Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 6

Cosmological lorentzian wormholes via noether symmetry approach

Abhik Kumar Sanyal,1 Ranajit Mandal2

1Department of Physics, Jangipur College, University of Kalyani, India.
2Department of Physics, University of Kalyani, India.

Correspondence: Abhik Kumar Sanyal, Department of Physics, Jangipur College, P.O. Jangipur, Dt. Murshidabad, India, Pin-742213, Tel 9474925431

Received: August 08, 2018 | Published: November 13, 2018

Citation: Sanyal AK, Mandal R. Cosmological lorentzian wormholes via noether symmetry approach. Phys Astron Int J. 2018;2(6):498-506. DOI: 10.15406/paij.2018.02.00132

Download PDF

Abstract

Noether symmetry has been invoked to explore the forms of a couple of coupling parameters and the potential appearing in a general scalar-tensor theory of gravity in the background of Robertson-Walker space-time. Exact solutions of Einstein’s field equations in the familiar Brans-Dicke, Induced gravity and a General non-minimally coupled scalar-tensor theories of gravity have been found using the conserved current and the energy equation, after being expressed in terms of a set of new variables. Noticeably, the form of the scale factors remains unaltered in all the three cases and represents cosmological Lorentzian wormholes, analogous to the Euclidean ones. While classical Euclidean wormholes requires an imaginary scalar field, the Lorentzian wormhole do not, and the solutions satisfy the weak energy.

Introduction

Apart from Black holes, Wormholes are yet another extraordinary, exciting and intriguing consequence of Einstein’s General Theory of Relativity (GTR) being expressed mathematically as, G μν = R μν 12 g μν R=κ T μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4raK qbaoaaBaaajeaibaqcLbmacqaH8oqBcqaH9oGBaSqabaqcLbsacaaI 9aGaamOuaKqbaoaaBaaajeaibaqcLbmacqaH8oqBcqaH9oGBaSqaba qcLbsacqGHsislcaaIXaGaaGOmaiaadEgajuaGdaWgaaqcbasaaKqz adGaeqiVd0MaeqyVd4galeqaaKqzGeGaamOuaiaai2dacqaH6oWAca WGubqcfa4aaSbaaKqaGeaajugWaiabeY7aTjabe27aUbWcbeaaaaa@580A@ . Since the pioneering works of Lavrelashvili et al.1-3 followed by Giddings et al.4 and thereafter by Morris5 and Thorne6 wormholes turn out to be one of the most popular and intensively studied topics in Astronomy. Wormholes are essentially astrophysical objects which connect two asymptotically flat or de-Sitter/ anti-de-Sitter regions by a throat of finite radius. While, microscopic wormholes might provide us with the mechanism that possibly be able to solve the cosmological constant problem, macroscopic wormholes on the other hand, might be responsible for the final stage of evaporation and complete disappearance of black holes. The striking feature of wormholes is the requirement of the violation of energy conditions, and so classical Euclidean wormholes require exotic matter. However, since the Wheeler-DeWitt; equation is independent of the lapse function and as does not recognize either the Euclidean or the Lorentzian geometry, so following Hawking and Page formulation quantum and semiclassical Euclidean wormholes may be realized in the early universe, which consequently leads to classical wormholes following back-reaction phenomena.7,8

However, such wormholes exist only for some specified forms of the scalar potentials.8 That is why, most of the efforts have been directed to the study of Lorentzian wormholes in the framework of classical GTR. Nevertheless, the problem associated with the violation of energy condition persists for Lorentzian wormholes as well. Therefore, realization of Lorentzian wormhole solutions with standard barotropic fluid is not acceptable physically. This implies that the matter supporting the traversable wormholes (wormholes without a horizon) should be exotic5-11 and therefore it should have very strong negative pressure, or even that the energy density may be negative. Therefore, a lot of efforts have been directed to the study Lorentzian wormholes, in the framework of classical general relativity, sustained by an exotic matter with negative energy density. In general, these models include both the static12-22 and the evolving relativistic versions23-33 in view of a single fluid component. The interest has been mainly devoted to the study of traversable wormholes, without any horizon, allowing two-way passage through them.34 For static wormholes the fluid requires the violation of the null energy condition (NEC), while in Einstein gravity there exists non-static Lorentzian wormholes which do not require weak energy condition (WEC) violating matter to sustain them. Such wormholes may exist for arbitrarily small or large intervals of time,23,24 or even satisfy the dominant energy condition (DEC) in the whole spacetime.35,36

Scalar fields may be treated as the most common candidates for wormholes, with such exotic behaviour. At this point it is important to understand that GTR can accommodate all sorts of matter fields through the energy-momentum tensor T μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaK qbaoaaBaaajeaibaqcLbmacqaH8oqBcqaH9oGBaSqabaaaaa@3CD3@ . In this sense, scalar-tensor theory of gravity in principle should not be treated as a modification of GTR. Nevertheless, in view of the action principle, non-minimally coupled scalar-tensor theory of gravity may be looked upon as a modification of GTR, since it requires coupling between the Ricci scalar R and some arbitrary function f(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiIcacq aHvpGzcaaIPaaaaa@3B6F@ of the scalar field ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqy1dy gaaa@3842@ in the form f(ϕ)R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzai aaiIcacqaHvpGzcaaIPaGaamOuaaaa@3B69@ , in the action. But in view of the field equations, it might just again be treated as incorporating a typically different energy-momentum tensor altogether. Only by modifying Einstein-Hilbert action by introducing different higher-order curvature invariant terms, left hand side of the Einstein’s equation and hence GTR is truly modified. In this sense wormhole solutions for scalar-tensor theory of gravity may also be treated as a consequence of GTR. In the context of cosmology, the violation of energy condition for such matter fields in the early universe, does not in any way affect the late stage of cosmic acceleration.

Evolving Lorentzian wormholes in the background of Robertson-Walker metric have already been studied by several authors.36-39 In general, while constructing wormhole geometries, first the form of the redshift function Φ(r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfA6agj aaiIcacaWGYbGaaGykaaaa@3A4F@ and the shape function b(r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkgaca aIOaGaamOCaiaaiMcaaaa@39BC@ satisfying some general constraints,5,6 are fixed. This fixes the metric as well. Thereafter in view of the field equations, components of the energy-momentum tensor require to support the space-time geometry, are explored. For evolving wormholes, one usually generalizes the ansatz for static Lorentzian wormhole given by Morris5 and Thorne6 in the form, d s 2 = e 2Φ(r,t) d t 2 +a (t) 2 [ d r 2 1b(r,t)r + r 2 (d θ 2 +si n 2 θd ϕ 2 ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamizai aadohajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaai2da cqGHsislcaWGLbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdacqqHMo GrcaaIOaGaamOCaiaaiYcacaWG0bGaaGykaaaajugibiaadsgacaWG 0bqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkca WGHbGaaGikaiaadshacaaIPaqcfa4aaWbaaSqabKqaGeaajugWaiaa ikdaaaqcfa4aamWaaOqaaKqbaoaalaaakeaajugibiaadsgacaWGYb qcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaakeaajugibiaaigda cqGHsislcaWGIbGaaGikaiaadkhacaaISaGaamiDaiaaiMcacaWGYb aaaiabgUcaRiaadkhajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaa jugibiaaiIcacaWGKbGaeqiUdexcfa4aaWbaaSqabKqaGeaajugWai aaikdaaaqcLbsacqGHRaWkcaWGZbGaamyAaiaad6gajuaGdaahaaWc beqcbasaaKqzadGaaGOmaaaajugibiabeI7aXjaaysW7caWGKbGaeq y1dywcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacaaIPaaa kiaawUfacaGLDbaajugibiaai6caaaa@825E@ (1)

However, the evolving Lorentzian wormhole, we are going to study in the present manuscript is different altogether. We follow the same standard method of solving Einstein’s equations, as usually employed in the case of Euclidean wormholes. That is, we do not fix the redshift function Φ ( r , t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfA6agj aaiIcacaWGYbGaaGilaiaadshacaaIPaaaaa@3BFE@ or the shape function b ( r , t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkgaca aIOaGaamOCaiaaiYcacaWG0bGaaGykaaaa@3B6B@ , and the reason is, shape of a cosmological wormhole is fixed by the scale factor itself.8,40-43 Practically, our initial aim is just to study the evolution of the early universe in view of the non-minimally coupled scalar-tensor theory of gravity, corresponding to the action being typically expressed in the following form,

Ad4xgfϕR2Λ16πGωϕ12ϕ,μϕ,μVϕ (2)

in the background of isotropic and homogeneous Robertson-Walker metric,

d s 2 =d t 2 +a (t) 2 [ d r 2 1k r 2 + r 2 (d θ 2 +si n 2 θd ϕ 2 ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsgaca WGZbWaaWbaaeqajuaibaGaaGOmaaaajuaGcaaI9aGaeyOeI0Iaamiz aiaadshadaahaaqabKqbGeaacaaIYaaaaKqbakabgUcaRiaadggaca aIOaGaamiDaiaaiMcadaahaaqabKqbGeaacaaIYaaaaKqbaoaadmaa baWaaSaaaeaacaWGKbGaamOCamaaCaaabeqcfasaaiaaikdaaaaaju aGbaGaaGymaiabgkHiTiaadUgacaWGYbWaaWbaaeqajuaibaGaaGOm aaaaaaqcfaOaey4kaSIaamOCamaaCaaabeqcfasaaiaaikdaaaqcfa OaaGikaiaadsgacqaH4oqCdaahaaqabKqbGeaacaaIYaaaaKqbakab gUcaRiaadohacaWGPbGaamOBamaaCaaabeqcfasaaiaaikdaaaqcfa OaeqiUdeNaaGjbVlaadsgacqaHvpGzdaahaaqabKqbGeaacaaIYaaa aKqbakaaiMcaaiaawUfacaGLDbaacaaIUaaaaa@6635@ (3)

Note that since we are interested in the evolution of early universe, so we ignore any form of baryonic matter what-so-ever. The action (2) involves the cosmological constant, and so is a generalization of our earlier work.44 It also involves two coupling parameters f(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgaca aIOaGaeqy1dyMaaGykaaaa@3A91@ and ω(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3j aaiIcacqaHvpGzcaaIPaaaaa@3B73@ apart from the potential V(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca aIOaGaeqy1dyMaaGykaaaa@3A81@ , whose forms are required, to explore the evolution. Instead of choosing the forms of these parameters by hand, we apply Noether symmetry for the purpose. Once the forms of these parameters and the potential are found, exact solutions of the field equations are obtained. These solutions have been identified as representing wormholes in the sense that, asymptotically (t±), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaacIcaca WG0bGaeyOKH4QaeyySaeRaeyOhIuQaaiykaiaacYcaaaa@3EC7@ the scale factor a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadggaca aIOaGaamiDaiaaiMcaaaa@39BD@ tends to de-Sitter universe, while for (t0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai aadshacqGHsgIRcaaIWaGaaiykaaaa@3B73@ , it is finite, which is the throat of the wormhole. We call it cosmological wormhole, since the universe evolves like a wormhole and it initiates inflation.

In general, Noether symmetry plays an important role in physics because it can be used to simplify a given system of differential equations as well as to determine the integrability of the system. Due to the Noether theorem, symmetries are always related to conserved quantities which, in principle, are considered as conserved charges.45 In particular, once the form of the self interacting scalar-field potential is selected demanding the existence condition of Noether symmetry, the dynamics of the system under consideration, can be controlled. In Search of Noether symmetries in the background of Robertson-Walker space-time, first it is required to construct the point Lagrangian from the general non-minimally coupled gravitational action (2). Numerous works regarding the study of Noether symmetry for scalar-tensor theory of gravity is available in the literature since its inception.46,47 However, there is a typical problem associated with it, which has often been overlooked. In the following section we describe the basic ingredient of Noether symmetry and the associated problem. In section 4, we shall explore the symmetries in three different situations for different forms of f(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgaca aIOaGaeqy1dyMaaGykaaaa@3A91@ , viz. the ‘Brans-Dicke theory’, the ‘Induced theory of gravity’ and the ‘General non-minimally coupled scalar-tensor theory of gravity’, associated with different forms of the coupling parameter ω(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3j aaiIcacqaHvpGzcaaIPaaaaa@3B73@ and the potential V(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca aIOaGaeqy1dyMaaGykaaaa@3A81@ . In all the cases the scale factor retains the same form whose nature admits Lorentzian wormholes, none of which violates wak energy condition (WEC). It thus appears that Lorentzian wormholes are almost a generic feature of the system (2) under consideration. We conclude in section 5.

Basic ingredients of Noether symmetry

Among all the dynamical symmetries, transformations that map solutions of the equations of motion into solutions, one can single out Noether symmetries as the continuous transformations that leave the action invariant, except for boundary terms. Noether symmetry approach is a powerful tool in finding unknown parameters e.g. the potential and the coupling parameters appearing in the Lagrangian. Using this method it is possible to obtain a reduction of the field equations and sometimes to obtain a full integration of the system, once the cyclic variable of the system is found. In formal language, Noether symmetry states that for any regular system described by a Lagrangian L( q i , q ˙ i ,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYeaca aIOaGaamyCamaaBaaajuaibaGaamyAaaqcfayabaGaaGilaiqadgha gaGaamaaBaaajuaibaGaamyAaaqcfayabaGaaGilaiaadshacaaIPa aaaa@409F@ , if there exists a vector field X.48

X=ηt+ i α i ˙ q i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfaca aI9aGaeq4TdGMaeyOaIyRaeyOaIyRaamiDaiabgUcaRmaaqafabeqc fasaaiacCr0GPbaajuaGbeGaeyyeIuoacqaHXoqydaWgaaqcfasaai aadMgaaKqbagqaaiabgkGi2kqbgkGi2AaacaGaamyCamaaBaaajuai baGaamyAaaqcfayabaaaaa@4BCE@ (4)

Such that

( £ X 1 +dηdt)L=( X 1 +dηdt)L=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiIcaca qGJcWaaSbaaKqbGeaacaWGybqcfa4aaWbaaKazfa4=beqaaiaaigda aaaajuaGbeaacqGHRaWkcaWGKbGaeq4TdGMaamizaiaadshacaaIPa Gaamitaiabg2da9iaaiIcacaWGybWaaWbaaeqajuaibaGaaGymaaaa juaGcqGHRaWkcaWGKbGaeq4TdGMaamizaiaadshacaaIPaGaamitai abg2da9iaaicdaaaa@510F@ (5)

Then there exists a conserved current

I= i ( α i η q ˙ i )L( q i , q ˙ i ,t) q ˙ i +ηL( q i , q ˙ i ,t). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMeaca aI9aWaaabuaeqajuaibaGaiaixdMgaaKqbagqacqGHris5aiaaiIca cqaHXoqydaWgaaqcfasaaiaadMgaaKqbagqaaiabgkHiTiabeE7aOj qadghagaGaamaaBaaajuaibaGaamyAaaqcfayabaGaaGykaiabgkGi 2kaadYeacaaIOaGaamyCamaaBaaajuaibaGaamyAaaqabaqcfaOaaG ilaiqadghagaGaamaaBaaajuaibaGaamyAaaqabaqcfaOaaGilaiaa dshacaaIPaGaeyOaIyRabmyCayaacaWaaSbaaKqbGeaacaWGPbaabe aajuaGcqGHRaWkcqaH3oaAcaWGmbGaeyikaGIaamyCamaaBaaajuai baGaamyAaaqabaqcfaOaaGilaiqadghagaGaamaaBaaajuaibaGaam yAaaqabaqcfaOaaGilaiaadshacqGHPaqkcqGHUaGlaaa@6487@ (6)

In the above, the functions α i = α i ( q i ,t) and η=η( q i ,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg7aHn aaBaaajuaibaGaamyAaaqabaqcfaOaaGypaiabeg7aHnaaBaaajuai baGaamyAaaqcfayabaGaaGikaiaadghadaWgaaqaaiaadMgaaeqaai aaiYcacaWG0bGaaGykaiaaiccacaqGHbGaaeOBaiaabsgacaaIGaGa eq4TdGMaaGypaiabeE7aOjaaiIcacaWGXbWaaSbaaKqbGeaacaWGPb aabeaajuaGcaaISaGaamiDaiaaiMcaaaa@5131@ , £ X 1 (L) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabokada WgaaqcfasaaiaadIfajuaGdaahaaqcfasabKazfa4=baGaaGymaaaa aKqbagqaaiaaiIcacaWGmbGaaGykaaaa@3F19@ is the Lie derivative of the point Lagrangian (L) with respect to X 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiwaK qbaoaaCaaaleqajeaibaqcLbmacaaIXaaaaaaa@3A25@ , which is the first prolongation of X given by,

X 1 =X+ i [( α ˙ i η ˙ q ˙ i ) q ˙ i ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfada ahaaqabKqbGeaacaaIXaaaaKqbakaai2dacaWGybGaey4kaSYaaabu aeqajuaibaGaiairdMgaaKqbagqacqGHris5aiabgUfaBjaaiIcacu aHXoqygaGaamaaBaaajuaibaGaamyAaaqabaqcfaOaeyOeI0Iafq4T dGMbaiaaceWGXbGbaiaadaWgaaqcfasaaiaadMgaaeqaaKqbakaaiM cacqGHciITcqGHciITceWGXbGbaiaadaWgaaqcfasaaiaadMgaaeqa aKqbakabg2faDjabg6caUaaa@5341@ (7)

