Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 1 Issue 3

Classical electrodynamics: the problems in the theoretical description ofthe intra-dipole radiation

Andrew Chubykalo, Augusto Espinoza

Academic Unit of Physics and Chemical Sciences, Autonomous University of Zacatecas, Mexico

Correspondence: Andrew Chubykalo, Academic Unit of Physics and Chemical Sciences, Autonomous University of Zacatecas, Zacatecas, Mexico

Received: June 18, 2017 | Published: October 3, 2017

Citation: Chubykalo A, Espinoza A. Classical electrodynamics: the problems in the theoretical Description of the Intra-dipole radiation. Phys Astron Int J.2017;1(3):66-80. DOI: 10.15406/paij.2017.01.00014

Download PDF

Abstract

In our paper we would like to analyze some mathematical and physical problems which arise in the interior of an electric dipole during its oscillation along the vector of the dipole moment. A hypothesis is advanced that only electric dipole can radiate electromagnetic waves rather than an electric charge.

Keywords: classical electrodynamics, intra-dipole radiation, velocity, acceleration, poynting vector, electromagnetic field, density, umov vector, dipoles, charges, mathematical physics, lorentz condition, d'alembert's equation. homogeneous wave equations

Introduction

The present paper was inspired by our careful perusal of recently published brilliant work.1 In our paper we are going to try to investigate what happens to the transfer of energy and momentum from one to another dipole charge during longitudinal oscillations of one of the charges. Let the dipole { +q,q } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaGadaWdaeaapeGaey4kaSIaamyCaiaacYcacqGHsislcaWG XbaacaGL7bGaayzFaaaaaa@3D60@  lies on the X-axis. Let also one of the charges is oscillating in some arbitrary way along the X-axis.

An electric field created by an arbitrarily moving charge is given by the following expression obtained directly from Lienard-Wiechert potentials:2

E( R,t )=q ( RR v c )( 1 v 2 c 2 ) ( RR v c ) 3 +q { R×[ ( RR v c )× v ˙ c 2 ] } ( RR v c ) 3  ,                     ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHfbWaaeWaa8aabaWdbiaahkfacaGGSaGaamiDaaGaayjk aiaawMcaaiabg2da9iaadghadaWcaaWdaeaapeWaaeWaa8aabaWdbi aahkfacqGHsislcaWGsbWaaSaaa8aabaWdbiaahAhaa8aabaWdbiaa dogaaaaacaGLOaGaayzkaaWaaeWaa8aabaWdbiaaigdacqGHsislda WcaaWdaeaapeGaamODa8aadaahaaqcfasabeaapeGaaGOmaaaaaKqb a+aabaWdbiaadogapaWaaWbaaKqbGeqabaWdbiaaikdaaaaaaaqcfa OaayjkaiaawMcaaaWdaeaapeWaaeWaa8aabaWdbiaadkfacqGHsisl caWHsbWaaSaaa8aabaWdbiaahAhaa8aabaWdbiaadogaaaaacaGLOa GaayzkaaWdamaaCaaajuaibeqaa8qacaaIZaaaaaaajuaGcqGHRaWk caWGXbWaaSaaa8aabaWdbmaacmaapaqaa8qacaWHsbGaey41aq7aam Waa8aabaWdbmaabmaapaqaa8qacaWHsbGaeyOeI0IaamOuamaalaaa paqaa8qacaWH2baapaqaa8qacaWGJbaaaaGaayjkaiaawMcaaiabgE na0oaalaaapaqaa8qaceWH2bWdayaacaaabaWdbiaadogapaWaaWba aeqajuaibaWdbiaaikdaaaaaaaqcfaOaay5waiaaw2faaaGaay5Eai aaw2haaaWdaeaapeWaaeWaa8aabaWdbiaadkfacqGHsislcaWHsbWa aSaaa8aabaWdbiaahAhaa8aabaWdbiaadogaaaaacaGLOaGaayzkaa WdamaaCaaajuaibeqaa8qacaaIZaaaaaaajuaGcaGGGcGaaiilaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOamaabmaapaqaa8qacaaIXaaaca GLOaGaayzkaaaaaa@8FF2@

Where R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHsbaaaa@3780@ the vector is directed from the charge q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGXbaaaa@379B@  to the point of observation, v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWH2baaaa@37A4@ and v ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWH2bWdayaacaaaaa@37BC@  are the velocity and the acceleration of the charge q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGXbaaaa@379B@ , respectively. All values in the right-hand are taken in the moment of time t 0 =tτ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0bWdamaaBaaajuaibaWdbiaaicdaa8aabeaajuaGpeGa eyypa0JaamiDaiabgkHiTiabes8a0jaacYcaaaa@3ED3@ where τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHepaDaaa@3869@ the retarded time is, and t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0baaaa@379E@  is time of observation. Since along the X-axis all vectors in (1) are collinear, the second term in (1) is zero. In the conventional theory, the Poynting vector represents electromagnetic field energy flow per unit area per unit time across a given surface,

S= c 4π ( E×H ),    p= 1 c 2 S,                                                 ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHtbGaeyypa0ZaaSaaa8aabaWdbiaadogaa8aabaWdbiaa isdacqaHapaCaaWaaeWaa8aabaWdbiaahweacqGHxdaTcaWHibaaca GLOaGaayzkaaGaaiilaiaacckacaGGGcGaaiiOaiaacckacaWHWbGa eyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadogapaWaaWbaaK qbGeqabaWdbiaaikdaaaaaaKqbakaahofacaGGSaGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOamaabmaapaqa a8qacaaIYaaacaGLOaGaayzkaaaaaa@8853@

