Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Mini Review Volume 2 Issue 4

Electrokinetic field and its waves

Andrew Chubykalo

Academic Unit of Physics and Chemical Sciences, Autonomous University of Zacatecas, Mexico

Correspondence: Andrew Chubykalo, Academic Unit of Physics and Chemical Sciences, Autonomous University of Zacatecas, Apartado Postal C?580 Zacatecas 98068, ZAC, Mexico

Received: July 24, 2018 | Published: August 20, 2018

Citation: Chubykalo A. Electrokinetic field and its waves. Phys Astron Int J. 2018;2(4):378?380. DOI: 10.15406/paij.2018.02.00113

Download PDF

Abstract

In this work, we have elucidated the role of the so–called electrokinetic field in the well–known phenomenon of electromagnetic induction and have investigated the theoretical possibility of the existence of electrokinetic waves.

Keywords: electromagnetic induction, magnetic field, density, mutual creation, maxwell’s equations, magnetic vector

PACS

04.50.Kd; 04.30.–w

Introduction

Electromagnetic induction is frequently explained as a phenomenon in which a changing magnetic field produces an electric field and a changing electric field produces a magnetic field. However, in Maxwell’s equations, electric and magnetic fields are linked together in an intricate manner, and neither field is explicitly represented in terms of its sources. So an examination of the causal relations in time–dependent electric and magnetic fields presented by Jefimenko1 shows that Maxwell’s equations are not at all causal equations, and that neither of two fields can create the other. The conclusion of Jefimenko1 that electric and magnetic fields do not create each other is not entirely new, see e.g., the paper “Does the displacement current in empty space produce a magnetic field?”2

As it was shown in,1 the causal equations for electric and magnetic fields in a vacuum are

E= 1 4π ε 0 { [ ϱ ] r 2 + 1 rc [ ϱ ] t } r u d V 1 4π ε 0 c 2 1 r [ J t ]d V   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCyraiabg2da9OWaaSaaa8aabaqcLbsa peGaaGymaaGcpaqaaKqzGeWdbiaaisdacqaHapaCcqaH1oqzk8aada WgaaqcbasaaKqzadWdbiaaicdaaSWdaeqaaaaakmaavacabeWcbeqa aKqzGeGaaGzaVdqdbaqcLbsapeGaey4kIipaaOWaaiWaa8aabaWdbm aalaaapaqaa8qadaWadaWdaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgz G0uy0Hgip5wzaGGba8qacqWFXpq8aiaawUfacaGLDbaaa8aabaqcLb sapeGaamOCaOWdamaaCaaaleqajeaibaqcLbmapeGaaGOmaaaaaaqc LbsacqGHRaWkkmaalaaapaqaaKqzGeWdbiaaigdaaOWdaeaajugib8 qacaWGYbGaam4yaaaakmaalaaapaqaaKqzGeWdbiabgkGi2QWaamWa a8aabaWdbiab=f=aXdGaay5waiaaw2faaaWdaeaajugib8qacqGHci ITcaWG0baaaaGccaGL7bGaayzFaaqcLbsacaWHYbGcpaWaaSbaaKqa GeaajugWa8qacaWG1baal8aabeaajugib8qacaWGKbGabmOva8aaga qba8qacqGHsislkmaalaaapaqaaKqzGeWdbiaaigdaaOWdaeaajugi b8qacaaI0aGaeqiWdaNaeqyTduwcfa4damaaBaaajeaibaqcLbmape GaaGimaaqcbaYdaeqaaKqzGeWdbiaadogajuaGpaWaaWbaaKqaGeqa baqcLbmapeGaaGOmaaaaaaGcpaWaaubiaeqaleqabaqcLbsacaaMb8 oaneaajugib8qacqGHRiI8aaGcdaWcaaWdaeaajugib8qacaaIXaaa k8aabaqcLbsapeGaamOCaaaakmaadmaapaqaa8qadaWcaaWdaeaaju gib8qacqGHciITcaWHkbaak8aabaqcLbsapeGaeyOaIyRaamiDaaaa aOGaay5waiaaw2faaKqzGeGaamizaiqadAfapaGbauaapeGaaiiOaa aa@98C3@  (1)

