Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 3 Issue 1

Connections of energy, time, matter, space and charge in universe (v4)

Alexander A Bolonkin

Former Senior Researcher of NASA and Scientific Laboratories of the USA Air Forces, USA

Correspondence: A Bolonkin, Former Senior Researcher of NASA and Scientific Laboratories of the USA Air Forces,1310 Avenue R, #6-F, Brooklyn, NY, 11229, USA, Tel 718-339-4563

Received: June 14, 2018 | Published: February 21, 2019

Citation: Bolonkin AA. Connections of energy, time, matter, space and charge in universe (v4). Phys Astron Int J. 2019;3(1):53-55. DOI: 10.15406/paij.2019.03.00156

Download PDF

Abstract

In offered article author gives new connections between energy, time, charge, distance, volume, matter in the Universe. He finds also the quantum (minimal values) of energy, volume, time, distance, matter and charge. He applied these values for estimations of quantum volatility and estimated of some values of our Universe and received both well-known and new unknown equations.

Author offers possibly valid relations between energy, time, matter, volume, distance, and charge. That research shows: in our Universe exists only one substance – Energy. Time, matter, volume, charge, fields are evidence of this energy and they can be transformed one to other. Author gets the equations which allow calculating these relations. Some assumptions the structure of the Universe follows from these equations. Most suggested equations give results close to known data of Universe, the others allow checking up by experiment.

Keywords: universe, energy, matter, space, time, charge, volume, distance, limits of matter, pressure, temperature, intensity of fields, specific density of energy, collapse of time and space into point

Introduction

In the theoretical physic the next fundamental constants presented in Table 1 are important.

Constant

Symbol

Dimension

Value in SI units with uncertainties

Speed of light in vacuum

c

LT −1

2.99792458×108 ms−1

Gravitational constant

G

L3 M−1 T −2

6.67384(80)×10−11 m3kg−1 s−2

Reduced Planck constant

ħ = h/2πwhere h is Planck constant

h = 6.625 068 76(52)×10−34

L2 M T −1

1.054571726(47)×10−34 Js

Coulomb constant

4πε01 where ε0 is the permittivity of free space ε0 = 8.854 187 817×1012 

L3 M T−2 Q−2

8.9875517873681764×109 kg m3 s−2C−2(exact by definitions of ampere and meter)

Boltzmann constant

kB

1.3806488(13)×10−23 J/K

L2MT2 Θ1

Table 1 Fundamental physical constants

Where are: c = light speed, G = gravitational constant, L = length, M = mass, T = time, Q = electric charge, = temperature.

Universe (v4). New connections between energy, charge, matter, time, volume, and distance

The author gets unknown connections relations between main parameters in Universe. He applies his connections to Universe. The following well-known constants author use in his expressions:

c=2.997925 10 8 m/s;e=1.60219 10 19 C;G=6.6743 10 11 m 3 /kg s 2 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogacqGH9aqpca aIYaGaaiOlaiaaiMdacaaI5aGaaG4naiaaiMdacaaIYaGaaGynaiab gwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI4aaaaOGaaGjbVlaad2 gacaGGVaGaam4CaiaacUdacaaMf8Uaamyzaiabg2da9iaaigdacaGG UaGaaGOnaiaaicdacaaIYaGaaGymaiaaiMdacqGHflY1caaIXaGaaG imamaaCaaaleqabaGaeyOeI0IaaGymaiaaiMdaaaGccaaMe8Uaam4q aiaacUdacaaMf8Uaam4raiabg2da9iaaiAdacaGGUaGaaGOnaiaaiE dacaaI0aGaaG4maiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaIXaGaaGymaaaakiaaysW7caWGTbWaaWbaaSqabeaacaaIZa aaaOGaai4laiaadUgacaWGNbGaeyyXICTaam4CamaaCaaaleqabaGa aGOmaaaakiaaysW7caGG7aaaaa@752D@

ε 0 = 1 36π 10 9 =8.854188 10 12 F m ;k= 1 4π ε 0 =8.987551787 10 9 kg m 3 s 2 C 2 Jm C 2 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBeaale aacaaIWaaabeaakiaaxcW7cqGH9aqpdaWcaaqaaiaaigdaaeaacaaI ZaGaaGOnaiabec8aWjabgwSixlaaigdacaaIWaWaaWbaaSqabeaaca aI5aaaaaaakiabg2da9iaaiIdacaGGUaGaaGioaiaaiwdacaaI0aGa aGymaiaaiIdacaaI4aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaai abgkHiTiaaigdacaaIYaGaaGjbVdaakmaalaaabaGaamOraaqaaiaa d2gaaaGaaGPaVlaacUdacaaMf8Uaam4Aaiabg2da9maalaaabaGaaG ymaaqaaiaaisdacqaHapaCcqaH1oqzdaWgaaWcbaGaaGimaaqabaaa aOGaeyypa0JaaGioaiaac6cacaaI5aGaaGioaiaaiEdacaaI1aGaaG ynaiaaigdacaaI3aGaaGioaiaaiEdacqGHflY1caaIXaGaaGimamaa CaaaleqabaGaaGyoaiaaysW7aaGccaaMe8+aaSaaaeaacaWGRbGaam 4zaiabgwSixlaad2gadaahaaWcbeqaaiaaiodaaaaakeaacaWGZbWa aWbaaSqabeaacaaIYaaaaOGaam4qamaaCaaaleqabaGaaGOmaaaaaa GccaaMf8+aaSaaaeaacaWGkbGaamyBaaqaaiaadoeadaahaaWcbeqa aiaaikdaaaaaaOGaaGPaVlaacUdaaaa@835E@

μ 0 =4π 10 7 =1.2566 10 6 N A 2 ;h=6.6261 10 34 kg m 2 s ,Js;=h/2π=1.054571 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBaaale aacaaIWaaabeaakiabg2da9iaaisdacqaHapaCcqGHflY1caaIXaGa aGimamaaCaaaleqabaGaeyOeI0IaaG4naaaakiabg2da9iaaigdaca GGUaGaaGOmaiaaiwdacaaI2aGaaGOnaiabgwSixlaaigdacaaIWaWa aWbaaSqabeaacqGHsislcaaI2aaaaOWaaSaaaeaacaWGobaabaGaam yqamaaCaaaleqabaGaaGOmaaaaaaGccaaMc8Uaai4oaiaaysW7caaM c8UaaGPaVlaadIgacqGH9aqpcaaI2aGaaiOlaiaaiAdacaaIYaGaaG OnaiaaigdacqGHflY1caaIXaGaaGimamaaCaaaleqabaGaeyOeI0Ia aG4maiaaisdaaaGccaaMe8+aaSaaaeaacaWGRbGaam4zaiabgwSixl aad2gadaahaaWcbeqaaiaaikdaaaaakeaacaWGZbWaaWbaaSqabeaa aaaaaOGaaGjbVlaacYcacaaMf8UaamOsaiaadohacaaMe8Uaai4oai aaywW7cqWIpecAcqGH9aqpcaWGObGaai4laiaaikdacqaHapaCcqGH 9aqpcaaIXaGaaiOlaiaaicdacaaI1aGaaGinaiaaiwdacaaI3aGaaG ymaaaa@837C@

