Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Forum Article Volume 8 Issue 4

Evaluation of thermal and epithermal neutron flux using the ko­NAA method with Gold and Zirconium monitors

Mohammad Ali Shafaei, Shiva Torabi

Department of Physics,Yazd University, Iran

Correspondence: Mohammad Ali Shafaei, Department of Physics,Yazd University,Yazd, Iran

Received: September 19, 2024 | Published: October 3, 2024

Citation: Shafaei MA, Torabi S. Evaluation of thermal and epithermal neutron flux using the k₀-NAA method with Gold and Zirconium monitors. Phys Astron IntJ. 2024;8(3):163‒169. DOI: 10.15406/paij.2019.08.00346

Download PDF

Abstract

Neutron flux analysis plays a crucial role in various nuclear research studies and sample analysis in research reactors. Accurate knowledge of the neutron flux spectrum and the ratio of thermal to epithermal neutrons is essential in these applications. In recent years, the newly k₀ method has been utilized to determine thermal and epithermal neutron flux. This method involves the irradiation of two monitors, typically gold and zirconium, followed by the counting of emitted gamma rays using suitable detectors like HpGe. By analyzing the photonic peak area of the collected gamma-ray spectrum from the monitors, the thermal and epithermal neutron flux at the irradiation site can be calculated. In this study, the k₀ method was employed to determine the thermal and epithermal neutron flux of Miniature Neutron Source Reactors (MNSRs).The method involved the irradiation of gold and zirconium monitors, followed by the measurement of emitted gamma rays. The photonic peak area of the gamma-ray spectrum obtained from the monitors was utilized to calculate the thermal and epithermal neutron flux. The research achieved a calculated error of 4 percent in determining the neutron flux. The k₀ method, using gold and zirconium monitors, proved to be an effective approach for determining the thermal and epithermal neutron flux in the Isfahan's MNSR. The use of zirconium, with its suitable neutron absorption cross-sections, along with cadmium calculations, contributed to the accuracy of the flux determination. It is recommended to apply the k₀ method in neutron and boron therapies and perform simulations using popular computational codes alongside the dual metal (gold and zirconium) measurement. This would enhance the accuracy of dosimetry calculations for absorbed doses resulting from neutron therapy.

Keywords: K0, Thermal neutron, Epithermal neutron, Neutron flux, Nuclear reactor

Introduction

Measuring the thermal flux in a miniature reactor is not only important for educational purposes but also essential due to the decrease in neutron flux over time as fuel is consumed. To compensate for this decrease in excess reactivity, beryllium sheets are often added as reflectors. Accurate determination of the neutron flux becomes increasingly crucial during all stages of adding beryllium, both before and after. Epithermal neutron therapy, used for cancer treatment in many advanced countries, relies on simulation methods to determine the epithermal neutron flux. However, the method employed in this research offers a more precise determination of the epithermal neutron flux at any desired point, surpassing the simulation method. The flux parameters obtained through the k₀ method, based on the Hogdahl convention, serve as reactor constants and enable the calculation of element concentrations with high accuracy.1,2

Accurate knowledge of the neutron flux spectrum and the ratio of thermal to epithermal neutrons is necessary for various nuclear investigations and neutron sample analyses in research reactors. Recent efforts have been focused on introducing a comprehensive method that overcomes the drawbacks of previous neutron flux determination methods. The k₀ method, which divides the neutron flux spectrum into thermal and epithermal sections, has emerged as a promising approach. This method can be applied using either the Hogdahl convention or the Westcott formula. Although the Westcott formula has been preferred due to its simpler calculations, the need for accurate determination of thermal and epithermal neutron flux has led to a renewed interest in the Hogdahl convention. Currently, most flux and flux parameter calculations for reactors are performed using computer codes and simulation programs due to the complexity of calculations based on the Hogdahl convention. However, blind reliance on these programs without a proper understanding of the underlying physical processes can lead to erroneous results. In this work, we aimed to manually perform all calculations associated with the latest method, which were typically conducted using computer codes. This approach allowed for a better understanding of the method and achieved more precise results. Specifically, we obtained the thermal and epithermal neutron flux of the Isfahan miniature reactor using the k₀ method based on the Hogdahl convention, without relying on any simulation programs.

It is worth noting that the use of computational codes yielded unacceptable results, such as calculating a few milligrams of gold weight in tons. One possible reason for these incorrect results might be the failure to obtain the code from reputable international centers, which could have led to inaccuracies.3,4

Material and methods

The k0 method, developed by Westcott and Høgdahl, is formulated into two relations known as the Høgdahl and Westcott relations.5-7 These relations are used to determine parameters such as the ratio of thermal neutron flux to epithermal flux (f), the epithermal flux factor (α), the thermal flux (Gth), and the epithermal flux (Gepi) using the Høgdahl method. Additionally, parameters characterizing the corrected spectrum, such as the Westcott factor (glu(Tn)), and the absolute neutron temperature Tn, are determined using the Westcott formula.8,9 The k0 method, which was initially introduced to accurately determine the concentration of substances through neutron activation analysis (k0-NAA), has found wider applications today.10,11 From the beginning, gold and zirconium played a fundamental role in the k0 method due to their sensitivity to epithermal neutrons. Zirconium, due to having two isotopes (Zr94, Zr96) where Zr94 is sensitive to thermal neutrons and Zr96 is highly sensitive to epithermal neutrons, is a suitable choice alongside gold as a monitor and eliminates the need for cadmium to separate thermal from epithermal neutrons, and overall is a very suitable element for determining neutron flux parameters.

Basis of the Høgdahl convention in the MNSR:

This section provides an explanation of the Høgdahl convention and the necessary equations for calculating neutron flux parameters (f, α) as well as the thermal and epithermal neutron fluxes in thermal research reactors using the k0 method. Additionally, the flux parameters and thermal and epithermal fluxes in the Isfahan Miniature Reactor will be computed and the methodology will be thoroughly described based on experimental data and the relationships discussed in this section. The Høgdahl convention, in conjunction with parameters Q0(α), serves as the foundation of the method [insert method] for detectors1/v. According to this convention, the range of the neutron reaction rate integral with matter, in terms of the energy cut-off cadmium (Ecd = 0.55), is divided into two parts:

R= 0 E Cd σ(E)φ(E)dE+ E Cd σ(E)φ(E)dE MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadkfacq GH9aqpkmaapehajaaybaGaeq4WdmNaaiikaiaadweacaGGPaGaeqOX dOMaaiikaiaadweacaGGPaGaamizaiaadweacqGHRaWkkmaapehaja aybaGaeq4WdmNaaiikaiaadweacaGGPaGaeqOXdOMaaiikaiaadwea caGGPaGaamizaiaadweaaKqaGfaacaWGfbWcdaWgaaqccawaaiaado eacaWGKbaabeaaaKqaGfaacqGHEisPaKWaGjabgUIiYdaajeaybaGa aGimaaqaaiaadwealmaaBaaajiaybaGaam4qaiaadsgaaeqaaaqcda Maey4kIipaaaa@5BF1@   (1)

The choice of cadmium is based on its significant absorption cross-section for neutrons with energy below 0.55 eV (thermal neutrons) and its low absorption cross-section for neutrons with energy above 0.55 eV (epithermal neutrons). This energy threshold of 0.55 eV is known as the cadmium cut-off energy and serves as the lower limit for the integral threshold energy in cadmium. Consequently, the I0 total cross-sectional area can be defined as follows:

I 0 = E Cd σ( E n )d E n E n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadMeadaWgaa WcbaGaaGimaaqabaGccqGH9aqpdaWdXbqaamaalaaabaGaeq4WdmNa aiikaiaadweadaWgaaWcbaGaamOBaaqabaGccaGGPaGaamizaiaadw eadaWgaaWcbaGaamOBaaqabaaakeaacaWGfbWaaSbaaSqaaiaad6ga aeqaaaaaaeaacaWGfbWaaSbaaWqaaiaadoeacaWGKbaabeaaaSqaai abg6HiLcqdcqGHRiI8aaaa@4914@   (2)

In an ideal scenario, the energy distribution of epithermal neutrons can be represented by 1 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaamaaliaabaGaaG ymaaqaaiaadweaaaaaaa@3781@ . However, in practical situations, this fraction is often modified and deviates from the ideal distribution. Consequently, the relationship for 1 E 1+α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaamaaliaabaGaaG ymaaqaaiaadweadaahaaWcbeqaaiaaigdacqGHRaWkcqaHXoqyaaaa aaaa@3AEA@  can be expressed as follows:

I o (α)= ( 1 . eV) α E Cd σ( E n )d E n E n (1+α) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadMeadaWgaa WcbaGaam4BaaqabaGccaGGOaGaeqySdeMaaiykaiabg2da9iaacIca caaIXaWaaSbaaSqaaiaac6caaeqaaOGaamyzaiaadAfacaGGPaWaaW baaSqabeaacqaHXoqyaaGcdaWdXbqaamaalaaabaGaeq4WdmNaaiik aiaadweadaWgaaWcbaGaamOBaaqabaGccaGGPaGaamizaiaadweada WgaaWcbaGaamOBaaqabaaakeaacaWGfbWaaSbaaSqaaiaad6gaaeqa aOWaaWbaaSqabeaacaGGOaGaaGymaiabgUcaRiabeg7aHjaacMcaaa aaaaqaaiaadweadaWgaaadbaGaam4qaiaadsgaaeqaaaWcbaGaeyOh IukaniabgUIiYdaaaa@57A9@   (3)

Finally, the reaction rate equation in accordance with the Høgdahl convention can be expressed as follows:

R= φ th σ 0 + φ epi I 0 (α) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadkfacqGH9a qpcqaHgpGAdaWgaaWcbaGaamiDaiaadIgaaeqaaOGaeq4Wdm3aaSba aSqaaiaaicdaaeqaaOGaey4kaSIaeqOXdO2aaSbaaSqaaiaadwgaca WGWbGaamyAaaqabaGccaWGjbWaaSbaaSqaaiaaicdaaeqaaOGaaiik aiabeg7aHjaacMcaaaa@48AB@   (4)

Since neutron flux reduction due to foil thickness is applicable for both thermal and epithermal neutrons, the self-shielding correction factor for the foil can be divided into thermal and epithermal components. Thus, considering the thermal self-shielding correction factor (Gth) and the epithermal self-shielding correction factor (Gepi), the final reaction rate relation is as follows:

R= G th φ th σ 0 + G epi φ epi I 0 (α) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadkfacqGH9a qpcaWGhbWaaSbaaSqaaiaadshacaWGObaabeaakiabeA8aQnaaBaaa leaacaWG0bGaamiAaaqabaGccqaHdpWCdaWgaaWcbaGaaGimaaqaba GccqGHRaWkcaWGhbWaaSbaaSqaaiaadwgacaWGWbGaamyAaaqabaGc cqaHgpGAdaWgaaWcbaGaamyzaiaadchacaWGPbaabeaakiaadMeada WgaaWcbaGaaGimaaqabaGccaGGOaGaeqySdeMaaiykaaaa@4F62@   (5)

In the case where the samples are chosen to be extremely thin, meaning their thickness does not exceed 100 micrometers, the values of the thermal self-shielding correction factor (Gth) and the epithermal self-shielding correction factor (Gepi), that can be assumed to be 1. However, if the sample thickness exceeds this limit, these correction factors need to be calculated based on the actual sample thickness.12 The flux parameter (f), which is the objective of calculation using the k0 method, is defined as the ratio of thermal neutron flux to epithermal neutron flux.

f= φ th φ epi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadAgacq GH9aqpkmaalaaajaaybaGaeqOXdOMcdaWgaaqcbawaaiaadshacaWG ObaabeaaaKaaGfaacqaHgpGAkmaaBaaajeaybaGaamyzaiaadchaca WGPbaabeaaaaaaaa@4287@   (6)

The ratio of the integral of the resonance integral (i.e., the sum of cross-sections over the resonance energy range) to the thermal neutron activation cross-section is defined as the epithermal neutron f-factor (Q0). In the case of considering the flux parameter (α) as a correction factor for the deviation from the ideal state of epithermal neutrons, a modified definition of the f-factor can be given as follows:

Q 0 (α)= I 0 (α) σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadgfadaWgaa WcbaGaaGimaaqabaGccaGGOaGaeqySdeMaaiykaiabg2da9maalaaa baGaamysamaaBaaaleaacaaIWaaabeaakiaacIcacqaHXoqycaGGPa aabaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaaaaaaa@431D@   (7)

The fundamental equation of Høgdahl's Convention based on the k0 method

As mentioned, the detection of energy spectrum and neutron flux using neutron capture in a foil is based on the generation of a gamma-emitting radioisotope, followed by the measurement of emitted gamma radiation using a High-Purity Germanium (HpGe) detector. To analyze the spectrum, it is necessary to determine the energy of each peak and the corresponding count, which represents the area under the peak. The energy allocation to the peaks is achieved through the calibration of the detector using a gamma-emitting source with known energy and intensity. The relationship between the reaction rate and the net count under the peaks can be expressed as follows:7-9