It has been shown that49 if the Lagrangian does not contain time explicitly, the gauge term does not contribute i.e. B=0. Further, in the case of gravity, since due to diffeomorphic invariance the Hamiltonian is constrained to vanish, i.e. H=0, so η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE7aOb aa@3825@ does not play any additional role. Thus the first prolongation X 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfada ahaaqabKqbGeaacaaIXaaaaaaa@3861@ reduces to X, and the conserved current is usually found in its simplest form I= i α i L q ˙ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMeaca aI9aWaaabeaeqajuaibaGaamyAaaqcfayabiabggHiLdGaeqySde2a aSbaaKqbGeaacaWGPbaajuaGbeaacqGHciITcaWGmbGaeyOaIyRabm yCayaacaWaaSbaaKqbGeaacaWGPbaajuaGbeaaaaa@4555@ . If the Lagrangian (as in the present case that we shall find soon) is spanned by the configuration space M=(a,ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eaca aI9aGaaGikaiaadggacaaISaGaeqy1dyMaaGykaaaa@3CDB@ then the corresponding tangent space is, TM=(a,ϕ, a ˙ , ϕ ˙ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabsfaca qGnbGaaGypaiaaiIcacaWGHbGaaGilaiabew9aMjaaiYcaceWGHbGb aiaacaaISaGafqy1dyMbaiaacaaIPaaaaa@41DC@ . Hence the generic infinitesimal generator of the Noether symmetry is

X =α(a,ϕ) a +β(a,ϕ) ϕ + α ˙ (a,ϕ) a ˙ + β ˙ (a,ϕ) ϕ ˙ where, α ˙ α a a ˙ + α ϕ ϕ ˙ ; β ˙ β a a ˙ + β ϕ ϕ ˙ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbawaabaqaci aaaeaacaWGybaabaGaaGypaiabeg7aHjaaiIcacaWGHbGaaGilaiab ew9aMjaaiMcadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadggaaaGaey 4kaSIaeqOSdiMaaGikaiaadggacaaISaGaeqy1dyMaaGykamaalaaa baGaeyOaIylabaGaeyOaIyRaeqy1dygaaiabgUcaRiqbeg7aHzaaca GaaGikaiaadggacaaISaGaeqy1dyMaaGykamaalaaabaGaeyOaIyla baGaeyOaIyRabmyyayaacaaaaiabgUcaRiqbek7aIzaacaGaaGikai aadggacaaISaGaeqy1dyMaaGykamaalaaabaGaeyOaIylabaGaeyOa IyRafqy1dyMbaiaaaaaabaaabaGaae4DaiaabIgacaqGLbGaaeOCai aabwgacaqGSaGaaGiiaiaaiccacuaHXoqygaGaaiabggMi6oaalaaa baGaeyOaIyRaeqySdegabaGaeyOaIyRaamyyaaaaceWGHbGbaiaacq GHRaWkdaWcaaqaaiabgkGi2kabeg7aHbqaaiabgkGi2kabew9aMbaa cuaHvpGzgaGaaiaaiUdacaaMe8UafqOSdiMbaiaacqGHHjIUdaWcaa qaaiabgkGi2kabek7aIbqaaiabgkGi2kaadggaaaGabmyyayaacaGa ey4kaSYaaSaaaeaacqGHciITcqaHYoGyaeaacqGHciITcqaHvpGzaa Gafqy1dyMbaiaacaaIUaaaaaaa@9491@ (8)

In the above, α,β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg7aHj aaiYcacqaHYoGyaaa@3A6F@ are both generic functions of  and  and the Lagrangian is invariant under the transformation  i.e.

£ X L=XL=α L a +β L ϕ + α ˙ L a ˙ + β ˙ L ϕ ˙ =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabokada WgaaqcfasaaiaadIfaaKqbagqaaiaadYeacaaI9aGaamiwaiaadYea caaI9aGaeqySde2aaSaaaeaacqGHciITcaWGmbaabaGaeyOaIyRaam yyaaaacqGHRaWkcqaHYoGydaWcaaqaaiabgkGi2kaadYeaaeaacqGH ciITcqaHvpGzaaGaey4kaSIafqySdeMbaiaadaWcaaqaaiabgkGi2k aadYeaaeaacqGHciITceWGHbGbaiaaaaGaey4kaSIafqOSdiMbaiaa daWcaaqaaiabgkGi2kaadYeaaeaacqGHciITcuaHvpGzgaGaaaaacq GH9aqpcqGHWaamcqGHUaGlaaa@5D9A@ (9)

The above equation may be solved to find the unknown parameters of the theory e.g. the potential. However, if there are several unknown parameters, as in the present case, relations connecting those are found, which may be used to select the form of the parameters from some physical argument. Now, in view of the Cartan’s one form

θ L = L a ˙ da+ L ϕ ˙ dϕ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiUde xcfa4aaSbaaKqaGeaajugWaiaadYeaaSqabaqcLbsacaaI9aqcfa4a aSaaaOqaaKqzGeGaeyOaIyRaamitaaGcbaqcLbsacqGHciITceWGHb GbaiaaaaGaamizaiaadggacqGHRaWkjuaGdaWcaaGcbaqcLbsacqGH ciITcaWGmbaakeaajugibiabgkGi2kqbew9aMzaacaaaaiaadsgacq aHvpGzcaaISaaaaa@501B@ (10)

The constant of motion, which is essentially the conserved current, Q= i X θ L , i X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgfaca aI9aGaamyAamaaBaaajuaibaGaamiwaaqcfayabaGaeqiUde3aaSba aKqbGeaacaWGmbaajuaGbeaacaaMc8UaaiilaiaaykW7caaMc8Uaam yAamaaBaaabaGaamiwaaqabaaaaa@455F@ being the inner derivative, is expressed as

Q=α(a,ϕ) L a ˙ +β(a,ϕ) L ϕ ˙ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgfaca aI9aGaeqySdeMaaGikaiaadggacaaISaGaeqy1dyMaaGykamaalaaa baGaeyOaIyRaamitaaqaaiabgkGi2kqadggagaGaaaaacqGHRaWkcq aHYoGycaaIOaGaamyyaiaaiYcacqaHvpGzcaaIPaWaaSaaaeaacqGH ciITcaWGmbaabaGaeyOaIyRafqy1dyMbaiaaaaGaaGOlaaaa@509C@ (11)

It is well known that the cyclic variable helps a lot in exploring the exact description of the dynamical system. So, once X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfaaa a@3756@ is found in view of the solutions of the Noether equation (9), it is possible to change the variables to u(a,ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhaca aIOaGaamyyaiaaiYcacqaHvpGzcaaIPaaaaa@3C3C@ and v(a,ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAhaca aIOaGaamyyaiaaiYcacqaHvpGzcaaIPaaaaa@3C3D@ , such that the inner derivatives, i X du=1; i X dv=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgada WgaaqcfasaaiaadIfaaKqbagqaaiaadsgacaWG1bGaaGypaiaaigda caaI7aGaaGjbVlaadMgadaWgaaqcfasaaiaadIfaaKqbagqaaiaads gacaWG2bGaaGypaiaaicdaaaa@44E5@ , i.e.

i X du=α u a +β u ϕ =1; i X dv=α v a +β v ϕ =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgada WgaaqcfasaaiaadIfaaKqbagqaaiaadsgacaWG1bGaeyypa0JaeqyS de2aaSaaaeaacqGHciITcaWG1baabaGaeyOaIyRaamyyaaaacqGHRa WkcqaHYoGydaWcaaqaaiabgkGi2kaadwhaaeaacqGHciITcqaHvpGz aaGaeyypa0JaaGymaiaaiUdacaaMe8UaaGjbVlaaysW7caWGPbWaaS baaKqbGeaacaWGybaajuaGbeaacaWGKbGaamODaiabg2da9iabeg7a HnaalaaabaGaeyOaIyRaamODaaqaaiabgkGi2kaadggaaaGaey4kaS IaeqOSdi2aaSaaaeaacqGHciITcaWG2baabaGaeyOaIyRaeqy1dyga aiabg2da9iaaicdacaaIUaaaaa@683B@ (12)

The Lagrangian when expressed in term of the new variables u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhaaa a@3773@ becomes the cyclic variable, and the constant of motion Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgfaaa a@374F@ is its canonically conjugate momentum, i.e. Q= P u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgfaca aI9aGaamiuamaaBaaabaGaamyDaaqabaaaaa@3A06@ . Thus the conserved current assumes a very simple form so that the system is integrable, leading to exact solution of the filed equations under consideration.

Nevertheless, as mentioned in the introduction, there is an insidious problem associated with Noether symmetric solutions for gravitational system in particular. Noether symmetry is not on-shell for constrained system like gravity. This means, in general it neither satisfies the field equations nor its solutions by default. Due to diffeomorphic invariance gravity constrains the Hamiltonian (it also constrains the momenta in general, whenever time-space components exist in the metric) of the system to vanish, i.e. the total energy (E) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaacIcaca WGfbGaaiykaaaa@389C@ of a gravitating system is always zero. This is essentially the ( 0 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba Waa0baaeaacaaIWaaabaGaaGimaaaaaiaawIcacaGLPaaaaaa@3998@ component of the Einstein’s field equations, when expressed in terms of configuration space-variable. Noether equation does not recognize the said constraints (energy and momenta). Therefore, except in some particular cases, often it does not satisfy the ( 0 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba Waa0baaeaacaaIWaaabaGaaGimaaaaaiaawIcacaGLPaaaaaa@3998@ component of Einstein’s field equations.49-51 Also, sometimes it leads to degeneracy in the Lagrangian.52,53 Further, often it fails to explore the known symmetries of the system.54,55 Finally, different canonical forms (the point Lagrangian obtained through Lagrange multiplier method, and under reduction to Jordan’s and Einstein’s frames) of F(R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeaca aIOaGaamOuaiaaiMcaaaa@3980@ theory of gravity yield different conserved currents.56 A possible resolution to the problems57 is not to fix the gauge, viz. the lapse function  a-priori, but to keep it arbitrary, so that the ( 0 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba Waa0baaeaacaaIWaaabaGaaGimaaaaaiaawIcacaGLPaaaaaa@3998@ component of Einstein’s equation is recognized by Noether equation. In the process, the symmetry generator  should be modified to

X=α a +β ϕ +γ N + α ˙ a ˙ + β ˙ ϕ ˙ + γ ˙ N ˙ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYlH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfaca aI9aGaeqySde2aaSaaaeaacqGHciITaeaacqGHciITcaWGHbaaaiab gUcaRiabek7aInaalaaabaGaeyOaIylabaGaeyOaIyRaeqy1dygaai abgUcaRiabeo7aNnaalaaabaGaeyOaIylabaGaeyOaIyRaamOtaaaa cqGHRaWkcuaHXoqygaGaamaalaaabaGaeyOaIylabaGaeyOaIyRabm yyayaacaaaaiabgUcaRiqbek7aIzaacaWaaSaaaeaacqGHciITaeaa cqGHciITcuaHvpGzgaGaaaaacqGHRaWkcuaHZoWzgaGaamaalaaaba GaeyOaIylabaGaeyOaIyRabmOtayaacaaaaiaai6caaaa@61A7@ (13)

Likewise, when the metric would contain time-space components, one should keep the shift vector ( N i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaacIcaca WGobWaaSbaaKqbGeaacaWGPbaajuaGbeaacaGGPaaaaa@3A70@ arbitrary. However, with the introduction of lapse function (and shift vector as well) the Hessian determinant vanishes and the point Lagrangian becomes singular.58 It is therefore required to follow Dirac’s constraint analysis, which complicates the problem. Under such circumstances, another proposal has been placed very recently and that is to modify the existence condition for Noether symmetry as,59

£ X LηE i δ i P i =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabokada WgaaqcfasaaiaadIfaaKqbagqaaiaadYeacqGHsislcqaH3oaAcaWG fbGaeyOeI0YaaabuaeqajuaibaGaiaiodMgaaKqbagqacqGHris5ai abes7aKnaaBaaajuaibaGaiaiDdMgaaKqbagqaaiaadcfadaWgaaqc fasaaiacas3GPbaajuaGbeaacqGH9aqpcaaIWaGaaGilaaaa@4D6E@ (14)

Where, E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweaaa a@3743@ is the total energy of the gravitating system which is constrained to vanish, and essentially is the ( 0 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba Waa0baaeaacaaIWaaabaGaaGimaaaaaiaawIcacaGLPaaaaaa@3998@ component of Einstein’s equations. P i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadcfada WgaaqcfasaaiaadMgaaKqbagqaaaaa@3919@ are the momenta which are also constrained to vanish, and are the ( i 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba Waa0baaeaacaWGPbaabaGaaGimaaaaaiaawIcacaGLPaaaaaa@39CC@ components of Einstein’s field equations. In the above, i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgaaa a@3767@ runs from 1 through to 3 and η=η(a,ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE7aOj aai2dacqaH3oaAcaaIOaGaamyyaiaaiYcacqaHvpGzcaaIPaaaaa@3F61@ and δ i = δ i (a,ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes7aKn aaBaaajuaibaGaamyAaaqcfayabaGaaGypaiabes7aKnaaBaaajuai baGaamyAaaqcfayabaGaaGikaiaadggacaaISaGaeqy1dyMaaGykaa aa@42E9@ are generic functions of a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadggaaa a@375F@ and ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew9aMb aa@3841@ . It has been possible to remove the problems associated with F(R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeaca aIOaGaamOuaiaaiMcaaaa@3980@ theory of gravity59 and Einstein’s field equations are automatically satisfied in all circumstances.

In the present manuscript however, we take a different route to explore Noether symmetry of the action (2), which has been used earlier44 and found to be a very powerful technique to find explicit solutions of the field equations. First, we use the standard symmetry generator (8) and consequently the standard Noether equation (9) to find Noether solutions. Since, there are five unknown parameters of the theory (2), viz. a,ϕ,f(ϕ),ω(ϕ),V(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadggaca aISaGaeqy1dyMaaGilaiaadAgacaaIOaGaeqy1dyMaeyykaKIaaGil aiabeM8a3jaaiIcacqaHvpGzcqGHPaqkcaaISaGaamOvaiaaiIcacq aHvpGzcqGHPaqkaaa@499A@ , consequently there are five unknown parameters α(a,ϕ),β(a,ϕ),f(ϕ),ω(ϕ),V(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg7aHj aaiIcacaWGHbGaaGilaiabew9aMjabgMcaPiaaiYcacqaHYoGycaaI OaGaamyyaiaaiYcacqaHvpGzcqGHPaqkcaaISaGaamOzaiaaiIcacq aHvpGzcqGHPaqkcaaISaGaeqyYdCNaaGikaiabew9aMjabgMcaPiaa iYcacaWGwbGaaGikaiabew9aMjabgMcaPaaa@5414@ involved in four Noether equations. So, Noether equations when solved would lead to relations amongst the parameters. To find the forms explicitly, we therefore would require making yet another choice. We shall therefore assume known standard forms of f(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgaca aIOaGaeqy1dyMaaGykaaaa@3A91@ , and solve Noether equations to explore the forms of ω(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3j aaiIcacqaHvpGzcaaIPaaaaa@3B73@ and V(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca aIOaGaeqy1dyMaaGykaaaa@3A81@ and consequently α(a,ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg7aHj aaiIcacaWGHbGaaGilaiabew9aMjaaiMcaaaa@3CE1@ and β(a,ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabek7aIj aaiIcacaWGHbGaaGilaiabew9aMjaaiMcaaaa@3CE3@ . We then express the scale factor a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadggaaa a@375F@ , the scalar field ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew9aMb aa@3841@ , the Lagrangian, the conserved current Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgfaaa a@374F@ and the energy equation, viz. the ( 0 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba Waa0baaeaacaaIWaaabaGaaGimaaaaaiaawIcacaGLPaaaaaa@3998@ equation of Einstein in terms of the new variables u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhaaa a@3773@ and v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAhaaa a@3774@ . Next, we solve for u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhaaa a@3773@ and v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAhaaa a@3774@ in view of the last two equations, viz. the conserved current and the energy equations, and transform back to find the explicit solutions for a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadggaca aIOaGaamiDaiaaiMcaaaa@39BD@ and ϕ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaa4ZrcfaOaeq y1dyMaaGikaiaadshacaaIPaaaaa@3BB6@ . Since, ( 0 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba Waa0baaeaacaaIWaaabaGaaGimaaaaaiaawIcacaGLPaaaaaa@3998@ equation is used for the purpose, so all the Einstein’s equations are automatically satisfied. We study three different cases corresponding to three different physical choices of the parameter f(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgaca aIOaGaeqy1dyMaaGykaaaa@3A91@ , viz. the ‘Brans-Dicke’ form (f(ϕ)=ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaacIcaca WGMbGaaGikaiabew9aMjaaiMcacaaI9aGaeqy1dyMaaiykaaaa@3E79@ , the ‘Induced gravity theory’ (f(ϕ)=ε ϕ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaacIcaca WGMbGaaGikaiabew9aMjaaiMcacaaI9aGaeqyTduMaeqy1dy2aaWba aeqajuaibaGaaGOmaaaajuaGcaGGPaaaaa@41BA@ and the ‘General non-minimally coupled theory’ (f(ϕ)=1ε ϕ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgIcaOi aadAgacqGHOaakcqaHvpGzcqGHPaqkcaaI9aGaaGymaiabgkHiTiab ew7aLjabew9aMnaaCaaabeqcfasaaiaaikdaaaqcfaOaeyykaKcaaa@4418@ . Surprisingly it is observed that all the three cases lead to the same forms of the scale factor ( a(t) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamyyaiaaiIcacaWG0bGaaGykaaGaayjkaiaawMcaaaaa@3B46@ , which are Lorentzian wormhole solutions. It therefore appears that Lorentzian wormhole is a natural outcome of non-minimally coupled theory of gravity (2) under consideration.