Where S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHtbaaaa@3781@  is the Poynting vector, p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHWbaaaa@379E@  is the momentum density vector, E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHfbaaaa@3773@  and H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHibaaaa@3776@  are strengths of electric and magnetic field, respectively. Analyzing (2), one can easily note that S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHtbaaaa@3781@  and p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHWbaaaa@379E@  (and, therefore, all electromagnetic energy flow) are exactly zero ( S=0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeGaaC4uaiabg2da9iaaicdaaiaawIcacaGL Paaaaaa@3AE9@  along the X-axis. On the other hand, from the energy conservation law,

 w= E 2 + H 2 8π ,        w t =     .     S,                                              ( 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaam4Daiabg2da9maalaaapaqaa8qacaWGfbWdamaa Caaajuaibeqaa8qacaaIYaaaaKqbakabgUcaRiaadIeapaWaaWbaae qajuaibaWdbiaaikdaaaaajuaGpaqaa8qacaaI4aGaeqiWdahaaiaa cYcacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWaaS aaa8aabaWdbiabgkGi2kaadEhaa8aabaWdbiabgkGi2kaadshaaaGa eyypa0JaeyOeI0Iaey4bIe9dauaabaqaceaaaeaapeGaaiiOaaWdae aapeGaaiiOaaaacaGGUaWdauaabaqaceaaaeaapeGaaiiOaaWdaeaa peGaaiiOaaaacaWHtbGaaiilaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckadaqadaWdaeaapeGaaG4maaGaayjkaiaawMcaaaaa@91F5@

Where w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG3baaaa@37A0@  is the energy density of the electromagnetic field E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHfbaaaa@3773@ and H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHibaaaa@3776@ , we conclude that w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG3baaaa@37A0@  and w/t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHciITcaWG3bGaai4laiabgkGi2kaadshaaaa@3C18@  should differ from zero everywhere along the X-axis because there is a linear relationship between w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG3baaaa@37A0@ and   E 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcqcfaOaamyra8aadaahaaqabKqbGeaapeGaaGOmaaaaaaa@39BD@  changing in time along the X-axis. An ambiguity takes place if any dipole charge is moving in some arbitrary way along the X-axis. As a result the energy density W should also alter as a function of changing electric field E. Then the question logically arises: what is the mechanism that changes electric field at some fixed distance from the charge on the X-axis if there is apparently no electromagnetic field energy transfer in that direction ( S=0 )? MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeGaaC4uaiabg2da9iaaicdaaiaawIcacaGL PaaacaGG=aaaaa@3BAC@  This ambiguity is due to the fact that in the conventional theory based on the of local field, which energy has to be stored locally in space, any change of field components is indispensable without field energy flux. This is obviously violated in the above mentioned example that brings into question an assumed sufficiency of transverse solutions alone to describe all properties of electromagnetic field. At least, the resolution of this ambiguity cannot be based on transverse solutions of Maxwell’s equations because it well-established that any moving charge does not radiate electromagnetic waves along the direction of its motion. Only longitudinal components, if they exist, can be useful in that respect.

Let us make several qualitative observations on the possible role of longitudinal fields components. The solution (1) indicates the existence of longitudinal perturbations along the X-axis. It is believed that the energy transfer (the Poynting vector) S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHtbaaaa@3781@  is a product of the energy density and its spreading velocity cn MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbGaaCOBaaaa@3884@ , (the Umov vector U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHvbaaaa@3783@ ).

S=U=wcn,                                                               ( 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHtbGaeyypa0JaaCyvaiabg2da9iaadEhacaWGJbGaaCOB aiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckadaqa daWdaeaapeGaaGinaaGaayjkaiaawMcaaaaa@8838@

Where c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbaaaa@378D@  is the velocity of light, and n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHUbaaaa@379C@ is the unit vector in the direction of spreading of the energy, then either the spreading velocity cn MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbGaaCOBaaaa@3884@  or the energy density w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG3baaaa@37A0@  must would be zero along the X-axis. The first assumption would neglect any possibility of interaction transfer. The second one (w=0) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGOaGaam4Daiabg2da9iaaicdacaGGPaaaaa@3ABA@  would be inconceivable in the framework of Faraday-Maxwell local field which should be locally stored in space with non-zero energy. But we adduce here the theorem “For the equality of the Poynting vector and Umov vector it is necessary and sufficient that EH MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHfbGaeyyPI4LaaCisaaaa@39F4@  and E=H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaeyypa0Jaamisaaaa@3941@ ” which was proved by one of the authors (Augusto Espinoza) of the present paper in.3 The proof is very simple:

Let us study what condition in vacuum for E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHfbaaaa@3772@  and H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHibaaaa@3775@  in an electromagnetic wave must be satisfied when the equality S=U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHtbGaeyypa0JaaCyvaaaa@3965@  is valid. We have in CGS (Gauss’ system):

S= c 4π ( E×H )= c 4π EHsinαn                                             ( 5 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHtbGaeyypa0ZaaSaaa8aabaWdbiaadogaa8aabaWdbiaa isdacqaHapaCaaWaaeWaa8aabaWdbiaahweacqGHxdaTcaWHibaaca GLOaGaayzkaaGaeyypa0ZaaSaaa8aabaWdbiaadogaa8aabaWdbiaa isdacqaHapaCaaGaamyraiaadIeaciGGZbGaaiyAaiaac6gacqaHXo qycaWHUbGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbi aaiwdaaiaawIcacaGLPaaaaaa@830D@ and

 U=wcn= c 4π ( E 2 + H 2 )n ,                                               ( 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaaCyvaiabg2da9iaadEhacaWGJbGaaCOBaiabg2da 9maalaaapaqaa8qacaWGJbaapaqaa8qacaaI0aGaeqiWdahaamaabm aapaqaa8qacaWGfbWdamaaCaaajuaibeqaa8qacaaIYaaaaKqbakab gUcaRiaadIeapaWaaWbaaeqajuaibaWdbiaaikdaaaaajuaGcaGLOa GaayzkaaGaaCOBaiaabckacaGGSaGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckadaqadaWdaeaapeGaaGOnaaGaayjkaiaawMca aaaa@83A0@

Here n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHUbaaaa@379C@  is a unit vector along the direction of spreading of the electromagnetic energy, the transferring energy velocity in the case of electromagnetic waves in vacuum is c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbaaaa@378D@ .