and

H= 1 4π { [ J ] r 2 + 1 rc [ J ] t }× r u d V ,  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCisaiabg2da9OWaaSaaa8aabaqcLbsa peGaaGymaaGcpaqaaKqzGeWdbiaaisdacqaHapaCaaGcpaWaaubiae qaleqabaqcLbsacaaMb8oaneaajugib8qacqGHRiI8aaGcdaGadaWd aeaapeWaaSaaa8aabaWdbmaadmaapaqaaKqzGeWdbiaahQeaaOGaay 5waiaaw2faaaWdaeaajugib8qacaWGYbqcfa4damaaCaaajeaibeqa aKqzadWdbiaaikdaaaaaaKqzGeGaey4kaSIcdaWcaaWdaeaajugib8 qacaaIXaaak8aabaqcLbsapeGaamOCaiaadogaaaGcdaWcaaWdaeaa jugib8qacqGHciITkmaadmaapaqaaKqzGeWdbiaahQeaaOGaay5wai aaw2faaaWdaeaajugib8qacqGHciITcaWG0baaaaGccaGL7bGaayzF aaqcLbsacqGHxdaTcaWHYbGcpaWaaSbaaKqaGeaajugWa8qacaWG1b aal8aabeaajugib8qacaWGKbGabmOva8aagaqba8qacaGGSaGaaiiO aaaa@6ACF@  (2)

where the square brackets in these equations are the retardation symbol indicating that the quantities between the brackets are to be evaluated for the time t =tr/c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmiDa8aagaqba8qacqGH9aqpcaWG0bGa eyOeI0IaamOCaiaac+cacaWGJbaaaa@4254@ , where is the time for which E and H are evaluated, ϱ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGGbaabaaaaa aaaapeGae8x8depaaa@4718@ is the electric charge density,c is the velocity of light,r is the distance between the x, y,z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiEaiaacYcacaGGGcGaamyEaiaacYca caWG6baaaa@4130@ field point (point for which E and H are evaluated) and the source point x , y , z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmiEa8aagaqba8qacaGGSaGabmyEa8aa gaqba8qacaGGSaGabmOEa8aagaqbaaaa@407C@ (volume element d V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamizaiqadAfapaGbauaaaaa@3D91@ ), and r u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCOCaOWdamaaBaaajeaibaqcLbmapeGa amyDaaWcpaqabaaaaa@3F63@ is the unit vector directed from d V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamizaiqadAfapaGbauaaaaa@3D91@ to the field point, J MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCOsaaaa@3C85@ is the current density. The integrals in both equations are extended over all space.

One can see from these equations that the electric field has three causative sources: the charge density Q , the time derivative of Q, and the time derivative of J. In addition, one can see that the magnetic field has two causative sources: the electric current density and the time derivative of J .

According to these equations, in time–variable systems electric and magnetic fields are always created simultaneously, because they have a common causative source: the changing electric current [the last term of Equation (1) and the last term in the integral of Equation (2)]. Once created the two fields coexist from then on without any effect upon each other. Therefore electromagnetic induction as a phenomenon in which one of the field creates the other is an illusion. The illusion of the “mutual creation” arises from the facts that in time–dependent systems the two fields always appear prominently together, while their causative sources (the time–variable current in particular) remain in the background.

However, if the two fields are created simultaneously and coexist from then on as a dual entity, then the common concept of electromagnetic induction requires a through reexamination. Jefimenko1 have made such reexamination.