Action and Noether symmetric approach

In the Friedmann-Robertson-Walker minisuperspace (3) under consideration the Ricci scalar reads as R=6( a ¨ a + a ˙ 2 a + k a 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuai abg2da9iabgAda2iaaiIcajuaGdaWcaaGcbaqcLbsaceWGHbGbamaa aOqaaKqzGeGaamyyaaaacqGHRaWkjuaGdaWcaaGcbaqcLbsaceWGHb GbaiaajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGa amyyaaaacqGHRaWkjuaGdaWcaaGcbaqcLbsacaWGRbaakeaajugibi aadggajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaaqcLbsacaaI Paaaaa@4D96@ and therefore the action (2) takes the following form

A= ( m p 2 (3fa a ˙ 2 3 a 2 a ˙ ϕ ˙ f +3kaf)+ 1 2 ω ϕ ˙ 2 a 3 a 3 V m p 2 a 3 Λ)dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeaca aI9aWaa8qaaeqabeqabiabgUIiYdGaaGikaiaad2gadaqhaaqcfasa aiaadchaaeaacaaIYaaaaKqbakaaiIcacqGHsislcaaIZaGaamOzai aadggaceWGHbGbaiaadaahaaqabKqbGeaacaaIYaaaaKqbakabgkHi TiaaiodacaWGHbWaaWbaaeqajuaibaGaaGOmaaaajuaGceWGHbGbai aacuaHvpGzgaGaaiqadAgagaqbaiabgUcaRiaaiodacaWGRbGaamyy aiaadAgacaaIPaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacq aHjpWDcuaHvpGzgaGaamaaCaaabeqcfasaaiaaikdaaaqcfaOaamyy amaaCaaabeqcfasaaiaaiodaaaqcfaOaeyOeI0IaamyyamaaCaaabe qcfasaaiaaiodaaaqcfaOaamOvaiabgkHiTiaad2gadaqhaaqcfasa aiaadchaaeaacaaIYaaaaKqbakaadggadaahaaqabKqbGeaacaaIZa aaaKqbakabfU5amjaaiMcacaWGKbGaamiDaaaa@6B2B@ (15)

in the unit =c=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabl+qiOj abg2da9iaadogacqGH9aqpcqGHXaqmaaa@3B84@ ) is the Planck mass. In the above, we have used prime (') MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaacIcaca aINaGaaiykaaaa@3883@ to denote derivatve with respect to the scalar field ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew9aMb aa@3841@ . The above action is canonical, provided the Hessian determinant: W= 2 L a ˙ ϕ ˙ =12 a 4 (3 f 2 +2ωf)0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEfaca aI9aWaaabqaeqabeqabiabggHiLdWaaSaaaeaacqGHciITdaahaaqa bKqbGeaacaaIYaaaaKqbakaadYeaaeaacqGHciITceWGHbGbaiaacq GHciITcuaHvpGzgaGaaaaacaaI9aGaeyOeI0IaaGymaiaaikdacaWG HbWaaWbaaeqajuaibaGaaGinaaaajuaGcqGHOaakcqGHZaWmceWGMb GbauaadaahaaqabKqbGeaacaaIYaaaaKqbakabgUcaRiaaikdacqaH jpWDcaWGMbGaaGykaiabgcMi5kaaicdaaaa@551C@ . The point Lagrangian is expressed (in the unit 8πG=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiIdacq aHapaCcaWGhbGaeyypa0Jaeyymaedaaa@3BB8@ ) as,

L=3fa a ˙ 2 3 a 2 a ˙ ϕ ˙ f +3kaf+ 1 2 ω ϕ ˙ 2 a 3 a 3 V a 3 Λ. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYeaca aI9aGaeyOeI0IaaG4maiaadAgacaWGHbGabmyyayaacaWaaWbaaeqa juaibaGaaGOmaaaajuaGcqGHsislcaaIZaGaamyyamaaCaaabeqcfa saaiaaikdaaaqcfaOabmyyayaacaGafqy1dyMbaiaaceWGMbGbauaa cqGHRaWkcaaIZaGaam4AaiaadggacaWGMbGaey4kaSYaaSaaaeaaca aIXaaabaGaaGOmaaaacqaHjpWDcuaHvpGzgaGaamaaCaaabeqcfasa aiaaikdaaaqcfaOaamyyamaaCaaabeqcfasaaiaaiodaaaqcfaOaey OeI0IaamyyamaaCaaabeqcfasaaiaaiodaaaqcfaOaamOvaiabgkHi TiaadggadaahaaqabKqbGeaacaaIZaaaaKqbakabfU5amjaai6caaa a@5E5C@ (16)

The field equations are,

(2 a ¨ a + a ˙ 2 a 2 + k a 2 )+( ϕ ¨ +2 a ˙ a ϕ ˙ ) f f + 1 f ( 1 2 ϕ ˙ 2 ωV)+ f f ϕ ˙ 2 Λ f =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgIcaOi aaikdadaWcaaqaaiqadggagaWaaaqaaiaadggaaaGaey4kaSYaaSaa aeaaceWGHbGbaiaadaahaaqabeaacaaIYaaaaaqaaiaadggadaahaa qabeaacaaIYaaaaaaacqGHRaWkdaWcaaqaaiaadUgaaeaacaWGHbWa aWbaaeqabaGaaGOmaaaaaaGaaGykaiabgUcaRiaaiIcacuaHvpGzga WaaiabgUcaRiaaikdadaWcaaqaaiqadggagaGaaaqaaiaadggaaaGa fqy1dyMbaiaacaaIPaWaaSaaaeaaceWGMbGbauaaaeaacaWGMbaaai abgUcaRmaalaaabaGaaGymaaqaaiaadAgaaaGaaGikamaalaaabaGa aGymaaqaaiaaikdaaaGafqy1dyMbaiaadaahaaqabeaacaaIYaaaai abeM8a3jabgkHiTiaadAfacaaIPaGaey4kaSYaaSaaaeaaceWGMbGb auGbauaaaeaacaWGMbaaaiqbew9aMzaacaWaaWbaaeqabaGaaGOmaa aacqGHsisldaWcaaqaaiabfU5ambqaaiaadAgaaaGaeyypa0Jaeyim aadaaa@6716@ (17)

( ϕ ¨ +3 a ˙ a ϕ ˙ ) ω 3 f ( a ¨ a + a ˙ 2 a 2 + k a 2 )+( 1 2 ϕ ˙ 2 ω + V ) 1 3 f =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiqbew9aMz aadaGaey4kaSIaaG4mamaalaaabaGabmyyayaacaaabaGaamyyaaaa cuaHvpGzgaGaaiaaiMcadaWcaaqaaiabeM8a3bqaaiaaiodaceWGMb GbauaaaaGaeyOeI0IaaGikamaalaaabaGabmyyayaadaaabaGaamyy aaaacqGHRaWkdaWcaaqaaiqadggagaGaamaaCaaaleqabaGaaGOmaa aaaOqaaiaadggadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaa aeaacaWGRbaabaGaamyyamaaCaaaleqabaGaaGOmaaaaaaGccaaIPa Gaey4kaSIaaGikamaalaaabaGaaGymaaqaaiaaikdaaaGafqy1dyMb aiaadaahaaWcbeqaaiaaikdaaaGccuaHjpWDgaqbaiabgUcaRiqadA fagaqbaiaaiMcadaWcaaqaaiaaigdaaeaacaaIZaGabmOzayaafaaa aiabg2da9iabgcdaWaaa@5F1C@ (18)

( a ˙ 2 a 2 + k a 2 )+ a ˙ a ϕ ˙ f f 1 3f ( 1 2 ϕ ˙ 2 ω+V) Λ 3f =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamaalaaaba GabmyyayaacaWaaWbaaSqabeaacaaIYaaaaaGcbaGaamyyamaaCaaa leqabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaadUgaaeaacaWGHb WaaWbaaSqabeaacaaIYaaaaaaakiaaiMcacqGHRaWkdaWcaaqaaiqa dggagaGaaaqaaiaadggaaaGafqy1dyMbaiaadaWcaaqaaiqadAgaga qbaaqaaiaadAgaaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaG4maiaa dAgaaaGaaGikamaalaaabaGaaGymaaqaaiaaikdaaaGafqy1dyMbai aadaahaaWcbeqaaiaaikdaaaGccqaHjpWDcqGHRaWkcaWGwbGaaGyk aiabgkHiTmaalaaabaGaeu4MdWeabaGaaG4maiaadAgaaaGaeyypa0 Jaeyimaadaaa@59D5@ (19)

where, dot denotes derivative with respect to time while prime represents derivative with respect to ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew9aMb aa@3841@ . The expressions for the effective energy density ( ρ e ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaacIcacq aHbpGCdaWgaaqaaiaadwgaaeqaaiaacMcaaaa@3A9D@ and the effective pressure ( p e ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaacIcaca WGWbWaaSbaaKqbGeaacaWGLbaajuaGbeaacaGGPaaaaa@3A8E@ are,

ρ e =1f[ ω2 ϕ ˙ 2 +V3 a ˙ a ϕ ˙ f +Λ ]; p e =1f[ ω2 ϕ ˙ 2 V+( ϕ ¨ +2 a ˙ a ϕ ˙ ) f + f ϕ ˙ 2 Λ ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaSbaaS qaaiaadwgaaeqaaOGaeyypa0JaaGymaiaadAgadaWadaqaaiabeM8a 3jaaikdacuaHvpGzgaGaamaaCaaaleqabaGaaGOmaaaakiabgUcaRi aadAfacqGHsislcaaIZaGabmyyayaacaGaamyyaiqbew9aMzaacaGa bmOzayaafaGaey4kaSIaeu4MdWeacaGLBbGaayzxaaGaaG4oaiaadc hadaWgaaWcbaGaamyzaaqabaGccqGH9aqpcqGHXaqmcaWGMbWaamWa aeaacqaHjpWDcaaIYaGafqy1dyMbaiaadaahaaWcbeqaaiaaikdaaa GccqGHsislcaWGwbGaey4kaSYaaeWaaeaacuaHvpGzgaWaaiabgUca RiaaikdaceWGHbGbaiaacaWGHbGafqy1dyMbaiaaaiaawIcacaGLPa aaceWGMbGbauaacqGHRaWkceWGMbGbauGbauaacuaHvpGzgaGaamaa CaaaleqabaGaaGOmaaaakiabgkHiTiabfU5ambGaay5waiaaw2faai aai6caaaa@6FDA@ (20)

Consequently, one can also compute the sum as,

ρ e + p e =1f[ ω ϕ ˙ 2 +( ϕ ¨ a ˙ a ϕ ˙ ) f + f ϕ ˙ 2 ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaSbaaS qaaiaadwgaaeqaaOGaey4kaSIaamiCamaaBaaaleaacaWGLbaabeaa kiabg2da9iabggdaXiaadAgadaWadaqaaiabeM8a3jqbew9aMzaaca WaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaacuaHvpGzgaWa aiabgkHiTiqadggagaGaaiaadggacuaHvpGzgaGaaaGaayjkaiaawM caaiqadAgagaqbaiabgUcaRiqadAgagaqbgaqbaiqbew9aMzaacaWa aWbaaSqabeaacaaIYaaaaaGccaGLBbGaayzxaaGaaGOlaaaa@561A@ (21)

As mentioned, to explore the form of the unknown parameters involved in the point Lagrangian, let us now demand Noether symmetry by imposing the condition from (9) to find the following Noether equation

α(6a a ˙ ϕ ˙ f 3 a ˙ 2 f+3kf+ 3ω 2 ϕ ˙ 2 a 2 3 a 2 V3Λ a 2 )+β(3 a 2 a ˙ ϕ ˙ f 3a a ˙ 2 f +3ka f + ω 2 ϕ ˙ 2 a 3 a 3 V )+( α a a ˙ + α ϕ ϕ ˙ )(3 a 2 ϕ ˙ f 6a a ˙ f)+( β a a ˙ + β ϕ ϕ ˙ )(3 a 2 a ˙ f +ω ϕ ˙ a 3 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbiaiGC8paaeaabi GaaaqaiaiGC8paaaqaiaiGC8paaiadacih=daaeg7aHjacacih=daa iIcacWaGaYX=aaGHsislcGaGaYX=aaaI2aGaiaiGC8paamyyaiqcac ih=daadggagGaGaYX=aaGaaiqdacih=daaew9aMzacacih=daacaGa jaiGC8paamOzayacacih=daafaGamaiGC8paayOeI0IaiaiGC8paaG 4maiqcacih=daadggagGaGaYX=aaGaamacacih=daaCaaaleqcacih =daabGaGaYX=aaGaiaiGC8paaGOmaaaakiacacih=daadAgacWaGaY X=aaGHRaWkcGaGaYX=aaaIZaGaiaiGC8paam4Aaiacacih=daadAga cWaGaYX=aaGHRaWkdGaGaYX=aaWcaaqaiaiGC8paaiacacih=daaio dacWaGaYX=aaaHjpWDaeacacih=daacGaGaYX=aaaIYaaaaiqdacih =daaew9aMzacacih=daacaWaiaiGC8paaWbaaSqajaiGC8paaeacac ih=daacGaGaYX=aaaIYaaaaOGaiaiGC8paamyyamacacih=daaCaaa leqcacih=daabGaGaYX=aaGaiaiGC8paaGOmaaaakiadacih=daagk HiTiacacih=daaiodacGaGaYX=aaWGHbWaiaiGC8paaWbaaSqajaiG C8paaeacacih=daacGaGaYX=aaaIYaaaaOGaiaiGC8paamOvaiadac ih=daagkHiTiacacih=daaiodacWaGaYX=aaqHBoatcGaGaYX=aaWG HbWaiaiGC8paaWbaaSqajaiGC8paaeacacih=daacGaGaYX=aaaIYa aaaOGaiaiGC8paaGykaiadacih=daagUcaRiadacih=daaek7aIjac acih=daaiIcacWaGaYX=aaGHsislcGaGaYX=aaaIZaGaiaiGC8paam yyamacacih=daaCaaaleqcacih=daabGaGaYX=aaGaiaiGC8paaGOm aaaakiqcacih=daadggagGaGaYX=aaGaaiqdacih=daaew9aMzacac ih=daacaGajaiGC8paamOzayacacih=daafyacacih=daafaGamaiG C8paayOeI0IaiaiGC8paaG4maiacacih=daadggacKaGaYX=aaWGHb GbiaiGC8paaiaadGaGaYX=aaahaaWcbKaGaYX=aaqaiaiGC8paaiac acih=daaikdaaaGccKaGaYX=aaWGMbGbiaiGC8paauaacWaGaYX=aa GHRaWkcGaGaYX=aaaIZaGaiaiGC8paam4Aaiacacih=daadggacKaG aYX=aaWGMbGbiaiGC8paauaaaeacacih=daaaeacacih=daacWaGaY X=aaGHRaWkdGaGaYX=aaWcaaqaiaiGC8paaiqdacih=daaeM8a3zac acih=daafaaabGaGaYX=aaGaiaiGC8paaGOmaaaac0aGaYX=aaaHvp GzgGaGaYX=aaGaamacacih=daaCaaaleqcacih=daabGaGaYX=aaGa iaiGC8paaGOmaaaakiacacih=daadggadGaGaYX=aaahaaWcbKaGaY X=aaqaiaiGC8paaiacacih=daaiodaaaGccWaGaYX=aaGHsislcGaG aYX=aaWGHbWaiaiGC8paaWbaaSqajaiGC8paaeacacih=daacGaGaY X=aaaIZaaaaOGajaiGC8paamOvayacacih=daafaGaiaiGC8paaGyk aiadacih=daagUcaRiacacih=daaiIcadGaGaYX=aaWcaaqaiaiGC8 paaiadacih=daagkGi2kadacih=daaeg7aHbqaiaiGC8paaiadacih =daagkGi2kacacih=daadggaaaGajaiGC8paamyyayacacih=daaca GamaiGC8paay4kaSYaiaiGC8paaSaaaeacacih=daacWaGaYX=aaGH ciITcWaGaYX=aaaHXoqyaeacacih=daacWaGaYX=aaGHciITcWaGaY X=aaaHvpGzaaGanaiGC8paaqy1dyMbiaiGC8paaiaacGaGaYX=aaaI PaGaiaiGC8paaGikaiadacih=daagkHiTiacacih=daaiodacGaGaY X=aaWGHbWaiaiGC8paaWbaaSqajaiGC8paaeacacih=daacGaGaYX= aaaIYaaaaOGanaiGC8paaqy1dyMbiaiGC8paaiaacKaGaYX=aaWGMb GbiaiGC8paauaacWaGaYX=aaGHsislcGaGaYX=aaaI2aGaiaiGC8pa amyyaiqcacih=daadggagGaGaYX=aaGaaiacacih=daadAgacGaGaY X=aaaIPaGamaiGC8paay4kaSIaiaiGC8paaGikamacacih=daalaaa bGaGaYX=aaGamaiGC8paayOaIyRamaiGC8paaqOSdigabGaGaYX=aa GamaiGC8paayOaIyRaiaiGC8paamyyaaaacKaGaYX=aaWGHbGbiaiG C8paaiaacWaGaYX=aaGHRaWkdGaGaYX=aaWcaaqaiaiGC8paaiadac ih=daagkGi2kadacih=daaek7aIbqaiaiGC8paaiadacih=daagkGi 2kadacih=daaew9aMbaac0aGaYX=aaaHvpGzgGaGaYX=aaGaaiacac ih=daaiMcacGaGaYX=aaaIOaGamaiGC8paayOeI0IaiaiGC8paaG4m aiacacih=daadggadGaGaYX=aaahaaWcbKaGaYX=aaqaiaiGC8paai acacih=daaikdaaaGccKaGaYX=aaWGHbGbiaiGC8paaiaacKaGaYX= aaWGMbGbiaiGC8paauaacWaGaYX=aaGHRaWkcWaGaYX=aaaHjpWDc0 aGaYX=aaaHvpGzgGaGaYX=aaGaaiacacih=daadggadGaGaYX=aaah aaWcbKaGaYX=aaqaiaiGC8paaiacacih=daaiodaaaGccWaGaYX=aa GHPaqkcWaGaYX=aaGHUaGlaaaaaa@7C57@ (22)

Naturally, equation (22) is satisfied provided the co-efficient of a ˙ 2 , ϕ ˙ 2 , a ˙ ϕ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyyayaacaWaaW baaSqabeaacaaIYaaaaOGaaGilaiqbew9aMzaacaWaaWbaaSqabeaa caaIYaaaaOGaaGilaiqadggagaGaaiqbew9aMzaacaaaaa@408C@ and the term free from time derivative vanish separately, i.e.