Equating (5) and (6) we obtain

 2EHsinα= E 2 + H 2                                                      ( 7 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaaGOmaiaadweacaWGibGaci4CaiaacMgacaGGUbGa eqySdeMaeyypa0Jaamyra8aadaahaaqabKqbGeaapeGaaGOmaaaaju aGcqGHRaWkcaWGibWdamaaCaaajuaibeqaa8qacaaIYaaaaKqbakaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaiEdaaiaawI cacaGLPaaaaaa@8461@

Or

  ( EH ) 2 +2EH( 1sinα )=0.                                          ( 8 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcWaaeWaa8aabaWdbiaadweacqGHsislcaWGibaacaGL OaGaayzkaaWdamaaCaaabeqcfasaa8qacaaIYaaaaKqbakabgUcaRi aaikdacaWGfbGaamisamaabmaapaqaa8qacaaIXaGaeyOeI0Iaci4C aiaacMgacaGGUbGaeqySdegacaGLOaGaayzkaaGaeyypa0JaaGimai aac6cacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckadaqadaWdaeaapeGaaGioaaGaayjkaiaawMcaaa aa@7D6E@

According to the problem definition we choose real values of E,H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaaiilaiaadIeaaaa@38EC@  and α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHXoqyaaa@3844@  only, where α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHXoqyaaa@3844@  is the angle between E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHfbaaaa@3772@  and H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHibaaaa@3775@ . Therefore, the last equality (8) can be valid if and only if E=H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaeyypa0Jaamisaaaa@3942@  and α=π/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHXoqycqGH9aqpcqaHapaCcaGGVaGaaGOmaaaa@3C76@ . In this work3 it is described the experiment performed by the authors of.3 So for the case examined by us there is an incompatibility between the generally accepted definition of the electromagnetic energy density and the conventional definition of the energy flux density expressed by the Poynting vector. This particular case allows us to affirm that, in general, these standard definitions for S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHtbaaaa@3781@ and for U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHvbaaaa@3783@ are incompatible.

So we must conclude that in our case for the transfer of energy along the X-axis from the the oscillating charge ( +q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHRaWkcaWGXbaaaa@387D@ , for example) of the dipole { +q,q } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaGadaWdaeaapeGaey4kaSIaamyCaiaacYcacqGHsislcaWG XbaacaGL7bGaayzFaaaaaa@3D60@ to the second charge (q) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikaa baaaaaaaaapeGaeyOeI0IaamyCa8aacaGGPaaaaa@39F0@  the Poynting vector is not responsible, but only Umov vector.

At the end of this Section, we stress that in the conventional electrodynamics longitudinal field components in vacuum do not play any role at all and, in fact, they are eliminated from consideration by means of appropriate gauge. In Dirac's own words:4 “...As long as we are dealing only with transverse waves, we cannot bring in the Coulomb interactions between particles. To bring them in, we have to introduce longitudinal electromagnetic waves: The longitudinal waves can be eliminated by means of mathematical transformation. Now, when we do make this transformation which results in eliminating the longitudinal electromagnetic waves, we get a new term appearing in the Hamiltonian. This new term is just the Coulomb energy of interaction between all the charged particles,

  1,2 q 1 q 2 r 1,2 ,                                                                ( 9 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcWaaybuaeqapaqaa8qacaaIXaGaaiilaiaaikdaaeqa paqaa8qacqGHris5aaWaaSaaa8aabaWdbiaadghadaWgaaqaa8aada Wgaaqcfasaa8qacaaIXaaajuaGpaqabaaapeqabaGaamyCa8aadaWg aaqaa8qadaWgaaqcfasaaKqzadGaaGOmaaqcfayabaaapaqabaaaba WdbiaahkhadaWgaaqcfauaaSWdamaaBaaajuaqbaqcLbmapeGaaGym aiaacYcacaaIYaaajuaqpaqabaaajuaGpeqabaaaaiaacYcacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWaaeWaa8aaba WdbiaaiMdaaiaawIcacaGLPaaaaaa@95E7@

... this term appears automatically when we make the transformation of the elimination of the longitudinal waves." As we know from the classical physics, (9) means the existence of bipartite instantaneous longitudinal interaction with no potential energy stored locally in the interparticle space. What is then the meaning of the elimination of longitudinal components in the conventional theory? In the following we will try to show that the problem of longitudinal components is unreasonably underestimated in classical electrodynamics (perhaps by historical reasons). There should be a change of attitude towards its status. Mathematical and physical reasons in favor of paramount importance of longitudinal components to build up a self-consistent classical electrodynamics and its possible reconciliation with quantum mechanics will be given in next sections.

Mathematical foundations of electrodynamics with longitudinal interactions

Let us recall that a complete set of Maxwell's equations in vacuum is

E=4πϱ,                                                            ( 10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHflY1caWHfbGaeyypa0JaaGinaiabec8aWnrr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8x8deVaai ilaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOamaabmaapaqaa8qacaaIXaGaaGimaa GaayjkaiaawMcaaaaa@92F6@

H=0,                                                               ( 11 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHflY1caWHibGaeyypa0JaaGimaiaacYcacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckadaqadaWdaeaapeGa aGymaiaaigdaaiaawIcacaGLPaaaaaa@88B0@