σ=5.67032 10 8 W/ m 2 K 4 ,π=3.141592654, k B =1,3806503 10 23 J K 1 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZjabg2da9i aaiwdacaGGUaGaaGOnaiaaiEdacaaIWaGaaG4maiaaikdacqGHflY1 caaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGioaaaakiaaysW7ca WGxbGaai4laiaad2gadaahaaWcbeqaaiaaikdaaaGccaWGlbWaaWba aSqabeaacaaI0aaaaOGaaGjbVlaacYcacaaMf8UaeqiWdaNaeyypa0 JaaG4maiaac6cacaaIXaGaaGinaiaaigdacaaI1aGaaGyoaiaaikda caaI2aGaaGynaiaaisdacaaMe8UaaiilaiaaywW7caWGRbWaaSbaaS qaaiaadkeaaeqaaOGaeyypa0JaaGymaiaacYcacaaIZaGaaGioaiaa icdacaaI2aGaaGynaiaaicdacaaIZaGaeyyXICTaaGymaiaaicdada ahaaWcbeqaaiabgkHiTiaaikdacaaIZaaaaOGaaGjbVlaadQeacqGH flY1caWGlbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaai4oaaaa@75BA@                  (1)

here e - electronic charge, C; c - light speed, m/s; G - a constant of gravitation, Nm2/kg2; μ o MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeq iVd02damaaBaaaleaapeGaam4BaaWdaeqaaaaa@3A11@  - magnetic constant, H/m; ε o MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeq yTdu2damaaBaaaleaapeGaam4BaaWdaeqaaaaa@3A02@  - electric constant, F/m; σ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeq 4Wdmhaaa@38D0@  - Stefan – Boltzmann constant, W/m2K4 ; h - Planck constant, J.s; kB - Boltzman constant, J/K; A – ampere; F - farad; N - newton; K – kelvin.

The author assumed the following relations:

  1. Relations between energy, volume, time, matter, distance, and specific density of matter:
  2. T= G c 5 E,T= G c 3 M,T= c 1 v 1/3 ,T= R c ,T= (kG) c 3 1/2 Q,T= G 1/2 ρ M 1/2 , orT=2.755956 10 53 E,T=2.47693 10 36 M,T=2.874464 10 26 Q, T=3.33564 10 9 R,T=1.2240865 10 5 ρ 1/2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamivaiabg2 da9maalaaabaGaam4raaqaaiaadogadaahaaWcbeqaaiaaiwdaaaaa aOGaamyraiaaykW7caGGSaGaaGzbVlaadsfacqGH9aqpdaWcaaqaai aadEeaaeaacaWGJbWaaWbaaSqabeaacaaIZaaaaaaakiaad2eacaGG SaGaaGzbVlaadsfacqGH9aqpcaWGJbWaaWbaaSqabeaacqGHsislca aIXaaaaOGaamODamaaCaaaleqabaGaaGymaiaac+cacaaIZaaaaOGa aiilaiaaywW7caWGubGaeyypa0ZaaSaaaeaacaWGsbaabaGaam4yaa aacaaMc8UaaGPaVlaacYcacaaMc8UaaGPaVlaaykW7caWGubGaeyyp a0ZaaSaaaeaacaGGOaGaam4AaiaadEeacaGGPaaabaGaam4yamaaCa aaleqabaGaaG4maaaaaaGcdaahaaWcbeqaaiaaigdacaGGVaGaaGOm aaaakiaadgfacaaMi8UaaiilaiaaywW7caWGubGaeyypa0Jaam4ram aaCaaaleqabaGaeyOeI0IaaGymaiaac+cacaaIYaaaaOGaeqyWdi3a aSbaaSqaaiaad2eaaeqaaOWaaWbaaSqabeaacqGHsislcaaIXaGaai 4laiaaikdaaaGccaGGSaGaaGzbVdqaaiaab+gacaqGYbGaaGzbVlaa dsfacqGH9aqpcaaIYaGaaiOlaiaaiEdacaaI1aGaaGynaiaaiMdaca aI1aGaaGOnaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGHsisl caaI1aGaaG4maaaakiaadweacaGGSaGaaGzbVlaadsfacqGH9aqpca aIYaGaaiOlaiaaisdacaaI3aGaaGOnaiaaiMdacaaIZaGaeyyXICTa aGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiodacaaI2aaaaOGaam ytaiaacYcacaaMf8Uaamivaiabg2da9iaaikdacaGGUaGaaGioaiaa iEdacaaI0aGaaGinaiaaiAdacaaI0aGaeyyXICTaaGymaiaaicdada ahaaWcbeqaaiabgkHiTiaaikdacaaI2aaaaOGaamyuaiaaysW7caGG SaaabaGaamivaiabg2da9iaaiodacaGGUaGaaG4maiaaiodacaaI1a GaaGOnaiaaisdacqGHflY1caaIXaGaaGimamaaCaaaleqabaGaeyOe I0IaaGyoaaaakiaadkfacaaMe8UaaiilaiaaywW7caWGubGaeyypa0 JaaGymaiaac6cacaaIYaGaaGOmaiaaisdacaaIWaGaaGioaiaaiAda caaI1aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiaaiwdaaaGccq aHbpGCdaahaaWcbeqaaiabgkHiTiaaigdacaGGVaGaaGOmaaaakiaa cYcaaaaa@D4F0@                 (2)

    here M - mass, kg; T - time in sec; E - energy in J; R is distance, m; v - volume in m3; Q – charge C; ρ M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeq yWdi3damaaBaaaleaapeGaamytaaWdaeqaaaaa@39F9@ - specific density of matter, kg/m3,. (Only the first 4-5 digits are exact in all our calculations).

    Below author use the dimensional theory; these relatives are gotten to within a constant. That constant may be gotten derived from test. If we use the Plank units, this factor equals 1 in many cases. This factor may to have the neglected value in cosmology and high-energy physics. But offered relations we cannot get only from dimensional theory. The dimensional theory does not contain the main physical numbers.