α+2a α a + a 2 β a f f +aβ f f =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey4kaS IaaGOmaiaadggadaWcaaqaaiabgkGi2kabeg7aHbqaaiabgkGi2kaa dggaaaGaey4kaSIaamyyamaaCaaaleqabaGaaGOmaaaakmaalaaaba GaeyOaIyRaeqOSdigabaGaeyOaIyRaamyyaaaadaWcaaqaaiqadAga gaqbaaqaaiaadAgaaaGaey4kaSIaamyyaiabek7aInaalaaabaGabm OzayaafaaabaGaamOzaaaacqGH9aqpcqGHWaamcaaISaaaaa@5351@
(23)

3α6 f ω α ϕ +2a β ϕ +aβ ω ω =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiabeg7aHj abgkHiTiaaiAdadaWcaaqaaiqadAgagaqbaaqaaiabeM8a3baadaWc aaqaaiabgkGi2kabeg7aHbqaaiabgkGi2kabew9aMbaacqGHRaWkca aIYaGaamyyamaalaaabaGaeyOaIyRaeqOSdigabaGaeyOaIyRaeqy1 dygaaiabgUcaRiaadggacqaHYoGydaWcaaqaaiqbeM8a3zaafaaaba GaeqyYdChaaiabg2da9iabgcdaWiabgYcaSaaa@5798@ (24)

(2α+a α a +a β ϕ )+a f f β+2 f f α ϕ ω 3 f a 2 β a =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyikaGIaeyOmai JaeqySdeMaey4kaSIaamyyamaalaaabaGaeyOaIyRaeqySdegabaGa eyOaIyRaamyyaaaacqGHRaWkcaWGHbWaaSaaaeaacqGHciITcqaHYo GyaeaacqGHciITcqaHvpGzaaGaaGykaiabgUcaRiaadggadaWcaaqa aiqadAgagaqbgaqbaaqaaiqadAgagaqbaaaacqaHYoGycqGHRaWkca aIYaWaaSaaaeaacaWGMbaabaGabmOzayaafaaaamaalaaabaGaeyOa IyRaeqySdegabaGaeyOaIyRaeqy1dygaaiabgkHiTmaalaaabaGaeq yYdChabaGaaG4maiqadAgagaqbaaaacaWGHbWaaWbaaSqabeaacaaI YaaaaOWaaSaaaeaacqGHciITcqaHYoGyaeaacqGHciITcaWGHbaaai abg2da9iabgcdaWiabgYcaSaaa@68E3@ (25)

3kf(α+aβ f f )= a 2 (3Vα+β V a+3Λα). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaadUgaca WGMbGaaGikaiabeg7aHjabgUcaRiaadggacqaHYoGydaWcaaqaaiqa dAgagaqbaaqaaiaadAgaaaGaaGykaiaai2dacaWGHbWaaWbaaSqabe aacaaIYaaaaOGaeyikaGIaaG4maiaadAfacqaHXoqycqGHRaWkcqaH YoGyceWGwbGbauaacaWGHbGaey4kaSIaaG4maiabfU5amjabeg7aHj abgMcaPiabg6caUaaa@542D@ (26)

We now look for the conditions on the integrability of this set of above equations (23) - (26). Since, here the number of equations are four while the number of unknown parameters are five (α,β,ω,f,V) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGikai abeg7aHjaaiYcacqaHYoGycaaISaGaeqyYdCNaaGilaiaadAgacaaI SaGaamOvaiaaiMcaaaa@418A@ , so the set of above equations can not be solved uniquely unless extra condition is imposed. Rather, we obtain restrictions on the forms of, α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg7aHb aa@3818@ , β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabek7aIb aa@381A@ , f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgaaa a@3764@ , ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3b aa@3846@ and V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaaa a@3754@ . This will leave large freedom of choice, so that all the interesting cases may be accommodated. However, as mentioned, we shall in the present manuscript restrict ourselves to study only three cases of particular importance. The set of partial differential equations (23) - (26) are solved under the assumption that  and  are separable (and non null), i.e.

α(a,ϕ)= A 1 (a) B 1 (ϕ);β(a,ϕ)= A 2 (a) B 2 (ϕ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGikai aadggacaaISaGaeqy1dyMaaGykaiaai2dacaWGbbWaaSbaaSqaaiaa igdaaeqaaOGaaGikaiaadggacaaIPaGaamOqamaaBaaaleaacaaIXa aabeaakiaaiIcacqaHvpGzcaaIPaGaaG4oaiabek7aIjaaiIcacaWG HbGaaGilaiabew9aMjaaiMcacaaI9aGaamyqamaaBaaaleaacaaIYa aabeaakiaaiIcacaWGHbGaaGykaiaadkeadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaeqy1dyMaeyykaKIaeyOla4caaa@59C2@ (27)

With these assumptions, the integrability conditions are (See Appendix)

A 1 = cl a ; B 2 =c f f B 1 ; A 2 = l a 2 ;V= V o f 3 Λ; B 1 = 2 3 ω f B 1 ;3 f 2 +2ωf= n 4 ω f 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaale aacaaIXaaabeaakiaai2dacqGHsisldaWcaaqaaiaadogacaWGSbaa baGaamyyaaaacaaI7aGaamOqamaaBaaaleaacaaIYaaabeaakiaai2 dacaWGJbWaaSaaaeaacaWGMbaabaGabmOzayaafaaaaiaadkeadaWg aaWcbaGaaGymaaqabaGccaaI7aGaamyqamaaBaaaleaacaaIYaaabe aakiaai2dadaWcaaqaaiaadYgaaeaacaWGHbWaaWbaaSqabeaacaaI YaaaaaaakiaaiUdacaWGwbGaaGypaiaadAfadaWgaaWcbaGaam4Baa qabaGccaWGMbWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0Iaeu4MdWKa aG4oaiqadkeagaqbamaaBaaaleaacaaIXaaabeaakiaai2dadaWcaa qaaiaaikdaaeaacaaIZaaaamaalaaabaGaeqyYdChabaGabmOzayaa faaaaiaadkeadaWgaaWcbaGaaGymaaqabaGccaaI7aGaaG4maiqadA gagaqbamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqaHjpWD caWGMbGaaGypamaalaaabaGaamOBaaqaaiaaisdaaaGaeqyYdCNaam OzamaaCaaaleqabaGaaG4maaaaaaa@6BE7@ (28)

Where,  are all arbitrary constants. Note that since f(ϕ)0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiIcacq aHvpGzcaaIPaGaeyiyIKRaaGimaaaa@3E53@ and ω(ϕ)0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaaGikai abew9aMjaaiMcacqGHGjsUcaaIWaaaaa@3F35@ , so the nondegeneracy condition remains satisfied provided n0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgcMi5k aaicdaaaa@3B2E@ . Clearly, we need to solve the above six equation (28), for seven unknowns, viz. ( A 1 , A 2 , B 1 , B 2 ,f,V,ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadgeada WgaaWcbaGaaGymaaqabaGccaaISaGaamyqamaaBaaaleaacaaIYaaa beaakiaaiYcacaWGcbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadk eadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamOzaiaaiYcacaWGwbGa aGilaiabeM8a3jaaiMcaaaa@47D6@ . It is important to mention that while general conserved current always exists for V f 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiabg2Hi1k aadAgadaahaaWcbeqaaiaaikdaaaaaaa@3BE9@ ,49-51,60,61 Noether symmetry exists for V f 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiabg2Hi1k aadAgadaahaaWcbeqaaiaaiodaaaaaaa@3BEA@ , in the absence of Lambda. This clearly depicts that Noether symmetry procedure is unable to explore all the available symmetries of a theory. For, ω=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaaGypai aaigdaaaa@3B09@ a general nonminimally coupled case we get in view. The last relation of equation (28) then gives an elliptic integral, which can be solved for f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@38A5@ in closed form only under the assumption n=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9i abgcdaWaaa@3A9F@ . But this makes the Hessian determinant W=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabg2da9i abgcdaWaaa@3A88@ , and so the Lagrangian turns out to be degenerate. Also, for n=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9i abgcdaWaaa@3A9F@ , the general solution of (28) is, f= (ϕ ϕ 0 ) 2 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaai2dacq GHsisldaWcaaqaaiaaiIcacqaHvpGzcqGHsislcqaHvpGzdaWgaaWc baGaaGimaaqabaGccaaIPaWaaWbaaSqabeaacaaIYaaaaaGcbaGaaG Onaaaaaaa@42EE@ , which makes the Newtonian gravitational constant G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@3886@ negative.42 Thus we omit the case ω=1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaeyypa0 JaeyymaeJaeyOla4caaa@3C63@

Solutions under different choice of the coupling parameter f(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcaaSaaCOzaiaahI cacqaHvpGzcaWHPaaaaa@3C9D@

Let us make things clear yet again, for a consistency check. To get a picture of evolution of the early universe in view of the action (2), we need to solve the set of Einstein’s field equations (17), (18) and (19) uniquely. Out of which only two are independent and they involve 5 unknowns ( a(t),ϕ(t),f(ϕ),ω(ϕ),V(ϕ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHb GaaGikaiaadshacqGHPaqkcaaISaGaeqy1dyMaaGikaiaadshacqGH PaqkcaaISaGaamOzaiaaiIcacqaHvpGzcqGHPaqkcaaISaGaeqyYdC NaaGikaiabew9aMjabgMcaPiaaiYcacaWGwbGaaGikaiabew9aMjab gMcaPaGaayjkaiaawMcaaaaa@5176@ altogether. Clearly, one requires 3 physically reasonable assumptions for the purpose, and the standard followup is to choose some typical forms of f(ϕ),ω(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiIcacq aHvpGzcqGHPaqkcaaISaGaeqyYdCNaaGikaiabew9aMjaaiMcaaaa@41AD@ and V(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaaiIcacq aHvpGzcaaIPaaaaa@3BC2@ . Instead we impose Noether symmetry i.e. £ X L=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4OamaaBaaale aacaWGybaabeaakiaadYeacqGH9aqpcqGHWaamaaa@3CB6@ , as our first assumption, since nothing is more physical in the world than symmetry. As a result we find four equations (23), (24), (25) and (26), with five unknown parameters viz. α,β,f,ω,V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGilai abek7aIjaaiYcacaWGMbGaaGilaiabeM8a3jaaiYcacaWGwbaaaa@4165@ . Thus at this stage we require just one more assumption to exactly solve the above set of Noether equations. To handle the above set of partial differential equations (23) through to (26) we consider separation of variables and ended up with yet another set of equations (28). One can clearly notice that already A 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaale aacaaIXaaabeaaaaa@3967@ and A 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaale aacaaIYaaabeaaaaa@3968@ are found exactly as functions of the scale factor a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiIcaca WG0bGaaGykaaaa@3AFE@ , while we are left with four relations in (28) with five parameters B 1 , B 2 ,f,ω,V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBaaale aacaaIXaaabeaakiaaiYcacaWGcbWaaSbaaSqaaiaaikdaaeqaaOGa aGilaiaadAgacaaISaGaeqyYdCNaaGilaiaadAfaaaa@4196@ . Hence still one needs one more assumption to explicitly find the forms of these five parameters. This proves everything is consistent so far. One can generate indefinitely large number of symmetries and hence exact cosmological solutions, by making different choices of one of the parameters. In this section however, we shall study only three different cases making reasonable assumptions on three different forms of f(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiIcacq aHvpGzcaaIPaaaaa@3BD2@ , since as already known, different forms of f(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiIcacq aHvpGzcaaIPaaaaa@3BD2@ leads to different physical theory. The three cases represent ‘Brans-Dicke theory of gravity’, ‘Induced theory of gravity’ and ‘General non-minimal theory of gravity’. As a result we find α(a,ϕ),β(a,ϕ),ω(ϕ)andV(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGikai aadggacaaISaGaeqy1dyMaaGykaiaacYcacaaMc8UaaGPaVlabek7a IjaaiIcacaWGHbGaaGilaiabew9aMjaaiMcacaGGSaGaaGPaVlaayk W7cqaHjpWDcaaIOaGaeqy1dyMaaGykaiaaykW7qaaaaaaaaaWdbiaa dggacaWGUbGaamizaiaaykW7caaMc8+daiaadAfacaaIOaGaeqy1dy MaaGykaaaa@5CAC@ , hence the conserved current. We shall then express the Lagrangian in terms of the new variables u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@38B4@ and v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaaaa@38B5@ , u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@38B4@ being cyclic, and use the conserved current and the energy equation expressed in terms of the new variables as

Q=L u ˙ ; E L = L u ˙ u ˙ + L v ˙ v ˙ L=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaai2dacq GHciITcaWGmbGaeyOaIyRabmyDayaacaGaaG4oaiaadweadaWgaaWc baGaamitaaqabaGccaaI9aWaaSaaaeaacqGHciITcaWGmbaabaGaey OaIyRabmyDayaacaaaaiqadwhagaGaaiabgUcaRmaalaaabaGaeyOa IyRaamitaaqaaiabgkGi2kqadAhagaGaaaaaceWG2bGbaiaacqGHsi slcaWGmbGaeyypa0JaeyimaaJaeyilaWcaaa@5232@ (29)

To solve the Einstein’s field equations uniquely in all the three different cases.

Case 1: Brans-Dicke theory

First we consider the well-known Brans-Dicke theory by choosing f(ϕ)=ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiIcacq aHvpGzcaaIPaGaaGypaiabew9aMbaa@3E61@ . In view of Equation (28), we therefore obtain the following solutions

V= V 0 ϕ 3 Λ,ω= 12 n ϕ 3 8ϕ , B 1 = B 0 n ϕ 2 8 ϕ , B 2 =c B 0 n ϕ 2 8 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaai2daca WGwbWaaSbaaSqaaiaaicdaaeqaaOGaeqy1dy2aaWbaaSqabeaacaaI ZaaaaOGaeyOeI0Iaeu4MdWKaaGilaiabeM8a3jaai2dadaWcaaqaai aaigdacaaIYaaabaGaamOBaiabew9aMnaaCaaaleqabaGaaG4maaaa kiabgkHiTiaaiIdacqaHvpGzaaGaaGilaiaadkeadaWgaaWcbaGaaG ymaaqabaGccaaI9aGaamOqamaaBaaaleaacaaIWaaabeaakmaalaaa baWaaOaaaeaacaWGUbGaeqy1dy2aaWbaaSqabeaacaaIYaaaaOGaey OeI0IaaGioaaWcbeaaaOqaaiabew9aMbaacaaISaGaamOqamaaBaaa leaacaaIYaaabeaakiaai2dacaWGJbGaamOqamaaBaaaleaacaaIWa aabeaakmaakaaabaGaamOBaiabew9aMnaaCaaaleqabaGaaGOmaaaa kiabgkHiTiaaiIdaaSqabaGccaaISaaaaa@648F@ (30)

Where B 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBaaale aacaaIWaaabeaaaaa@3967@ ,  is yet another constant. In view of equations (28) and (30) α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3959@  and β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@395B@  are obtained as,

α=C n ϕ 2 8 aϕ ,β=C n ϕ 2 8 a 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGypai abgkHiTiaadoeadaWcaaqaamaakaaabaGaamOBaiabew9aMnaaCaaa leqabaGaaGOmaaaakiabgkHiTiaaiIdaaSqabaaakeaacaWGHbGaeq y1dygaaiaaiYcacqaHYoGycaaI9aGaam4qamaalaaabaWaaOaaaeaa caWGUbGaeqy1dy2aaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGioaa WcbeaaaOqaaiaadggadaahaaWcbeqaaiaaikdaaaaaaOGaaGilaaaa @501C@ (31)

Where the constant C= c 0 B 0 l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2daca WGJbWaaSbaaSqaaiaaicdaaeqaaOGaamOqamaaBaaaleaacaaIWaaa beaakiaadYgaaaa@3DC9@ . So the conserved current (11) is found as,

Q=3Ca n ϕ 2 8 ( a ˙ a + n ϕ 2 4 n ϕ 2 8 ϕ ˙ ϕ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaai2daca aIZaGaam4qaiaadggadaGcaaqaaiaad6gacqaHvpGzdaahaaWcbeqa aiaaikdaaaGccqGHsislcaaI4aaaleqaaOGaaGikamaalaaabaGabm yyayaacaaabaGaamyyaaaacqGHRaWkdaWcaaqaaiaad6gacqaHvpGz daahaaWcbeqaaiaaikdaaaGccqGHsislcaaI0aaabaGaamOBaiabew 9aMnaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiIdaaaWaaSaaaeaa cuaHvpGzgaGaaaqaaiabew9aMbaacaaIPaGaaGOlaaaa@5497@ (32)

Using the forms of f(ϕ)=ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiIcacq aHvpGzcaaIPaGaaGypaiabew9aMbaa@3E61@ and the forms of ω(ϕ), V(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaaGikai abew9aMjabgMcaPiaaiYcacaaIGaGaamOvaiaaiIcacqaHvpGzcaaI Paaaaa@4247@ presented in equation (30), the point Lagrangian (16) may now be expressed as,