×H= 4π c j+ 1 c E t ,                                                   ( 12 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHxdaTcaWHibGaeyypa0ZaaSaaa8aabaWdbiaa isdacqaHapaCa8aabaWdbiaadogaaaGaaCOAaiabgUcaRmaalaaapa qaa8qacaaIXaaapaqaa8qacaWGJbaaamaalaaapaqaa8qacqGHciIT caWHfbaapaqaa8qacqGHciITcaWG0baaaiaacYcacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kadaqadaWdaeaapeGaaGymaiaaikdaaiaawIcacaGLPaaaaaa@866C@

×E= 1 c H t .                                                        ( 13 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHxdaTcaWHfbGaeyypa0JaeyOeI0YaaSaaa8aa baWdbiaaigdaa8aabaWdbiaadogaaaWaaSaaa8aabaWdbiabgkGi2k aahIeaa8aabaWdbiabgkGi2kaadshaaaGaaiOlaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaig dacaaIZaaacaGLOaGaayzkaaaaaa@878A@

If this system of equations is really complete and boundary conditions are adequate, it should describe all electromagnetic phenomena without exceptions and ambiguities. It is often convenient to introduce potentials, satisfying the Lorentz condition

 A+ 1 c φ t =0.                                                      ( 14 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaey4bIeTaeyyXICTaaCyqaiabgUcaRmaalaaapaqa a8qacaaIXaaapaqaa8qacaWGJbaaamaalaaapaqaa8qacqGHciITcq aHgpGAa8aabaWdbiabgkGi2kaadshaaaGaeyypa0JaaGimaiaac6ca caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckadaqadaWdaeaapeGaaG ymaiaaisdaaiaawIcacaGLPaaaaaa@8831@

As a result, the set of coupled first-order partial differential equations (10)-(13) can be reduced to the equivalent pair of uncoupled inhomogeneous D'Alembert's equations:

 Δφ 1 c 2 2 φ t 2 =4πϱ( r,t ),                                             ( 15 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcqcfaOaeuiLdqKaeqOXdOMaeyOeI0YaaSaaa8aabaWdbiaa igdaa8aabaWdbiaadogapaWaaWbaaeqajuaibaWdbiaaikdaaaaaaK qbaoaalaaapaqaa8qacqGHciITpaWaaWbaaKqbGeqabaWdbiaaikda aaqcfaOaeqOXdOgapaqaa8qacqGHciITcaWG0bWdamaaCaaajuaibe qaa8qacaaIYaaaaaaajuaGcqGH9aqpcqGHsislcaaI0aGaeqiWda3e fv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFXpq8da qadaWdaeaapeGaaCOCaiaacYcacaWG0baacaGLOaGaayzkaaGaaiil aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOamaabmaapaqaa8qacaaIXaGa aGynaaGaayjkaiaawMcaaaaa@949B@

ΔA 1 c 2 2 A t 2 = 4π c j( r,t ).                                              ( 16 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWHbbGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aa baWdbiaadogapaWaaWbaaeqajuaqbaqcLbmapeGaaGOmaaaaaaqcfa 4aaSaaa8aabaWdbiabgkGi2+aadaahaaqabKqbGeaapeGaaGOmaaaa juaGcaWHbbaapaqaa8qacqGHciITcaWG0bWdamaaCaaabeqcfasaa8 qacaaIYaaaaaaajuaGcqGH9aqpcqGHsisldaWcaaWdaeaapeGaaGin aiabec8aWbWdaeaapeGaam4yaaaacaWHQbWaaeWaa8aabaWdbiaahk hacaGGSaGaamiDaaGaayjkaiaawMcaaiaac6cacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaigdacaaI2aaacaGL OaGaayzkaaaaaa@8A39@

Differential equations have, generally speaking, an infinite number of possible solutions. A uniquely determined solution is selected by laying down sufficient additional conditions. Different forms of additional conditions are possible for the second order partial differential equations: initial value and boundary-value conditions. A general solution of the D'Alembert equation is considered as an explicit time-dependent function of the type g( R, t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBaG qbaKqbacbaaaaaaaaapeGaa83zamaabmaapaqaa8qacaWHsbGaaiil aiaacckacaWG0baacaGLOaGaayzkaaaaaa@3EE8@ . Let us discuss a very subtle point related to the use and interpretation of implicit and explicit time dependencies in the conventional electrodynamics. We think that as far as this problem is not cleared up, the classical theory will remain beset of ambiguities. Helmholtz-type approach5 see also the paper "The Contribution of Hermann von Helmholtz to Electrodynamics"6) reviewed below makes that distinction very clear.

Special relativity well established that in the stationary approximation (charge moving with a constant velocity) all fields components are implicit time-dependent functions of the type f( R( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGMbWaaeWaa8aabaWdbiaahkfadaqadaWdaeaapeGaamiD aaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3CB4@ . Field lines remain radial in all inertial frames of references and, hence, depend on the instant position of the charge. As a consequence, time t is not an independent variable any more in this case and enters as a parameter through space position of the charge R( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHsbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@3A21@ . Hence, the use of partial time derivatives /t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHciITcaGGVaGaeyOaIyRaamiDaaaa@3B1D@ , 2 / t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHciITpaWaaWbaaKqbGeqabaWdbiaaikdaaaqcfaOaai4l aiabgkGi2kaadshapaWaaWbaaKqbGeqabaWdbiaaikdaaaaaaa@3E01@  etc. (according to their formal mathematical definition) is inadequate if a function has not two or more independent variables. Nevertheless, in basic texts on classical electromagnetic theory partial time derivatives are indiscriminately applied even for implicit time dependent functions in the proper sense of total time derivatives. (Some clear examples will be done in the next Section discussing the use of continuity equation).