    Equations (2) may be rewritten in form

    E = c 5 G T , M = c 3 G T , v = c 3 T 3 , R = c T , Q = c 3 ( k G ) 1 / 2 T , ρ M = 1 / ( G T 2 ) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacqGH9aqpda WcaaqaaiaadogadaahaaWcbeqaaiaaiwdaaaaakeaacaWGhbaaaiaa dsfacaGGSaGaaGzbVlaad2eacqGH9aqpdaWcaaqaaiaadogadaahaa WcbeqaaiaaiodaaaaakeaacaWGhbaaaiaadsfacaGGSaGaaGzbVlaa dAhacqGH9aqpcaWGJbWaaWbaaSqabeaacaaIZaaaaOGaamivamaaCa aaleqabaGaaG4maaaakiaacYcacaaMf8UaamOuaiabg2da9iaadoga caWGubGaaiilaiaaywW7caWGrbGaeyypa0ZaaSaaaeaacaWGJbWaaW baaSqabeaacaaIZaaaaaGcbaGaaiikaiaadUgacaWGhbGaaiykamaa CaaaleqabaGaaGymaiaac+cacaaIYaaaaaaakiaadsfacaaMb8Uaai ilaiaaywW7cqaHbpGCdaWgaaWcbaGaamytaaqabaGccqGH9aqpcaaI XaGaai4laiaacIcacaWGhbGaamivamaaCaaaleqabaGaaGOmaaaaki aacMcacaGGSaaaaa@6BB5@

    o r E = 3.628505 10 52 T , M = 4.037256 10 35 T , Q = 3.4789094 10 25 T , ρ = 1.5 10 10 / T 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad+gacaWGYbGaaG zbVlaadweacqGH9aqpcaaIZaGaaiOlaiaaiAdacaaIYaGaaGioaiaa iwdacaaIWaGaaGynaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaaca aI1aGaaGOmaaaakiaadsfacaGGSaGaaGzbVlaad2eacqGH9aqpcaaI 0aGaaiOlaiaaicdacaaIZaGaaG4naiaaikdacaaI1aGaaGOnaiabgw SixlaaigdacaaIWaWaaWbaaSqabeaacaaIZaGaaGynaaaakiaadsfa caGGSaGaaGzbVlaadgfacqGH9aqpcaaIZaGaaiOlaiaaisdacaaI3a GaaGioaiaaiMdacaaIWaGaaGyoaiaaisdacqGHflY1caaIXaGaaGim amaaCaaaleqabaGaaGOmaiaaiwdaaaGccaWGubGaaiilaiaaywW7cq aHbpGCcqGH9aqpcaaIXaGaaiOlaiaaiwdacqGHflY1caaIXaGaaGim amaaCaaaleqabaGaaGymaiaaicdaaaGccaGGVaGaamivamaaCaaale qabaGaaGOmaaaakiaac6caaaa@7987@ (3)

    Some interesting facts follow from these relations. For example, time has energy. Time depends from length, mass, volume, density of matter and electric charges. If time simultaneously creates the negative and positive charges, the total charge is zero. or The energy produce time, distance, matter, volume and charge (positive and negative together). Or time can produce the energy, mass, distance, change, volume and the density of matter.

  3. Relations between volumes, time, energy, distance, and matter v = 4 π 3 G E c 4 3 , v = 4 π 3 c 3 T 3 , v = 4 π 3 G 3 c 9 M 3 , v = 4 π 3 R 3 , o r v = 2.2630235 × 10 132 E 3 , v = 1.1286275 × 10 26 T 3 , v = 1.715109 × 10 81 M 3 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamODaiabg2 da9maalaaabaGaaGinaiabec8aWbqaaiaaiodaaaWaaeWaaeaadaWc aaqaaiaadEeacaWGfbaabaGaam4yamaaCaaaleqabaGaaGinaaaaaa aakiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaGccaGGSaGaaGzb VlaadAhacqGH9aqpdaWcaaqaaiaaisdacqaHapaCaeaacaaIZaaaai aadogadaahaaWcbeqaaiaaiodaaaGccaWGubWaaWbaaSqabeaacaaI ZaaaaOGaaiilaiaaywW7caWG2bGaeyypa0ZaaSaaaeaacaaI0aGaeq iWdahabaGaaG4maaaadaWcaaqaaiaadEeadaahaaWcbeqaaiaaioda aaaakeaacaWGJbWaaWbaaSqabeaacaaI5aaaaaaakiaad2eadaahaa WcbeqaaiaaiodaaaGccaGGSaGaaGzbVlaadAhacqGH9aqpdaWcaaqa aiaaisdacqaHapaCaeaacaaIZaaaaiaadkfadaahaaWcbeqaaiaaio daaaGccaGGSaaabaGaam4BaiaadkhacaaMf8UaamODaiabg2da9iaa ikdacaGGUaGaaGOmaiaaiAdacaaIZaGaaGimaiaaikdacaaIZaGaaG ynaiaaykW7cqGHxdaTcaaMi8UaaGjcVlaaigdacaaIWaWaaWbaaSqa beaacqGHsislcaaIXaGaaG4maiaaikdaaaGccaWGfbWaaWbaaSqabe aacaaIZaaaaOGaaiilaiaaywW7caWG2bGaeyypa0JaaGymaiaac6ca caaIXaGaaGOmaiaaiIdacaaI2aGaaGOmaiaaiEdacaaI1aGaey41aq RaaGPaVlaaigdacaaIWaWaaWbaaSqabeaacaaIYaGaaGOnaaaakiaa dsfadaahaaWcbeqaaiaaiodaaaGccaGGSaGaaGzbVlaadAhacqGH9a qpcaaIXaGaaiOlaiaaiEdacaaIXaGaaGynaiaaigdacaaIWaGaaGyo aiaaykW7caaMc8Uaey41aqRaaGymaiaaicdadaahaaWcbeqaaiabgk HiTiaaiIdacaaIXaaaaOGaamytamaaCaaaleqabaGaaG4maaaakiaa cYcacaaMf8UaaGzbVlaaywW7caaMf8oaaaa@AD58@ (4)
  4. here v - volume of 3-demantional space, m3.