L=3a a ˙ 2 ϕ3 a 2 a ˙ ϕ ˙ +3kaϕ+ 6 a 3 ϕ ˙ 2 n ϕ 3 8ϕ V 0 a 3 ϕ 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacq GHsislcaaIZaGaamyyaiqadggagaGaamaaCaaaleqabaGaaGOmaaaa kiabew9aMjabgkHiTiaaiodacaWGHbWaaWbaaSqabeaacaaIYaaaaO GabmyyayaacaGafqy1dyMbaiaacqGHRaWkcaaIZaGaam4Aaiaadgga cqaHvpGzcqGHRaWkdaWcaaqaaiaaiAdacaWGHbWaaWbaaSqabeaaca aIZaaaaOGafqy1dyMbaiaadaahaaWcbeqaaiaaikdaaaaakeaacaWG UbGaeqy1dy2aaWbaaSqabeaacaaIZaaaaOGaeyOeI0IaaGioaiabew 9aMbaacqGHsislcaWGwbWaaSbaaSqaaiaaicdaaeqaaOGaamyyamaa CaaaleqabaGaaG4maaaakiabew9aMnaaCaaaleqabaGaaG4maaaaki aai6caaaa@6088@ (33)

At this stage let us perform the change of variables to obtain the corresponding cyclic coordinate associated with the conserved current (32). Equation (12) is solved uniquely under the following choice,

u= a 2 ϕ 8 n ϕ 2 8 ;v=aϕ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2dada WcaaqaaiaadggadaahaaWcbeqaaiaaikdaaaGccqaHvpGzaeaacaaI 4aaaamaakaaabaGaamOBaiabew9aMnaaCaaaleqabaGaaGOmaaaaki abgkHiTiaaiIdaaSqabaGccaaI7aGaamODaiaai2dacaWGHbGaeqy1 dyMaaGilaaaa@495B@ (34)

Which may be inverted to yield

a 2 = n v 4 64 u 2 8 v 2 ; ϕ 2 = 8 v 4 n v 4 64 u 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaale qabaGaaGOmaaaakiaai2dadaWcaaqaaiaad6gacaWG2bWaaWbaaSqa beaacaaI0aaaaOGaeyOeI0IaaGOnaiaaisdacaWG1bWaaWbaaSqabe aacaaIYaaaaaGcbaGaaGioaiaadAhadaahaaWcbeqaaiaaikdaaaaa aOGaaG4oaiabew9aMnaaCaaaleqabaGaaGOmaaaakiaai2dadaWcaa qaaiaaiIdacaWG2bWaaWbaaSqabeaacaaI0aaaaaGcbaGaamOBaiaa dAhadaahaaWcbeqaaiaaisdaaaGccqGHsislcaaI2aGaaGinaiaadw hadaahaaWcbeqaaiaaikdaaaaaaOGaaGOlaaaa@5351@ (35)

Being always a>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+i abgcdaWaaa@3A94@ , the Jacobian of transformation does not give any trouble, and the same holds for all the cases studied below. Under the transformation (34), the Lagrangian (33) takes the form

L=6 u ˙ 2 v 3 8 nv v ˙ 2 +3kv V 0 v 3 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2daca aI2aWaaSaaaeaaceWG1bGbaiaadaahaaWcbeqaaiaaikdaaaaakeaa caWG2baaaiabgkHiTmaalaaabaGaaG4maaqaaiaaiIdaaaGaamOBai aadAhaceWG2bGbaiaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI ZaGaam4AaiaadAhacqGHsislcaWGwbWaaSbaaSqaaiaaicdaaeqaaO GaamODamaaCaaaleqabaGaaG4maaaakiaaiYcaaaa@4C5B@ (36)

u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@38B4@ Being cyclic, the conserved current (29) reads as,

Q= 12 u ˙ v , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaai2dada WcaaqaaiaaigdacaaIYaGabmyDayaacaaabaGaamODaaaacaaISaaa aa@3D92@ (37)

And the energy equation (29) leads to the following first order differential equation for, v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaaaa@38B5@

( Q 2 24 3k )+ V 0 v 2 = 3n 8 v ˙ 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaadaWcaa qaaiaadgfadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGaaGinaaaa cqGHsislcaaIZaGaam4AaaGaayjkaiaawMcaaiabgUcaRiaadAfada WgaaWcbaGaaGimaaqabaGccaWG2bWaaWbaaSqabeaacaaIYaaaaOGa aGypamaalaaabaGaaG4maiaad6gaaeaacaaI4aaaaiqadAhagaGaam aaCaaaleqabaGaaGOmaaaakiaaiYcaaaa@49C1@ (38)

 which may be integrated to obtain the following solution for v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaaaa@38B5@ as,

v= e pt +4F V 0 e pt 4 V 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaai2dada WcaaqaaiaadwgadaahaaWcbeqaaiaadchacaWG0baaaOGaey4kaSIa aGinaiaadAeacaWGwbWaaSbaaSqaaiaaicdaaeqaaOGaamyzamaaCa aaleqabaGaeyOeI0IaamiCaiaadshaaaaakeaacaaI0aGaamOvamaa BaaaleaacaaIWaaabeaaaaGccaaISaaaaa@480C@ (39)

Where, F=3k Q 2 24 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiabg2da9i abgodaZiaadUgacqGHsisldaWcaaqaaiaadgfadaahaaWcbeqaaiaa ikdaaaaakeaacaaIYaGaaGinaaaaaaa@3FAD@ . We may also obtain in view of equation (37), the form of the cyclic coordinate u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@38B4@ as,

u=( n Q 32 6 V 0 3 2 )( e pt 4F V 0 e pt )+ u 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2daca aIOaWaaSaaaeaadaGcaaqaaiaad6gaaSqabaGccaWGrbaabaGaaG4m aiaaikdadaGcaaqaaiaaiAdaaSqabaGccaWGwbWaa0baaSqaaiaaic daaeaadaWcaaqaaiaaiodaaeaacaaIYaaaaaaaaaGccaaIPaGaaGik aiaadwgadaahaaWcbeqaaiaadchacaWG0baaaOGaeyOeI0IaaGinai aadAeacaWGwbWaaSbaaSqaaiaaicdaaeqaaOGaamyzamaaCaaaleqa baGaeyOeI0IaamiCaiaadshaaaGccaaIPaGaey4kaSIaamyDamaaBa aaleaacaaIWaaabeaaaaa@5204@ (40)

Where, p= 8 V 0 3n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaai2dada GcaaqaamaalaaabaGaaGioaiaadAfadaWgaaWcbaGaaGimaaqabaaa keaacaaIZaGaamOBaaaaaSqabaaaaa@3DDE@ . Setting the integration constant u 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBaaale aacaaIWaaabeaakiabg2da9iabgcdaWaaa@3B96@ , for the origin of time, the exact solution for a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiIcaca WG0bGaaGykaaaa@3AFE@ and ϕ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikai aadshacaaIPaaaaa@3BE0@ are found as

a(t)=( n 8 ( a 1 e pt + a 2 e pt ) 4 8( a 3 e pt a 4 e pt ) 2 ( a 1 e pt + a 2 e pt ) 2 ) 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiIcaca WG0bGaaGykaiaai2dacaaIOaWaaSaaaeaadaWcaaqaaiaad6gaaeaa caaI4aaaaiaaiIcacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaamyzam aaCaaaleqabaGaamiCaiaadshaaaGccqGHRaWkcaWGHbWaaSbaaSqa aiaaikdaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0IaamiCaiaads haaaGccaaIPaWaaWbaaSqabeaacaaI0aaaaOGaeyOeI0IaaGioaiaa iIcacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaamyzamaaCaaaleqaba GaamiCaiaadshaaaGccqGHsislcaWGHbWaaSbaaSqaaiaaisdaaeqa aOGaamyzamaaCaaaleqabaGaeyOeI0IaamiCaiaadshaaaGccaaIPa WaaWbaaSqabeaacaaIYaaaaaGcbaGaaGikaiaadggadaWgaaWcbaGa aGymaaqabaGccaWGLbWaaWbaaSqabeaacaWGWbGaamiDaaaakiabgU caRiaadggadaWgaaWcbaGaaGOmaaqabaGccaWGLbWaaWbaaSqabeaa cqGHsislcaWGWbGaamiDaaaakiaaiMcadaahaaWcbeqaaiaaikdaaa aaaOGaaGykamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaGOmaaaa aaGccaaISaaaaa@6D0F@ (41)

ϕ(t)= ( a 1 e pt + a 2 e pt ) 2 ( n 8 ( a 1 e pt + a 2 e pt ) 4 8( a 3 e pt a 4 e pt ) 2 ) 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikai aadshacaaIPaGaaGypamaalaaabaGaaGikaiaadggadaWgaaWcbaGa aGymaaqabaGccaWGLbWaaWbaaSqabeaacaWGWbGaamiDaaaakiabgU caRiaadggadaWgaaWcbaGaaGOmaaqabaGccaWGLbWaaWbaaSqabeaa cqGHsislcaWGWbGaamiDaaaakiaaiMcadaahaaWcbeqaaiaaikdaaa aakeaacaaIOaWaaSaaaeaacaWGUbaabaGaaGioaaaacaaIOaGaamyy amaaBaaaleaacaaIXaaabeaakiaadwgadaahaaWcbeqaaiaadchaca WG0baaaOGaey4kaSIaamyyamaaBaaaleaacaaIYaaabeaakiaadwga daahaaWcbeqaaiabgkHiTiaadchacaWG0baaaOGaaGykamaaCaaale qabaGaaGinaaaakiabgkHiTiaaiIdacaaIOaGaamyyamaaBaaaleaa caaIZaaabeaakiaadwgadaahaaWcbeqaaiaadchacaWG0baaaOGaey OeI0IaamyyamaaBaaaleaacaaI0aaabeaakiaadwgadaahaaWcbeqa aiabgkHiTiaadchacaWG0baaaOGaaGykamaaCaaaleqabaGaaGOmaa aakiaaiMcadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaikdaaaaa aaaakiaaiYcaaaa@6DF1@ (42)

Where, a 1 = 1 4 V 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaale aacaaIXaaabeaakiaai2dadaWcaaqaaiaaigdaaeaacaaI0aGaamOv amaaBaaaleaacaaIWaaabeaaaaGccaGGSaaaaa@3E5C@ a 2 =3k Q 2 24 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaale aacaaIYaaabeaakiabg2da9iabgodaZiaadUgacqGHsisldaWcaaqa aiaadgfadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGaaGinaaaaca GGSaaaaa@416A@ , a 3 = n Q 32 6 V 0 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaale aacaaIZaaabeaakiaai2dadaWcaaqaamaakaaabaGaamOBaaWcbeaa kiaadgfaaeaacaaIZaGaaGOmamaakaaabaGaaGOnaaWcbeaakiaadA fadaqhaaWcbaGaaGimaaqaamaalaaabaGaaG4maaqaaiaaikdaaaaa aaaaaaa@4201@ and a 4 = n 8 6 V 0 Q(3k Q 2 24 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaale aacaaI0aaabeaakiaai2dadaWcaaqaamaakaaabaGaamOBaaWcbeaa aOqaaiaaiIdadaGcaaqaaiaaiAdacaWGwbWaaSbaaSqaaiaaicdaae qaaaqabaaaaOGaamyuaiaaiIcacaaIZaGaam4AaiabgkHiTmaalaaa baGaamyuamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaaI0aaaai aaiMcaaaa@4708@ are constants. It is now easily observed that as t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgkziUk abg6HiLcaa@3C11@ , the scale factor, while as , the scale factor a n8 a 2 e pt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgkziUo aakaaabaGaamOBaiaaiIdaaSqabaGccaWGHbWaaSbaaSqaaiaaikda aeqaaOGaamyzamaaCaaaleqabaGaamiCaiaadshaaaaaaa@4144@ , and finally as t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgkziUk abg6HiLcaa@3C11@ , the scale factor a n8( a 1 + a 2 ) 2 8( a 3 a 4 a 1 + a 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgkziUo aakaaabaGaamOBaiaaiIdacaaIOaGaamyyamaaBaaaleaacaaIXaaa beaakiabgUcaRiaadggadaWgaaWcbaGaaGOmaaqabaGccaaIPaWaaW baaSqabeaacaaIYaaaaOGaeyOeI0IaaGioaiaaiIcacaWGHbWaaSba aSqaaiaaiodaaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaI0aaabe aakiaadggadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGHbWaaSba aSqaaiaaikdaaeqaaOGaaGykamaaCaaaleqabaGaaGOmaaaaaeqaaa aa@5069@ . Therefore asymptotically the universe is de-Sitter t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgkziUk aaicdaaaa@3B5A@ , while as, it has a finite radius. Therefore the solution represents Lorentzian wormhole. One can also make a further check in a straightforward manner. Asymptotically (t±) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadshacq GHsgIRcqGHXcqScqGHEisPcaGGPaaaaa@3F58@ , the scalar field turns out to be a constant ϕ 8n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaeyOKH4 6aaOaaaeaacaaI4aGaamOBaaWcbeaaaaa@3D3F@ . As a result in the present case in view of equations (20) and (21), asymptotically one finds ρ e V 0 ϕ 2 >0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaSbaaS qaaiaadwgaaeqaaOGaeyOKH4QaamOvamaaBaaaleaacaaIWaaabeaa kiabew9aMnaaCaaaleqabaGaaGOmaaaakiaai6dacaaIWaGaaiilaa aa@433F@ p e V 0 ϕ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaale aacaWGLbaabeaakiabgkziUkabgkHiTiaadAfadaWgaaWcbaGaaGim aaqabaGccqaHvpGzdaahaaWcbeqaaiaaikdaaaaaaa@4125@ and ρ e + p e 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaSbaaS qaaiaadwgaaeqaaOGaey4kaSIaamiCamaaBaaaleaacaWGLbaabeaa kiabgkziUkaaicdaaaa@4038@ . Thus the WEC is satisfied, and simultaneously asymptotic de-Sitter expansion is confirmed. In the process, the present solution also is in tune with the fact mentioned in the introduction that, for Einstein gravity there are non-static Lorentzian wormholes which do not require WEC violating matter to sustain them.23,24

Case 2: Induced theory of gravity

Let us now consider induced theory of gravity by the choice f(ϕ)=ε ϕ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiIcacq aHvpGzcaaIPaGaaGypaiabew7aLjabew9aMnaaCaaaleqabaGaaGOm aaaaaaa@40F1@ , where ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdugaaa@3961@ is the coupling constant. Under this choice, we obtain the following solutions in view of Equation (28),

V= V 0 ε 3 ϕ 6 Λ,ω= 48ε n ε 2 ϕ 4 8 , B 1 = D 0 n ε 2 ϕ 4 8 n ε 2 ϕ 4 , B 2 =c D 0 n ε 2 ϕ 4 8 4n ε 2 ϕ 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaai2daca WGwbWaaSbaaSqaaiaaicdaaeqaaOGaeqyTdu2aaWbaaSqabeaacaaI ZaaaaOGaeqy1dy2aaWbaaSqabeaacaaI2aaaaOGaeyOeI0Iaeu4MdW KaaGilaiabeM8a3jaai2dadaWcaaqaaiaaisdacaaI4aGaeqyTduga baGaamOBaiabew7aLnaaCaaaleqabaGaaGOmaaaakiabew9aMnaaCa aaleqabaGaaGinaaaakiabgkHiTiaaiIdaaaGaaGilaiaadkeadaWg aaWcbaGaaGymaaqabaGccaaI9aGaamiramaaBaaaleaacaaIWaaabe aakmaakaaabaWaaSaaaeaacaWGUbGaeqyTdu2aaWbaaSqabeaacaaI YaaaaOGaeqy1dy2aaWbaaSqabeaacaaI0aaaaOGaeyOeI0IaaGioaa qaaiaad6gacqaH1oqzdaahaaWcbeqaaiaaikdaaaGccqaHvpGzdaah aaWcbeqaaiaaisdaaaaaaaqabaGccaaISaGaamOqamaaBaaaleaaca aIYaaabeaakiaai2dacaWGJbGaamiramaaBaaaleaacaaIWaaabeaa kmaakaaabaWaaSaaaeaacaWGUbGaeqyTdu2aaWbaaSqabeaacaaIYa aaaOGaeqy1dy2aaWbaaSqabeaacaaI0aaaaOGaeyOeI0IaaGioaaqa aiaaisdacaWGUbGaeqyTdu2aaWbaaSqabeaacaaIYaaaaOGaeqy1dy 2aaWbaaSqabeaacaaIYaaaaaaaaeqaaOGaaGilaaaa@7A5A@ (43)

 where c, D 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaaiYcaca WGebWaaSbaaSqaaiaaicdaaeqaaaaa@3B07@ are constant. As a result we also find

α= N n ε 2 ϕ 4 8 a ϕ 2 ,β= N n ε 2 ϕ 4 8 2 a 2 ϕ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGypai abgkHiTmaalaaabaGaamOtamaakaaabaGaamOBaiabew7aLnaaCaaa leqabaGaaGOmaaaakiabew9aMnaaCaaaleqabaGaaGinaaaakiabgk HiTiaaiIdaaSqabaaakeaacaWGHbGaeqy1dy2aaWbaaSqabeaacaaI YaaaaaaakiaaiYcacqaHYoGycaaI9aWaaSaaaeaacaWGobWaaOaaae aacaWGUbGaeqyTdu2aaWbaaSqabeaacaaIYaaaaOGaeqy1dy2aaWba aSqabeaacaaI0aaaaOGaeyOeI0IaaGioaaWcbeaaaOqaaiaaikdaca WGHbWaaWbaaSqabeaacaaIYaaaaOGaeqy1dygaaiaaiYcaaaa@58E1@ (44)