Looking back at D'Alembert's equations (15) and (16), space variable R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHsbaaaa@377F@  should be fixed under the action of partial time derivative 2 / t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHciITpaWaaWbaaKqbGeqabaWdbiaaikdaaaqcfaOaai4l aiabgkGi2kaadshapaWaaWbaaKqbGeqabaWdbiaaikdaaaaaaa@3E01@ . Fixing R( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHsbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@3A21@ , means that there is no change with time t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0baaaa@379D@  playing the role of a parameter. Thus, partial time derivatives vanish from D'Alembert equation in the case of uniformly moving charge. Poisson's equation for four-vector (φ,A) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGOaGaeqOXdOMaaiilaiaahgeacaGGPaaaaa@3B34@ with implicit time dependence appears to be appropriate one. We especially made a detailed analysis because of confusion in conventional texts on classical electromagnetism about explicit use of Poisson's equations for uniformly moving charge (but as we have seen, they do it tacitly). It is commonly thought that only D'Alembert's equation (i.e. that only D'Alembert's operator Δ 2 / t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcqGHsislcqGHciITpaWaaWbaaKqbGeqabaWdbiaa ikdaaaqcfaOaai4laiabgkGi2kaadshapaWaaWbaaeqajuaibaWdbi aaikdaaaaaaa@4054@ ) is relativistically invariant under Lorentz's transformations. As we will discuss later in connection with gauge invariance, Poisson's equation in four-vector representation (φ,A) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGOaGaeqOXdOMaaiilaiaahgeacaGGPaaaaa@3B34@  (as well as Poisson's differential operator Δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoaraaa@380B@ ) can also be considered relativistically invariant when applied to implicit time-dependent potentials, reproducing all results of special relativity for inertial frames of reference. Poisson's differential operator Δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoaraaa@380B@  is not covariant but invariant under Lorentz's transformations. Time variable is not any more independent in this case and cannot be used for covariant representation of D'Alembert's differential operator. It is endorsed by the well-known fact that covariance is not necessary, it is only sufficient for relativistic invariance.

Thus, we can conclude that D'Alembert equations have general solutions in form of explicit time-dependent functions whereas Poisson's equations have only implicit time dependent solutions. The following question becomes obvious: how any transition from D'Alembert and Poisson's equations is describe d in the conventional formalism? As a matter of fact, this question has not even been asked because Poisson's equation has not been recognized as covering implicit time-dependent phenomena (it was applied exclusively in electro- and magneto-statics with no time dependence at all). This question, unexplored by the conventional approach, contains a very serious difficulty.

As we shall demonstrate below, a continuous transition between solutions of D'Alembert's and Poisson’s equations, respectively, is not mathematically ensured in classic al electromagnetism. Based on the premises of a continuous nature ofelectromagnetic phenomena, one can assume that anygeneral implicit time solution of Poisson's equationshould be continuously transformed into explicittime solutions of D'Alembert's equations (and viceversa). This requirement can also be formulatedas a mathematical condition on the continuity ofgeneral solutions of Maxwell's equations at everymoment of time. By force of the uniqueness theoremfor the second order partial differential equations,only one solution exists satisfying given initial andboundary conditions. Consequently, the continuoustransition from solutions of D'Alembert's equationinto solutions of Poisson's equation (and vice versa)should be ensured by the continuous transitionbetween respective initial and boundary conditions. This is the point where the conventional approach fails again. Only implicit time-dependent function f( R( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGMbWaaeWaa8aabaWdbiaahkfadaqadaWdaeaapeGaamiD aaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3CB4@  can be unique solution of Poisson's equations and boundary conditions for external problem are to be formulated in the infinity. On the other hand, the solution of D'Alembert's equation is an explicit time-dependent function g( R( t ), t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBaG qbaKqbacbaaaaaaaaapeGaa83zamaabmaapaqaa8qacaWHsbWaaeWa a8aabaWdbiaadshaaiaawIcacaGLPaaacaGGSaGaaiiOaiaadshaai aawIcacaGLPaaaaaa@418A@  since only it fits requirements of Faraday-Maxwell's electrodynamics as a physically sound solution for the notion of local (contact) field. The boundary conditions in this case are given in a finite region. It makes no sense to establish them at the infinity if it cannot be reached by any perturbations with finite spread velocity. As far as one deal with large external region, effects of boundaries are still insignificant over a small interval of time, and, therefore, it is convenient to consider the limiting problem with initial conditions for an infinite region (initial Cauchy's problem). This is how in mathematical physics areas of infinite dimensions are introduced into consideration.

Let us look carefully at the standard formulation of respective boundary-value problems in a region extending to infinity. There are three external boundary-value problems for Poisson's equation. They are known as the Dirichlet problem, Neumann problem and their combination. The mathematical formulation, for instance, for Dirichlet’s boundary conditions requires finding a function u( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG1bWaaeWaa8aabaWdbiaadkhaaiaawIcacaGLPaaaaaa@3A3E@  satisfying7

  1. Laplace's equation Δu=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWG1bGaeyypa0JaaGimaaaa@3AC5@  everywhere outside the given system of charges (currents).
  2. Solution u( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG1bWaaeWaa8aabaWdbiaadkhaaiaawIcacaGLPaaaaaa@3A3E@  is continuous everywhere in the given region and takes the given value G on the internal surface S:u|   S =G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbGaaiOoaiaadwhadaabbaWdaeaafaqabeGabaaabaWd biaacckaa8aabaWdbiaadofaaaGaeyypa0Jaam4raaGaay5bSdaaaa@3EE1@ .
  3. Solution u( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG1bWaaeWaa8aabaWdbiaadkhaaiaawIcacaGLPaaaaaa@3A3E@ converges uniformly to 0 at infinity: u( r )0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG1bWaaeWaa8aabaWdbiaadkhaaiaawIcacaGLPaaacqGH sgIRcaaIWaaaaa@3CE5@  as | r | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaabdaWdaeaapeGaamOCaaGaay5bSlaawIa7aiabgkziUkab g6HiLcaa@3E3B@ .

