiccaca aI9aGaaGiiaiabgkHiTiaaiccadaWcaaqaaiaaikdacaWGhbGaamyt amaaBaaajuaibaGaamyzaiaadAgacaWGMbaajuaGbeaacaaIOaGaam OCaiaaiMcaaeaacaWGYbaaaiaaiYcacaaIGaGaaGiiaiaadogacqGH 9aqpcqGHXaqmcqGHGaaiaaa@64CA@  (50)

The equations (45-50) reflect the back-reaction that the geometry has no matter, and in turn, the effect that this matter has on the geometry. Such equations (45-50) reflect a nonlinear feeding loop mechanism between matter and geometry. The probability distribution ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@ cannot be arbitrary due to the restrictions imposed by equations (45,46). One may envisage the “Schwarzschild atom" as a spherically symmetric probability cloud of matter which curves the geometry, and in turn, the geometry back-reacts on this matter cloud perturbing its initial distribution over the space, which in turn will affect the geometry, and so forth until static equilibrium is reached. The author32 described the gravitational degrees of freedom of the Schwarzschild black hole by one free variable and introduced a “Schrödinger equation” for the Schwarzschild black hole corresponding to this model. The mass spectrum of the black hole was obtained as such as it can be observed by an observer very far away and at rest relative to the black hole. Such “Schrödinger equation” implied that there is no singularity inside the Schwarzschild black hole, and that the black hole has a certain ground state in which its mass is non-zero. A modern treatment of this approach can be found in.33,34 We believe the picture of this “Schwarzschild atom" model will cast some light into Quantum Gravity.

Conclusion

Exact solutions to the stationary spherically symmetric Newton-Schrödinger equation were proposed in terms of integrals involving generalized Gaussians. The energy eigenvalues were also obtained in terms of these integrals which agree with the numerical results in the literature. A discussion of infinite-derivative-gravity followed which allows generalizing the Newton-Schrödinger equation by replacing the ordinary Poisson equation with a modified non-local Poisson equation associated with infinite-derivative gravity. Finally we proceeded to replace the nonlinear Newton-Schrödinger equation for a non-linear quantum-like Bohm-Poisson equation involving Bohm’s quantum potential, and where the fundamental quantity is no longer the wave-function Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiQdK faaa@3813@  but the real-valued probability density ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@ .

Recently, solutions to the nonlinear Bohm-Poisson equation were found50 with cosmological applications. We envisioned the present Universe’s matter density distribution as being proportional to the probability density, in the same vain that one can view an electron orbiting the Hydrogen nucleus as an “electron probability cloud" surrounding the nucleus, and whose mass density distribution is ρ= m e Ψ * Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi NaaGypaiaad2gadaWgaaqcfasaaiaadwgaaKqbagqaaiabfI6aznaa CaaajuaibeqaaiaaiQcaaaqcfaOaeuiQdKfaaa@4074@ , where Ψ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiQdK LaaGikaiqadkhagaWcaiaaiMcaaaa@3A81@ the stationary wave-function solutions to the Schrödinger equation are. In doing so we were able to obtain the observed vacuum energy density after introducing an ultraviolet (very close to the Planck scale) and an infrared (Hubble radius) scale, and explained the origins of its repulsive gravitational nature. By inspection one can see that if ρ(r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi NaaGikaiaadkhacaaIPaaaaa@3AA0@  is a solution to the Bohm-Poisson equation (45) with G>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4rai abg6da+iaaicdaaaa@3912@ , and then ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaeqyWdihaaa@3931@ is a solution with . A negative gravitational constant is tantamount to repulsive gravity. For this reason, we believe that the Bohm-Poisson equation (45), and its relativistic generalization, deserves further investigations.

Acknowledgments

We thank M. Bowers for her assistance and to the referee for providing important references.

Conflicts of interest

Author Declare there is no conflict of interest.