W

here the constant N= c D 0 l ε n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaai2dada WcaaqaaiaadogacaWGebWaaSbaaSqaaiaaicdaaeqaaOGaamiBaaqa aiabew7aLnaakaaabaGaamOBaaWcbeaaaaaaaa@3FAB@ . The conserved current in the present case reads as,

Q=3Nεa n ε 2 ϕ 4 8 ( a ˙ a +2 n ε 2 ϕ 4 4 n ε 2 ϕ 4 8 ϕ ˙ ϕ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaai2daca aIZaGaamOtaiabew7aLjaadggadaGcaaqaaiaad6gacqaH1oqzdaah aaWcbeqaaiaaikdaaaGccqaHvpGzdaahaaWcbeqaaiaaisdaaaGccq GHsislcaaI4aaaleqaaOGaaGikamaalaaabaGabmyyayaacaaabaGa amyyaaaacqGHRaWkcaaIYaWaaSaaaeaacaWGUbGaeqyTdu2aaWbaaS qabeaacaaIYaaaaOGaeqy1dy2aaWbaaSqabeaacaaI0aaaaOGaeyOe I0IaaGinaaqaaiaad6gacqaH1oqzdaahaaWcbeqaaiaaikdaaaGccq aHvpGzdaahaaWcbeqaaiaaisdaaaGccqGHsislcaaI4aaaamaalaaa baGafqy1dyMbaiaaaeaacqaHvpGzaaGaaGykaiaai6caaaa@5ED9@ (45)

 The Lagrangian (16) takes the form,

L=3εa a ˙ 2 ϕ 2 6ε a 2 a ˙ ϕ ϕ ˙ +3εka ϕ 2 + 24ε a 3 ϕ ˙ 2 n ε 2 ϕ 4 8 V 0 ε 3 a 3 ϕ 6 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacq GHsislcaaIZaGaeqyTduMaamyyaiqadggagaGaamaaCaaaleqabaGa aGOmaaaakiabew9aMnaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiA dacqaH1oqzcaWGHbWaaWbaaSqabeaacaaIYaaaaOGabmyyayaacaGa eqy1dyMafqy1dyMbaiaacqGHRaWkcaaIZaGaeqyTduMaam4Aaiaadg gacqaHvpGzdaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaWcaaqaaiaa ikdacaaI0aGaeqyTduMaamyyamaaCaaaleqabaGaaG4maaaakiqbew 9aMzaacaWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOBaiabew7aLnaa CaaaleqabaGaaGOmaaaakiabew9aMnaaCaaaleqabaGaaGinaaaaki abgkHiTiaaiIdaaaGaeyOeI0IaamOvamaaBaaaleaacaaIWaaabeaa kiabew7aLnaaCaaaleqabaGaaG4maaaakiaadggadaahaaWcbeqaai aaiodaaaGccqaHvpGzdaahaaWcbeqaaiaaiAdaaaGccaaIUaaaaa@6F00@ (46)

As before, let us now perform the change of variables to obtain the corresponding cyclic coordinate u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@38B4@ . The equation (12) is satisfied under the choice

u= a 2 ϕ 2 8 n ε 2 ϕ 4 8 ;v=a ϕ 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2dada WcaaqaaiaadggadaahaaWcbeqaaiaaikdaaaGccqaHvpGzdaahaaWc beqaaiaaikdaaaaakeaacaaI4aaaamaakaaabaGaamOBaiabew7aLn aaCaaaleqabaGaaGOmaaaakiabew9aMnaaCaaaleqabaGaaGinaaaa kiabgkHiTiaaiIdaaSqabaGccaaI7aGaamODaiaai2dacaWGHbGaeq y1dy2aaWbaaSqabeaacaaIYaaaaOGaaGilaaaa@4DDD@ (47)

which may be inverted to obtain

a 2 = n ε 2 v 4 64 u 2 8 v 2 , ϕ 2 = 8 v 4 n ε 2 v 4 64 u 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaale qabaGaaGOmaaaakiaai2dadaWcaaqaaiaad6gacqaH1oqzdaahaaWc beqaaiaaikdaaaGccaWG2bWaaWbaaSqabeaacaaI0aaaaOGaeyOeI0 IaaGOnaiaaisdacaWG1bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGio aiaadAhadaahaaWcbeqaaiaaikdaaaaaaOGaaGilaiabew9aMnaaCa aaleqabaGaaGOmaaaakiaai2dadaWcaaqaamaakaaabaGaaGioaiaa dAhadaahaaWcbeqaaiaaisdaaaaabeaaaOqaamaakaaabaGaamOBai abew7aLnaaCaaaleqabaGaaGOmaaaakiaadAhadaahaaWcbeqaaiaa isdaaaGccqGHsislcaaI2aGaaGinaiaadwhadaahaaWcbeqaaiaaik daaaaabeaaaaGccaaISaaaaa@5894@ (48)

while the Lagrangian (46) in view of the new variables now takes the following form,

L= 6ε u ˙ 2 v 3 8 n ε 3 v v ˙ 2 +3εkv V 0 ε 3 v 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dada WcaaqaaiaaiAdacqaH1oqzceWG1bGbaiaadaahaaWcbeqaaiaaikda aaaakeaacaWG2baaaiabgkHiTmaalaaabaGaaG4maaqaaiaaiIdaaa GaamOBaiabew7aLnaaCaaaleqabaGaaG4maaaakiaadAhaceWG2bGb aiaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIZaGaeqyTduMaam 4AaiaadAhacqGHsislcaWGwbWaaSbaaSqaaiaaicdaaeqaaOGaeqyT du2aaWbaaSqabeaacaaIZaaaaOGaamODamaaCaaaleqabaGaaG4maa aakiaai6caaaa@54E1@ (49)

Now, u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@38B4@ being cyclic, the conserved current (29) reads as,

Q= 12ε u ˙ v . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaai2dada WcaaqaaiaaigdacaaIYaGaeqyTduMabmyDayaacaaabaGaamODaaaa caaIUaaaaa@3F3B@ (50)

 In view of the energy equation (29) we also find the following first order differential equation in v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaaaa@38B5@ ,

( Q 2 24 ε 4 3k ε 2 )+ V 0 v 2 = 3n 8 v ˙ 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamaalaaaba GaamyuamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaaI0aGaeqyT du2aaWbaaSqabeaacaaI0aaaaaaakiabgkHiTmaalaaabaGaaG4mai aadUgaaeaacqaH1oqzdaahaaWcbeqaaiaaikdaaaaaaOGaaGykaiab gUcaRiaadAfadaWgaaWcbaGaaGimaaqabaGccaWG2bWaaWbaaSqabe aacaaIYaaaaOGaaGypamaalaaabaGaaG4maiaad6gaaeaacaaI4aaa aiqadAhagaGaamaaCaaaleqabaGaaGOmaaaakiaai6caaaa@4EE5@ (51)

The above first order differential equation in v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaaaa@38B5@ may be integrated to find the following form of v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaaaa@38B5@ ,

v= e pt +4 F 0 V 0 e pt 4 V 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaai2dada WcaaqaaiaadwgadaahaaWcbeqaaiaadchacaWG0baaaOGaey4kaSIa aGinaiaadAeadaWgaaWcbaGaaGimaaqabaGccaWGwbWaaSbaaSqaai aaicdaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0IaamiCaiaadsha aaaakeaacaaI0aGaamOvamaaBaaaleaacaaIWaaabeaaaaGccaaISa aaaa@48FC@ (52)

where, F 0 = 3k ε 2 Q 2 24 ε 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBaaale aacaaIWaaabeaakiaai2dadaWcaaqaaiaaiodacaWGRbaabaGaeqyT du2aaWbaaSqabeaacaaIYaaaaaaakiabgkHiTmaalaaabaGaamyuam aaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaaI0aGaeqyTdu2aaWba aSqabeaacaaI0aaaaaaaaaa@4565@ . The cyclic variable u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@38B4@ may be found as well in view of (50) as,

u=( Q n 32 V 0 ε 6 V 0 )( e pt 4 F 0 V 0 e pt )+ u 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2daca aIOaWaaSaaaeaacaWGrbWaaOaaaeaacaWGUbaaleqaaaGcbaGaaG4m aiaaikdacaWGwbWaaSbaaSqaaiaaicdaaeqaaOGaeqyTdu2aaOaaae aacaaI2aGaamOvamaaBaaaleaacaaIWaaabeaaaeqaaaaakiaaiMca caaIOaGaamyzamaaCaaaleqabaGaamiCaiaadshaaaGccqGHsislca aI0aGaamOramaaBaaaleaacaaIWaaabeaakiaadAfadaWgaaWcbaGa aGimaaqabaGccaWGLbWaaWbaaSqabeaacqGHsislcaWGWbGaamiDaa aakiaaiMcacqGHRaWkcaWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaGil aaaa@5587@ (53)

where, the constant p= 8 V 0 3n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaai2dada GcaaqaamaalaaabaGaaGioaiaadAfadaWgaaWcbaGaaGimaaqabaaa keaacaaIZaGaamOBaaaaaSqabaaaaa@3DDE@ . Setting the integration constant u 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBaaale aacaaIWaaabeaakiaai2dacaaIWaaaaa@3B25@ as before, we finally obtain exact solutions of a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiIcaca WG0bGaaGykaaaa@3AFE@ and ϕ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikai aadshacaaIPaaaaa@3BE0@ as,

a(t)=( n ε 2 8 ( b 1 e pt + b 2 e pt ) 4 8( b 3 e pt b 4 e pt ) 2 ( b 1 e pt + b 2 e pt ) 2 ) 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiIcaca WG0bGaaGykaiaai2dacaaIOaWaaSaaaeaadaWcaaqaaiaad6gacqaH 1oqzdaahaaWcbeqaaiaaikdaaaaakeaacaaI4aaaaiaaiIcacaWGIb WaaSbaaSqaaiaaigdaaeqaaOGaamyzamaaCaaaleqabaGaamiCaiaa dshaaaGccqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaamyzam aaCaaaleqabaGaeyOeI0IaamiCaiaadshaaaGccaaIPaWaaWbaaSqa beaacaaI0aaaaOGaeyOeI0IaaGioaiaaiIcacaWGIbWaaSbaaSqaai aaiodaaeqaaOGaamyzamaaCaaaleqabaGaamiCaiaadshaaaGccqGH sislcaWGIbWaaSbaaSqaaiaaisdaaeqaaOGaamyzamaaCaaaleqaba GaeyOeI0IaamiCaiaadshaaaGccaaIPaWaaWbaaSqabeaacaaIYaaa aaGcbaGaaGikaiaadkgadaWgaaWcbaGaaGymaaqabaGccaWGLbWaaW baaSqabeaacaWGWbGaamiDaaaakiabgUcaRiaadkgadaWgaaWcbaGa aGOmaaqabaGccaWGLbWaaWbaaSqabeaacqGHsislcaWGWbGaamiDaa aakiaaiMcadaahaaWcbeqaaiaaikdaaaaaaOGaaGykamaaCaaaleqa baWaaSaaaeaacaaIXaaabaGaaGOmaaaaaaGccaaISaaaaa@6FAF@ (54)

ϕ(t)= ( b 1 e pt + b 2 e pt ) ( n ε 2 8 ( b 1 e pt + b 2 e pt ) 4 8( b 3 e pt b 4 e pt ) 2 ) 1 4 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikai aadshacaaIPaGaaGypamaalaaabaGaaGikaiaadkgadaWgaaWcbaGa aGymaaqabaGccaWGLbWaaWbaaSqabeaacaWGWbGaamiDaaaakiabgU caRiaadkgadaWgaaWcbaGaaGOmaaqabaGccaWGLbWaaWbaaSqabeaa cqGHsislcaWGWbGaamiDaaaakiaaiMcaaeaacaaIOaWaaSaaaeaaca WGUbGaeqyTdu2aaWbaaSqabeaacaaIYaaaaaGcbaGaaGioaaaacaaI OaGaamOyamaaBaaaleaacaaIXaaabeaakiaadwgadaahaaWcbeqaai aadchacaWG0baaaOGaey4kaSIaamOyamaaBaaaleaacaaIYaaabeaa kiaadwgadaahaaWcbeqaaiabgkHiTiaadchacaWG0baaaOGaaGykam aaCaaaleqabaGaaGinaaaakiabgkHiTiaaiIdacaaIOaGaamOyamaa BaaaleaacaaIZaaabeaakiaadwgadaahaaWcbeqaaiaadchacaWG0b aaaOGaeyOeI0IaamOyamaaBaaaleaacaaI0aaabeaakiaadwgadaah aaWcbeqaaiabgkHiTiaadchacaWG0baaaOGaaGykamaaCaaaleqaba GaaGOmaaaakiaaiMcadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaa isdaaaaaaaaakiaaiYcaaaa@6FA0@ (55)

where, b 1 = 1 4 V 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBaaale aacaaIXaaabeaakiaai2dadaWcaaqaaiaaigdaaeaacaaI0aGaamOv amaaBaaaleaacaaIWaaabeaaaaGccaGGSaaaaa@3E5D@ b 2 = 3k ε 2 Q 2 24 ε 4 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBaaale aacaaIYaaabeaakiaai2dadaWcaaqaaiaaiodacaWGRbaabaGaeqyT du2aaWbaaSqabeaacaaIYaaaaaaakiabgkHiTmaalaaabaGaamyuam aaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaaI0aGaeqyTdu2aaWba aSqabeaacaaI0aaaaaaakiaacYcaaaa@463D@ b 3 = Q n 32 V 0 ε 6 V 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBaaale aacaaIZaaabeaakiaai2dadaWcaaqaaiaadgfadaGcaaqaaiaad6ga aSqabaaakeaacaaIZaGaaGOmaiaadAfadaWgaaWcbaGaaGimaaqaba GccqaH1oqzdaGcaaqaaiaaiAdacaWGwbWaaSbaaSqaaiaaicdaaeqa aaqabaaaaOGaaiilaaaa@448F@ b 4 =( 3k ε 2 Q 2 24 ε 4 )( Q n 8ε 6 V 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBaaale aacaaI0aaabeaakiaai2dacaaIOaWaaSaaaeaacaaIZaGaam4Aaaqa aiabew7aLnaaCaaaleqabaGaaGOmaaaaaaGccqGHsisldaWcaaqaai aadgfadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGaaGinaiabew7a LnaaCaaaleqabaGaaGinaaaaaaGccaaIPaGaaGikamaalaaabaGaam yuamaakaaabaGaamOBaaWcbeaaaOqaaiaaiIdacqaH1oqzdaGcaaqa aiaaiAdacaWGwbWaaSbaaSqaaiaaicdaaeqaaaqabaaaaOGaaGykaa aa@4F5B@ are constants as specified. Clearly, the form of the scale factor remains unaltered from the previous case, and as such represents Lorentzian wormhole solution yet again. Weak energy condition ρ e >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaSbaaS qaaiaadwgaaeqaaOGaaGOpaiaaicdaaaa@3C1C@ and ρ e + p e 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaSbaaS qaaiaadwgaaeqaaOGaey4kaSIaamiCamaaBaaaleaacaWGLbaabeaa kiabgwMiZkaaicdaaaa@4011@ is satisfied here too.