R= N p / t c SDCw N A θ ε p γ/M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadkfacqGH9a qpdaWcaaqaamaalaaabaWaaSGbaeaacaWGobWaaSbaaSqaaiaadcha aeqaaaGcbaGaamiDamaaBaaaleaacaWGJbaabeaaaaaakeaacaWGtb GaamiraiaadoeacaWG3baaaaqaamaalyaabaGaamOtamaaBaaaleaa caWGbbaabeaakiabeI7aXjabew7aLnaaBaaaleaacaWGWbaabeaaki abeo7aNbqaaiaad2eaaaaaaaaa@485D@   (8)

NA: (6.023× 10 23 mo l 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaacIcacaaI2a GaaiOlaiaaicdacaaIYaGaaG4maiabgEna0kaaigdacaaIWaWaaWba aSqabeaacaaIYaGaaG4maaaakiaad2gacaWGVbGaamiBamaaCaaale qabaGaeyOeI0IaaGymaaaakiabgIKi7kaacMcaaaa@468A@ Avogadro's number 

Np: Net count under the peaks

Tc: Counting time:

S: Saturation correction factor: 1 e λ t i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaaigdacqGHsi slcaWGLbWaaWbaaSqabeaacqGHsislcqaH7oaBcaWG0bWaaSbaaWqa aiaadMgaaeqaaaaaaaa@3D5E@  ( t i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadshadaWgaa WcbaGaamyAaaqabaaaaa@37FD@  Irradiation time, Decay constant λ= ln2 T 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiabeU7aSjabg2 da9maalaaabaGaciiBaiaac6gacaaIYaaabaGaamivamaaBaaaleaa daWcgaqaaiaaigdaaeaacaaIYaaaaaqabaaaaaaa@3DE6@ , T 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaWaaSGbaeaacaaIXaaabaGaaGOmaaaaaeqaaaaa@387C@  Half-life)

D: Counting delay correction factor e λ t d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadwgadaahaa WcbeqaaiabgkHiTiabeU7aSjaadshadaWgaaadbaGaamizaaqabaaa aaaa@3BB1@  ( λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaSGaeq4UdWgaaa@37A9@ Decay factor):  ( t d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadshadaWgaa WcbaGaamizaaqabaaaaa@37F8@ Decay time)

C: (1 e λ t c ) λ t c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaamaalaaabaGaai ikaiaaigdacqGHsislcaWGLbWaaWbaaSqabeaacqGHsislcqaH7oaB caWG0bWaaSbaaWqaaiaadogaaeqaaaaakiaacMcaaeaacqaH7oaBca WG0bWaaSbaaSqaaiaadogaaeqaaaaaaaa@428C@ = Counting correction factor 

W: Target mass (in grams):

θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiabeI7aXbaa@37A0@ : Relative isotopic abundance of the target (constant value)

ε p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacaWGWbaabeaaaaa@38B2@ : Absolute full-energy peak efficiency of the detector at the energy of interest:

γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiabeo7aNbaa@3791@ : Probability that in each decay of the isotope, a photon with the energy of interest is emitted (gamma emission probability)

M: Atomic weight (in grams per mole):

By combining equations 5 to 8, the theoretical specific activity equation is derived as follows:

A sp = N A θγ M [ G th φ th σ 0 + G epi φ epi I 0 (α)] ε p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadgeadaWgaa WcbaGaam4CaiaadchaaeqaaOGaeyypa0ZaaSaaaeaacaWGobWaaSba aSqaaiaadgeaaeqaaOGaeqiUdeNaeq4SdCgabaGaamytaaaacaGGBb Gaam4ramaaBaaaleaacaWG0bGaamiAaaqabaGccqaHgpGAdaWgaaWc baGaamiDaiaadIgaaeqaaOGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaO Gaey4kaSIaam4ramaaBaaaleaacaWGLbGaamiCaiaadMgaaeqaaOGa eqOXdO2aaSbaaSqaaiaadwgacaWGWbGaamyAaaqabaGccaWGjbWaaS baaSqaaiaaicdaaeqaaOGaaiikaiabeg7aHjaacMcacaGGDbGaeqyT du2aaSbaaSqaaiaadchaaeqaaaaa@5C0A@   (9)

Specific activity ( s 1 g 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaacIcacaWGZb WaaWbaaSqabeaacqGHsislcaaIXaaaaOGaam4zamaaCaaaleqabaGa eyOeI0IaaGymaaaakiaacMcaaaa@3CE5@ is defined by the following relation:

A sp = N p / t c SDCw MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadgeadaWgaa WcbaGaam4CaiaadchaaeqaaOGaeyypa0ZaaSaaaeaadaWcgaqaaiaa d6eadaWgaaWcbaGaamiCaaqabaaakeaacaWG0bWaaSbaaSqaaiaado gaaeqaaaaaaOqaaiaadofacaWGebGaam4qaiaadEhaaaaaaa@4179@   (10)

By combining equations 9 and 10, the concentration of an element in a sample is calculated:

ρ= ( N p / t c SDCw ) a A sp,m 1 k 0,m (a) G th,m f+ G epi,m Q 0,m (α) G th,a f+ G epi,a Q 0,a (α) ε p,m ε p,a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOabaeqabaGaeqyWdi Naeyypa0ZaaSaaaeaadaqadaqaamaalaaabaWaaSGbaeaacaWGobWa aSbaaSqaaiaadchaaeqaaaGcbaGaamiDamaaBaaaleaacaWGJbaabe aaaaaakeaacaWGtbGaamiraiaadoeacaWG3baaaaGaayjkaiaawMca amaaBaaaleaacaWGHbaabeaaaOqaaiaadgeadaWgaaWcbaGaam4Cai aadchacaGGSaGaamyBaaqabaaaaOGaeyyXIC9aaSaaaeaacaaIXaaa baGaam4AamaaBaaaleaacaaIWaGaaiilaiaad2gaaeqaaOGaaiikai aadggacaGGPaaaaaqaaiabgwSixpaalaaabaGaam4ramaaBaaaleaa caWG0bGaamiAaiaacYcacaWGTbaabeaakiabgwSixlaadAgacqGHRa WkcaWGhbWaaSbaaSqaaiaadwgacaWGWbGaamyAaiaacYcacaWGTbaa beaakiabgwSixlaadgfadaWgaaWcbaGaaGimaiaacYcacaWGTbaabe aakiaacIcacqaHXoqycaGGPaaabaGaam4ramaaBaaaleaacaWG0bGa amiAaiaacYcacaWGHbaabeaakiabgwSixlaadAgacqGHRaWkcaWGhb WaaSbaaSqaaiaadwgacaWGWbGaamyAaiaacYcacaWGHbaabeaakiab gwSixlaadgfadaWgaaWcbaGaaGimaiaacYcacaWGHbaabeaakiaacI cacqaHXoqycaGGPaaaaiabgwSixpaalaaabaGaeqyTdu2aaSbaaSqa aiaadchacaGGSaGaamyBaaqabaaakeaacqaH1oqzdaWgaaWcbaGaam iCaiaacYcacaWGHbaabeaaaaaaaaa@8B47@   (11)

ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiabeg8aYbaa@37AA@ : Concentration

a: Analyte (Zirconium)

m: Monitor or comparator element (Gold)

The factor k 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaaGimaaqabaaaaa@37C0@ , as defined, is an empirical value that essentially contains the constant nuclear values needed in activation analysis calculations, such as cross-section and isotopic abundance. The factors k 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaaGimaaqabaaaaa@37C0@  for many nuclides have been determined by equations 12 and 13.

k 0,m (a)= M m γ a θ a σ 0,a M a γ m θ m σ 0,m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadUgakm aaBaaajeaybaGaaGimaiaacYcacaWGTbaabeaajaaycaGGOaGaamyy aiaacMcacqGH9aqpkmaalaaajaaybaGaamytaOWaaSbaaKqaGfaaca WGTbaabeaajaaycqaHZoWzkmaaBaaajeaybaGaamyyaaqabaqcaaMa eqiUdeNcdaWgaaqcbawaaiaadggaaeqaaKaaGjabeo8aZPWaaSbaaK qaGfaacaaIWaGaaiilaiaadggaaeqaaaqcaawaaiaad2eakmaaBaaa jeaybaGaamyyaaqabaqcaaMaeq4SdCMcdaWgaaqcbawaaiaad2gaae qaaKaaGjabeI7aXPWaaSbaaKqaGfaacaWGTbaabeaajaaycqaHdpWC kmaaBaaajeaybaGaaGimaiaacYcacaWGTbaabeaaaaaaaa@5C04@   (12)

Q o = I o σ o Q o (α)= Q o 0.429 E ¯ r α + 0.429 E Cd α (2α+1) (1eV) α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqabqaaaOqaaKaaGjaadgfakm aaBaaajeaybaGaam4BaaqabaGccqGH9aqpdaWcaaqcaawaaiaadMea kmaaBaaajeaybaGaam4BaaqabaaajaaybaGaeq4WdmNcdaWgaaqcba waaiaad+gaaeqaaaaajaaycqGHsgIRcaWGrbGcdaWgaaqcbawaaiaa d+gaaeqaaKaaGjaacIcacqaHXoqycaGGPaGaeyypa0JcdaWcaaqcaa waaiaadgfakmaaBaaajeaybaGaam4BaaqabaqcaaMaeyOeI0IaaGim aiaac6cacaaI0aGaaGOmaiaaiMdaaeaaceWGfbGbaebakmaaBaaaje aybaGaamOCaaqabaGcdaahaaqcbawabeaacqaHXoqyaaaaaKaaGjab gUcaROWaaSaaaKaaGfaacaaIWaGaaiOlaiaaisdacaaIYaGaaGyoaa qaaiaadweakmaaBaaajeaybaGaam4qaiaadsgaaeqaaOWaaWbaaKqa GfqabaGaeqySdegaaKaaGjaacIcacaaIYaGaeqySdeMaey4kaSIaaG ymaiaacMcaaaGaaiikaiaaigdacaWGLbGaamOvaiaacMcakmaaCaaa jeaybeqaaiabeg7aHbaaaaa@6C6C@   (13)

E ¯ r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiqadweagaqeam aaBaaaleaacaWGYbaabeaaaaa@37EF@ : Effective resonance energy (eV)

Methods for determining the Factor α

 The factor α, deviation of the epithermal neutron flux from the ideal state 1 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaamaaliaabaGaaG ymaaqaaiaadweaaaaaaa@3781@ , is 1 E 1+α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaamaaliaabaGaaG ymaaqaaiaadweadaahaaWcbeqaaiaaigdacqGHRaWkcqaHXoqyaaaa aaaa@3AEA@ . (When the relations I 0 (α) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadMeadaWgaa WcbaGaaGimaaqabaGccaGGOaGaeqySdeMaaiykaaaa@3AA0@ and Q 0 (α) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadgfadaWgaa WcbaGaaGimaaqabaGccaGGOaGaeqySdeMaaiykaaaa@3AA8@  are used, it means that the distribution of the epithermal neutron flux is not in an ideal state.)

φ epi (E)= φ epi . (1eV) α / E 1+α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjabeA8aQP WaaSbaaKqaGfaacaWGLbGaamiCaiaadMgaaeqaaKaaGjaacIcacaWG fbGaaiykaiabg2da9iabeA8aQPWaaSbaaKqaGfaacaWGLbGaamiCai aadMgaaeqaaOGaaiOlaKaaGjaacIcacaaIXaGaamyzaiaadAfacaGG PaGcdaahaaqcbawabeaacqaHXoqyaaqcaaMaai4laiaadweakmaaCa aajeaybeqaaiaaigdacqGHRaWkcqaHXoqyaaaaaa@510E@   (14)

α  is independent of the neutron energy and indicates the energy reference. Also, α depends on the physical properties of the reactor system and its radiation facilities. In this article, only the approach of using three monitors without cadmium coating (Bare-triple monitor) based on standard ko is explained, which is due to the use of zirconium isotopes and having a suitable absorption cross-section in thermal and epithermal energies.