References

  1. Penrose R. On gravity’s role in quantum state reduction. General Relativity and Gravitation. 1996;28(5):581–600.
  2. Diosi L. Gravitation and quantum mechanical localization of macro objects. Physics Letters A. 1984;105(4-5):199–202.
  3. Adler SL. Comments on proposed gravitational modifications of Schrödinger dynamics and their experimental implications. Journal of Physics A: Mathematical and Theoretical. 2007;40(4):755–764.
  4. Gasbarri G, Toros M, Donadi S, et al. Gravity induced Wave Function Collapse. Cornell University Library, USA, 2017. p. 1–19.
  5. Bassi A, Lochan K, Satin S, et al. Models of wave-function collapse, underlying theories, and experimental tests". Reviews of Modern Physics. 2013;85(2):471–527.
  6. Bassi A, Grossardt A, Ulbricht H. Gravitational Decoherence. Classical and Quantum Gravity. 2017;34:1–78.
  7. Pekar SI. Untersuchungen uber die Elektronentheorie der Kristalle. Akademie Verlag, Berlin, Germany, 1954. p. 29–34.
  8. Ruffini R, Bonazzola S. Systems of self-gravitating particles in general relativity and the concept of an equation of state. Physical Review Journals Achieves. 1969;187(5).
  9. Lieb EH. Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Studied in Applied Mathematics. 1977;57(2):93–105.
  10. Nawa H, Ozawa T. Nonlinear scattering with nonlocal interaction. Communications in Mathematical Physics. 1922;146(2):259–275.
  11. Cazenave T. Semi linear Schrödinger Equations. Oxford University Press, AMS, Courant Institute of Mathematical Sciences, New York, USA. 2003.
  12. Kato T. Nonlinear Schrödinger equations. In Schrödinger operators Sonderborg, Lecture Notes in Physics, Springer, Berlin, Germany. 1989;345:218–263.
  13. Choquard P, Stubbe J. The one-dimensional Schrödinger-Newton equation. Letters in Mathematical Physics. 2007;81(2):177–184.
  14. Jonsson G, Froehlich J, Lars B, et al. Boson Stars and Solitary Waves. Communications in Mathematical Physics. 2007;274(1):1–30.
  15. Amor AB, Blanchard P. Local existence and uniqueness for the frictional Newton-Schrödinger equation in three dimensions. Cornell University Library, USA. 2009. p. 1–19.
  16. Bahrami M, Grossardt A, Donadi S, et al. The Schrödinger-Newton equation and its foundations. New Journal of Physics. 2014;16: 115007–115025.
  17. Giulini D, Grossardt A. The Schrödinger-Newton equation as non relativistic limit of gravitating Klein-Gordon and Dirac fields. Classical and Quantutam Gravity. 2012;29(21):215010.
  18. Xu X-J. Pseudo differential operators and their applications. Lecture notes for 8th summer school on nonlinear PDE analysis Pseudo differential Operators and Their Applications. Wuhan University, China. 2010.
  19. Farkas EW. Function spaces of generalized smoothness and pseudo-differential operators associated to a continuous negative definite function. Faculty of Mathematics, Computer Science and Statistics, Ludwig-Maximilian University of Munich, Germany. 2002. p. 1–151.
  20. El-Nabulsi RA. Calculus of variations with hyper differential operators from Tabasaki-Takebe-Toda lattice arguments. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A Matematicas. 2013;107(2):419–436.
  21. Anastopoulos C, Hu BL. Problems with the Newton-Schrödinger equations. New Journal of Physics. 2014;16:1–20.
  22. Moroz I, Penrose R, Tod KP. Spherically-symmetric solutions of the Schrödinger-Newton equations. Classical and Quantum Gravity. 1998;15(9).
  23. Harrison R, Moroz I, Tod KP. A numerical study of the Schrödinger-Newton equations. Nonlinearity. 2003;16(1).
  24. Bernstein DH, Giladi E, Jones KRW. Eigenstates of the Gravitational Schrödinger Equation. Modern Physics Letters A. 1998;13(29):2327–2336.