The final condition (iii) is essential for a unique solution! In the case of D'Alembert's equation the standard mathematical formulation is different. Obviously, we are interested only in the problem for an infinite region (initial Cauchy's problem). So it is required to find the function u( r( t ), t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG1bWaaeWaa8aabaWdbiaadkhadaqadaWdaeaapeGaamiD aaGaayjkaiaawMcaaiaacYcacaGGGcGaamiDaaGaayjkaiaawMcaaa aa@3FAC@ satisfying:5

  1. (j) Homogeneous D'Alembert's equation everywhere outside the given system of charges (currents) for every moment of time t0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0bGaeyyzImRaaGimaaaa@3A1E@ .
  2. (jj) initial conditions in all infinite regions as follows:

u( r,t )|   t=0 = G 1 ( r ); MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG1bWaaeWaa8aabaWdbiaadkhacaGGSaGaamiDaaGaayjk aiaawMcaamaaeeaapaqaauaabeqaceaaaeaapeGaaiiOaaWdaeaape GaamiDaiabg2da9iaaicdaaaGaeyypa0Jaam4ra8aadaWgaaqcfasa a8qacaaIXaaapaqabaqcfa4dbmaabmaapaqaa8qacaWGYbaacaGLOa GaayzkaaGaai4oaaGaay5bSdaaaa@48A9@ u t ( r,t )|   t=0 = G 2 ( r ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG1bWdamaaBaaajuaibaWdbiaadshaa8aabeaajuaGpeWa aeWaa8aabaWdbiaadkhacaGGSaGaamiDaaGaayjkaiaawMcaamaaee aapaqaauaabeqaceaaaeaapeGaaiiOaaWdaeaapeGaamiDaiabg2da 9iaaicdaaaGaeyypa0Jaam4ra8aadaWgaaqcfasaa8qacaaIYaaapa qabaqcfa4dbmaabmaapaqaa8qacaWGYbaacaGLOaGaayzkaaGaaiOl aaGaay5bSdaaaa@4AB1@

The condition (iii) about the uniform convergence at infinity is not mentioned. Recall here that Cauchy's problem is considered when one of the boundaries is insignificant over all time of a process. In conventional electrodynamics it means that any perturbation with finite spread velocity will never reach the limits of the region under consideration during the time of observation. From the conventional point of view, condition (iii) formally included into Cauchy's problem can never affect the solution and, hence, might not be taken into account seriously for selecting of adequate solutions. In fact in the context of local field, the inclusion of the condition (iii) becomes meaningless since only explicit time-dependent solutions (retarded waves with finite spread velocity) are allowed by conventional electrodynamics to solutions of D'Alembert's equation. On the other hand, we underline here that the absence of the condition (iii) for every moment of time in the standard mathematical formulation of Cauchy's initial problem does not ensure the continuous transition into external boundary-value problem for Poisson's equation and, as a result, mutual continuity between the corresponding solutions cannot be expected by force of the uniqueness theorem. This unambiguous mathematical fact should be considered as one of the most warning signals of possible flaws in the mathematical formalism of contemporary Maxwell's electrodynamics. The only way that seems to be obligatory to satisfy the property of continuity of electromagnetic field (in other words, to keep the continuity in transition between solutions of D'Alembert and Poisson's equations), is the inclusion of the condition (iii) for every moment of time in the standard mathematical formulation of Cauchy's initial problem. It obviously ensures the continuous transition into external boundary-value problem for Poisson's equation (and vice versa) and implies a structure of a general solution as a superposition of separate non-reducible to each other functions of the type.

f( R( t ) )+g( r,t ).                                                         ( 17 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGMbWaaeWaa8aabaWdbiaahkfadaqadaWdaeaapeGaamiD aaGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgUcaRerbbjxAHXgaiu aacaWFNbWaaeWaa8aabaWdbiaahkhacaGGSaGaamiDaaGaayjkaiaa wMcaaiaac6cacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckadaqadaWdaeaapeGaaGymaiaaiEdaaiaawIcacaGL Paaaaaa@89B0@

When we apply it to potentials, this statement takes the form:

 φ( r,t )= φ 0 ( R( t ) )+ φ * ( r,t ),                                            ( 18 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcqcfaOaeqOXdO2aaeWaa8aabaWdbiaahkhacaGGSaGaamiD aaGaayjkaiaawMcaaiabg2da9iabeA8aQ9aadaWgaaqcfasaa8qaca aIWaaapaqabaqcfa4dbmaabmaapaqaa8qacaWHsbWaaeWaa8aabaWd biaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHRaWkcqaHgp GApaWaaWbaaKqbGeqabaWdbiaacQcaaaqcfa4aaeWaa8aabaWdbiaa hkhacaGGSaGaamiDaaGaayjkaiaawMcaaiaacYcacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOamaabmaapaqaa8qacaaIXaGaaGioaaGaayjkaiaawMcaaa aa@8629@

A( r,t )= A 0 ( R( t ) )+ A * ( r,t ),                                           ( 19 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWaaeWaa8aabaWdbiaahkhacaGGSaGaamiDaaGaayjk aiaawMcaaiabg2da9iaahgeapaWaaSbaaKqbGeaapeGaaGimaaqcfa 4daeqaa8qadaqadaWdaeaapeGaaCOuamaabmaapaqaa8qacaWG0baa caGLOaGaayzkaaaacaGLOaGaayzkaaGaey4kaSIaaCyqa8aadaahaa qcfasabeaapeGaaiOkaaaajuaGdaqadaWdaeaapeGaaCOCaiaacYca caWG0baacaGLOaGaayzkaaGaaiilaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckadaqadaWd aeaapeGaaGymaiaaiMdaaiaawIcacaGLPaaaaaa@8109@

Where for one charge system R( t )=r r q ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHsbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH 9aqpcaWHYbGaeyOeI0IaaCOCa8aadaWgaaqcfasaa8qacaWGXbaaju aGpaqabaWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@42BC@ ; r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbaaaa@379C@ is a fixed distance from the point of observation to the origin of the reference system and r q ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHYbWdamaaBaaajuaibaWdbiaadghaaKqba+aabeaapeWa aeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@3C52@  is the position of the charge at the instant t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0baaaa@379E@ .