Parameter determination Q 0 (α) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeqadaqaaqaaaOqaaiaadgfadaWgaa WcbaGaaGimaaqabaGccaGGOaGaeqySdeMaaiykaaaa@3AA9@

Q 0 (α) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeqadaqaaqaaaOqaaiaadgfadaWgaa WcbaGaaGimaaqabaGccaGGOaGaeqySdeMaaiykaaaa@3AA9@ as introduced in the previous sections, It is defined as Q 0 (α)= I 0 (α) σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadgfakm aaBaaajeaybaGaaGimaaqabaqcaaMaaiikaiabeg7aHjaacMcacqGH 9aqpkmaalaaajaaybaGaamysaOWaaSbaaKqaGfaacaaIWaaabeaaja aycaGGOaGaeqySdeMaaiykaaqaaiabeo8aZPWaaSbaaKqaGfaacaaI Waaabeaaaaaaaa@45F2@ . σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiabeo8aZnaaBa aaleaacaaIWaaabeaaaaa@3892@ , The cross section of thermal neutrons and, I 0 (α) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadMeadaWgaa WcbaGaaGimaaqabaGccaGGOaGaeqySdeMaaiykaaaa@3AA0@  the resonance integral for thermal neutrons with 1 E 1+α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaamaaliaabaGaaG ymaaqaaiaadweadaahaaWcbeqaaiaaigdacqGHRaWkcqaHXoqyaaaa aaaa@3AEA@  distribution is defined as follows:

I 0 (α)= E Cd σ(E)dE E 1+α (1eV) α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadMeakm aaBaaajeaibaGaaGimaaqabaqcaaMaaiikaiabeg7aHjaacMcacqGH 9aqpkmaapehajaaybaGcdaWcaaqcaawaaiabeo8aZjaacIcacaWGfb GaaiykaiaadsgacaWGfbaabaGaamyraOWaaWbaaKqaGfqabaGaaGym aiabgUcaRiabeg7aHbaaaaaabaGaamyraSWaaSbaaKGaGfaacaWGdb GaamizaaqabaaajeaybaGaeyOhIukajmaycqGHRiI8aKaaGjaacIca caaIXaGaamyzaiaadAfacaGGPaGcdaahaaqcbawabeaacqaHXoqyaa aaaa@55E3@   (15)

Based on the definition of the effective resonance energy E ¯ r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiqadweagaqeam aaBaaaleaacaWGYbaabeaaaaa@37EF@ , the following relationship is established:

I o (α)= I o 0.429 σ o E ¯ r α + 0.429 σ o E Cd α (2α+1) (1eV) α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeqabaGaaiaaceqabeaadaqaaqaaaOqaaKaaajaadMeakm aaBaaajeaqbaGaam4BaaqabaqcaaKaaiikaiabeg7aHjaacMcacqGH 9aqpkmaalaaajaaqbaGaamysaOWaaSbaaKqaafaacaWGVbaabeaaja aqcqGHsislcaaIWaGaaiOlaiaaisdacaaIYaGaaGyoaiabeo8aZPWa aSbaaKqaafaacaWGVbaabeaaaKaaafaaceWGfbGbaebakmaaDaaaje aqbaGaamOCaaqaaiabeg7aHbaaaaqcaaKaey4kaSIcdaWcaaqcaaua aiaaicdacaGGUaGaaGinaiaaikdacaaI5aGaeq4WdmNcdaWgaaqcba uaaiaad+gaaeqaaaqcaauaaiaadweakmaaDaaajeaqbaGaam4qaiaa dsgaaeaacqaHXoqyaaqcaaKaaiikaiaaikdacqaHXoqycqGHRaWkca aIXaGaaiykaaaacaGGOaGaaGymaiaadwgacaWGwbGaaiykaOWaaWba aKqaafqabaGaeqySdegaaaaa@6452@   (16)

As a result, we will have:

Q o (α)= Q o 0.429 E ¯ r α + 0.429 E Cd α (2α+1) (1eV) α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeqabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadgfakm aaBaaajeaybaGaam4BaaqabaqcaaMaaiikaiabeg7aHjaacMcacqGH 9aqpkmaalaaajaaybaGaamyuaOWaaSbaaKqaGfaacaWGVbaabeaaja aycqGHsislcaaIWaGaaiOlaiaaisdacaaIYaGaaGyoaaqaaiqadwea gaqeaOWaaSbaaKqaGfaacaWGYbaabeaakmaaCaaajeaybeqaaiabeg 7aHbaaaaqcaaMaey4kaSIcdaWcaaqcaawaaiaaicdacaGGUaGaaGin aiaaikdacaaI5aaabaGaamyraOWaaSbaaKqaGfaacaWGdbGaamizaa qabaGcdaahaaqcbawabeaacqaHXoqyaaqcaaMaaiikaiaaikdacqaH XoqycqGHRaWkcaaIXaGaaiykaaaacaGGOaGaaGymaiaadwgacaWGwb GaaiykaOWaaWbaaKqaGfqabaGaeqySdegaaaaa@6022@   (17)

As a result, α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiabeg7aHbaa@3789@  and Q 0 (α) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadgfadaWgaa WcbaGaaGimaaqabaGccaGGOaGaeqySdeMaaiykaaaa@3AA8@ can be obtained by numerical calculations.

The basic technique that is intended in this work to determine the parameter f is the use of the bare bi-isotopic monitor method using two zirconium isotopes with the reactions 94 Zr (n,γ) 95 Zr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaamaaCaaaleqaba GaaGyoaiaaisdaaaGccaWGAbGaamOCaiaacIcacaWGUbGaaiilaiab eo7aNjaacMcadaahaaWcbeqaaiaaiMdacaaI1aaaaOGaamOwaiaadk haaaa@41AA@ and Z r 96 (n,γ)Z r 97 /N b 97m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadQfacaWGYb WaaWbaaSqabeaacaaI5aGaaGOnaaaakiaacIcacaWGUbGaaiilaiab eo7aNjaacMcacaWGAbGaamOCamaaCaaaleqabaGaaGyoaiaaiEdaaa GccaGGVaGaamOtaiaadkgadaahaaWcbeqaaiaaiMdacaaI3aGaamyB aaaaaaa@46BE@ .

f= G epi,1 k O,Au (1) k O,Au (2) × ε p,1 ε p,2 × Q O,1 (α)- G epi,2 A sp,1 A sp,2 × Q O,2 (α) G th,2 A sp,1 A sp,2 - G th,1 k O,Au (1) k O,Au (2) × ε p,1 ε p,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeqabaGaaiaacaqabeaadaqaaqaaaOqaaiaadAgacqGH9a qpdaWcaaqaaiaadEeadaWgaaWcbaGaamyzaiaadchacaWGPbGaaiil aiaaigdaaeqaaOWaaSaaaeaacaWGRbWaaSbaaSqaaiaad+eacaGGSa GaamyqaiaadwhaaeqaaOGaaiikaiaaigdacaGGPaaabaGaam4Aamaa BaaaleaacaWGpbGaaiilaiaadgeacaWG1baabeaakiaacIcacaaIYa GaaiykaaaacqGHxdaTdaWcaaqaaiabew7aLnaaBaaaleaacaWGWbGa aiilaiaaigdaaeqaaaGcbaGaeqyTdu2aaSbaaSqaaiaadchacaGGSa GaaGOmaaqabaaaaOGaey41aqRaamyuamaaBaaaleaacaWGpbGaaiil aiaaigdaaeqaaOGaaiikaiabeg7aHjaacMcacaGGTaGaam4ramaaBa aaleaacaWGLbGaamiCaiaadMgacaGGSaGaaGOmaaqabaGcdaWcaaqa aiaadgeadaWgaaWcbaGaam4CaiaadchacaGGSaGaaGymaaqabaaake aacaWGbbWaaSbaaSqaaiaadohacaWGWbGaaiilaiaaikdaaeqaaaaa kiabgEna0kaadgfadaWgaaWcbaGaam4taiaacYcacaaIYaaabeaaki aacIcacqaHXoqycaGGPaaabaGaam4ramaaBaaaleaacaWG0bGaamiA aiaacYcacaaIYaaabeaakmaalaaabaGaamyqamaaBaaaleaacaWGZb GaamiCaiaacYcacaaIXaaabeaaaOqaaiaadgeadaWgaaWcbaGaam4C aiaadchacaGGSaGaaGOmaaqabaaaaOGaaiylaiaadEeadaWgaaWcba GaamiDaiaadIgacaGGSaGaaGymaaqabaGcdaWcaaqaaiaadUgadaWg aaWcbaGaam4taiaacYcacaWGbbGaamyDaaqabaGccaGGOaGaaGymai aacMcaaeaacaWGRbWaaSbaaSqaaiaad+eacaGGSaGaamyqaiaadwha aeqaaOGaaiikaiaaikdacaGGPaaaaiabgEna0oaalaaabaGaeqyTdu 2aaSbaaSqaaiaadchacaGGSaGaaGymaaqabaaakeaacqaH1oqzdaWg aaWcbaGaamiCaiaacYcacaaIYaaabeaaaaaaaaaa@9DE3@   (18)

This method is very suitable for determining f because it also takes into account the contribution of epirthermic neutrons, but if the neutrons are well heated in the reactor irradiation systems and the amount of epithermic neutrons in the neutron flux is very small, the cadmium ratio method is more suitable.

Determining the flux of thermal and epithermal neutrons without cadmium coating by the ko method

According to Wascott and Hogdel, the relationship that exists to determine the heat transfer ( φ th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjabeA8aQP WaaSbaaKqaGfaacaWG0bGaamiAaaqabaaaaa@3A8B@ ) in terms of n.c m 2 . s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaad6gacaGGUa Gaam4yaiaad2gadaahaaWcbeqaaiabgkHiTiaaikdaaaGccaGGUaGa am4CamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@3EC8@  is as follows:5,6

φ th = f. A sp,Au (f+ Q 0,Au (α)) ε p,Au MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjabeA8aQP WaaSbaaKqaGfaacaWG0bGaamiAaaqabaGccqGH9aqpdaWcaaqcaawa aiaadAgacaGGUaGaamyqaOWaaSbaaKqaGfaacaWGZbGaamiCaiaacY cacaWGbbGaamyDaaqabaaajaaybaGaaiikaiaadAgacqGHRaWkcaWG rbGcdaWgaaqcbawaaiaaicdacaGGSaGaamyqaiaadwhaaeqaaKaaGj aacIcacqaHXoqycaGGPaGaaiykaiabew7aLPWaaSbaaKqaGfaacaWG WbGaaiilaiaadgeacaWG1baabeaaaaaaaa@548F@   (19)

In 2007, Khoo8 introduced another relation for heat flux with the same parameters, which has a similar answer to relation 19:7,8,12

ϕ th = AM w N AV θ σ eff 1 (1 e λ t i )( e λ t d ) λ (1 e λ t m )γε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiabew9aMnaaBa aaleaacaWG0bGaamiAaaqabaGccqGH9aqpdaWcaaqaaiaadgeacaWG nbaabaGaam4Daiaad6eadaWgaaWcbaGaamyqaiaadAfaaeqaaOGaeq iUdeNaeq4Wdm3aaSbaaSqaaiaadwgacaWGMbGaamOzaaqabaaaaOWa aSaaaeaacaaIXaaabaGaaiikaiaaigdacqGHsislcaWGLbWaaWbaaS qabeaacqGHsislcqaH7oaBcaWG0bWaaSbaaWqaaiaadMgaaeqaaaaa kiaacMcacaGGOaGaamyzamaaCaaaleqabaGaeyOeI0Iaeq4UdWMaam iDamaaBaaameaacaWGKbaabeaaaaGccaGGPaaaamaalaaabaGaeq4U dWgabaGaaiikaiaaigdacqGHsislcaWGLbWaaWbaaSqabeaacqGHsi slcqaH7oaBcaWG0bWaaSbaaWqaaiaad2gaaeqaaaaakiaacMcacqaH ZoWzcqaH1oqzaaaaaa@654A@   (20)

Of course, this relationship was introduced for the gold monitor that year, but now this relationship can be used for any other monitor, for example, according to the set of monitors used, any of the zirconium isotopes can also be used in this relationship. Using the definition of parameter f (Equation 6) and using any of the above relationships to calculate the flux of heat neutrons, the flux of epirthermal neutrons can be calculated.7-12 In the following, the relationships required to calculate neutron flux parameters (f, α) and thermal and epithermal neutron flux in thermal research reactors, using the method without cadmium ko coating, are presented. Finally, by using the measured experimental data and the relationships mentioned in this section, the flux parameters and thermal and epithermal fluxes in the Isfahan miniature reactor will be calculated. Because of its two special isotopes, zirconium plays a significant role in the ko-NAA method, because the reaction of Z r 94 (n,γ)Z r 95 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadQfaca WGYbGcdaahaaqcbawabeaacaaI5aGaaGinaaaajaaycaGGOaGaamOB aiaacYcacqaHZoWzcaGGPaGaamOwaiaadkhakmaaCaaajeaybeqaai aaiMdacaaI1aaaaaaa@433A@ to thermal neutrons and the reaction of Z r 96 (n,γ)Z r 97 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadQfacaWGYb WaaWbaaSqabeaacaaI5aGaaGOnaaaakiaacIcacaWGUbGaaiilaiab eo7aNjaacMcacaWGAbGaamOCamaaCaaaleqabaGaaGyoaiaaiEdaaa aaaa@41A3@    to epithermal neutrons is sensitive. In fact, the ratio of integral intensity to the thermal cross-section, Qo, for the first reaction is about 5, while for the second it is about 250, encompassing a wide range of Qo values. Considering the Qo value for different elements, the level of activity of that element with epithermal neutrons can be calculated. For example, for the reaction Z r 94 (n,γ)Z r 95 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadQfaca WGYbGcdaahaaqcbawabeaacaaI5aGaaGinaaaajaaycaGGOaGaamOB aiaacYcacqaHZoWzcaGGPaGaamOwaiaadkhakmaaCaaajeaybeqaai aaiMdacaaI1aaaaaaa@433A@ with Qo= 5.31, the radioactivity (activity) with epithermal neutrons is negligible and about 2%, for the reaction A u 197 (n,γ)A u 198 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaKaaGjaacgeaca GG1bGcdaahaaqcbawabeaacaaIXaGaaGyoaiaaiEdaaaqcaaMaaiik aiaad6gacaGGSaGaeq4SdCMaaiykaiaadgeacaWG1bGcdaahaaqcba wabeaacaaIXaGaaGyoaiaaiIdaaaaaaa@4485@ with Qo=15.7, it is about 6%, and for the reaction Z r 96 (n,γ)Z r 97 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadQfacaWGYb WaaWbaaSqabeaacaaI5aGaaGOnaaaakiaacIcacaWGUbGaaiilaiab eo7aNjaacMcacaWGAbGaamOCamaaCaaaleqabaGaaGyoaiaaiEdaaa aaaa@41A4@  with Qo= 251.6, it is about 86%. Therefore, the use of zirconium eliminates the need for cadmium to separate the spectrum of thermal and epithermal neutrons.