Electrokinetic field

What is then the true nature and cause of “electromagnetic induction”? The answer to this question can be found in Jefimenko1 and this answer is quite simple. According to Equation (1), a time–variable electric current creates an electric field parallel to that current [the last term of Equation (1)]. This field exerts an electric force on the charges in nearby conductors thereby creating induced electric currents in them. Thus, the term “electromagnetic induction” is actually a misnomer, since no magnetic effect is involved in the phenomenon, and since the induced current is caused solely by the time–variable electric current and by the electric field produced by that current.

Observe that the electric field produced by a time–variable current differs in two important respects from the ordinary electric field produced by electric charges at rest: the field is directed along the current rather than along a radius vector, and it exists only as long as the current is changing in time. Therefore, the electric force caused by this field is also different from the ordinary electric (electrostatic) force: is directed along the current and it lasts only as long as the current is changing. Unlike the electrostatic force, which is always an attraction or repulsion between electric charges, the electric force due to time–variable current is a dragging force: it causes electric charges to move parallel (or antiparallel) relative to the direction of the current. If the time–variable current is a convection current, then the force that this current exerts on neighboring charges causes them to move parallel to the convection current, rather toward or away from the charges forming the convection current [the total electric force is, of course, given by all three terms of Equation (1)].

The electric field created by time–variable currents is very different from all other fields encountered in electromagnetic phenomena. So Jefimenko1, taking into account that the cause of this field is a motion of electric charges (current), gives to it the special name the electrokinetic field, and to the force, which this field exerts on an electric, charge the electrokinetic force. Of course, one could simply call this field the “induced field”. However, such a designation would not reflect the special nature and properties of this field. Note, however, that the term “electrokinetic” is also used in reference to phenomena associated with the movement of charged particles through a continuous medium or with the movement of a continuous medium over a charged surface. These phenomena have no connection with the electrokinetic field defined in Jefimenko1. Another appropriate name for this field is the “Faraday field” introduced by Beckmann3. We shall designate the electrokinetic field by the vector E k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCyraOWdamaaBaaajeaibaqcLbmapeGa am4AaaWcpaqabaaaaa@3F2C@ . From Equation (1) we thus have

E k = 1 4π ε 0 c 2 1 r [ J t ]d V .  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCyraOWdamaaBaaajeaibaqcLbmapeGa am4AaaWcpaqabaqcLbsapeGaeyypa0JaeyOeI0IcdaWcaaWdaeaaju gib8qacaaIXaaak8aabaqcLbsapeGaaGinaiabec8aWjabew7aLPWd amaaBaaajeaibaqcLbmapeGaaGimaaWcpaqabaqcLbsapeGaam4yaO WdamaaCaaaleqajeaibaqcLbmapeGaaGOmaaaaaaGcpaWaaubiaeqa leqabaqcLbsacaaMb8oaneaajugib8qacqGHRiI8aaGcdaWcaaWdae aajugib8qacaaIXaaak8aabaqcLbsapeGaamOCaaaakmaadmaapaqa a8qadaWcaaWdaeaajugib8qacqGHciITcaWHkbaak8aabaqcLbsape GaeyOaIyRaamiDaaaaaOGaay5waiaaw2faaKqzGeGaamizaiqadAfa paGbauaapeGaaiOlaiaacckaaaa@632D@  (3)

Although we have been discussing the electrokinetic field as the cause of induced currents in conductors, its significance is much more general. This field can exist anywhere in space and can manifest itself as a pure force field by its action on free electric charges. Of course, because of c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4yaOWdamaaCaaaleqajeaibaqcLbma peGaaGOmaaaaaaa@3F03@ in the denominator in Equation (3), the electrokinetic field cannot be particularly strong except when the current changes very fast. This is probably main reason why this field was ignored in the past. Another reason is the temporal (transient) nature of this field.

But even a weak electric field can produce strong currents in conductors, and that is why the current–producing effect of the electrokinetic field is much more prominent than its force effect on electric charges in free space.