Case 3: Non-minimally coupled theory of gravity

Finally, let us consider, f(ϕ)=(1ε ϕ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiIcacq aHvpGzcaaIPaGaaGypaiaaiIcacaaIXaGaeyOeI0IaeqyTduMaeqy1 dy2aaWbaaSqabeaacaaIYaaaaOGaaGykaaaa@4408@ ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdugaaa@3961@ ,being a coupling constant. Under this choice, Equation (28) yields the following set of solutions,

V= V 0 (1ε ϕ 2 ) 3 Λ, ω= 48 ε 2 ϕ 2 (1ε ϕ 2 )[n (1ε ϕ 2 ) 2 8] , B 1 = B 0 n (1ε ϕ 2 ) 2 8 n (1ε ϕ 2 ) , B 2 =c B 0 n (1ε ϕ 2 ) 2 8 2 n εϕ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaa qaaiaadAfacaaI9aGaamOvamaaBaaaleaacaaIWaaabeaakiaaiIca caaIXaGaeyOeI0IaeqyTduMaeqy1dy2aaWbaaSqabeaacaaIYaaaaO GaaGykamaaCaaaleqabaGaaG4maaaakiabgkHiTiabfU5amjaaiYca caaIGaGaaGiiaiaaiccacaaIGaGaaGiiaiaaiccacaaIGaGaaGiiai aaiccacaaIGaGaaGiiaiaaiccacaaIGaGaaGiiaiaaiccacaaIGaGa aGiiaiaaiccacqaHjpWDcaaI9aWaaSaaaeaacaaI0aGaaGioaiabew 7aLnaaCaaaleqabaGaaGOmaaaakiabew9aMnaaCaaaleqabaGaaGOm aaaaaOqaaiaaiIcacaaIXaGaeyOeI0IaeqyTduMaeqy1dy2aaWbaaS qabeaacaaIYaaaaOGaaGykaiaaiUfacaWGUbGaaGikaiaaigdacqGH sislcqaH1oqzcqaHvpGzdaahaaWcbeqaaiaaikdaaaGccaaIPaWaaW baaSqabeaacaaIYaaaaOGaeyOeI0IaaGioaiaai2faaaGaaGilaaqa aaqaaiaadkeadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamOqamaaBa aaleaacaaIWaaabeaakmaalaaabaWaaOaaaeaacaWGUbGaaGikaiaa igdacqGHsislcqaH1oqzcqaHvpGzdaahaaWcbeqaaiaaikdaaaGcca aIPaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGioaaWcbeaaaOqa amaakaaabaGaamOBaaWcbeaakiaaiIcacaaIXaGaeyOeI0IaeqyTdu Maeqy1dy2aaWbaaSqabeaacaaIYaaaaOGaaGykaaaacaaISaGaaGii aiaaiccacaaIGaGaaGiiaiaaiccacaaIGaGaaGiiaiaaiccacaaIGa GaaGiiaiaadkeadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaeyOeI0Ia am4yaiaadkeadaWgaaWcbaGaaGimaaqabaGcdaWcaaqaamaakaaaba GaamOBaiaaiIcacaaIXaGaeyOeI0IaeqyTduMaeqy1dy2aaWbaaSqa beaacaaIYaaaaOGaaGykamaaCaaaleqabaGaaGOmaaaakiabgkHiTi aaiIdaaSqabaaakeaacaaIYaWaaOaaaeaacaWGUbaaleqaaOGaeqyT duMaeqy1dygaaiaaiYcaaaaaaa@A7A1@ (56)

 where c, B 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaaiYcaca WGcbWaaSbaaSqaaiaaicdaaeqaaaaa@3B05@ are constants. As a result we find

α= N 0 n (1ε ϕ 2 ) 2 8 a(1ε ϕ 2 ) ,β= N 0 n (1ε ϕ 2 ) 2 8 2ε a 2 ϕ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGypai abgkHiTmaalaaabaGaamOtamaaBaaaleaacaaIWaaabeaakmaakaaa baGaamOBaiaaiIcacaaIXaGaeyOeI0IaeqyTduMaeqy1dy2aaWbaaS qabeaacaaIYaaaaOGaaGykamaaCaaaleqabaGaaGOmaaaakiabgkHi TiaaiIdaaSqabaaakeaacaWGHbGaaGikaiaaigdacqGHsislcqaH1o qzcqaHvpGzdaahaaWcbeqaaiaaikdaaaGccaaIPaaaaiaaiYcacqaH YoGycaaI9aGaeyOeI0YaaSaaaeaacaWGobWaaSbaaSqaaiaaicdaae qaaOWaaOaaaeaacaWGUbGaaGikaiaaigdacqGHsislcqaH1oqzcqaH vpGzdaahaaWcbeqaaiaaikdaaaGccaaIPaWaaWbaaSqabeaacaaIYa aaaOGaeyOeI0IaaGioaaWcbeaaaOqaaiaaikdacqaH1oqzcaWGHbWa aWbaaSqabeaacaaIYaaaaOGaeqy1dygaaiaaiYcaaaa@681F@ (57)

where N 0 = c B 0 l n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBaaale aacaaIWaaabeaakiaai2dadaWcaaqaaiaadogacaWGcbWaaSbaaSqa aiaaicdaaeqaaOGaamiBaaqaamaakaaabaGaamOBaaWcbeaaaaaaaa@3EF2@ is a constant. The conserved current turns out to be,

Q=3 N 0 a n (1ε ϕ 2 ) 2 8 ( a ˙ a +2ε ϕ ϕ ˙ 1ε ϕ 2 n (1ε ϕ 2 ) 2 4 n (1ε ϕ 2 ) 2 8 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaai2daca aIZaGaamOtamaaBaaaleaacaaIWaaabeaakiaadggadaGcaaqaaiaa d6gacaaIOaGaaGymaiabgkHiTiabew7aLjabew9aMnaaCaaaleqaba GaaGOmaaaakiaaiMcadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI 4aaaleqaaOGaaGikamaalaaabaGabmyyayaacaaabaGaamyyaaaacq GHRaWkcaaIYaGaeqyTdu2aaSaaaeaacqaHvpGzcuaHvpGzgaGaaaqa aiaaigdacqGHsislcqaH1oqzcqaHvpGzdaahaaWcbeqaaiaaikdaaa aaaOWaaSaaaeaacaWGUbGaaGikaiaaigdacqGHsislcqaH1oqzcqaH vpGzdaahaaWcbeqaaiaaikdaaaGccaaIPaWaaWbaaSqabeaacaaIYa aaaOGaeyOeI0IaaGinaaqaaiaad6gacaaIOaGaaGymaiabgkHiTiab ew7aLjabew9aMnaaCaaaleqabaGaaGOmaaaakiaaiMcadaahaaWcbe qaaiaaikdaaaGccqGHsislcaaI4aaaaiaaiMcacaaISaaaaa@6EF2@ (58)

while the Lagrangian (16) takes the following form,

L=3a a ˙ 2 (1ε ϕ 2 )+6ε a 2 a ˙ ϕ ϕ ˙ +3ka(1ε ϕ 2 )+ 24 ε 2 a 3 ϕ 2 ϕ ˙ 2 (1ε ϕ 2 )(n(1ε ϕ 2 )8) V 0 a 3 (1ε ϕ 2 ) 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacq GHsislcaaIZaGaamyyaiqadggagaGaamaaCaaaleqabaGaaGOmaaaa kiaaiIcacaaIXaGaeyOeI0IaeqyTduMaeqy1dy2aaWbaaSqabeaaca aIYaaaaOGaaGykaiabgUcaRiaaiAdacqaH1oqzcaWGHbWaaWbaaSqa beaacaaIYaaaaOGabmyyayaacaGaeqy1dyMafqy1dyMbaiaacqGHRa WkcaaIZaGaam4AaiaadggacaaIOaGaaGymaiabgkHiTiabew7aLjab ew9aMnaaCaaaleqabaGaaGOmaaaakiaaiMcacqGHRaWkdaWcaaqaai aaikdacaaI0aGaeqyTdu2aaWbaaSqabeaacaaIYaaaaOGaamyyamaa CaaaleqabaGaaG4maaaakiabew9aMnaaCaaaleqabaGaaGOmaaaaki qbew9aMzaacaWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGikaiaaigda cqGHsislcqaH1oqzcqaHvpGzdaahaaWcbeqaaiaaikdaaaGccaaIPa GaaGikaiaad6gacaaIOaGaaGymaiabgkHiTiabew7aLjabew9aMnaa CaaaleqabaGaaGOmaaaakiaaiMcacqGHsislcaaI4aGaaGykaaaacq GHsislcaWGwbWaaSbaaSqaaiaaicdaaeqaaOGaamyyamaaCaaaleqa baGaaG4maaaakiaaiIcacaaIXaGaeyOeI0IaeqyTduMaeqy1dy2aaW baaSqabeaacaaIYaaaaOGaaGykamaaCaaaleqabaGaaG4maaaakiaa i6caaaa@86B2@ (59)

As before, we now perform the change of variables to obtain the corresponding cyclic coordinate u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@38B4@ . For this purpose, equation (12) may be solved to find,

u= a 2 (1ε ϕ 2 ) 8 n (1ε ϕ 2 ) 2 8 ;v=a(1ε ϕ 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2dada WcaaqaaiaadggadaahaaWcbeqaaiaaikdaaaGccaaIOaGaaGymaiab gkHiTiabew7aLjabew9aMnaaCaaaleqabaGaaGOmaaaakiaaiMcaae aacaaI4aaaamaakaaabaGaamOBaiaaiIcacaaIXaGaeyOeI0IaeqyT duMaeqy1dy2aaWbaaSqabeaacaaIYaaaaOGaaGykamaaCaaaleqaba GaaGOmaaaakiabgkHiTiaaiIdaaSqabaGccaaI7aGaamODaiaai2da caWGHbGaaGikaiaaigdacqGHsislcqaH1oqzcqaHvpGzdaahaaWcbe qaaiaaikdaaaGccaaIPaGaaGilaaaa@5A50@ (60)

which may further be inverted to obtain,

a 2 = n v 4 64 u 2 8 v 2 , ϕ 2 = 1 ε (1 8 v 4 n v 4 64 u 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaale qabaGaaGOmaaaakiaai2dadaWcaaqaaiaad6gacaWG2bWaaWbaaSqa beaacaaI0aaaaOGaeyOeI0IaaGOnaiaaisdacaWG1bWaaWbaaSqabe aacaaIYaaaaaGcbaGaaGioaiaadAhadaahaaWcbeqaaiaaikdaaaaa aOGaaGilaiabew9aMnaaCaaaleqabaGaaGOmaaaakiaai2dadaWcaa qaaiaaigdaaeaacqaH1oqzaaGaaGikaiaaigdacqGHsisldaWcaaqa aiaaiIdacaWG2bWaaWbaaSqabeaacaaI0aaaaaGcbaGaamOBaiaadA hadaahaaWcbeqaaiaaisdaaaGccqGHsislcaaI2aGaaGinaiaadwha daahaaWcbeqaaiaaikdaaaaaaOGaaGykaiaai6caaaa@58C1@ (61)

The Lagrangian (59) in terms of the new variables ( u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@38B4@ and v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaaaa@38B5@ ) now takes the following simplified form

L= 6 u ˙ 2 v 3 8 nv v ˙ 2 +3kv V 0 v 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dada WcaaqaaiaaiAdaceWG1bGbaiaadaahaaWcbeqaaiaaikdaaaaakeaa caWG2baaaiabgkHiTmaalaaabaGaaG4maaqaaiaaiIdaaaGaamOBai aadAhaceWG2bGbaiaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI ZaGaam4AaiaadAhacqGHsislcaWGwbWaaSbaaSqaaiaaicdaaeqaaO GaamODamaaCaaaleqabaGaaG4maaaakiaai6caaaa@4C5D@ (62)

Since u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@38B4@ is cyclic, the conserved current may now be found in a straight forward manner as,

Q= 12 u ˙ v , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaai2dada WcaaqaaiaaigdacaaIYaGabmyDayaacaaabaGaamODaaaacaaISaaa aa@3D92@ (63)

while the energy equation (29) reads as,

( Q 2 24 3k)+ V 0 v 2 = 3n 8 v ˙ 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamaalaaaba GaamyuamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaaI0aaaaiab gkHiTiaaiodacaWGRbGaaGykaiabgUcaRiaadAfadaWgaaWcbaGaaG imaaqabaGccaWG2bWaaWbaaSqabeaacaaIYaaaaOGaaGypamaalaaa baGaaG4maiaad6gaaeaacaaI4aaaaiqadAhagaGaamaaCaaaleqaba GaaGOmaaaakiaaiYcaaaa@499D@ (64)

which may further be integrated to yield

v= e pt +4F V 0 e pt 4 V 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaai2dada WcaaqaaiaadwgadaahaaWcbeqaaiaadchacaWG0baaaOGaey4kaSIa aGinaiaadAeacaWGwbWaaSbaaSqaaiaaicdaaeqaaOGaamyzamaaCa aaleqabaGaeyOeI0IaamiCaiaadshaaaaakeaacaaI0aGaamOvamaa BaaaleaacaaIWaaabeaaaaGccaaISaaaaa@480C@ (65)

where, the constant F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraaaa@3885@ is given by, F=3k Q 2 24 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaai2daca aIZaGaam4AaiabgkHiTmaalaaabaGaamyuamaaCaaaleqabaGaaGOm aaaaaOqaaiaaikdacaaI0aaaaaaa@3F39@ . We can also find the cyclic coordinate u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@38B4@ in view of (63) as,

u=( n Q 32 6 V 0 3 2 )( e pt 4F V 0 e pt )+ u 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2daca aIOaWaaSaaaeaadaGcaaqaaiaad6gaaSqabaGccaWGrbaabaGaaG4m aiaaikdadaGcaaqaaiaaiAdaaSqabaGccaWGwbWaa0baaSqaaiaaic daaeaadaWcaaqaaiaaiodaaeaacaaIYaaaaaaaaaGccaaIPaGaaGik aiaadwgadaahaaWcbeqaaiaadchacaWG0baaaOGaeyOeI0IaaGinai aadAeacaWGwbWaaSbaaSqaaiaaicdaaeqaaOGaamyzamaaCaaaleqa baGaeyOeI0IaamiCaiaadshaaaGccaaIPaGaey4kaSIaamyDamaaBa aaleaacaaIWaaabeaakiaaiYcaaaa@52C4@ (66)

where the constant p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaaaa@38AF@ is given by p= 8 V 0 3n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaai2dada GcaaqaamaalaaabaGaaGioaiaadAfadaWgaaWcbaGaaGimaaqabaaa keaacaaIZaGaamOBaaaaaSqabaaaaa@3DDE@ . As before we set the integration constant u 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBaaale aacaaIWaaabeaaaaa@399A@ to zero for the origin of time, and solve the scale factor v and the scalar field ϕ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikai aadshacaaIPaaaaa@3BE0@ exactly as

a(t)=( n 8 ( a 1 e pt + a 2 e pt ) 4 8( a 3 e pt a 4 e pt ) 2 ( a 1 e pt + a 2 e pt ) 2 ) 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiIcaca WG0bGaaGykaiaai2dacaaIOaWaaSaaaeaadaWcaaqaaiaad6gaaeaa caaI4aaaaiaaiIcacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaamyzam aaCaaaleqabaGaamiCaiaadshaaaGccqGHRaWkcaWGHbWaaSbaaSqa aiaaikdaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0IaamiCaiaads haaaGccaaIPaWaaWbaaSqabeaacaaI0aaaaOGaeyOeI0IaaGioaiaa iIcacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaamyzamaaCaaaleqaba GaamiCaiaadshaaaGccqGHsislcaWGHbWaaSbaaSqaaiaaisdaaeqa aOGaamyzamaaCaaaleqabaGaeyOeI0IaamiCaiaadshaaaGccaaIPa WaaWbaaSqabeaacaaIYaaaaaGcbaGaaGikaiaadggadaWgaaWcbaGa aGymaaqabaGccaWGLbWaaWbaaSqabeaacaWGWbGaamiDaaaakiabgU caRiaadggadaWgaaWcbaGaaGOmaaqabaGccaWGLbWaaWbaaSqabeaa cqGHsislcaWGWbGaamiDaaaakiaaiMcadaahaaWcbeqaaiaaikdaaa aaaOGaaGykamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaGOmaaaa aaGccaaISaaaaa@6D0F@ (67)

ϕ(t)= 1 ε (1 ( a 1 e pt + a 2 e pt ) 4 n 8 ( a 1 e pt + a 2 e pt ) 4 8( a 3 e pt a 4 e pt ) 2 ) 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikai aadshacaaIPaGaaGypamaalaaabaGaaGymaaqaamaakaaabaGaeqyT dugaleqaaaaakiaaiIcacaaIXaGaeyOeI0YaaSaaaeaacaaIOaGaam yyamaaBaaaleaacaaIXaaabeaakiaadwgadaahaaWcbeqaaiaadcha caWG0baaaOGaey4kaSIaamyyamaaBaaaleaacaaIYaaabeaakiaadw gadaahaaWcbeqaaiabgkHiTiaadchacaWG0baaaOGaaGykamaaCaaa leqabaGaaGinaaaaaOqaamaalaaabaGaamOBaaqaaiaaiIdaaaGaaG ikaiaadggadaWgaaWcbaGaaGymaaqabaGccaWGLbWaaWbaaSqabeaa caWGWbGaamiDaaaakiabgUcaRiaadggadaWgaaWcbaGaaGOmaaqaba GccaWGLbWaaWbaaSqabeaacqGHsislcaWGWbGaamiDaaaakiaaiMca daahaaWcbeqaaiaaisdaaaGccqGHsislcaaI4aGaaGikaiaadggada WgaaWcbaGaaG4maaqabaGccaWGLbWaaWbaaSqabeaacaWGWbGaamiD aaaakiabgkHiTiaadggadaWgaaWcbaGaaGinaaqabaGccaWGLbWaaW baaSqabeaacqGHsislcaWGWbGaamiDaaaakiaaiMcadaahaaWcbeqa aiaaikdaaaaaaOGaaGykamaaCaaaleqabaWaaSaaaeaacaaIXaaaba GaaGOmaaaaaaGccaaISaaaaa@7232@ (68)

where, a 1 = 1 4 V 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaale aacaaIXaaabeaakiaai2dadaWcaaqaaiaaigdaaeaacaaI0aGaamOv amaaBaaaleaacaaIWaaabeaaaaGccaGGSaaaaa@3E5C@ , a 2 =3k Q 2 24 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaale aacaaIYaaabeaakiaai2dacaaIZaGaam4AaiabgkHiTmaalaaabaGa amyuamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaaI0aaaaiaacY caaaa@40F6@ , a 3 = n Q 32 6 V 0 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaale aacaaIZaaabeaakiaai2dadaWcaaqaamaakaaabaGaamOBaaWcbeaa kiaadgfaaeaacaaIZaGaaGOmamaakaaabaGaaGOnaaWcbeaakiaadA fadaqhaaWcbaGaaGimaaqaamaalaaabaGaaG4maaqaaiaaikdaaaaa aaaaaaa@4201@ and a 4 = n 8 6 V 0 Q(3k Q 2 24 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaale aacaaI0aaabeaakiaai2dadaWcaaqaamaakaaabaGaamOBaaWcbeaa aOqaaiaaiIdadaGcaaqaaiaaiAdacaWGwbWaaSbaaSqaaiaaicdaae qaaaqabaaaaOGaamyuaiaaiIcacaaIZaGaam4AaiabgkHiTmaalaaa baGaamyuamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaaI0aaaai aaiMcaaaa@4708@ are constants. Here again we observe that the form of the scale factor remains unaltered from the earlier ones and therefore represents Lorentzian wormhole solution. The weak energy condition is not violated here again.