 

Actual irradiation and calculations

After preparing the target materials, the next step is to select an appropriate irradiation time. Gold, due to its high cross-section for thermal neutrons, activates in a very short time, on the order of minutes. For this reason, the gold sample was exposed to neutron radiation in the reactor for only 5 minutes. Zirconium has a lower cross-section for absorbing thermal neutrons, hence the irradiation time for zirconium, with the same selected flux for gold, was set to about 5 hours. After starting the reactor and reaching the flux of 5(10) n.c m 2 . s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaad6gacaGGUa Gaam4yaiaad2gadaahaaWcbeqaaiabgkHiTiaaikdaaaGccaGGUaGa am4CamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@3EC8@  ,13,14 we first placed the polyethylene capsule containing the gold sample inside the sample transfer system and, noting the time, sent it to the desired internal irradiation center. After the irradiation time (ti = 5 minutes) was over, the gold sample was removed from the reactor and placed inside a lead shield. Then the capsule containing zirconium was placed inside the same sample transfer system, noting the time, it was sent to the same internal irradiation center. At the end of the irradiation time (ti =302 minutes), the zirconium sample was also removed from the reactor and placed inside a lead shield. Considering the half-lives of the gold element and zirconium isotopes, the samples were counted the day after irradiation, three days after that, and one week after irradiation to use the best number for calculations. To count the samples, we first removed them from the lead shields, cut their polyethylene coatings using a cutter, and the samples were removed from the capsules using tweezers and then transferred to clean polyethylene capsules. On the other hand, the rabbit room in the Isfahan miniature reactor section is equipped with a system for pneumatic transfer of samples to the High Purity Germanium (HPGe) detector. We first set the distance from the end of the transfer tube to the top of the detector to 13 centimeters (to reduce the error to 5%) and calibrated the detector with a known energy source (Cobalt 60). After that, we sent the gold and zirconium capsules to the top of the detector via the transfer tubes in turn, and spectrometry began. The spectrum analysis device and the radioactivity (activity) of the Isfahan miniature reactor are located in a room next to the rabbit room and consist of a high purity germanium detector, electronics (such as, preamplifier and amplifier), and a multi-channel analyzer (MCA). The specific activity (radioactivity) for a single gold isotope and two zirconium isotopes was calculated. The measured parameters as well as the nuclear constants used to calculate specific radioactivity are presented in Table 1.

Isotopes

E(keV)

γ

Np

w(gr)

Au197

411.8

0.955

299862

272(10-5)

Zr94

724.2

0.441

2510

414(10-4)

 

756.7

0.545

2990

414(10-4)

Zr96

743.3

0.979

20747

414(10-4)

Table 1 Shows the measured and nuclear parameters of the samples for calculating specific activity

Isotopes

ti(min)

td(min)

tc(min)

t1/2 (min)

λ  (min-1)

Au197

5

8745

21.667

3880.04

179(10-6)

Zr94

302

1517.5

21.667

92188.8

7.25(10-6)

 

302

1517.5

21.667

92188.8

7.25(10-6)

Zr96

302

1517.5

21.667

1014.6

683(10-6)

Continues table 1

Given that γ for the energy (keV) of the Zr94 isotope is greater, we use this Zr94 energy in all calculations. Using equation 8, the specific radioactivity values obtained are shown in Table 2.

i

Si

Di

Ci

Asp,i

Au198

893(10-6)

209665(10-6)

998067(10-6)

272(108)

Zr95

2268(10-6)

988655(10-6)

999919(10-6)

1.49(106)

Zr97

18612(10-6)

354618(10-6)

992635 (10-6)

2.05(106)

Table 2 Shows the values of specific activity

After calculating the values related to the specific radioactivity of the used isotopes, we calculate the k0 coefficients for each one, using the following equation and the values from Table 3.

a

M

γ

θ

σ0

K0,m(a)

Au197

196.97

0.955

1

98.7

1

Zr94

91.22

0.545

0.1738

0.053

1.15(0-4)

Zr96

91.22

0.979

0.028

0.0213

  1.30(10-5)

Table 3 Shows the nuclear parameters of isotopes and their ko values

k 0,m (a)= M m γ a θ a σ 0,a M a γ m θ m σ 0,m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaaGimaiaacYcacaWGTbaabeaakiaacIcacaWGHbGaaiykaiab g2da9maalaaabaGaamytamaaBaaaleaacaWGTbaabeaakiabeo7aNn aaBaaaleaacaWGHbaabeaakiabeI7aXnaaBaaaleaacaWGHbaabeaa kiabeo8aZnaaBaaaleaacaaIWaGaaiilaiaadggaaeqaaaGcbaGaam ytamaaBaaaleaacaWGHbaabeaakiabeo7aNnaaBaaaleaacaWGTbaa beaakiabeI7aXnaaBaaaleaacaWGTbaabeaakiabeo8aZnaaBaaale aacaaIWaGaaiilaiaad2gaaeqaaaaaaaa@547F@   (21)

{m=A u 197 },{a=Z r 97 ,Z r 96 ,A u 197 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaacUhacaWGTb Gaeyypa0JaamyqaiaadwhadaahaaWcbeqaaiaaigdacaaI5aGaaG4n aaaakiaac2hacaGGSaGaai4EaiaadggacqGH9aqpcaWGAbGaamOCam aaCaaaleqabaGaaGyoaiaaiEdaaaGccaGGSaGaamOwaiaadkhadaah aaWcbeqaaiaaiMdacaaI2aaaaOGaaiilaiaadgeacaWG1bWaaWbaaS qabeaacaaIXaGaaGyoaiaaiEdaaaGccaGG9baaaa@4F6B@   (22)

Before we proceed with the calculations, it should be noted that the thickness of the used foils was more than 100 micrometers and it is necessary to first calculate the correction factors for the used isotopes. Because as mentioned, if we cannot ignore the thickness of the used foil, we must also consider the foil self-shielding correction factor so that the effect of the neutron flux drop inside the foil is applied to the radioactivity. The reason for applying such a correction is the possibility of absorption of thermal and epithermal neutrons in the foil that does not result in activation. Therefore, the average neutron flux inside the foil (φ) is always less than the average neutron flux on the surface of the thin foil under the same conditions. The foil self-shielding correction factor is defined as follows:7,8

G= φ ¯ φ ¯ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaajaadEeacq GH9aqpkmaalaaajaaqbaGafqOXdOMbaebaaeaacuaHgpGAgaqeaOWa aSbaaKqaafaacaaIWaaabeaaaaaaaa@3D41@   (23)

Since the reduction of neutron flux due to the foil thickness is possible both for thermal neutrons and epithermal neutrons, we can generally divide the foil self-shielding correction factor into two thermal and epithermal parts. The thermal self-shielding factor (Gth) is defined as follows:

Gth = (average neutron thermal flux inside the foil)/(average neutron thermal flux on the foil surface)= = φ ¯ th φ ¯ 0,th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiabg2da9maala aabaGafqOXdOMbaebadaWgaaWcbaGaamiDaiaadIgaaeqaaaGcbaGa fqOXdOMbaebadaWgaaWcbaGaaGimaiaacYcacaWG0bGaamiAaaqaba aaaaaa@4042@   (24)

This factor is calculated using the following formula:

G th = 12 E 3 (τ) 2τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadEeadaWgaa WcbaGaamiDaiaadIgaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaGaeyOe I0IaaGOmaiaadweadaWgaaWcbaGaaG4maaqabaGccaGGOaGaeqiXdq NaaiykaaqaaiaaikdacqaHepaDaaaaaa@43A8@   (25)

In which, τ= a .t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaajabes8a0j abg2da9OWaaabeaKaaafaacaGGUaGaamiDaaqcbauaaiaadggaaeqa jmaqcqGHris5aaaa@3E43@  is the product of the macroscopic absorption cross section and the foil thickness. (The total cross-section of all the nuclei present in a unit volume of matter is called the macroscopic cross section, and ( =Nσ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaamaaqaeajaaqba Gaeyypa0JaamOtaiabeo8aZbqcbauabeqajmaqcqGHris5aaaa@3C61@ ) the unit is cm-1.  The third part of the exponential integral functions, which are defined as follows and their values exist in the tables related to the method constants:

E n (x)= 1 e ux u n du MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadweakm aaBaaajeaybaGaamOBaaqabaqcaaMaaiikaiaadIhacaGGPaGaeyyp a0JcdaWdXbqcaawaaOWaaSaaaKaaGfaacaWGLbGcdaahaaqcbawabe aacqGHsislcaWG1bGaamiEaaaaaKaaGfaacaWG1bGcdaahaaqcbawa beaacaWGUbaaaaaaaeaacaaIXaaabaGaeyOhIukajmaycqGHRiI8aK aaGjaadsgacaWG1baaaa@4BE5@   (26)

Therefore, E 3 (τ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadweadaWgaa WcbaGaaG4maaqabaGccaGGOaGaeqiXdqNaaiykaaaa@3AC5@ is:

E 3 (τ)= 1 e τu u 3 du MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadweakm aaBaaajeaybaGaaG4maaqabaqcaaMaaiikaiabes8a0jaacMcacqGH 9aqpkmaapehajaaybaGcdaWcaaqcaawaaiaadwgakmaaCaaajeaybe qaaiabgkHiTiabes8a0jaadwhaaaaajaaybaGaamyDaOWaaWbaaKqa GfqabaGaaG4maaaaaaqcaaMaamizaiaadwhaaKqaGfaacaaIXaaaba GaeyOhIukajmaycqGHRiI8aaaa@4D73@   (27)

With a simple approximation, the following equation has also been proposed to calculate the thermal self-shielding factor:

G th =1 τ 2 (0.923+ln 1 τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadEeadaWgaa WcbaGaamiDaiaadIgaaeqaaOGaeyypa0JaaGymaiabgkHiTmaalaaa baGaeqiXdqhabaGaaGOmaaaacaGGOaGaaGimaiaac6cacaaI5aGaaG OmaiaaiodacqGHRaWkciGGSbGaaiOBamaalaaabaGaaGymaaqaaiab es8a0baacaGGPaaaaa@4868@   (28)

To calculate Gepi, for zirconium isotopes, the following formulas are available [10]:

For Zr96:

G epi =11.543× 10 4 ×d+1.143× 10 7 × d 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadEeakm aaBaaajeaybaGaamyzaiaadchacaWGPbaabeaakiabg2da9KaaGjaa igdacqGHsislcaaIXaGaaiOlaiaaiwdacaaI0aGaaG4maiabgEna0k aaigdacaaIWaGcdaahaaqcbawabeaacqGHsislcaaI0aaaaKaaGjab gEna0kaadsgacqGHRaWkcaaIXaGaaiOlaiaaigdacaaI0aGaaG4mai abgEna0kaaigdacaaIWaGcdaahaaqcbawabeaacqGHsislcaaI3aaa aKaaGjabgEna0kaadsgakmaaCaaajeaybeqaaiaaikdaaaaaaa@598F@   (29)

Where d is the thickness of zirconium foils in micrometers. Also for Zr94:

G epi =11.543× 10 4 ×d+1.143× 10 7 × d 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadEeakm aaBaaajeaybaGaamyzaiaadchacaWGPbaabeaakiabg2da9KaaGjaa igdacqGHsislcaaIXaGaaiOlaiaaiwdacaaI0aGaaG4maiabgEna0k aaigdacaaIWaGcdaahaaqcbawabeaacqGHsislcaaI0aaaaKaaGjab gEna0kaadsgacqGHRaWkcaaIXaGaaiOlaiaaigdacaaI0aGaaG4mai abgEna0kaaigdacaaIWaGcdaahaaqcbawabeaacqGHsislcaaI3aaa aKaaGjabgEna0kaadsgakmaaCaaajeaybeqaaiaaikdaaaaaaa@598F@   (30)

So, we will have:

Considering the obtained results, now we can calculate the flux parameters. The final equation for calculating the parameter α by the method using 3 isotopes, without cadmium covering, is:

(ab) Q o,1 (α) G epi,1 G th,1 a Q o,2 (α) G epi,2 G th,2 +b Q o,3 (α) G epi,3 G th,3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqabeaadaqaaqaaaOqaaKaaGjaacIcaca WGHbGaeyOeI0IaamOyaiaacMcacaWGrbGcdaWgaaqcbawaaiaad+ga caGGSaGaaGymaaqabaqcaaMaaiikaiabeg7aHjaacMcakmaalaaaja aybaGaam4raOWaaSbaaKqaGfaacaWGLbGaamiCaiaadMgacaGGSaGa aGymaaqabaaajaaybaGaam4raOWaaSbaaKqaGfaacaWG0bGaamiAai aacYcacaaIXaaabeaaaaqcaaMaeyOeI0IaamyyaiaadgfakmaaBaaa jeaybaGaam4BaiaacYcacaaIYaaabeaajaaycaGGOaGaeqySdeMaai ykaOWaaSaaaKaaGfaacaWGhbGcdaWgaaqcbawaaiaadwgacaWGWbGa amyAaiaacYcacaaIYaaabeaaaKaaGfaacaWGhbGcdaWgaaqcbawaai aadshacaWGObGaaiilaiaaikdaaeqaaaaajaaycqGHRaWkcaWGIbGa amyuaOWaaSbaaKqaGfaacaGGVbGaaiilaiaaiodaaeqaaKaaGjaacI cacqaHXoqycaGGPaGcdaWcaaqcaawaaiaadEeakmaaBaaajeaybaGa amyzaiaadchacaWGPbGaaiilaiaaiodaaeqaaaqcaawaaiaadEeakm aaBaaajeaybaGaamiDaiaadIgacaGGSaGaaG4maaqabaaaaOGaeyyp a0tcaaMaaGimaaaa@7833@   (31)

(ab) Q 0,1 (α) G epi,1 G th,1 a Q 0,2 (α) G epi,2 G th,2 +b Q 0,3 (α) G epi,3 G th,3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqabeaadaqaaqaaaOqaaiaacIcacaWGHb GaeyOeI0IaamOyaiaacMcacaWGrbWaaSbaaSqaaiaaicdacaGGSaGa aGymaaqabaGccaGGOaGaeqySdeMaaiykamaalaaabaGaam4ramaaBa aaleaacaWGLbGaamiCaiaadMgacaGGSaGaaGymaaqabaaakeaacaWG hbWaaSbaaSqaaiaadshacaWGObGaaiilaiaaigdaaeqaaaaakiabgk HiTiaadggacaWGrbWaaSbaaSqaaiaaicdacaGGSaGaaGOmaaqabaGc caGGOaGaeqySdeMaaiykamaalaaabaGaam4ramaaBaaaleaacaWGLb GaamiCaiaadMgacaGGSaGaaGOmaaqabaaakeaacaWGhbWaaSbaaSqa aiaadshacaWGObGaaiilaiaaikdaaeqaaaaakiabgUcaRiaadkgaca WGrbWaaSbaaSqaaiaaicdacaGGSaGaaG4maaqabaGccaGGOaGaeqyS deMaaiykamaalaaabaGaam4ramaaBaaaleaacaWGLbGaamiCaiaadM gacaGGSaGaaG4maaqabaaakeaacaWGhbWaaSbaaSqaaiaadshacaWG ObGaaiilaiaaiodaaeqaaaaakiabg2da9iaaicdaaaa@6EB2@   (32)

In which, coefficients b, a, and also Qo,i(α) can be calculated from the following formulas:7,8,12

a= { 1 A sp,2 A sp,1 k o,Au (1) k o,Au (2) ε p,1 ε p,2 } 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqabeaadaqaaqaaaOqaaiaabggacaqG9a WaaiWaaeaacaaIXaGaeyOeI0YaaSaaaeaacaWGbbWaaSbaaSqaaiaa dohacaWGWbGaaiilaiaaikdaaeqaaaGcbaGaamyqamaaBaaaleaaca WGZbGaamiCaiaacYcacaaIXaaabeaaaaGccqGHflY1daWcaaqaaiaa dUgadaWgaaWcbaGaam4BaiaacYcacaWGbbGaamyDaaqabaGccaGGOa GaaGymaiaacMcaaeaacaWGRbWaaSbaaSqaaiaad+gacaGGSaGaamyq aiaadwhaaeqaaOGaaiikaiaaikdacaGGPaaaaiabgwSixpaalaaaba GaeqyTdu2aaSbaaSqaaiaadchacaGGSaGaaGymaaqabaaakeaacqaH 1oqzdaWgaaWcbaGaamiCaiaacYcacaaIYaaabeaaaaaakiaawUhaca GL9baadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@605F@  

b= { 1 A sp,3 A sp,1 k o,Au (1) k o,Au (3) ε p,1 ε p,3 } 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqabeaadaqaaqaaaOqaaiaabkgacaqG9a WaaiWaaeaacaaIXaGaeyOeI0YaaSaaaeaacaWGbbWaaSbaaSqaaiaa dohacaWGWbGaaiilaiaaiodaaeqaaaGcbaGaamyqamaaBaaaleaaca WGZbGaamiCaiaacYcacaaIXaaabeaaaaGccqGHflY1daWcaaqaaiaa dUgadaWgaaWcbaGaai4BaiaacYcacaWGbbGaamyDaaqabaGccaGGOa GaaGymaiaacMcaaeaacaWGRbWaaSbaaSqaaiaac+gacaGGSaGaamyq aiaadwhaaeqaaOGaaiikaiaaiodacaGGPaaaaiabgwSixpaalaaaba GaeqyTdu2aaSbaaSqaaiaadchacaGGSaGaaGymaaqabaaakeaacqaH 1oqzdaWgaaWcbaGaamiCaiaacYcacaaIZaaabeaaaaaakiaawUhaca GL9baadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@6061@  

Q o (α)= Q o 0.429 E ¯ r α + 0.429 E Cd α (2α+1) (1.eV) α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxyKLgDP9MBHXgibjxyIL2y aerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFf euY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpe peea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqabeaabaGaaiaaceqabm aaeaqaauaaaOqaaKaaGjaadgfakmaaBaaajeaybaGaam4Baaqabaqc aaMaaiikaiabeg7aHjaacMcacqGH9aqpkmaalaaajaaybaGaamyuaO WaaSbaaKqaGfaacaWGVbaabeaajaaycqGHsislcaaIWaGaaiOlaiaa isdacaaIYaGaaGyoaaqaaiqadweagaqeaOWaaSbaaKqaGfaacaWGYb aabeaakmaaCaaajeaybeqaaiabeg7aHbaaaaqcaaMaey4kaSIcdaWc aaqcaawaaiaaicdacaGGUaGaaGinaiaaikdacaaI5aaabaGaamyraO WaaSbaaKqaGfaacaWGdbGaamizaaqabaGcdaahaaqcbawabeaacqaH XoqyaaqcaaMaaiikaiaaikdacqaHXoqycqGHRaWkcaaIXaGaaiykaa aacaGGOaGaaGymaiaac6cacaWGLbGaamOvaiaacMcakmaaCaaajeay beqaaiabeg7aHbaaaaa@67CA@  

Using Table (5), parameters and b are obtained:

Isotopes

d (μm)

m (gr)

M

ρ

Gepi

Gth

Au197

18

272(10-5)

196.97

19.282

1

1

Zr94

310

414(10-4)

91.22

6.52

0.963151

0.99926

Zr96

310

414(10-4)

91.22

6.52

0.942153

0.99994

Table 4 Self-shielding correction factors of gold and zirconium foils

i

Asp,i

k0,Au(i)

εpi

I0

Q0

Er

Zr97

2.05(106)

1.30(10-5)

0.080797

5.28

248

338

Zr 95

1.49(106)

1.15(10-4)

0.07988

0.268

5.06

6260

Au197

2.72(1010)

1

0.14347

1550

15.71

5.65

Table 5 Required parameters for calculating coefficients a and b

Now, for calculating α, we have:

a= { 1 1.49× 10 6 2.05× 10 6 1.3× 10 5 1.15× 10 4 0.080797 0.07988 } 1 =1.09064 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadggacq GH9aqpkmaacmaajaaybaGaaGymaiabgkHiTOWaaSaaaKaaGfaacaaI XaGaaiOlaiaaisdacaaI5aGaey41aqRaaGymaiaaicdakmaaCaaaje aybeqaaiaaiAdaaaaajaaybaGaaGOmaiaac6cacaaIWaGaaGynaiab gEna0kaaigdacaaIWaGcdaahaaqcbawabeaacaaI2aaaaaaajaaycq GHflY1kmaalaaajaaybaGaaGymaiaac6cacaaIZaGaey41aqRaaGym aiaaicdakmaaCaaajeaybeqaaiabgkHiTiaaiwdaaaaajaaybaGaaG ymaiaac6cacaaIXaGaaGynaiabgEna0kaaigdacaaIWaGcdaahaaqc bawabeaacqGHsislcaaI0aaaaaaajaaycqGHflY1kmaalaaajaayba GaaGimaiaac6cacaaIWaGaaGioaiaaicdacaaI3aGaaGyoaiaaiEda aeaacaaIWaGaaiOlaiaaicdacaaI3aGaaGyoaiaaiIdacaaI4aaaaa Gaay5Eaiaaw2haaOWaaWbaaKqaGfqabaGaeyOeI0IaaGymaaaajaay cqGH9aqpcaaIXaGaaiOlaiaaicdacaaI5aGaaGimaiaaiAdacaaI0a aaaa@7875@  

b= { 1 2.72× 10 10 2.05× 10 6 1.3× 10 5 1 0.080797 0.14347 } 1 =1.10759 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiaadkgacqGH9a qpdaGadaqaaiaaigdacqGHsisldaWcaaqaaiaaikdacaGGUaGaaG4n aiaaikdacqGHxdaTcaaIXaGaaGimamaaCaaaleqabaGaaGymaiaaic daaaaakeaacaaIYaGaaiOlaiaaicdacaaI1aGaey41aqRaaGymaiaa icdadaahaaWcbeqaaiaaiAdaaaaaaOGaeyyXIC9aaSaaaeaacaaIXa GaaiOlaiaaiodacqGHxdaTcaaIXaGaaGimamaaCaaaleqabaGaeyOe I0IaaGynaaaaaOqaaiaaigdaaaGaeyyXIC9aaSaaaeaacaaIWaGaai OlaiaaicdacaaI4aGaaGimaiaaiEdacaaI5aGaaG4naaqaaiaaicda caGGUaGaaGymaiaaisdacaaIZaGaaGinaiaaiEdaaaaacaGL7bGaay zFaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyypa0JaaGymaiaa c6cacaaIXaGaaGimaiaaiEdacaaI1aGaaGyoaaaa@6B67@  

Now to calculate α we will have:

(ab) Q o,1 (α) G epi,1 G th,1 a Q o,2 (α) G epi,2 G th,2 +b Q o,3 (α) G epi,3 G th,3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqabeaadaqaaqaaaOqaaKaaGjaacIcaca WGHbGaeyOeI0IaamOyaiaacMcacaWGrbGcdaWgaaqcbawaaiaad+ga caGGSaGaaGymaaqabaqcaaMaaiikaiabeg7aHjaacMcakmaalaaaja aybaGaam4raOWaaSbaaKqaGfaacaWGLbGaamiCaiaadMgacaGGSaGa aGymaaqabaaajaaybaGaam4raOWaaSbaaKqaGfaacaWG0bGaamiAai aacYcacaaIXaaabeaaaaqcaaMaeyOeI0IaamyyaiaadgfakmaaBaaa jeaybaGaai4BaiaacYcacaaIYaaabeaajaaycaGGOaGaeqySdeMaai ykaOWaaSaaaKaaGfaacaWGhbGcdaWgaaqcbawaaiaadwgacaWGWbGa amyAaiaacYcacaaIYaaabeaaaKaaGfaacaWGhbGcdaWgaaqcbawaai aadshacaWGObGaaiilaiaaikdaaeqaaaaajaaycqGHRaWkcaWGIbGa amyuaOWaaSbaaKqaGfaacaGGVbGaaiilaiaaiodaaeqaaKaaGjaacI cacqaHXoqycaGGPaGcdaWcaaqcaawaaiaadEeakmaaBaaajeaybaGa amyzaiaadchacaWGPbGaaiilaiaaiodaaeqaaaqcaawaaiaadEeakm aaBaaajeaybaGaamiDaiaadIgacaGGSaGaaG4maaqabaaaaKaaGjab g2da9iaaicdaaaa@7828@  