  25. Illner R, Zwiefel PF, Lange H. Global existence, uniqueness and asymptotic behavior of solutions of the Wigner–Poisson and Schrödinger-Poisson systems. Mathematical Methods in the Applied Sciences. 1994;17(5):349–376.
  26. Lange H, Toomire B, weifel PFZ. An overview of Schrödinger-Poisson Problems. Reports on Mathematical Physics. 1995;36(2-3): 331–345.
  27. Tod KP. The ground state energy of the Schrödinger-Newton equation. Physics Letters A. 2001;280(4):173–176.
  28. Melko R, Mann R. Studies of the Schrödinger-Newton Equations in Dimensions. Cornell University Library, USA, 2002. p. 1–18.
  29. Weinberg S. Quantum Mechanics without State vectors. Physical Review A. 2014;90(4).
  30. Lindblad G. On the generators of quantum dynamical semi groups. Communications in Mathematical Physics. 1976;48(2):119–130.
  31. Barandes JA, Kagan D. The Minimal Modal Interpretation of Quantum Theory. Cornell University Library, USA. 2014.
  32. Makela J. Schrödinger Equation of the Schwarzschild Black Hole. Cornell University Library, USA. 1996.
  33. Spallucci E, Smailagic AA. Regular black holes from semi-classical down to Planckian size. International Journal of Modern Physics D. 2017;26(7):1730013–1730040.
  34. Spallucci E, Smailagic A. Gaussian black holes in Rastall Gravity. Cornell University Library, USA. 2017.
  35. Harrison R, Moroz I, Tod K. A numerical study of the Schrödinger-Newton equation 1: Perturbing the spherically symmetric stationary states. Cornell University Library, USA, 2002. p. 1–20.
  36. Manfredi G, Hervieux PA, Haas F. Variational approach to the time-dependent Schrödinger-Newton equations. Classical and Quantum Gravity. 2013;30(7).
  37. Salzman PJ, Carlip S. A possible experimental test of quantized gravity. Cornell University Library, USA. 2006.
  38. Guzman FS, Urena-Lopez LA. Evolution of the Schrödinger-Newton system for a self–gravitating scalar field. Physical Review D. 2004;69(12).
  39. Meter JRV. Schrödinger-Newton “collapse" of the wave function. Classical and Quantum Gravity. 2011;28(1).
  40. Modesto L. Super-renormalizable quantum gravity. Physical Review D. 2012;86(4).
  41. Buoninfante L. Ghost and singularity free theories of gravity. Cornell University Library, USA. 2016.
  42. Biswas T, Gerwick E, Koivisto T, et al. Towards Singularity- and Ghost-Free Theories of Gravity. Physical Review Letter. 2012;108(3).
  43. Buoninfante L, Lambiase G, Mazumdar A. Quantum spreading of a self-gravitating wave-packet in singularity free gravity. The European Physical Journal C. 2018;78(1).
  44. Buoninfante L, Lambiase G, Mazumdar A. Quantum solitonic wave-packet of a meso-scopic system in singularity free gravity. Cornell University Library, USA. 2017.
  45. Myung YS, Park YJ. The origin of regular Newtonian potential in infinite derivative gravity. Cornell University Library, USA. 2017.
  46. Santamato E. Geometric derivation of the Schrödinger equation from classical mechanics in curved Weyl spaces. Physical Review D. 1984;29(2).
  47. Santamato E. Statistical interpretation of the Klein-Gordon equation in terms of the space-time Weyl curvature. Journal of Mathematical Physics. 1984;25(8).
  48. C Castro. Nonlinear Quantum Mechanics as the Weyl Geometry of a Classical Statistical Ensemble. Foundation Physics Letters. 1991;4(1):81–99.
  49. Castro C. On Weyl Geometry, Random Processes and Geometric Quantum Mechanics. Foundations of Physics. 1992;22(4):569–615.
  50. Tavernelli I. On the Geometrization of Quantum Mechanics. Annals of Physics. 2016;371:239–253.
  51. Castro C. An Elegant solution to the Cosmological Constant Problem from the Bohm-Poisson Equation. 2017. p. 1–6.
Creative Commons Attribution License

©2017 Perelman. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.