  5. Families between matter, distance, time, energy, volume, charge and temperature are
  6. M= c 3 G T,M= c 2 G v 1/3 ,M= c 2 G R,M= 1 c 2 E,M= k G 1/2 Q, M 1 = k B c 2 t, M=4.0369797× 10 35 T,M=1.34659× 10 27 v 1/3 ,M=1.34659× 10 27 R, M=1.16047× 10 10 Q, M 1 =2.316404× 10 40 t. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamytaiabg2 da9maalaaabaGaam4yamaaCaaaleqabaGaaG4maaaaaOqaaiaadEea aaGaamivaiaacYcacaaMf8Uaamytaiabg2da9maalaaabaGaam4yam aaCaaaleqabaGaaGOmaaaaaOqaaiaadEeaaaGaamODamaaCaaaleqa baGaaGymaiaac+cacaaIZaaaaOGaaiilaiaaywW7caWGnbGaeyypa0 ZaaSaaaeaacaWGJbWaaWbaaSqabeaacaaIYaaaaaGcbaGaam4raaaa caWGsbGaaGPaVlaacYcacaaMf8Uaamytaiabg2da9maalaaabaGaaG ymaaqaaiaadogadaahaaWcbeqaaiaaikdaaaaaaOGaamyraiaaysW7 caGGSaGaaGzbVlaad2eacqGH9aqpdaqadaqaamaalaaabaGaam4Aaa qaaiaadEeaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4l aiaaikdaaaGccaWGrbGaaiilaiaaywW7caWGnbWaaSbaaSqaaiaaig daaeqaaOGaeyypa0ZaaSaaaeaacaWGRbWaaSbaaSqaaiaadkeaaeqa aaGcbaGaam4yamaaCaaaleqabaGaaGOmaaaakmaaBaaaleaaaeqaaa aakiaaykW7caWG0bGaaGjbVlaacYcacaaMf8oabaGaamytaiabg2da 9iaaisdacaGGUaGaaGimaiaaiodacaaI2aGaaGyoaiaaiEdacaaI5a GaaG4naiaaysW7cqGHxdaTcaaIXaGaaGimamaaCaaaleqabaGaaG4m aiaaiwdaaaGccaWGubGaaiilaiaaywW7caWGnbGaeyypa0JaaGymai aac6cacaaIZaGaaGinaiaaiAdacaaI1aGaaGyoaiaaysW7cqGHxdaT caaIXaGaaGimamaaCaaaleqabaGaaGOmaiaaiEdaaaGccaWG2bWaaW baaSqabeaacaaIXaGaai4laiaaiodaaaGccaGGSaGaaGzbVlaad2ea cqGH9aqpcaaIXaGaaiOlaiaaiodacaaI0aGaaGOnaiaaiwdacaaI5a GaaGjbVlabgEna0kaaigdacaaIWaWaaWbaaSqabeaacaaIYaGaaG4n aaaakiaadkfacaGGSaGaaGzbVdqaaiaad2eacqGH9aqpcaaIXaGaai OlaiaaigdacaaI2aGaaGimaiaaisdacaaI3aGaaGjbVlaaysW7cqGH xdaTcaaIXaGaaGimamaaCaaaleqabaGaaGymaiaaicdaaaGccaWGrb GaaGjbVlaacYcacaaMf8UaamytamaaBaaaleaacaaIXaaabeaakiab g2da9iaaikdacaGGUaGaaG4maiaaigdacaaI2aGaaGinaiaaicdaca aI0aGaey41aqRaaGjbVlaaigdacaaIWaWaaWbaaSqabeaacqGHsisl caaI0aGaaGimaaaakiaadshacaaMe8UaaiOlaiaaywW7caaMf8UaaG zbVlaaywW7caaMf8oaaaa@D8CC@ (5)

    here kB - Boltzmann constant, J/K; t - temperature, K; v - volume, m3; M1 - mass of one atom/particle, kg.

  7. Connection between distance and charge, time, matter, matter density and energy
  8. T= R c ,M= c 3 G T= c 2 G R,Q= c 3 (kG) 1/2 T= c 2 R (kG) 1/2 ,E= c 5 G T= c 4 R G , ρ M = 1 G T 2 = c 2 G R 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9aqpda WcaaqaaiaadkfaaeaacaWGJbaaaiaaykW7caGGSaGaaGzbVlaad2ea cqGH9aqpdaWcaaqaaiaadogadaahaaWcbeqaaiaaiodaaaaakeaaca WGhbaaaiaadsfacqGH9aqpdaWcaaqaaiaadogadaahaaWcbeqaaiaa ikdaaaaakeaacaWGhbaaaiaadkfacaaMi8UaaGjcVlaacYcacaaMf8 Uaamyuaiabg2da9maalaaabaGaam4yamaaCaaaleqabaGaaG4maaaa aOqaaiaacIcacaWGRbGaam4raiaacMcadaahaaWcbeqaaiaaigdaca GGVaGaaGOmaaaaaaGccaWGubGaeyypa0ZaaSaaaeaacaWGJbWaaWba aSqabeaacaaIYaaaaOGaamOuaaqaaiaacIcacaWGRbGaam4raiaacM cadaahaaWcbeqaaiaaigdacaGGVaGaaGOmaaaaaaGccaGGSaGaaGzb VlaadweacqGH9aqpdaWcaaqaaiaadogadaahaaWcbeqaaiaaiwdaaa aakeaacaWGhbaaaiaadsfacqGH9aqpdaWcaaqaaiaadogadaahaaWc beqaaiaaisdaaaGccaWGsbaabaGaam4raaaacaGGSaGaaGzbVlabeg 8aYnaaBaaaleaacaWGnbaabeaakiabg2da9maalaaabaGaaGymaaqa aiaadEeacaWGubWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9maala aabaGaam4yamaaCaaaleqabaGaaGOmaaaaaOqaaiaadEeacaWGsbWa aWbaaSqabeaacaaIYaaaaaaakiaac6caaaa@7CF5@         (6)

  9. We can obtain from equations (2) - (4) the expressions for the energy from volume, time, mass, distance and charge
  10. E= c 5 G T,E= c 4 G v 1/3 ,E= c 4 G R,E= k G 1/2 c 2 Q,E= c 2 M, E 1 = k B t. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacqGH9aqpda WcaaqaaiaadogadaahaaWcbeqaaiaaiwdaaaaakeaacaWGhbaaaiaa dsfacaGGSaGaaGzbVlaadweacqGH9aqpdaWcaaqaaiaadogadaahaa WcbeqaaiaaisdaaaaakeaacaWGhbaaaiaadAhadaahaaWcbeqaaiaa igdacaGGVaGaaG4maaaakiaacYcacaaMf8Uaamyraiabg2da9maala aabaGaam4yamaaCaaaleqabaGaaGinaaaaaOqaaiaadEeaaaGaamOu aiaaykW7caaMe8UaaiilaiaaywW7caWGfbGaeyypa0ZaaeWaaeaada WcaaqaaiaadUgaaeaacaWGhbaaaaGaayjkaiaawMcaamaaCaaaleqa baGaaGymaiaac+cacaaIYaaaaOGaam4yamaaCaaaleqabaGaaGOmaa aakiaadgfacaGGSaGaaGzbVlaadweacqGH9aqpcaWGJbWaaWbaaSqa beaacaaIYaaaaOGaamytaiaaysW7caGGSaGaaGjbVlaaywW7caWGfb WaaSbaaSqaaiaaigdaaeqaaOGaeyypa0Jaam4AamaaBaaaleaacaWG cbaabeaakiaadshacaGGUaaaaa@700B@