The presence of the condition (iii) in the formulation of Cauchy's problem turns out to be meaningful for any moment of time, and the corresponding boundary conditions keep continuity in respect of mutual transformation. That makes the condition (iii) irremovable from the formulation of initial Cauchy's problem resulting in fundamental (irremovable) nature of implicit time-dependent (or longitudinal) components H/ t * ·· MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHciITcaWHibGaai4laiabgkGi2kaadshadaahaaqcfasa beaacaGGQaaaaKqbakabl+y6Njabl+y6Nbaa@425A@  responsible for the interparticle interaction. Potentials with explicit time-dependence φ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGApaWaaWbaaKqbGeqabaWdbiaacQcaaaaaaa@397E@  and A * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaCaaajuaibeqaa8qacaGGQaaaaaaa@388B@  vanish in the steady-state case, leaving only implicit time-dependent functions φ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGApaWaaSbaaKqbGeaapeGaaGimaaWdaeqaaaaa@3999@  and A 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaWdbiaaicdaaKqba+aabeaaaaa@3934@  in the total potential (left-hand side of (18) and (19)). Now, contrary to the conventional approach, it is clear how the total solution φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGAaaa@3862@  (or A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbaaaa@376F@ ) in left hand side of (18), (19) with explicit time dependence undergoes transformations into solution with implicit time dependence (and vice versa). Faraday-Maxwell's approach does not allow to take into account the first term in right-hand side of (18), (19) as full-value part of any general solution. Turning to the above-mentioned ambiguity at the beginning of the previous section, we see now that the novel solution in form of (18), (19) can describe the change of electric field component along the X-axis at any distance and at any time. It casts doubts on the general belief that Lienard-Wiechert potentials (as only explicit time-dependent solutions of D'Alembert's equations for Cauchy's problem) should be considered as unique general solutions to Maxwell's equations regardless the context of boundary conditions. In fact, Lienard and Wiechert formulated the initial Cauchy problem for electromagnetic components several years before the appearance of Einstein's principle of relativity. Thus, a priori imposed boundary conditions were not assumed to have adequate relativistic properties. This is another open question in the conventional approach whether relativistic requirements should be reflected in the mathematical formulation of the initial boundary problem. In this respect, we only stress that additional condition (iii) is such an invariant because it is irremovable and unchangeable in every frame of reference.

Let us consider again a pair of uncoupled inhomogeneous D'Alembert's equations (15), (16) with initial conditions (j), (jj) and (iii). F or some purposes, it is convenient to decompose (15), (16) into two pairs of second order differential equations for each component of general solution of (15), (16):

Δ φ 0 =4πϱ( r,t ),                                                ( 20 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcqaHgpGApaWaaSbaaKazfa4=baqcLbmapeGaaGim aaqcfa4daeqaa8qacqGH9aqpcqGHsislcaaI0aGaeqiWda3efv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFXpq8daqadaWd aeaapeGaaCOCaiaacYcacaWG0baacaGLOaGaayzkaaGaaiilaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOamaabmaapa qaa8qacaaIYaGaaGimaaGaayjkaiaawMcaaaaa@8DCC@

Δ A 0 = 4π c j( r,t )                                                ( 21 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWHbbWdamaaBaaajuaibaWdbiaaicdaa8aabeaa juaGpeGaeyypa0JaeyOeI0YaaSaaa8aabaWdbiaaisdacqaHapaCa8 aabaWdbiaadogaaaGaaCOAamaabmaapaqaa8qacaWHYbGaaiilaiaa dshaaiaawIcacaGLPaaacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckadaqadaWdaeaapeGaaGOmaiaaigdaaiaawIcaca GLPaaaaaa@7F6C@

and

 Δ φ * 1 c 2 2 φ * t 2 =0,                                            ( 22 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaeuiLdqKaeqOXdO2damaaCaaajuaibeqaa8qacaGG QaaaaKqbakabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGJb WdamaaCaaabeqcfasaa8qacaaIYaaaaaaajuaGdaWcaaWdaeaapeGa eyOaIy7damaaCaaabeqcfasaa8qacaaIYaaaaKqbakabeA8aQ9aada ahaaqabKqbGeaapeGaaiOkaaaaaKqba+aabaWdbiabgkGi2kaadsha paWaaWbaaeqajuaibaWdbiaaikdaaaaaaKqbakabg2da9iaaicdaca GGSaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckadaqadaWdaeaapeGaaGOmaiaaik daaiaawIcacaGLPaaaaaa@83DB@

Δ A * 1 c 2 2 A * t 2 =0,                                           ( 23 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWHbbWdamaaCaaajuaibeqaa8qacaGGQaaaaKqb akabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGJbWdamaaCa aajuaibeqaa8qacaaIYaaaaaaajuaGdaWcaaWdaeaapeGaeyOaIy7d amaaCaaabeqcfasaaKqzadWdbiaaikdaaaqcfaOaaCyqa8aadaahaa qcfasabeaapeGaaiOkaaaaaKqba+aabaWdbiabgkGi2kaadshapaWa aWbaaKqbGeqabaWdbiaaikdaaaaaaKqbakabg2da9iaaicdacaGGSa GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOamaabmaapaqaa8qacaaIYaGaaG4maaGaayjkai aawMcaaaaa@80DC@

with initial and boundary conditions given, for instance, in the case of electric potential. The equation (20), apart from (iii), is supplemented by