If we compare Equation (3) with the expression for the retarded magnetic vector potential A * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCyqaOWdamaaCaaaleqajeaibaqcLbma peGaaiOkaaaaaaa@3ED8@ produced by a current J .4

A * = μ 0 4π [ J ] r d V ,  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCyqaKqba+aadaahaaqcbasabeaajugW a8qacaGGQaaaaKqzGeGaeyypa0JcdaWcaaWdaeaajugib8qacqaH8o qBk8aadaWgaaqcbasaaKqzadWdbiaaicdaaSWdaeqaaaGcbaqcLbsa peGaaGinaiabec8aWbaak8aadaqfGaqabSqabeaajugibiaaygW7a0 qaaKqzGeWdbiabgUIiYdaakmaalaaapaqaa8qadaWadaWdaeaajugi b8qacaWHkbaakiaawUfacaGLDbaaa8aabaqcLbsapeGaamOCaaaaca WGKbGabmOva8aagaqba8qacaGGSaGaaiiOaaaa@570E@    (4)

We recognize that the electrokinetic field is equal to the negative time derivative of A * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCyqaKqba+aadaahaaqcbasabeaajugW a8qacaGGQaaaaaaa@3F51@ (observe that : μ 0 =1/ ε 0 c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiVd0wcfa4damaaBaaajeaibaqcLbma peGaaGimaaqcbaYdaeqaaKqzGeWdbiabg2da9iaaigdacaGGVaGaeq yTduwcfa4damaaBaaajeaibaqcLbmapeGaaGimaaqcbaYdaeqaaKqz GeWdbiaadogajuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaaaa a@4CBE@

E k = A * t  .  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCyraKqba+aadaWgaaqcbasaaKqzadWd biaadUgaaKqaG8aabeaajugib8qacqGH9aqpcqGHsislkmaalaaapa qaaKqzGeWdbiabgkGi2kaahgeajuaGpaWaaWbaaKqaGeqabaqcLbma peGaaiOkaaaaaOWdaeaajugib8qacqGHciITcaWG0baaaiaacckaca GGUaGaaiiOaaaa@4E3F@    (5)

It is interesting to note that Equation (5) points out to a possibility of a new definition and interpretation of the magnetic vector potential. Let us integrate equation (5). We obtain

A * = E k dt+const . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCyqaKqba+aadaahaaqcbasabeaajugW a8qacaGGQaaaaKqzGeGaeyypa0JaeyOeI0IcpaWaaubiaeqaleqaba qcLbsacaaMb8oaneaajugib8qacqGHRiI8aaGaaCyraOWdamaaBaaa jeaibaqcLbmapeGaam4AaaWcpaqabaqcLbsapeGaamizaiaadshacq GHRaWkcaqGJbGaae4Baiaab6gacaqGZbGaaeiDaiaacckacaGGUaaa aa@542E@   (6)

Let us call the time integral E k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCyraOWdamaaBaaajeaibaqcLbmapeGa am4AaaWcpaqabaaaaa@3F2C@ of the electrokinetic impulse. We can say then that the magnetic vector potential created by a current at a point in space is equal to the negative of the electrokinetic impulse produced by this current at that point when the current is changed. Since the electrokinetic impulse is, in principle, a measurable quantity, we thus have an operational definition and a physical interpretation of the magnetic vector potential. Note that E. J. Konopinski gives a related interpretation of the magnetic vector potential.5

It is useful to mention that although Equations (5) and (6) correlate the electrokinetic field with the magnetic vector potential, there is no causal link between the two: the correlation merely reflects the fact that both the electrokinetic field and the magnetic vector potential are simultaneously caused by the same electric current. It is important to note that the electrokinetic field has not been studied (or even recognized as a special force field) until now, although the fact that the time derivative of the retarded vector potential is associated with an electric field has been known for a long time.