    E=3.62825745 10 52 T,E=1.21022562 10 44 v 1/3 ,E=1.2102562 10 44 R, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacqGH9aqpca aIZaGaaiOlaiaaiAdacaaIYaGaaGioaiaaikdacaaI1aGaaG4naiaa isdacaaI1aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiaaiwdaca aIYaaaaOGaamivaiaacYcacaaMf8Uaamyraiabg2da9iaaigdacaGG UaGaaGOmaiaaigdacaaIWaGaaGOmaiaaikdacaaI1aGaaGOnaiaaik dacqGHflY1caaIXaGaaGimamaaCaaaleqabaGaaGinaiaaisdaaaGc caWG2bWaaWbaaSqabeaacaaIXaGaai4laiaaiodaaaGccaGGSaGaaG zbVlaadweacqGH9aqpcaaIXaGaaiOlaiaaikdacaaIXaGaaGimaiaa ikdacaaI1aGaaGOnaiaaikdacqGHflY1caaIXaGaaGimamaaCaaale qabaGaaGinaiaaisdaaaGccaWGsbGaaGjbVlaacYcacaaMe8oaaa@6F51@

    E=1.04297 10 27 Q,E=8.98755 10 16 M, E 1 =138066 10 23 t. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacqGH9aqpca aIXaGaaiOlaiaaicdacaaI0aGaaGOmaiaaiMdacaaI3aGaeyyXICTa aGymaiaaicdadaahaaWcbeqaaiaaikdacaaI3aaaaOGaamyuaiaacY cacaaMe8UaaGjbVlaadweacqGH9aqpcaaI4aGaaiOlaiaaiMdacaaI 4aGaaG4naiaaiwdacaaI1aGaeyyXICTaaGymaiaaicdadaahaaWcbe qaaiaaigdacaaI2aaaaOGaamytaiaacYcacaaMf8UaamyramaaBaaa leaacaaIXaaabeaakiabg2da9iaaigdacqGHflY1caaIZaGaaGioai aaicdacaaI2aGaaGOnaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaa cqGHsislcaaIYaGaaG4maaaakiaadshacaaMe8UaaiOlaaaa@6A91@            (7)

    Here E – energy, J; v - volume, m3; t - temperature, K; E1 - energy of one atom/particle, J.

    Fifth expression in (7) is the well-known comparative between matter and energy. This relative follows from (2)–(4) as special events. This indirectly checks the accuracy of the expressions (2)–(6) as a special event.

  11. The connections between energy, the density of matter, and are time (frequency), charge next:

ρ M = 1 G 1 T 2 , ρ M = 1 G ν 2 , ρ E = h c 3 1 T 4 , ρ E = h c 3 ν 4 , ρ E = hc R 4 , ρ E = c 2 G T 2 , ρ Q = hc k 1/2 1 T 3 , ρ Q = hc k 1/2 ν 3 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqyWdi3aaS baaSqaaiaad2eaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4r aaaadaWcaaqaaiaaigdaaeaacaWGubWaaWbaaSqabeaacaaIYaaaaa aakiaacYcacaaMf8UaeqyWdi3aaSbaaSqaaiaad2eaaeqaaOGaeyyp a0ZaaSaaaeaacaaIXaaabaGaam4raaaacqaH9oGBdaahaaWcbeqaai aaikdaaaGccaGGSaGaaGzbVlabeg8aYnaaBaaaleaacaWGfbaabeaa kiabg2da9maalaaabaGaamiAaaqaaiaadogadaahaaWcbeqaaiaaio daaaaaaOWaaSaaaeaacaaIXaaabaGaamivamaaCaaaleqabaGaaGin aaaaaaGccaGGSaGaaGzbVlabeg8aYnaaBaaaleaacaWGfbaabeaaki abg2da9maalaaabaGaamiAaaqaaiaadogadaahaaWcbeqaaiaaioda aaaaaOGaeqyVd42aaWbaaSqabeaacaaI0aaaaOGaaiilaiaaysW7ca aMe8UaeqyWdi3aaSbaaSqaaiaadweaaeqaaOGaeyypa0ZaaSaaaeaa caWGObGaam4yaaqaaiaadkfadaahaaWcbeqaaiaaisdaaaaaaOGaai ilaiaaysW7aeaacqaHbpGCdaWgaaWcbaGaamyraaqabaGccqGH9aqp daWcaaqaaiaadogadaahaaWcbeqaaiaaikdaaaaakeaacaWGhbGaam ivamaaCaaaleqabaGaaGOmaaaaaaGccaGGSaGaaGjbVlaaysW7cqaH bpGCdaWgaaWcbaGaamyuaaqabaGccqGH9aqpdaqadaqaamaalaaaba GaamiAaiaadogaaeaacaWGRbaaaaGaayjkaiaawMcaamaaCaaaleqa baGaaGymaiaac+cacaaIYaaaaOWaaSaaaeaacaaIXaaabaGaamivam aaCaaaleqabaGaaG4maaaaaaGccaGGSaGaaGzbVlabeg8aYnaaBaaa leaacaWGrbaabeaakiabg2da9maabmaabaWaaSaaaeaacaWGObGaam 4yaaqaaiaadUgaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGa ai4laiaaikdaaaGccqaH9oGBdaahaaWcbeqaaiaaiodaaaGccaGGSa GaaGzbVlaaywW7caaMf8oaaaa@9BCD@             (8)

here ρ M , ρ E , ρ Q   MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeq yWdi3damaaBaaaleaapeGaamytaaWdaeqaaOWdbiaacYcacqaHbpGC paWaaSbaaSqaa8qacaWGfbaapaqabaGcpeGaaiilaiabeg8aY9aada WgaaWcbaWdbiaadgfaa8aabeaak8qacaGGGcaaaa@429F@ are density of matter, energy and charge respectively, kg/ m 3 , J/ m 3 , C/ m 3 ;ν MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam 4AaiaadEgacaGGVaGaamyBa8aadaahaaWcbeqaa8qacaaIZaaaaOGa aiilaiaabccacaWGkbGaai4laiaad2gapaWaaWbaaSqabeaapeGaaG 4maaaakiaacYcacaqGGaGaam4qaiaac+cacaWGTbWdamaaCaaaleqa baWdbiaaiodaaaGccaGG7aGaeqyVd4gaaa@47C5@  (Greg) is frequency, 1/s.

Application to present Universe

Now we estimate the real dimensions and values of the Universe: radius, mass, density, time, etc. We can estimate them if we suitably know at least one of its values.