(1.090641.10759)[ 2480.429 (338) α + 0.429 (0.55) α (2α+1) ] 0.94215 0.99999 1.09064[ 5.060.429 (6260) α + 0.429 (0.55) α (2α+1) ] 0.963151 0.999926 +1.10759[ 15.710.429 (5.65) α + 0.429 (0.55) α (2α+1) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOabaeqabaqcaaMaai ikaiaaigdacaGGUaGaaGimaiaaiMdacaaIWaGaaGOnaiaaisdacqGH sislcaaIXaGaaiOlaiaaigdacaaIWaGaaG4naiaaiwdacaaI5aGaai ykaOWaamWaaKaaGfaakmaalaaajaaybaGaaGOmaiaaisdacaaI4aGa eyOeI0IaaGimaiaac6cacaaI0aGaaGOmaiaaiMdaaeaacaGGOaGaaG 4maiaaiodacaaI4aGaaiykaOWaaWbaaKqaGfqabaGaeqySdegaaaaa jaaycqGHRaWkkmaalaaajaaybaGaaGimaiaac6cacaaI0aGaaGOmai aaiMdaaeaacaGGOaGaaGimaiaac6cacaaI1aGaaGynaiaacMcakmaa Caaajeaybeqaaiabeg7aHbaajaaycaGGOaGaaGOmaiabeg7aHjabgU caRiaaigdacaGGPaaaaaGaay5waiaaw2faaOWaaSaaaKaaGfaacaaI WaGaaiOlaiaaiMdacaaI0aGaaGOmaiaaigdacaaI1aaabaGaaGimai aac6cacaaI5aGaaGyoaiaaiMdacaaI5aGaaGyoaaaacqGHsislcaaI XaGaaiOlaiaaicdacaaI5aGaaGimaiaaiAdacaaI0aGcdaWadaqcaa waaOWaaSaaaKaaGfaacaaI1aGaaiOlaiaaicdacaaI2aGaeyOeI0Ia aGimaiaac6cacaaI0aGaaGOmaiaaiMdaaeaacaGGOaGaaGOnaiaaik dacaaI2aGaaGimaiaacMcakmaaCaaajeaybeqaaiabeg7aHbaaaaqc aaMaey4kaSIcdaWcaaqcaawaaiaaicdacaGGUaGaaGinaiaaikdaca aI5aaabaGaaiikaiaaicdacaGGUaGaaGynaiaaiwdacaGGPaGcdaah aaqcbawabeaacqaHXoqyaaqcaaMaaiikaiaaikdacqaHXoqycqGHRa WkcaaIXaGaaiykaaaaaiaawUfacaGLDbaakmaalaaajaaybaGaaGim aiaac6cacaaI5aGaaGOnaiaaiodacaaIXaGaaGynaiaaigdaaeaaca aIWaGaaiOlaiaaiMdacaaI5aGaaGyoaiaaiMdacaaIYaGaaGOnaaaa aOqaaKaaGjabgUcaRiaaigdacaGGUaGaaGymaiaaicdacaaI3aGaaG ynaiaaiMdakmaadmaajaaybaGcdaWcaaqcaawaaiaaigdacaaI1aGa aiOlaiaaiEdacaaIXaGaeyOeI0IaaGimaiaac6cacaaI0aGaaGOmai aaiMdaaeaacaGGOaGaaGynaiaac6cacaaI2aGaaGynaiaacMcakmaa Caaajeaybeqaaiabeg7aHbaaaaqcaaMaey4kaSIcdaWcaaqcaawaai aaicdacaGGUaGaaGinaiaaikdacaaI5aaabaGaaiikaiaaicdacaGG UaGaaGynaiaaiwdacaGGPaGcdaahaaqcbawabeaacqaHXoqyaaqcaa MaaiikaiaaikdacqaHXoqycqGHRaWkcaaIXaGaaiykaaaaaiaawUfa caGLDbaacqGH9aqpcaaIWaaaaaa@CF79@  

(0.01695)[ 247.571 (338) α + 0.429 (0.55) α (2α+1) ](0.9422)(1.09064)[ 4.631 (6260) α + 0.429 (0.55) α (2α+1) ](0.96322) +(1.10759)[ 15.281 (5.65) α + 0.429 (0.55) α (2α+1) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOabaeqabaqcaaMaey O0H4TaaiikaiabgkHiTiaaicdacaGGUaGaaGimaiaaigdacaaI2aGa aGyoaiaaiwdacaGGPaGcdaWadaqcaawaaOWaaSaaaKaaGfaacaaIYa GaaGinaiaaiEdacaGGUaGaaGynaiaaiEdacaaIXaaabaGaaiikaiaa iodacaaIZaGaaGioaiaacMcakmaaCaaajeaybeqaaiabeg7aHbaaaa qcaaMaey4kaSIcdaWcaaqcaawaaiaaicdacaGGUaGaaGinaiaaikda caaI5aaabaGaaiikaiaaicdacaGGUaGaaGynaiaaiwdacaGGPaGcda ahaaqcbawabeaacqaHXoqyaaqcaaMaaiikaiaaikdacqaHXoqycqGH RaWkcaaIXaGaaiykaaaaaiaawUfacaGLDbaacaGGOaGaaGimaiaac6 cacaaI5aGaaGinaiaaikdacaaIYaGaaiykaiabgkHiTiaacIcacaaI XaGaaiOlaiaaicdacaaI5aGaaGimaiaaiAdacaaI0aGaaiykaOWaam WaaKaaGfaakmaalaaajaaybaGaaGinaiaac6cacaaI2aGaaG4maiaa igdaaeaacaGGOaGaaGOnaiaaikdacaaI2aGaaGimaiaacMcakmaaCa aajeaybeqaaiabeg7aHbaaaaqcaaMaey4kaSIcdaWcaaqcaawaaiaa icdacaGGUaGaaGinaiaaikdacaaI5aaabaGaaiikaiaaicdacaGGUa GaaGynaiaaiwdacaGGPaGcdaahaaqcbawabeaacqaHXoqyaaqcaaMa aiikaiaaikdacqaHXoqycqGHRaWkcaaIXaGaaiykaaaaaiaawUfaca GLDbaacaGGOaGaaGimaiaac6cacaaI5aGaaGOnaiaaiodacaaIYaGa aGOmaiaacMcaaOqaaKaaGjabgUcaRiaacIcacaaIXaGaaiOlaiaaig dacaaIWaGaaG4naiaaiwdacaaI5aGaaiykaOWaamWaaKaaGfaakmaa laaajaaybaGaaGymaiaaiwdacaGGUaGaaGOmaiaaiIdacaaIXaaaba GaaiikaiaaiwdacaGGUaGaaGOnaiaaiwdacaGGPaGcdaahaaqcbawa beaacqaHXoqyaaaaaKaaGjabgUcaROWaaSaaaKaaGfaacaaIWaGaai OlaiaaisdacaaIYaGaaGyoaaqaaiaacIcacaaIWaGaaiOlaiaaiwda caaI1aGaaiykaOWaaWbaaKqaGfqabaGaeqySdegaaKaaGjaacIcaca aIYaGaeqySdeMaey4kaSIaaGymaiaacMcaaaaacaGLBbGaayzxaaGa eyypa0JaaGimaaaaaa@BB0A@  

(0.01597)[ 247.571 (338) α + 0.429 (0.55) α (2α+1) ](1.05053)[ 4.631 (6260) α + 0.429 (0.55) α (2α+1) ] +(1.10759)[ 15.281 (5.65) α + 0.429 (0.55) α (2α+1) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOabaeqabaqcaaMaey O0H4TaaiikaiabgkHiTiaaicdacaGGUaGaaGimaiaaigdacaaI1aGa aGyoaiaaiEdacaGGPaGcdaWadaqcaawaaOWaaSaaaKaaGfaacaaIYa GaaGinaiaaiEdacaGGUaGaaGynaiaaiEdacaaIXaaabaGaaiikaiaa iodacaaIZaGaaGioaiaacMcakmaaCaaajeaybeqaaiabeg7aHbaaaa qcaaMaey4kaSIcdaWcaaqcaawaaiaaicdacaGGUaGaaGinaiaaikda caaI5aaabaGaaiikaiaaicdacaGGUaGaaGynaiaaiwdacaGGPaGcda ahaaqcbawabeaacqaHXoqyaaqcaaMaaiikaiaaikdacqaHXoqycqGH RaWkcaaIXaGaaiykaaaaaiaawUfacaGLDbaacqGHsislcaGGOaGaaG ymaiaac6cacaaIWaGaaGynaiaaicdacaaI1aGaaG4maiaacMcakmaa dmaajaaybaGcdaWcaaqcaawaaiaaisdacaGGUaGaaGOnaiaaiodaca aIXaaabaGaaiikaiaaiAdacaaIYaGaaGOnaiaaicdacaGGPaGcdaah aaqcbawabeaacqaHXoqyaaaaaKaaGjabgUcaROWaaSaaaKaaGfaaca aIWaGaaiOlaiaaisdacaaIYaGaaGyoaaqaaiaacIcacaaIWaGaaiOl aiaaiwdacaaI1aGaaiykaOWaaWbaaKqaGfqabaGaeqySdegaaKaaGj aacIcacaaIYaGaeqySdeMaey4kaSIaaGymaiaacMcaaaaacaGLBbGa ayzxaaaakeaajaaycqGHRaWkcaGGOaGaaGymaiaac6cacaaIXaGaaG imaiaaiEdacaaI1aGaaGyoaiaacMcakmaadmaajaaybaGcdaWcaaqc aawaaiaaigdacaaI1aGaaiOlaiaaikdacaaI4aGaaGymaaqaaiaacI cacaaI1aGaaiOlaiaaiAdacaaI1aGaaiykaOWaaWbaaKqaGfqabaGa eqySdegaaaaajaaycqGHRaWkkmaalaaajaaybaGaaGimaiaac6caca aI0aGaaGOmaiaaiMdaaeaacaGGOaGaaGimaiaac6cacaaI1aGaaGyn aiaacMcakmaaCaaajeaybeqaaiabeg7aHbaajaaycaGGOaGaaGOmai abeg7aHjabgUcaRiaaigdacaGGPaaaaaGaay5waiaaw2faaiabg2da 9iaaicdaaaaa@AECA@  

By solving the above relationship with the help of MATLAB software and choosing the best answer from the obtained answers, the final result for α is as follows:

α=0.0174 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iabgkHiTiaaicdacaGGUaGaaGimaiaaigdacaaI3aGaaGinaaaa @3DDC@

After calculating α, first the values of Q0(α) should be calculated for all three isotopes used:

Q o (α)= Q o 0.429 E ¯ r α + 0.429 E Cd α (2α+1) (1eV) α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadgfakm aaBaaajeaybaGaam4BaaqabaqcaaMaaiikaiabeg7aHjaacMcacqGH 9aqpkmaalaaajaaybaGaamyuaOWaaSbaaKqaGfaacaWGVbaabeaaja aycqGHsislcaaIWaGaaiOlaiaaisdacaaIYaGaaGyoaaqaaiqadwea gaqeaOWaaSbaaKqaGfaacaWGYbaabeaakmaaCaaajeaybeqaaiabeg 7aHbaaaaqcaaMaey4kaSIcdaWcaaqcaawaaiaaicdacaGGUaGaaGin aiaaikdacaaI5aaabaGaamyraOWaaSbaaKqaGfaacaWGdbGaamizaa qabaGcdaahaaqcbawabeaacqaHXoqyaaqcaaMaaiikaiaaikdacqaH XoqycqGHRaWkcaaIXaGaaiykaaaacaGGOaGaaGymaiaadwgacaWGwb GaaiykaOWaaWbaaKqaGfqabaGaeqySdegaaaaa@6021@

Zr97:

Q o (α)= 2480.429 338 (0.0174) + 0.429 (0.55) (0.0174) [ 2(0.0174)+1 ] =274 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadgfakm aaBaaajeaybaGaam4BaaqabaqcaaMaaiikaiabeg7aHjaacMcacqGH 9aqpkmaalaaajaaybaGaaGOmaiaaisdacaaI4aGaeyOeI0IaaGimai aac6cacaaI0aGaaGOmaiaaiMdaaeaacaaIZaGaaG4maiaaiIdakmaa CaaajeaybeqaaiaacIcacqGHsislcaaIWaGaaiOlaiaaicdacaaIXa GaaG4naiaaisdacaGGPaaaaaaajaaycqGHRaWkkmaalaaajaaybaGa aGimaiaac6cacaaI0aGaaGOmaiaaiMdaaeaacaGGOaGaaGimaiaac6 cacaaI1aGaaGynaiaacMcakmaaCaaajeaybeqaaiaacIcacqGHsisl caaIWaGaaiOlaiaaicdacaaIXaGaaG4naiaaisdacaGGPaaaaOWaam WaaKaaGfaacaaIYaGaaiikaiabgkHiTiaaicdacaGGUaGaaGimaiaa igdacaaI3aGaaGinaiaacMcacqGHRaWkcaaIXaaacaGLBbGaayzxaa aaaiabg2da9iaaikdacaaI3aGaaGinaaaa@6D81@  

Zr95:

Q o (α)= 5.060.429 6260 (0.0174) + 0.429 (0.55) (0.0174) [ 2(0.0174)+1 ] =5.83 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadgfakm aaBaaajeaybaGaam4BaaqabaqcaaMaaiikaiabeg7aHjaacMcacqGH 9aqpkmaalaaajaaybaGaaGynaiaac6cacaaIWaGaaGOnaiabgkHiTi aaicdacaGGUaGaaGinaiaaikdacaaI5aaabaGaaGOnaiaaikdacaaI 2aGaaGimaOWaaWbaaKqaGfqabaGaaiikaiabgkHiTiaaicdacaGGUa GaaGimaiaaigdacaaI3aGaaGinaiaacMcaaaaaaKaaGjabgUcaROWa aSaaaKaaGfaacaaIWaGaaiOlaiaaisdacaaIYaGaaGyoaaqaaiaacI cacaaIWaGaaiOlaiaaiwdacaaI1aGaaiykaOWaaWbaaKqaGfqabaGa aiikaiabgkHiTiaaicdacaGGUaGaaGimaiaaigdacaaI3aGaaGinai aacMcaaaGcdaWadaqcaawaaiaaikdacaGGOaGaeyOeI0IaaGimaiaa c6cacaaIWaGaaGymaiaaiEdacaaI0aGaaiykaiabgUcaRiaaigdaai aawUfacaGLDbaaaaGaeyypa0JaaGynaiaac6cacaaI4aGaaG4maaaa @6F9F@  

Au197:

Q o (α)= 15.710.429 (5.65) (0.0174) + 0.429 (0.55) (0.0174) [ 2(0.0174)+1 ] =16.2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadgfakm aaBaaajeaybaGaam4BaaqabaqcaaMaaiikaiabeg7aHjaacMcacqGH 9aqpkmaalaaajaaybaGaaGymaiaaiwdacaGGUaGaaG4naiaaigdacq GHsislcaaIWaGaaiOlaiaaisdacaaIYaGaaGyoaaqaaiaacIcacaaI 1aGaaiOlaiaaiAdacaaI1aGaaiykaOWaaWbaaKqaGfqabaGaaiikai abgkHiTiaaicdacaGGUaGaaGimaiaaigdacaaI3aGaaGinaiaacMca aaaaaKaaGjabgUcaROWaaSaaaKaaGfaacaaIWaGaaiOlaiaaisdaca aIYaGaaGyoaaqaaiaacIcacaaIWaGaaiOlaiaaiwdacaaI1aGaaiyk aOWaaWbaaKqaGfqabaGaaiikaiabgkHiTiaaicdacaGGUaGaaGimai aaigdacaaI3aGaaGinaiaacMcaaaGcdaWadaqcaawaaiaaikdacaGG OaGaeyOeI0IaaGimaiaac6cacaaIWaGaaGymaiaaiEdacaaI0aGaai ykaiabgUcaRiaaigdaaiaawUfacaGLDbaaaaGaeyypa0JaaGymaiaa iAdacaGGUaGaaGOmaaaa@71A8@

Now, using the above values, we can calculate the flux parameter f from equation 6:

f= (0.9421) 1.3× 10 5 1.15× 10 4 0.080797 0.07988 (274)(0.9632) 2.05× 10 6 1.49× 10 6 (5.83) (0.999926) 2.05× 10 6 1.49× 10 6 (0.999994) 1.3× 10 5 1.15× 10 4 0.080797 0.07988 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaajabgkDiEl aadAgacqGH9aqpkmaalaaajaaqbaGaaiikaiaaicdacaGGUaGaaGyo aiaaisdacaaIYaGaaGymaiaacMcakmaalaaajaaqbaGaaGymaiaac6 cacaaIZaGaey41aqRaaGymaiaaicdakmaaCaaajeaqbeqaaiabgkHi TiaaiwdaaaaajaaqbaGaaGymaiaac6cacaaIXaGaaGynaiabgEna0k aaigdacaaIWaGcdaahaaqcbauabeaacqGHsislcaaI0aaaaaaajaaq cqGHflY1kmaalaaajaaqbaGaaGimaiaac6cacaaIWaGaaGioaiaaic dacaaI3aGaaGyoaiaaiEdaaeaacaaIWaGaaiOlaiaaicdacaaI3aGa aGyoaiaaiIdacaaI4aaaaiaacIcacaaIYaGaaG4naiaaisdacaGGPa GaeyOeI0IaaiikaiaaicdacaGGUaGaaGyoaiaaiAdacaaIZaGaaGOm aiaacMcakmaalaaajaaqbaGaaGOmaiaac6cacaaIWaGaaGynaiabgE na0kaaigdacaaIWaGcdaahaaqcbauabeaacaaI2aaaaaqcaauaaiaa igdacaGGUaGaaGinaiaaiMdacqGHxdaTcaaIXaGaaGimaOWaaWbaaK qaafqabaGaaGOnaaaaaaqcaaKaaiikaiaaiwdacaGGUaGaaGioaiaa iodacaGGPaaabaGaaiikaiaaicdacaGGUaGaaGyoaiaaiMdacaaI5a GaaGyoaiaaikdacaaI2aGaaiykaiabgwSixRWaaSaaaKaaafaacaaI YaGaaiOlaiaaicdacaaI1aGaey41aqRaaGymaiaaicdakmaaCaaaje aqbeqaaiaaiAdaaaaajaaqbaGaaGymaiaac6cacaaI0aGaaGyoaiab gEna0kaaigdacaaIWaGcdaahaaqcbauabeaacaaI2aaaaaaajaaqcq GHsislcaGGOaGaaGimaiaac6cacaaI5aGaaGyoaiaaiMdacaaI5aGa aGyoaiaaisdacaGGPaGaeyyXICTcdaWcaaqcaauaaiaaigdacaGGUa GaaG4maiabgEna0kaaigdacaaIWaGcdaahaaqcbauabeaacqGHsisl caaI1aaaaaqcaauaaiaaigdacaGGUaGaaGymaiaaiwdacqGHxdaTca aIXaGaaGimaOWaaWbaaKqaafqabaGaeyOeI0IaaGinaaaaaaqcaaKa eyyXICTcdaWcaaqcaauaaiaaicdacaGGUaGaaGimaiaaiIdacaaIWa GaaG4naiaaiMdacaaI3aaabaGaaGimaiaac6cacaaIWaGaaG4naiaa iMdacaaI4aGaaGioaaaaaaaaaa@C22E@

By solving the above equation using MATLAB software and selecting the best answer from the obtained solutions, the final result for α is as follows:

α= -0.0174

After calculating α, first, the Q0(α) values for each of the three used isotopes should be calculated:

Q o (α)= Q o 0.429 E ¯ r α + 0.429 E Cd α (2α+1) (1eV) α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadgfakm aaBaaajeaybaGaam4BaaqabaqcaaMaaiikaiabeg7aHjaacMcacqGH 9aqpkmaalaaajaaybaGaamyuaOWaaSbaaKqaGfaacaWGVbaabeaaja aycqGHsislcaaIWaGaaiOlaiaaisdacaaIYaGaaGyoaaqaaiqadwea gaqeaOWaaSbaaKqaGfaacaWGYbaabeaakmaaCaaajeaybeqaaiabeg 7aHbaaaaqcaaMaey4kaSIcdaWcaaqcaawaaiaaicdacaGGUaGaaGin aiaaikdacaaI5aaabaGaamyraOWaaSbaaKqaGfaacaWGdbGaamizaa qabaGcdaahaaqcbawabeaacqaHXoqyaaqcaaMaaiikaiaaikdacqaH XoqycqGHRaWkcaaIXaGaaiykaaaacaGGOaGaaGymaiaadwgacaWGwb GaaiykaOWaaWbaaKqaGfqabaGaeqySdegaaaaa@6021@

Zr97:

Q o (α)= 2480.429 338 (0.0174) + 0.429 (0.55) (0.0174) [ 2(0.0174)+1 ] =274 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadgfakm aaBaaajeaybaGaam4BaaqabaqcaaMaaiikaiabeg7aHjaacMcacqGH 9aqpkmaalaaajaaybaGaaGOmaiaaisdacaaI4aGaeyOeI0IaaGimai aac6cacaaI0aGaaGOmaiaaiMdaaeaacaaIZaGaaG4maiaaiIdakmaa CaaajeaybeqaaiaacIcacqGHsislcaaIWaGaaiOlaiaaicdacaaIXa GaaG4naiaaisdacaGGPaaaaaaajaaycqGHRaWkkmaalaaajaaybaGa aGimaiaac6cacaaI0aGaaGOmaiaaiMdaaeaacaGGOaGaaGimaiaac6 cacaaI1aGaaGynaiaacMcakmaaCaaajeaybeqaaiaacIcacqGHsisl caaIWaGaaiOlaiaaicdacaaIXaGaaG4naiaaisdacaGGPaaaaOWaam WaaKaaGfaacaaIYaGaaiikaiabgkHiTiaaicdacaGGUaGaaGimaiaa igdacaaI3aGaaGinaiaacMcacqGHRaWkcaaIXaaacaGLBbGaayzxaa aaaiabg2da9iaaikdacaaI3aGaaGinaaaa@6D81@  

Zr95:

Q o (α)= 5.060.429 6260 (0.0174) + 0.429 (0.55) (0.0174) [ 2(0.0174)+1 ] =5.83 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadgfakm aaBaaajeaybaGaam4BaaqabaqcaaMaaiikaiabeg7aHjaacMcacqGH 9aqpkmaalaaajaaybaGaaGynaiaac6cacaaIWaGaaGOnaiabgkHiTi aaicdacaGGUaGaaGinaiaaikdacaaI5aaabaGaaGOnaiaaikdacaaI 2aGaaGimaOWaaWbaaKqaGfqabaGaaiikaiabgkHiTiaaicdacaGGUa GaaGimaiaaigdacaaI3aGaaGinaiaacMcaaaaaaKaaGjabgUcaROWa aSaaaKaaGfaacaaIWaGaaiOlaiaaisdacaaIYaGaaGyoaaqaaiaacI cacaaIWaGaaiOlaiaaiwdacaaI1aGaaiykaOWaaWbaaKqaGfqabaGa aiikaiabgkHiTiaaicdacaGGUaGaaGimaiaaigdacaaI3aGaaGinai aacMcaaaGcdaWadaqcaawaaiaaikdacaGGOaGaeyOeI0IaaGimaiaa c6cacaaIWaGaaGymaiaaiEdacaaI0aGaaiykaiabgUcaRiaaigdaai aawUfacaGLDbaaaaGaeyypa0JaaGynaiaac6cacaaI4aGaaG4maaaa @6F9F@  

Au197:

Q o (α)= 15.710.429 (5.65) (0.0174) + 0.429 (0.55) (0.0174) [ 2(0.0174)+1 ] =16.2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjaadgfakm aaBaaajeaybaGaam4BaaqabaqcaaMaaiikaiabeg7aHjaacMcacqGH 9aqpkmaalaaajaaybaGaaGymaiaaiwdacaGGUaGaaG4naiaaigdacq GHsislcaaIWaGaaiOlaiaaisdacaaIYaGaaGyoaaqaaiaacIcacaaI 1aGaaiOlaiaaiAdacaaI1aGaaiykaOWaaWbaaKqaGfqabaGaaiikai abgkHiTiaaicdacaGGUaGaaGimaiaaigdacaaI3aGaaGinaiaacMca aaaaaKaaGjabgUcaROWaaSaaaKaaGfaacaaIWaGaaiOlaiaaisdaca aIYaGaaGyoaaqaaiaacIcacaaIWaGaaiOlaiaaiwdacaaI1aGaaiyk aOWaaWbaaKqaGfqabaGaaiikaiabgkHiTiaaicdacaGGUaGaaGimai aaigdacaaI3aGaaGinaiaacMcaaaGcdaWadaqcaawaaiaaikdacaGG OaGaeyOeI0IaaGimaiaac6cacaaIWaGaaGymaiaaiEdacaaI0aGaai ykaiabgUcaRiaaigdaaiaawUfacaGLDbaaaaGaeyypa0JaaGymaiaa iAdacaGGUaGaaGOmaaaa@71A8@  