As it is known,6 the divergence of the retarded magnetic vector potential A * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCyqaKqba+aadaahaaqcbasabeaajugW a8qacaGGQaaaaaaa@3F51@ satisfies the Lorentz’s condition

A * = 1 c 2 φ * t  ,  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaey4bIeTaeyyXICTaaCyqaKqba+aadaah aaqcbasabeaajugWa8qacaGGQaaaaKqzGeGaeyypa0JaeyOeI0Icda WcaaWdaeaajugib8qacaaIXaaak8aabaqcLbsapeGaam4yaOWdamaa CaaaleqajeaibaqcLbmapeGaaGOmaaaaaaGcdaWcaaWdaeaajugib8 qacqGHciITcqaHgpGAjuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaiOk aaaaaOWdaeaajugib8qacqGHciITcaWG0baaaiaacckacaGGSaGaai iOaaaa@57FF@  (7)

where φ * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOXdOwcfa4damaaCaaajeaibeqaaKqz adWdbiaacQcaaaaaaa@4044@ is the retarded scalar potential of E. Therefore, by Equations (5) and (7), we have

E k = 1 c 2 2 φ * t 2  . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaey4bIeTaeyyXICTaaCyraKqba+aadaWg aaqcbasaaKqzadWdbiaadUgaaKqaG8aabeaajugib8qacqGH9aqpkm aalaaapaqaaKqzGeWdbiaaigdaaOWdaeaajugib8qacaWGJbqcfa4d amaaCaaajeaibeqaaKqzadWdbiaaikdaaaaaaOWaaSaaa8aabaqcLb sapeGaeyOaIyBcfa4damaaCaaajeaibeqaaKqzadWdbiaaikdaaaqc LbsacqaHgpGAjuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaiOkaaaaaO Wdaeaajugib8qacqGHciITcaWG0bqcfa4damaaCaaajeaibeqaaKqz adWdbiaaikdaaaaaaKqzGeGaaiiOaiaac6caaaa@5DDB@    (8)

For the curl of E k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCyraKqba+aadaWgaaqcbasaaKqzadWd biaadUgaaKqaG8aabeaaaaa@3FCF@ we have, by Equation (5) and by the definition of the magnetic vector potential,

× E k = B t  .  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaey4bIeTaey41aqRaaCyraKqba+aadaWg aaqcbasaaKqzadWdbiaadUgaaKqaG8aabeaajugib8qacqGH9aqpcq GHsislkmaalaaapaqaaKqzGeWdbiabgkGi2kaahkeaaOWdaeaajugi b8qacqGHciITcaWG0baaaiaacckacaGGUaGaaiiOaaaa@4F08@    (9)

Now, taking into account Equation (9) and that

×H=J+ D t ,  D= ε 0 E,  B= μ 0 H ,  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaey4bIeTaey41aqRaaCisaiabg2da9iaa hQeacqGHRaWkkmaalaaapaqaaKqzGeWdbiabgkGi2kaahseaaOWdae aajugib8qacqGHciITcaWG0baaaiaacYcacaGGGcGaaiiOaiaahsea cqGH9aqpcqaH1oqzjuaGpaWaaSbaaKqaGeaajugWa8qacaaIWaaaje aipaqabaqcLbsapeGaaCyraiaacYcacaGGGcGaaiiOaiaahkeacqGH 9aqpcqaH8oqBjuaGpaWaaSbaaKqaGeaajugWa8qacaaIWaaajeaipa qabaqcLbsapeGaaCisaiaacckacaGGSaGaaiiOaaaa@61E5@   (10)

we have, noting that μ 0 ε 0 =1/ c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiVd0wcfa4damaaBaaajeaibaqcLbma peGaaGimaaqcbaYdaeqaaKqzGeWdbiabew7aLPWdamaaBaaajeaiba qcLbmapeGaaGimaaWcpaqabaqcLbsapeGaeyypa0JaaGymaiaac+ca caWGJbqcfa4damaaCaaajeaibeqaaKqzadWdbiaaikdaaaaaaa@4C1B@ ,