Thus, the most reliable value is the lifetime of Universe after Big Bang. Estimates of the radius and mass are rising all the time. Approximation of the time is about 14 billion years (13.75±0.17 billion years). Let us checkup all figures.

M = c 3 G T , E = c 5 G T , R = c T , v = 4 3 π R 3 , ρ M = 1 G T 2 , o r M = 4.0369787 10 35 T , E = 3.62825745 10 52 J , R 3 10 8 T , ρ M = 1.5 10 10 / T 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamytaiabg2 da9maalaaabaGaam4yamaaCaaaleqabaGaaG4maaaaaOqaaiaadEea aaGaamivaiaaysW7caGGSaGaaGzbVlaadweacqGH9aqpdaWcaaqaai aadogadaahaaWcbeqaaiaaiwdaaaaakeaacaWGhbaaaiaadsfacaaM e8UaaiilaiaaywW7caWGsbGaeyypa0Jaam4yaiaadsfacaGGSaGaaG zbVlaadAhacqGH9aqpdaWcaaqaaiaaisdaaeaacaaIZaaaaiabec8a WjaaykW7caWGsbWaaWbaaSqabeaacaaIZaaaaOGaaGjbVlaacYcaca aMf8UaeqyWdi3aaSbaaSqaaiaad2eaaeqaaOGaeyypa0ZaaSaaaeaa caaIXaaabaGaam4raiaaygW7caaMc8UaamivamaaCaaaleqabaGaaG OmaaaaaaGccaaMe8Uaaiilaaqaaiaad+gacaWGYbGaaGzbVlaad2ea cqGH9aqpcaaI0aGaaiOlaiaaicdacaaIZaGaaGOnaiaaiMdacaaI3a GaaGioaiaaiEdacqGHflY1caaIXaGaaGimamaaCaaaleqabaGaaG4m aiaaiwdaaaGccaWGubGaaiilaiaaywW7caWGfbGaeyypa0JaaG4mai aac6cacaaI2aGaaGOmaiaaiIdacaaIYaGaaGynaiaaiEdacaaI0aGa aGynaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI1aGaaGOmaa aakiaaysW7caWGkbGaaiilaiaaywW7aeaacaWGsbGaeyisISRaaG4m aiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI4aaaaOGaamivai aaysW7caGGSaGaaGzbVlabeg8aYnaaBaaaleaacaWGnbaabeaakiab g2da9iaaigdacaGGUaGaaGynaiabgwSixlaaigdacaaIWaWaaWbaaS qabeaacaaIXaGaaGimaaaakiaac+cacaWGubWaaWbaaSqabeaacaaI YaaaaOGaaiOlaaaaaa@AB20@ (9)

Let us substitute in (9) the age of Universe T = 4.4 × 10 17 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam ivaiabg2da9iaaisdacaGGUaGaaGinaiabgEna0kaaigdacaaIWaWd amaaCaaaleqabaWdbiaaigdacaaI3aaaaaaa@406E@ sec (14 billion years) we obtain:

M = 1.78 10 53 k g > 1.4 10 53 k g , E = 1.6 10 70 J , R = 1.32 10 26 m < 4.4 10 26 m , v = 10 79 m 3 , ρ M = 7.75 10 26 k g / m 3 > 10 26 k g / m 3 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamytaiabg2 da9iaaigdacaGGUaGaaG4naiaaiIdacqGHflY1caaIXaGaaGimamaa CaaaleqabaGaaGynaiaaiodaaaGccaaMe8Uaam4AaiaadEgacaaMe8 UaeyOpa4JaaGjbVlaaigdacaGGUaGaaGinaiabgwSixlaaigdacaaI WaWaaWbaaSqabeaacaaI1aGaaG4maaaakiaadUgacaWGNbGaaiilai aaywW7caWGfbGaeyypa0JaaGymaiaac6cacaaI2aGaeyyXICTaaGym aiaaicdadaahaaWcbeqaaiaaiEdacaaIWaGaaGjbVdaakiaaysW7ca WGkbGaaiilaiaaywW7aeaacaWGsbGaeyypa0JaaGymaiaac6cacaaI ZaGaaGOmaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaIYaGaaG OnaaaakiaaysW7caWGTbGaaGjbVlabgYda8iaaysW7caaI0aGaaiOl aiaaisdacqGHflY1caaIXaGaaGimamaaCaaaleqabaGaaGOmaiaaiA daaaGccaaMe8UaamyBaiaaysW7caGGSaGaaGzbVlaadAhacqGH9aqp caaIXaGaaGimamaaCaaaleqabaGaaG4naiaaiMdaaaGccaaMe8Uaam yBamaaCaaaleqabaGaaG4maaaakiaacYcacaaMf8UaeqyWdi3aaSba aSqaaiaad2eaaeqaaOGaeyypa0JaaG4naiaac6cacaaI3aGaaGynai abgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIYaGaaGOn aaaakiaaysW7caWGRbGaam4zaiaac+cacaWGTbWaaWbaaSqabeaaca aIZaaaaOGaaGjbVlabg6da+iaaysW7caaIXaGaaGimamaaCaaaleqa baGaeyOeI0IaaGOmaiaaiAdaaaGccaaMe8Uaam4AaiaadEgacaGGVa GaamyBamaaCaaaleqabaGaaG4maaaakiaac6cacaaMf8UaaGzbVdaa aa@B2CC@ (10)

In right side of the inequality (10) we have the estimations of universal values made by other researchers. They are very dissimilar. The author took average magnitudes.

As you see the values received by offered expressions and other methods have alike values. The mass of the Universe is little more because astronomers do not see the whole Universe (only the closer stars). The estimation of radius is more than light can travel in the time since the beginning of the Universe. It is possible because the Universe in initial time had other physical laws than now. The difference of space density is probable result using of the old methods. They did not include dark matter and invisible matter.