Discussion and conclusions

Excitement raised after Ruggiero et al.46,47 for the first time applied Noether symmetry in the scalar-tensor theory of gravity, to find a form of potential which naturally led to ‘Inflation’. Thereafter, many people worked in the field and proved it to be a very powerful tool to explore the parameters and the potential involved in a theory. It also makes things much easier to solve the Einstein’s field equations, particularly in view of the cyclic coordinate. The technique has been applied here again for a general non-minimally coupled scalar-tensor theory of gravity, in the presence of cosmological constant. Three cases of particular interest have been studied, viz. the ‘Brans-Dicke theory’, the ‘Induced theory of gravity’ and the ‘General non-minimal scalar-tensor theory of gravity’. While only an imaginary scalar field admits classical Euclidean wormhole solution,8 here, its Lorentzian counterpart is clearly found to admit wormhole solutions for real scalar field, without violating even the weak energy condition. Noticeably, all the three cases having different coupling parameters and potentials yield the same form of the scale factor, which represents cosmological Lorentzian wormholes. Such wormholes admit weak energy condition. While even classical Euclidian wormholes obtained under back-reaction from its quantum counterpart do not exist in general for arbitrary potential,8 evolving classical cosmological Lorentzian wormholes on the contrary, appear to be a generic feature of non-minimally coupled Scalar-tensor theory of gravity. Such solutions depict that, the universe itself evolved as a Lorentzian wormhole, which initiated inflation thereafter. In the process, it removes cosmological singularity arising from GTR even at the classical level. It is now required to check if the inflationary behaviour is at par with the currently released data,62 which we pose in future.

Appendix

In the appendix we explicitly solve the set of Noether equations (23) - (26), under separation of variables (27), to demonstrate that the solutions lead to the set of equation (28). Primarily, equation (23) takes the form

A 1 +2a A 1,a a( A 2 +a A 2,a ) = B 2 B 1 f f = C 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGbb WaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaGOmaiaadggacaWGbbWa aSbaaSqaaiaaigdacaaISaGaamyyaaqabaaakeaacaWGHbGaaGikai aadgeadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGHbGaamyqamaa BaaaleaacaaIYaGaaGilaiaadggaaeqaaOGaaGykaaaacaaI9aGaey OeI0YaaSaaaeaacaWGcbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamOq amaaBaaaleaacaaIXaaabeaaaaGcdaWcaaqaaiqadAgagaqbaaqaai aadAgaaaGaaGypaiabgkHiTiaadoeadaWgaaWcbaGaaGymaaqabaGc caaISaaaaa@53C1@ (69)

under the condition a( A 2 +a A 2,a )0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiIcaca WGbbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyyaiaadgeadaWg aaWcbaGaaGOmaiaaiYcacaWGHbaabeaakiaaiMcacqGHGjsUcaaIWa aaaa@435A@ . In the above, (,a) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaiYcaca WGHbGaaiykaaaa@3AAF@ stands for derivative with respect to the scale factor a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@38A0@ , and C 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBaaale aacaaIXaaabeaaaaa@3969@ is the separation constant. Next, equation (24) takes the form

3 B 1 6 f ω B 1 2 B 2 + ω ω B 2 =a A 2 A 1 = C 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIZa GaamOqamaaBaaaleaacaaIXaaabeaakiabgkHiTiaaiAdadaWcaaqa aiqadAgagaqbaaqaaiabeM8a3baaceWGcbGbauaadaWgaaWcbaGaaG ymaaqabaaakeaacaaIYaGabmOqayaafaWaaSbaaSqaaiaaikdaaeqa aOGaey4kaSYaaSaaaeaacuaHjpWDgaqbaaqaaiabeM8a3baacaWGcb WaaSbaaSqaaiaaikdaaeqaaaaakiaai2dacqGHsislcaWGHbWaaSaa aeaacaWGbbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyqamaaBaaale aacaaIXaaabeaaaaGccaaI9aGaeyOeI0Iaam4qamaaBaaaleaacaaI YaaabeaakiaaiYcaaaa@5393@ (70)

and of-course we need to fix (2 B 2 + ω ω B 2 )0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaikdace WGcbGbauaadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaaiqb eM8a3zaafaaabaGaeqyYdChaaiaadkeadaWgaaWcbaGaaGOmaaqaba GccaaIPaGaeyiyIKRaaGimaaaa@4472@ . In the above, C 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBaaale aacaaIYaaabeaaaaa@396A@ is again the separation constant. Now, in view of the two above equations (69) and (70), one can obtain the following relation, using equation (26), viz.

3kf(1+ C 1 C 2 )= a 2 ( 3V+ V C 1 C 2 f f +3Λ ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaadUgaca WGMbGaaGikaiaaigdacqGHRaWkcaWGdbWaaSbaaSqaaiaaigdaaeqa aOGaam4qamaaBaaaleaacaaIYaaabeaakiaaiMcacaaI9aGaamyyam aaCaaaleqabaGaaGOmaaaakmaabmaabaGaaG4maiaadAfacqGHRaWk ceWGwbGbauaacaWGdbWaaSbaaSqaaiaaigdaaeqaaOGaam4qamaaBa aaleaacaaIYaaabeaakmaalaaabaGaamOzaaqaaiqadAgagaqbaaaa cqGHRaWkcaaIZaGaeu4MdWeacaGLOaGaayzkaaGaaGilaaaa@5180@ (71)

which, in general, i.e. for k0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgcMi5k aaicdaaaa@3B2B@ implies that,

C 1 C 2 =1,and,V= V 0 f 3 Λ. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBaaale aacaaIXaaabeaakiaadoeadaWgaaWcbaGaaGOmaaqabaGccaaI9aGa eyOeI0IaaGymaiaaiYcacaqGHbGaaeOBaiaabsgacaaISaGaamOvai aai2dacaWGwbWaaSbaaSqaaiaaicdaaeqaaOGaamOzamaaCaaaleqa baGaaG4maaaakiabgkHiTiabfU5amjaai6caaaa@4A2A@ (72)

In order to obtain A 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaale aacaaIXaaabeaaaaa@3967@ and A 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaale aacaaIYaaabeaaaaa@3968@ , let us set C 1 =c= 1 C 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBaaale aacaaIXaaabeaakiaai2dacaWGJbGaaGypaiabgkHiTmaalaaabaGa aGymaaqaaiaadoeadaWgaaWcbaGaaGOmaaqabaaaaaaa@3F51@ , and use it in equations (69) and (70). As a result, we obtain,

A 2 = l a 2 , A 1 = cl a , B 2 =c f f B 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaale aacaaIYaaabeaakiaai2dadaWcaaqaaiaadYgaaeaacaWGHbWaaWba aSqabeaacaaIYaaaaaaakiaaiYcacaWGbbWaaSbaaSqaaiaaigdaae qaaOGaaGypaiabgkHiTmaalaaabaGaam4yaiaadYgaaeaacaWGHbaa aiaaiYcacaWGcbWaaSbaaSqaaiaaikdaaeqaaOGaaGypaiaadogada WcaaqaaiaadAgaaeaaceWGMbGbauaaaaGaamOqamaaBaaaleaacaaI Xaaabeaaaaa@4BC1@ (73)

Finally, using the equations (25) and (70), we obtain the last two relations appearing in (28), viz.

B 1 = 2ω 3 f B 1 ,3 f 2 +2ωf= n 4 ω f 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOqayaafaWaaS baaSqaaiaaigdaaeqaaOGaaGypamaalaaabaGaaGOmaiabeM8a3bqa aiaaiodaceWGMbGbauaaaaGaamOqamaaBaaaleaacaaIXaaabeaaki aaiYcacaaIZaGabmOzayaafaWaaWbaaSqabeaacaaIYaaaaOGaey4k aSIaaGOmaiabeM8a3jaadAgacaaI9aWaaSaaaeaacaWGUbaabaGaaG inaaaacqaHjpWDcaWGMbWaaWbaaSqabeaacaaIZaaaaOGaaGOlaaaa @4EE9@ (74)

It is interesting to note that the equations (73) and (74) naturally lead to the following general relation between α(a,ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGikai aadggacaaISaGaeqy1dyMaaGykaaaa@3E22@ and β(a,ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaaGikai aadggacaaISaGaeqy1dyMaaGykaaaa@3E24@ , viz.

α=aβ f f . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8FMI8Vfc8Eeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGypai abgkHiTiaadggacqaHYoGydaWcaaqaaiqadAgagaqbaaqaaiaadAga aaGaaGOlaaaa@403E@ (75)

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

References

  1. G Lavrelashvili, A Rubakov, G Tinyakov. Disruption of quantum coherence upon a change in spatial topology in quantum gravity. JETP Lett. 1987;46(4):167.
  2. G Lavrelashvili, A Rubakov, G Tinyakov. Particle creation and destruction of quantum coherence by topological change. Nucl. Phys B. 1988;299(4):757−796.
  3. G Lavrelashvili, A Rubakov, G Tinyakov. Loss of quantum coherence due to topological changes: a toy model. Mod Phys Lett. 1988;3(13):1231−1242.
  4. SB Giddings, A Strominger. Axion Induced Topology Change in Quantum Gravity and String Theory. Nucl. Phys B. 1988;306(4):890−907.
  5. MS Morris, KS Thorne. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. J Phys. 1988;56:395.
  6. MS Morris, KS Thorne, U Yurtsever. Wormholes, Time Machines, and the Weak Energy Condition. Phys Rev Lett. 1988;61:1446−1449.
  7. SW Hawking, DN Page. Spectrum of wormholes. Phys Rev D. 1990;42:2655.
  8. S Ruz, S Debnath, AK Sanyal, et al. Euclidean wormholes with minimally coupled scalar fields. Class Quant Grav. 2013;30(17):175013.
  9. M Visser. Lorentzian Wormholes: From Einstein to Hawking. New York: AIP-Press; 1995. 412p.
  10. M Visser, S Kar, N Dadhich. Traversable Wormholes with Arbitrarily Small Energy Condition Violations. Phys Rev Lett. 2003;90:201102.
  11. N Dadhich, S Kar, S Mukherjee, et al. R=0 spacetimes and self−dual Lorentzian wormholes. Phys Rev D. 2002;65:064004.
  12. E Teo. Rotating traversable wormholes. Phys Rev D. 1998;58:024014.
  13. V M Khatsymovsky. Rotating vacuum wormhole. Phys Lett B. 1998;429(3−4):254−262.
  14. M Cataldo, P Salgado, P Minning. Self-dual Lorentzian wormholes in n−dimensional Einstein gravity. Phys Rev B. 2002;66:124008.
  15. PKF Kuhfittig. Axially symmetric rotating traversable wormholes. Phys Rev D. 2003;67:064015.
  16. T Matos, D Nunez. Rotating scalar field wormhole. Class Quant Grav. 2006;23(13):4485.
  17. EF Eiroa. Thin-shell wormholes with a generalized Chaplygin gas. Phys Rev D. 2009;80:044033.
  18. AB Balakin, JPS Lemos, AE Zayats. Nonminimal coupling for the gravitational and electromagnetic fields: Traversable electric wormholes. Phys Rev D. 2010;81:084015.
  19. GAS Dias, JPS Lemos. Thin-shell wormholes in d-dimensional general relativity: Solutions, properties, and stability. Phys. Rev D. 2010;82:084023.
  20. M Jamil, PKF Kuhfittig, F Rahaman, et al. Wormholes supported by polytropic phantom energy. The European Physical Journal C. 2010;67(3):513−520.
  21. M Jamil, MU Farooq. Phantom Wormholes in (2+1)-Dimensions. Int J Theor Phys. 2010;49(4):835−841.
  22. A Anabalon, A Cisterna. Asymptotically (anti-) de Sitter black holes and wormholes with a self−interacting scalar field in four dimensions. Phys Rev D. 2012;85:084035.
  23. S Kar. Evolving wormholes and the weak energy condition. Phys Rev D. 1994;49:862.
  24. S Kar, D Sahdev. Evolving Lorentzian wormholes. Phys Rev D. 1996;53:722.
  25. AVB Arellano, FSN Lobo. Evolving wormhole geometries within nonlinear electrodynamics. Class Quant Grav. 2006;23(20):5811.
  26. AVB Arellano, FSN Lobo. Non-existence of static, spherically symmetric and stationary, axisymmetric traversable wormholes coupled to nonlinear electrodynamics. Class Quant Grav. 2006;23(24):7229.
  27. PF Gonzalez Diaz. Wormholes and ringholes in a dark-energy universe. Phys Rev D. 2003;68:084016.
  28. A De Benedictis, R Garattini, FSN Lobo. Phantom stars and topology change. Phys Rev D. 2008;78:104003.
  29. J Hansen, DI Hwang, DH Yeom. Dynamics of false vacuum bubbles: beyond the thin shell approximation. JHEP. 2009;11:016.
  30. MH Dehghani, SH Hendi Gen. Wormhole solutions in Gauss-Bonnet-Born-Infeld gravity. Rel Grav. 2009;41(8):1853−1863.
  31. I Bochicchio, V Faraoni. Lemaître-Tolman-Bondi cosmological wormhole. Phys Rev D. 2010;82:044040.
  32. M Cataldo, P Meza, P Minning. N-dimensional static and evolving Lorentzian wormholes with a cosmological constant. Phys Rev D. 2011;83(4):044050.
  33. SH Hendi. Magnetic wormhole solutions in Einstein-Gauss-Bonnet gravity with power Maxwell invariant source. J Math Phys. 2011;52:042502.
  34. FSN Lobo, M Visser. Fundamental limitations on 'warp drive' spacetimes. Class Quant Grav. 2004;21(24):5871.
  35. H Maeda, T Harada, BJ Carr. Cosmological wormholes. Phys Rev D. 2009;79:044034.
  36. M Cataldo, S del Campo. Two-fluid evolving Lorentzian wormholes. Phys Rev D. 2012;85:104010.
  37. B Mirza, M Eshaghi, S Dehdashti. Lorentzian Wormholes in the Friedman−Robertson−Walker Universe. Int J Mod Phys D. 2006;15(8):1217−1223.
  38. M Cataldo, P Labraña, S del Campo, et al. Evolving Lorentzian wormholes supported by phantom matter with constant state parameters. Phys Rev D. 2008;78:104006.
  39. M Cataldo, S del Campo, P Minning, et al. Evolving Lorentzian wormholes supported by phantom matter and cosmological constant. Phys Rev D. 2009;79:024005.
  40. K Lee. Wormholes and Goldstone Bosons. Phys Rev Lett. 1988;61:263.
  41. A Hosoya, W Ogura. Wormhole instanton solution in the Einstein-Yang-Mills system. Phys Lett B. 1989;225(1-2):117−120.
  42. J Halliwell, R Laflamme. Conformal scalar field wormholes. Class Quant Grav. 1989;6(12):1839.
  43. DH Coule, KI Maeda. Wormholes with scalar fields. Class Quant Grav. 1990;7(6):955.
  44. AK Sanyal, C Rubano, E Piedipalumbo. Coupling Parameters and the Form of the Potential via Noether Symmetry. Gen Rel Grav. 2003;35(9):1617−1635.
  45. L Fatibene, M Francaviglia, S Mercadante. Noether Symmetries and Covariant Conservation Laws in Classical, Relativistic and Quantum Physics. Symmetry. 2010;2:970−998.
  46. R de Ritis, G Marmo, G Platania, et al. New approach to find exact solutions for cosmological models with a scalar field. Phys Rev D. 1990;42:1091.
  47. R de Ritis, G Marmo, G Platania, et al. New exact solutions of cosmological equations with considerations upon the cosmological constant. Phys Lett A.1990;149(2-3):79−83.
  48. M Tsamparlis, A Paliathanasis. Lie and Noether symmetries of geodesic equations and collineations. Gen Rel and Grav. 2010;42(12):2957−2980.
  49. N Sk, AK Sanyal. Field Independent Cosmic Evolution. Journal of Astrophys. 2013;590171.
  50. N Sk, AK Sanyal. Revisiting Noether gauge symmetry for F(R) theory of gravity. Astrophys Space Sci. 2012;342(2):549−555.
  51. N Sk, AK Sanyal. Revisiting Conserved Currents in the F(R) Theory of Gravity via Noether Symmetry. Chin Phys Lett. 2013;30(2):020401.
  52. AK Sanyal, B Modak. Is the Nöther symmetric approach consistent with the dynamical equation in non-minimal scalar-tensor theories? Class Quant Grav. 2001;18(17):3767.
  53. AK Sanyal. Noether and some other dynamical symmetries in Kantowski-Sachs model. Phys Lett B. 2002;524(1−2):177−184.
  54. K Sarkar, Nayem Sk, S Debnath, et al. Viability of Noether Symmetry of F(R) Theory of Gravity. Int J Theor Phys. 2013;52(4):1194−1213.
  55. K Sarkar, Nayem Sk, S Ruz, et al. Why Noether Symmetry of F(R) Theory Yields Three−Half Power Law? Int J Theor Phys. 2013;52(5):1515.
  56. Nayem Sk, AK Sanyal. Why scalar-tensor equivalent theories are not physically equivalent? Int J Mod Phys. 2017;26(14):1750162.
  57. T Christodoulakis, N Dimakis, PA Terzis. Lie point and variational symmetries in minisuperspace Einstein gravity. J Phys A. 2014;47:095202.
  58. H Motohashi, T Suyama, K Takahashi. Fundamental theorem on gauge fixing at the action level. Phys Rev D. 2016;94:124021.
  59. N Sk, AK Sanyal. On the equivalence between different canonical forms of F(R) theory of gravity. Int J Mod Phys D. 2018;27(8):1850085.
  60. AK Sanyal. Scalar-tensor theory of gravity carrying a conserved current. Phys Lett B. 2005;624(1−2);81−92.
  61. AK Sanyal. Study of symmetry in F(R) theory of gravity. Mod Phys Lett A. 2010;25(31):2667−2676.
  62. Planck collaboration, PAR Ade, N Aghanim, et al. Planck 2015 results. XX. Constraints on inflation. Astron Astrophys. 2016;594:A20.
Creative Commons Attribution License

©2018 Sanyal, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.