×( × E k )=  μ 0 J t 1 c 2 2 E t 2  ,  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaey4bIeTaey41aqRcdaqadaWdaeaajugi b8qacqGHhis0cqGHxdaTcaWHfbqcfa4damaaBaaajeaibaqcLbmape Gaam4AaaqcbaYdaeqaaaGcpeGaayjkaiaawMcaaKqzGeGaeyypa0Ja eyOeI0IaaeiOaiabeY7aTLqba+aadaWgaaqcbasaaKqzadWdbiaaic daaKqaG8aabeaak8qadaWcaaWdaeaajugib8qacqGHciITcaWHkbaa k8aabaqcLbsapeGaeyOaIyRaamiDaaaacqGHsislkmaalaaapaqaaK qzGeWdbiaaigdaaOWdaeaajugib8qacaWGJbGcpaWaaWbaaSqabKqa GeaajugWa8qacaaIYaaaaaaakmaalaaapaqaaKqzGeWdbiabgkGi2M qba+aadaahaaqcbasabeaajugWa8qacaaIYaaaaKqzGeGaaCyraaGc paqaaKqzGeWdbiabgkGi2kaadshajuaGpaWaaWbaaKqaGeqabaqcLb mapeGaaGOmaaaaaaqcLbsacaGGGcGaaiilaiaacckaaaa@6E69@    (11)

where E is the total electric field given by Equation (1). According to vector analysis, we have

×( × E k )=( E k ) 2 E k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaey4bIeTaey41aqRcdaqadaWdaeaajugi b8qacqGHhis0cqGHxdaTcaWHfbqcfa4damaaBaaajeaibaqcLbmape Gaam4AaaqcbaYdaeqaaaGcpeGaayjkaiaawMcaaKqzGeGaeyypa0Ja ey4bIeTcdaqadaWdaeaajugib8qacqGHhis0cqGHflY1caWHfbqcfa 4damaaBaaajeaibaqcLbmapeGaam4AaaqcbaYdaeqaaaGcpeGaayjk aiaawMcaaKqzGeGaeyOeI0Iaey4bIeDcfa4damaaCaaajeaibeqaaK qzadWdbiaaikdaaaqcLbsacaWHfbqcfa4damaaBaaajeaibaqcLbma peGaam4AaaqcbaYdaeqaaKqzGeWdbiaac6caaaa@62A9@   (12)

For ( E k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaey4bIeTcdaqadaWdaeaajugib8qacqGH his0cqGHflY1caWHfbqcfa4damaaBaaajeaibaqcLbmapeGaam4Aaa qcbaYdaeqaaaGcpeGaayjkaiaawMcaaaaa@4780@ we have, by Equation (8), by the definition of the retarded scalar potential,4 and by Equation (5),

( E k )= 1 c 2 ( E+ A * t )= 1 c 2 2 t 2 ( E E k ).  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaey4bIeTcdaqadaWdaeaajugib8qacqGH his0cqGHflY1caWHfbqcfa4damaaBaaajeaibaqcLbmapeGaam4Aaa qcbaYdaeqaaaGcpeGaayjkaiaawMcaaKqzGeGaeyypa0JaeyOeI0Ic daWcaaWdaeaajugib8qacaaIXaaak8aabaqcLbsapeGaam4yaKqba+ aadaahaaqcbasabeaajugWa8qacaaIYaaaaaaakmaabmaapaqaaKqz GeWdbiaahweacqGHRaWkkmaalaaapaqaaKqzGeWdbiabgkGi2kaahg eajuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaiOkaaaaaOWdaeaajugi b8qacqGHciITcaWG0baaaaGccaGLOaGaayzkaaqcLbsacqGH9aqpcq GHsislkmaalaaapaqaaKqzGeWdbiaaigdaaOWdaeaajugib8qacaWG JbGcpaWaaWbaaSqabKqaGeaajugWa8qacaaIYaaaaaaakmaalaaapa qaaKqzGeWdbiabgkGi2Mqba+aadaahaaqcbasabeaajugWa8qacaaI YaaaaaGcpaqaaKqzGeWdbiabgkGi2kaadshak8aadaahaaWcbeqcba saaKqzadWdbiaaikdaaaaaaOWaaeWaa8aabaqcLbsapeGaaCyraiab gkHiTiaahweajuaGpaWaaSbaaKqaGeaajugWa8qacaWGRbaajeaipa qabaaak8qacaGLOaGaayzkaaqcLbsacaGGUaGaaiiOaaaa@7A20@    (13)