The main fields are gravity, acceleration, photon/radiation and magnetic, electric field. Density of energy in point of these fields is calculated by relations:

w a = 1 G a 2 2 , w g = 1 G g 2 2 , w e = ε 0 E 2 2 , w m = μ 0 H 2 2 , w e n = ε 0 E 2 + μ 0 H 2 2 w r = σ c t 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhadaWgaaWcba GaamyyaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGhbaaamaa laaabaGaamyyamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdaaaGaaG PaVlaacYcacaaMf8Uaam4DamaaBaaaleaacaWGNbaabeaakiabg2da 9maalaaabaGaaGymaaqaaiaadEeaaaWaaSaaaeaacaWGNbWaaWbaaS qabeaacaaIYaaaaaGcbaGaaGOmaaaacaaMc8UaaiilaiaaywW7caWG 3bWaaSbaaSqaaiaadwgaaeqaaOGaeyypa0JaeqyTdu2aaSbaaSqaai aaicdaaeqaaOWaaSaaaeaacaWGfbWaaWbaaSqabeaacaaIYaaaaaGc baGaaGOmaaaacaaMc8UaaiilaiaaywW7caWG3bWaaSbaaSqaaiaad2 gaaeqaaOGaeyypa0JaeqiVd02aaSbaaSqaaiaaicdaaeqaaOWaaSaa aeaacaWGibWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaacaaMc8 UaaiilaiaaysW7caaMe8Uaam4DamaaBaaaleaacaWGLbGaamOBaaqa baGccqGH9aqpdaWcaaqaaiabew7aLnaaBaaaleaacaaIWaaabeaaki aadweadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaH8oqBdaWgaaWc baGaaGimaaqabaGccaWGibWaaWbaaSqabeaacaaIYaaaaaGcbaGaaG OmaaaacaaMf8Uaam4DamaaBaaaleaacaWGYbaabeaakiabg2da9maa laaabaGaeq4WdmhabaGaam4yaaaacaWG0bWaaWbaaSqabeaacaaI0a aaaOGaaGPaVlaacYcaaaa@8119@

w E = 1 c 2 G T 2 , w E = 1 c 2 G ν 2 , w E =hc 1 R 4 , ρ Q = h k c 5 1/2 1 T 3 , ρ Q = h k c 5 1/2 ν 3 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhadaWgaaWcba GaamyraaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGJbWaaWba aSqabeaacaaIYaaaaOGaam4raiaadsfadaahaaWcbeqaaiaaikdaaa aaaOGaaGPaVlaaysW7caGGSaGaaGzbVlaadEhadaWgaaWcbaGaamyr aaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGJbWaaWbaaSqabe aacaaIYaaaaOGaam4raaaacqaH9oGBdaahaaWcbeqaaiaaikdaaaGc caGGSaGaaGzbVlaadEhadaWgaaWcbaGaamyraaqabaGccqGH9aqpca WGObGaam4yamaalaaabaGaaGymaaqaaiaadkfadaahaaWcbeqaaiaa isdaaaaaaOGaaiilaiaaywW7cqaHbpGCdaWgaaWcbaGaamyuaaqaba GccqGH9aqpdaqadaqaamaalaaabaGaamiAaaqaaiaadUgacaWGJbWa aWbaaSqabeaacaaI1aaaaaaaaOGaayjkaiaawMcaamaaCaaaleqaba GaaGymaiaac+cacaaIYaaaaOWaaSaaaeaacaaIXaaabaGaamivamaa CaaaleqabaGaaG4maaaaaaGccaGGSaGaaGzbVlabeg8aYnaaBaaale aacaWGrbaabeaakiabg2da9maabmaabaWaaSaaaeaacaWGObaabaGa am4AaiaadogadaahaaWcbeqaaiaaiwdaaaaaaaGccaGLOaGaayzkaa WaaWbaaSqabeaacaaIXaGaai4laiaaikdaaaGccqaH9oGBdaahaaWc beqaaiaaiodaaaGccaGGUaaaaa@78CE@               (11)

here wa - density of acceleration energy, J/m3; we - density of electric energy, J/m3; wg - density of gravitation energy, J/m3; wem is density of beam energy J/m3; wm is density of magnetic energy, J/m3; wE is time energy density, J/m3; wr is density of radiation energy, J/m3;  is time charge density, Q/m3; g is gravitation, m/s2; a is acceleration, m/s2; E is electric intensity, V/m or N/C;σ= 5.67032×108 is Stefan–Boltzmann constant, T (tesla) or Vs/m2 or Wb/m2; W/m2K4; H is magnetic intensity; T is time, sec; t is temperature, K.

The equations show the energy density depends from time and temperature: R is distance to singular point, m.

We find full energy, W, by integration of density to a full volume.

W=νwdv

We can make these calculations for to simple geometric figures, for example, the spherical forms of fields.

Note: In many suitcases, the speed of light “c” in the equations (2)-(11) may be changed by the conventional speed V. In this case we can verify the expressions (2)-(11) and find the right constant factor.

Quanta of energy, volume, time, charge, distance and matter

The photon energy is:

E q =hν,h=6,626068 10 34 Js:=h/2π=1.0541571 10 34 Js MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaaWcba GaamyCaaqabaGccqGH9aqpcaWGObGaeqyVd4MaaGjbVlaacYcacaaM f8UaamiAaiabg2da9iaaiAdacaGGSaGaaGOnaiaaikdacaaI2aGaaG imaiaaiAdacaaI4aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiab gkHiTiaaiodacaaI0aaaaOGaaGzbVlaadQeacaWGZbGaaiOoaiaayw W7cqWIpecAcqGH9aqpcaWGObGaai4laiaaikdacqaHapaCcaaMe8Ua eyypa0JaaGymaiaac6cacaaIWaGaaGynaiaaisdacaaIXaGaaGynai aaiEdacaaIXaGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiabgkHi TiaaiodacaaI0aaaaOGaaGjbVlaaysW7caWGkbGaam4CaiaaywW7ca aMf8UaaGzbVdaa@7391@           (12)

here ν is frequency, 1/s (frequency has ν = 1, 2, 3, 4, …). We have the minimal quantum of photon energy for ν= 1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeq yVd4Maeyypa0JaaeiiaiaaigdacaGGSaaaaa@3BD9@

E q = 6.626068 . 10 34   J.      MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam yra8aadaWgaaWcbaWdbiaadghaa8aabeaak8qacqGH9aqpcaaI2aGa aiOlaiaaiAdacaaIYaGaaGOnaiaaicdacaaI2aGaaGioa8aadaahaa Wcbeqaa8qacaGGUaaaaOGaaGymaiaaicdapaWaaWbaaSqabeaapeGa eyOeI0IaaG4maiaaisdaaaGccaGGGcGaaiiOaiaadQeacaGGUaGaai iOaiaacckacaGGGcGaaiiOaiaacckaaaa@4EE9@         (13)

We substitute (13) into (2)-(11). We get the quanta of mass, time, volume, length and charge:

T q = G c 5 E q =1.82624 10 86 s, M q = E q c 2 =7.37249 10 51 kg, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaaWcba GaamyCaaqabaGccqGH9aqpdaWcaaqaaiaadEeaaeaacaWGJbWaaWba aSqabeaacaaI1aaaaaaakiaadweadaWgaaWcbaGaamyCaaqabaGccq GH9aqpcaaIXaGaaiOlaiaaiIdacaaIYaGaaGOnaiaaikdacaaI0aGa eyyXICTaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiIdacaaI2a aaaOGaaGjbVlaadohacaaMe8UaaiilaiaaywW7caWGnbWaaSbaaSqa aiaadghaaeqaaOGaeyypa0ZaaSaaaeaacaWGfbWaaSbaaSqaaiaadg haaeqaaaGcbaGaam4yamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqp caaI3aGaaiOlaiaaiodacaaI3aGaaGOmaiaaisdacaaI5aGaeyyXIC TaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiwdacaaIXaaaaOGa aGjbVlaadUgacaWGNbGaaiilaaaa@6917@