Now we can calculate the flux parameter f from equation 6 using the above values:

f= (0.9421) 1.3× 10 5 1.15× 10 4 0.080797 0.07988 (274)(0.9632) 2.05× 10 6 1.49× 10 6 (5.83) (0.999926) 2.05× 10 6 1.49× 10 6 (0.999994) 1.3× 10 5 1.15× 10 4 0.080797 0.07988 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaajabgkDiEl aadAgacqGH9aqpkmaalaaajaaqbaGaaiikaiaaicdacaGGUaGaaGyo aiaaisdacaaIYaGaaGymaiaacMcakmaalaaajaaqbaGaaGymaiaac6 cacaaIZaGaey41aqRaaGymaiaaicdakmaaCaaajeaqbeqaaiabgkHi TiaaiwdaaaaajaaqbaGaaGymaiaac6cacaaIXaGaaGynaiabgEna0k aaigdacaaIWaGcdaahaaqcbauabeaacqGHsislcaaI0aaaaaaajaaq cqGHflY1kmaalaaajaaqbaGaaGimaiaac6cacaaIWaGaaGioaiaaic dacaaI3aGaaGyoaiaaiEdaaeaacaaIWaGaaiOlaiaaicdacaaI3aGa aGyoaiaaiIdacaaI4aaaaiaacIcacaaIYaGaaG4naiaaisdacaGGPa GaeyOeI0IaaiikaiaaicdacaGGUaGaaGyoaiaaiAdacaaIZaGaaGOm aiaacMcakmaalaaajaaqbaGaaGOmaiaac6cacaaIWaGaaGynaiabgE na0kaaigdacaaIWaGcdaahaaqcbauabeaacaaI2aaaaaqcaauaaiaa igdacaGGUaGaaGinaiaaiMdacqGHxdaTcaaIXaGaaGimaOWaaWbaaK qaafqabaGaaGOnaaaaaaqcaaKaaiikaiaaiwdacaGGUaGaaGioaiaa iodacaGGPaaabaGaaiikaiaaicdacaGGUaGaaGyoaiaaiMdacaaI5a GaaGyoaiaaikdacaaI2aGaaiykaiabgwSixRWaaSaaaKaaafaacaaI YaGaaiOlaiaaicdacaaI1aGaey41aqRaaGymaiaaicdakmaaCaaaje aqbeqaaiaaiAdaaaaajaaqbaGaaGymaiaac6cacaaI0aGaaGyoaiab gEna0kaaigdacaaIWaGcdaahaaqcbauabeaacaaI2aaaaaaajaaqcq GHsislcaGGOaGaaGimaiaac6cacaaI5aGaaGyoaiaaiMdacaaI5aGa aGyoaiaaisdacaGGPaGaeyyXICTcdaWcaaqcaauaaiaaigdacaGGUa GaaG4maiabgEna0kaaigdacaaIWaGcdaahaaqcbauabeaacqGHsisl caaI1aaaaaqcaauaaiaaigdacaGGUaGaaGymaiaaiwdacqGHxdaTca aIXaGaaGimaOWaaWbaaKqaafqabaGaeyOeI0IaaGinaaaaaaqcaaKa eyyXICTcdaWcaaqcaauaaiaaicdacaGGUaGaaGimaiaaiIdacaaIWa GaaG4naiaaiMdacaaI3aaabaGaaGimaiaac6cacaaIWaGaaG4naiaa iMdacaaI4aGaaGioaaaaaaaaaa@C22E@

By solving the above equation using Excel software, the final result for the flux parameter f, is as follows:

f=20.136 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqaaeaadaqaaqaaaOqaaiaadAgacqGH9a qpcaaIYaGaaGimaiaac6cacaaIXaGaaG4maiaaiAdaaaa@3C3A@

In the last step, using the obtained flux parameters, and using the final equation for the thermal flux with the substitution of the nuclear parameters of gold and the calculated values for it, both relations 19 and 20 related to the thermal flux will have the same result as follows:

φ th =5.066× 10 11 (n.c m 2 . s 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiabeA8aQnaaBa aaleaacaWG0bGaamiAaaqabaGccqGH9aqpcaaI1aGaaiOlaiaaicda caaI2aGaaGOnaiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacaaIXa GaaGymaaaakiaacIcacaWGUbGaaiOlaiaadogacaWGTbWaaWbaaSqa beaacqGHsislcaaIYaaaaOGaaiOlaiaadohadaahaaWcbeqaaiabgk HiTiaaigdaaaGccaGGPaaaaa@4DEE@

Using the definition of the flux parameter f, the epithermal flux is calculated:

φ epi = φ th f =3.13× 10 10 (n.c m 2 . s 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaiabeA8aQnaaBa aaleaacaWGLbGaamiCaiaadMgaaeqaaOGaeyypa0ZaaSaaaeaacqaH gpGAdaWgaaWcbaGaamiDaiaadIgaaeqaaaGcbaGaamOzaaaacqGH9a qpcaaIZaGaaiOlaiaaigdacaaIZaGaey41aqRaaGymaiaaicdadaah aaWcbeqaaiaaigdacaaIWaaaaOGaaiikaiaad6gacaGGUaGaam4yai aad2gadaahaaWcbeqaaiabgkHiTiaaikdaaaGccaGGUaGaam4Camaa CaaaleqabaGaeyOeI0IaaGymaaaakiaacMcaaaa@53EA@

Result and discussion

The results obtained for the Isfahan miniature reactor, including the errors made, are shown in Table 6. In the "Isfahan" miniature reactor, the ion fission chamber is used to read the thermal neutron flux. One of these two is connected to the computer and the other to the console, and therefore, at any moment, reading the two values should be as close as possible, and as stated in the documents related to the reactor, the difference between the two should not be more than 5%. Our obtained k0 method is less than 4%. Due to the limitation in the use of reactor equipment, there was only one chance to perform this test. As a result, in order to find out how much error we had compared to the real answer, the error calculation was used using a logarithmic method. As a result, the two target materials chosen for this work were gold and zirconium. It should be kept in mind that gold (Au) is the only comparator element in the "k0" method, but before that, it was widely used in other analysis methods and because of its unique characteristics, it was often used in very accurate flux measurements. Will be some of these features are:

α(10-4)

f

φ th = 10 11 (n.c m 2 . s 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjabeA8aQP WaaSbaaKqaGfaacaWG0bGaamiAaaqabaqcaaMaeyypa0JaaGymaiaa icdakmaaCaaajeaybeqaaiaaigdacaaIXaaaaKaaGjaacIcacaWGUb GaaiOlaiaadogacaWGTbGcdaahaaqcbawabeaacqGHsislcaaIYaaa aKaaGjaac6cacaWGZbGcdaahaaqcbawabeaacqGHsislcaaIXaaaaK aaGjaacMcaaaa@4BB5@  

φ epi = 10 10 (n.c m 2 . s 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqabeaabaGaaiaaceqabeaadaqaaqaaaOqaaKaaGjabeA8aQP WaaSbaaKqaGfaacaWGLbGaamiCaiaadMgaaeqaaKaaGjabg2da9iaa igdacaaIWaGcdaahaaqcbawabeaacaaIXaGaaGimaaaajaaycaGGOa GaamOBaiaac6cacaWGJbGaamyBaOWaaWbaaKqaGfqabaGaeyOeI0Ia aGOmaaaajaaycaGGUaGaam4CaOWaaWbaaKqaGfqabaGaeyOeI0IaaG ymaaaajaaycaGGPaaaaa@4C9B@  

174±37 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqaaeaacaGaaiqabeqaamaabaabaaGcbaqcaaMaaGymai aaiEdacaaI0aGaeyySaeRaaG4maiaaiEdaaaa@3BE4@   20.14±0.23 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqaaeaacaGaaiqabeqaamaabaabaaGcbaqcaaMaaGOmai aaicdacaGGUaGaaGymaiaaisdacqGHXcqScaaIWaGaaiOlaiaaikda caaIZaaaaa@3EB2@   5.07±0.18 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbufgAV1wyaerbd9wDYLwzYbIt LDharqqtubsr4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbeqaaeaacaGaaiqabeWaaqaabaqbaaGcba qcaaMaaGynaiaac6cacaaIWaGaaG4naiabgglaXkaaicdacaGGUaGa aGymaiaaiIdaaaa@4075@   3.13±0.36 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqaaeaacaGaaiqabeqaamaabaabaaGcbaqcaaMaaG4mai aac6cacaaIXaGaaG4maiabgglaXkaaicdacaGGUaGaaG4maiaaiAda aaa@3DFC@  

Table 6 The results obtained for neutron flux and flux parameters

Simple decay scheme, mono-isotopicity, precise determination of the cross-section and decay half-life, the possibility of making very small thicknesses in order to reduce self-protection effects and appropriate half-life, which make this element widely used.

Suggestions

  1. The combination of gold + molybdenum + rubidium (Au + Mo + Rb) can be a suitable option for the k0
  2. b) Used a monitor set, which can be counted and did spectroscopy 4 to 7 days after the radiation, in a maximum period of 30 minutes.
  3. c) A set whose elements are easily activated and have a wide range of E ̅_r should be used in calculating the flux of thermal and epi-rthermal neutrons.
  4. In addition to the mentioned cases, choosing the same masses for the elements of the monitor set can simplify the calculations.

References

  1. Hana Ch, Dasari KB, Myung L Ch, et al. Application of k0-INAA Method in Preliminary Characterization of KRISS Urban Airborne Particulate Matter Certified Reference Material. Applied Sciences.2020;10(19):6649.  
  2. Measurement, simulation and uncertainty quantification of the neutron flux at the McMaster Nuclear Reactor, L. Elizabeth, MacConnachie, R. David, Novog, Annals of Nuclear Energy 151,107879 McMaster University, 1280 Main St. W, Hamilton, ON, Canada, 2021.
  3. Zs Ravay, Kenney G. Application of the k0 method in neutron activation analysis and in prompt gamma activation analysis, Radiochim. Acta. 2012;100:687–698.
  4. Agostino GD, M Di Luzio, M Oddone. The k0-INRIM software: a tool to compile uncertainty budgets in neutron activation analysis based on k0-standardisation. Measurement Science and Technology. 2020;31(1).
  5. Ch. Westcott, Effective Cross Section values for well-moderated thermal reactor spectra, AECL-1101, 3rd edn. Chalk River Laboratory, Chalk River, 1960. 
  6. Ne Holden. Temperature dependence of the Westcott g factor for neutron reactions in activation analysis. Pure Appl Chem. 71:2309-2315.
  7. X Lin, H Gerstenberg, Ch Lierse von Gostomski, et al. Determination of k0-values for the reactions 94Zr (n,) 95Zr and 96Zr (n,) 97Zr–97mNb by irradiation in highly thermalized neutron flux, Applied Radiation and Isotopes, 2009.
  8. KS Khoo, SB Sarmani, IO Abugassa. Determination of thermal to epithermal neutron flux ratio (f),epithermal neutron flux shape factor (α) and comparator factor (Fc) in the Triga Mark Ц Reactor, Malaysia. Journal of Radioanalytical and Nuclear Chemistry. 2007;271(2):419–424.  
  9. SK Samanta, A Sengupta, R Acharya, et al. Standardization and validation of k0-based Neutron Activation Analysis using Apsara-U reactor and its application to pure iron metal and coal sample for trace element determination, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2021;1018:165856.
  10. F De Corte, The k0-standardization of NAA: germs, launch, breakthrough - on stage and in the wings. Journal of Radioanalytical and Nuclear Chemistry. 2018;318(3):1559–1563.
  11. BJ Nyarko, Y Serfor-Armah, EH Akaho, et al. Reactor Neutron Activation Analysis of Lichens by K0-NAA Standardization method. International Journal of Pure and Applied Physics. 2005;1(2)181–190.
  12. K Khoo Siong, S Sarmani, A Abudul Majid, et al. Assessment of Neutron Flux Gradients in Irradiation Channels at the TRIGA Reactor Au-Cr-Mo Monitor Set Based on k0-INAA,Sains Malaysiana. 2008;37(4):401–404.
  13. M Rezvanifard. Guide to radioisotope production by Esfahan Miniature Neutron Source Reactor, MNSR Department, Esfahan Fuel Research and Production Center, Project Number: 430, Report: RPT4-430-MAN/NR-0015, Autumn 1377 (in Persian).
Creative Commons Attribution License

©2024 Shafaei, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.