Substituting Equation (13) into Equation (12) and comparing the result with Equation (11) we finally obtain

2 E k 1 c 2 2 E k t 2 = μ 0 J t  ,  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaey4bIeDcfa4damaaCaaajeaibeqaaKqz adWdbiaaikdaaaqcLbsacaWHfbGcpaWaaSbaaKqaGeaajugWa8qaca WGRbaal8aabeaajugib8qacqGHsislkmaalaaapaqaaKqzGeWdbiaa igdaaOWdaeaajugib8qacaWGJbGcpaWaaWbaaSqabKqaGeaajugWa8 qacaaIYaaaaaaakmaalaaapaqaaKqzGeWdbiabgkGi2Mqba+aadaah aaqcbasabeaajugWa8qacaaIYaaaaKqzGeGaaCyraOWdamaaBaaaje aibaqcLbmapeGaam4AaaWcpaqabaaakeaajugib8qacqGHciITcaWG 0bGcpaWaaWbaaSqabKqaGeaajugWa8qacaaIYaaaaaaajugibiabg2 da9iabeY7aTPWdamaaBaaajeaibaqcLbmapeGaaGimaaWcpaqabaGc peWaaSaaa8aabaqcLbsapeGaeyOaIyRaaCOsaaGcpaqaaKqzGeWdbi abgkGi2kaadshaaaGaaiiOaiaacYcacaGGGcaaaa@68AA@   (14)

which is an equation for a E k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCyraOWdamaaBaaajeaibaqcLbmapeGa am4AaaWcpaqabaaaaa@3F2C@ wave propagating in space with the velocity c.

Conclusion

In his book,1 Jefimenko asks the question: are there some effects of electrokinetic fields and forces that have not yet come to light? There probably are. They would be most prominently associated with very strong and rapidly changing electric currents. Electric spark discharges are good examples of such currents. Spark discharges should have significant effects on nearby charged particles, causing them to move along the spark. As a consequence, the spark itself could spread laterally and could give rise to secondary discharges. It is theoretically obvious that the electrokinetic field of rapidly varying currents reaches the object to which it acts as waves Equation (14) of this field. It would be interesting to see to what extent such effects do actually accompany bolts of lightning.

Following1 we have elucidated that the essence of the induction phenomenon is that the electrokinetic fields, just like electrostatic fields, are force fields, which are propagated in the form of waves. But the most important thing is that we predict the existence of electric (not electromagnetic!) radiation, about technical use of which we can only guess for now.

Acknowledgements

None.

Conflict of interest

Author declares there is no conflict of interest.

References

  1. Jefimenko OD. Causality, electromagnetic induction and gravitation: A different approach to the theory of electromagnetic and gravitational fields. 2nd ed. USA: Princeton University Press; 2000.
  2. Rosser WG. Does the displacement current in empty space produce a magnetic field? American Journal of Physics. 1976;44(12):1221–1223.
  3. Beckmann P. Einstein plus two. USA: Golem Press; 1987. p. 108–113.
  4. Jefimenko OD. Electricity and Magnetism. 2nd ed. USA: Electret Scientific; 1989.
  5. Konopinski EJ. Electromagnetic Fields and Relativistic Particles. USA: McGraw–Hill; 1981. p. 158–160.
  6. Jefimenko OD. Electromagnetic Retardation and Theory of Relativity. 2nd ed. USA: Electret Scientific; 2004.
Creative Commons Attribution License

©2018 Chubykalo. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.