R q = G c 4 E q =8.62713 10 45 m, v q = R q 3 m 3 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaaWcba GaamyCaaqabaGccqGH9aqpdaWcaaqaaiaadEeaaeaacaWGJbWaaWba aSqabeaacaaI0aaaaaaakiaadweadaWgaaWcbaGaamyCaaqabaGccq GH9aqpcaaI4aGaaiOlaiaaiAdacaaIYaGaaG4naiaaigdacaaIZaGa eyyXICTaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaisdacaaI1a aaaOGaaGjbVlaad2gacaaMc8UaaiilaiaaywW7caWG2bWaaSbaaSqa aiaadghaaeqaaOGaeyypa0JaamOuamaaDaaaleaacaWGXbaabaGaaG 4maaaakiaaysW7caaMe8UaamyBamaaCaaaleqabaGaaG4maaaakiaa cYcaaaa@5D1A@

Q q = G k 1/2 1 c 2 E q =6.330261 10 61 C, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfadaWgaaWcba GaamyCaaqabaGccqGH9aqpdaqadaqaamaalaaabaGaam4raaqaaiaa dUgaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4laiaaik daaaGcdaWcaaqaaiaaigdaaeaacaWGJbWaaWbaaSqabeaacaaIYaaa aaaakiaadweadaWgaaWcbaGaamyCaaqabaGccqGH9aqpcaaI2aGaai OlaiaaiodacaaIZaGaaGimaiaaikdacaaI2aGaaGymaiabgwSixlaa igdacaaIWaWaaWbaaSqabeaacqGHsislcaaI2aGaaGymaaaakiaays W7caWGdbGaaiilaiaaywW7caaMf8oaaa@57A9@         (14)

here vq is quantum of volume, m3.

Heisenberg uncertainty principle

Heisenberg uncertainty principle is

ΔIΔR/2,ΔEΔT/2,=h/2π, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadMeacq GHflY1cqqHuoarcaWGsbGaeyyzImRaeS4dHGMaai4laiaaikdacaaM e8UaaiilaiaaywW7cqqHuoarcaWGfbGaeyyXICTaeuiLdqKaamivai abgwMiZkabl+qiOjaac+cacaaIYaGaaGjbVlaacYcacaaMf8UaeS4d HGMaeyypa0JaamiAaiaac+cacaaIYaGaeqiWdaNaaGjbVlaacYcaca aMf8oaaa@5EC6@          (15)

here ΔI, ΔE, ΔR, ΔT  MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeu iLdqKaamysaiaacYcacaqGGaGaeuiLdqKaamyraiaacYcacaqGGaGa euiLdqKaamOuaiaacYcacaqGGaGaeuiLdqKaamivaiaacckaaaa@450A@ are uncertainty of momentum, energy, length and time respectively.

Let us substitute in (14) the quanta (15). We get the next uncertainties of the chief quants (15)

Δ T q = h 2 E q = 1 2 s,Δ R q = h 2ΔI = h 2cΔ M q = h c 2 2c E q = 1 2 cm MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadsfada WgaaWcbaGaamyCaaqabaGccqGH9aqpdaWcaaqaaiaadIgaaeaacaaI YaGaamyramaaBaaaleaacaWGXbaabeaaaaGccqGH9aqpdaWcaaqaai aaigdaaeaacaaIYaaaaiaaysW7caaMe8Uaam4CaiaacYcacaaMf8Ua euiLdqKaamOuamaaBaaaleaacaWGXbaabeaakiabg2da9maalaaaba GaamiAaaqaaiaaikdacqqHuoarcaWGjbaaaiabg2da9maalaaabaGa amiAaaqaaiaaikdacaWGJbGaeyyXICTaeuiLdqKaamytamaaBaaale aacaWGXbaabeaaaaGccqGH9aqpdaWcaaqaaiaadIgacaWGJbWaaWba aSqabeaacaaIYaaaaaGcbaGaaGOmaiaadogacaWGfbWaaSbaaSqaai aadghaaeqaaaaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGa am4yaiaaykW7caaMc8UaaGPaVlaad2gaaaa@6A1B@               (16)

The uncertainties of quants are great. The maximum values ΔE, ΔR, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeu iLdqKaamyraiaacYcacaqGGaGaeuiLdqKaamOuaiaacYcaaaa@3D7D@ appear when we substitute in the first quantum of time Tq. The values ΔM, ΔQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeu iLdqKaamytaiaacYcacaqGGaGaeuiLdqKaamyuaaaa@3CD4@ not appear yet. They are equivalent the given ΔE MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeu iLdqKaamyraaaa@393D@ .

The probability record of inequality (15) is normal. If we take (15) in the form

ΔIΔRh,ΔEΔTh, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadMeacq GHflY1cqqHuoarcaWGsbGaeyyzImRaamiAaiaaysW7caGGSaGaaGzb Vlabfs5aejaadweacqGHflY1cqqHuoarcaWGubGaeyyzImRaamiAai aaysW7caGGSaaaaa@4FCF@          (17)

the multiplier 1/2 in expressions (16) equal 1 and ΔR=c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeu iLdqKaamOuaiabg2da9iaadogaaaa@3B38@ . That means the speed in the first quantum of time equals the speed of light.

Note: For getting the values (2)-(17) we also used the dimension theory and some values may be defined as constants. The constant equals 1 in many suitcases, if we use as base the Planck’s units.

Main results and discussion

Key result of work #4 is correction of equations in the works.13 This result is: energy can be the chief general substance of Universe (see Eq. (7)). Energy can create time, volume, mass, and charge. The same role/issue also can be time (see Eq. (2)). All chief components of Universe (volume, size, time, matter, energy, charge) can be transformed from one to another. That means in the Universe is ONE substance, which creates our World.

The reader can ask question: How can we transfer time to energy? I can ask a counter question: The expression E = Mc2 (here M is mass) was discovered about hundred years ago. In earlier time any man could ask: How to convert the matter in the enormous energy? Only later the scientists unlocked that nuclei of atoms can be converted one to another. Their mass is changed and emits or absorb of energy. The author suggested the method which converts any matter to energy.56

Only time and experiments can confirm or deny the offered relations. The authors other works closest to this topic are presented in references.18

Acknowledgments

None.

Conflict of interest

Authors declare there is no conflicts of interest.

References

Creative Commons Attribution License

©2019 Bolonkin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.