φ 0 ( r )|   S =G                                                   ( 24 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGApaWaaSbaaKqbGeaapeGaaGimaaqcfa4daeqaa8qa daqadaWdaeaapeGaaCOCaaGaayjkaiaawMcaamaaeeaapaqaauaabe qaceaaaeaapeGaaiiOaaWdaeaapeGaam4uaaaacqGH9aqpcaWGhbaa caGLhWoacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckadaqadaWdaeaapeGaaGOmaiaaisdaai aawIcacaGLPaaaaaa@7FD5@

Whereas (22) has to be added with

φ * ( r,t )|   t=0 = G 1 φ 0 ( r )|   t=0  ,                         ( 25 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGApaWaaWbaaKqbGeqabaWdbiaacQcaaaqcfa4aaeWa a8aabaWdbiaahkhacaGGSaGaamiDaaGaayjkaiaawMcaamaaeeaapa qaauaabeqaceaaaeaapeGaaiiOaaWdaeaapeGaamiDaiabg2da9iaa icdaaaGaeyypa0Jaam4ra8aadaWgaaqcfasaa8qacaaIXaaapaqaba qcfa4dbiabgkHiTaGaay5bSdGaeqOXdO2damaaBaaajuaibaWdbiaa icdaa8aabeaajuaGpeWaaeWaa8aabaWdbiaahkhaaiaawIcacaGLPa aadaabbaWdaeaafaqabeGabaaabaWdbiaacckaa8aabaWdbiaadsha cqGH9aqpcaaIWaaaaiaacckacaGGSaaacaGLhWoacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWaaeWaa8aa baWdbiaaikdacaaI1aaacaGLOaGaayzkaaaaaa@7616@

φ τ * ( r,t )|   t=0 = G 2 d dt φ 0 ( r )|   t=0  .                     ( 26 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGApaWaa0baaKqbGeaapeGaeqiXdqhapaqaa8qacaGG QaaaaKqbaoaabmaapaqaa8qacaWHYbGaaiilaiaadshaaiaawIcaca GLPaaadaabbaWdaeaafaqabeGabaaabaWdbiaacckaa8aabaWdbiaa dshacqGH9aqpcaaIWaaaaiabg2da9iaadEeapaWaaSbaaKqbGeaape GaaGOmaaqcfa4daeqaa8qacqGHsisldaWcaaWdaeaapeGaamizaaWd aeaapeGaamizaiaadshaaaaacaGLhWoacqaHgpGApaWaaSbaaKqbGe aapeGaaGimaaWdaeqaaKqba+qadaqadaWdaeaapeGaaCOCaaGaayjk aiaawMcaamaaeeaapaqaauaabeqaceaaaeaapeGaaiiOaaWdaeaape GaamiDaiabg2da9iaaicdaaaGaaiiOaaGaay5bSdGaaiOlaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOamaabmaapaqaa8qacaaIYaGaaGOnaa GaayjkaiaawMcaaaaa@7687@

In the theory of differential equations any complete solution of (15), (16) consists of a general solution of homogeneous D'Alembert's equation plus some particular solution of the inhomogeneous one. Thus, we can assume that the same procedure can be applied to its equivalent formulation in form (20)-(23). On one hand, a complete solution should be formed by two independent general solutions satisfying homogeneous Poisson's and homogeneous wave equations, respectively, and, on the other hand, it has to include one particular solution (as a linear combination of non-reducible components (18), (19), satisfying inhomogeneous D'Alembert's equations (15,16). Relationship between both components (longitudinal and transverse) of electromagnetic field is guided by (25) and (26) and is contained in the particular solution of inhomogeneous D'Alembert's equations. A more comprehensive study of the matter will be done elsewhere.

Thus, the initial set of Maxwell's equations has been decomposed into two pairs of equations with independent general solutions for each pair that are coupled only through the partial solution of the whole set of equations (20)-(23) or (15), (16). The first pair (20), (21) manifests the instantaneous and longitudinal aspect of electromagnetic interactions (action-at-a-distance) while the second one (22), (23) characterizes explicit time-dependent phenomena related to the propagation of transverse waves (light, radiation etc.). It is obvious thus that Helmholtz's basic ideas are fundamentally compatible with Maxwell's equations. The potential separation (18), (19) implies the same procedure with respect to the field strengths,

 E( r,t )= E 0 ( R( t ) )+ E * ( r,t ),                                         ( 27 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaaCyramaabmaapaqaa8qacaWHYbGaaiilaiaadsha aiaawIcacaGLPaaacqGH9aqpcaWHfbWdamaaBaaajuaibaWdbiaaic daa8aabeaajuaGpeWaaeWaa8aabaWdbiaahkfadaqadaWdaeaapeGa amiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgUcaRiaahweapa WaaWbaaKqbGeqabaWdbiaacQcaaaqcfa4aaeWaa8aabaWdbiaahkha caGGSaGaamiDaaGaayjkaiaawMcaaiaacYcacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOamaabmaapaqaa8qa caaIYaGaaG4naaGaayjkaiaawMcaaaaa@7FF0@

 B( r,t )= B 0 ( R( t ) )+ B * ( r,t ),                                        ( 28 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaaCOqamaabmaapaqaa8qacaWHYbGaaiilaiaadsha aiaawIcacaGLPaaacqGH9aqpcaWHcbWdamaaBaaajuaibaWdbiaaic daaKqba+aabeaapeWaaeWaa8aabaWdbiaahkfadaqadaWdaeaapeGa amiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgUcaRiaahkeapa WaaWbaaKqbGeqabaWdbiaacQcaaaqcfa4aaeWaa8aabaWdbiaahkha caGGSaGaamiDaaGaayjkaiaawMcaaiaacYcacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaikda caaI4aaacaGLOaGaayzkaaaaaa@7EC4@

Where E 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHfbWcpaWaaSbaaKqbGeaajugWa8qacaaIWaaajuaipaqa baaaaa@3A11@  and B 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHcbWdamaaBaaajuaibaWdbiaaicdaaKqba+aabeaaaaa@3935@  are instantaneous longitudinal fields.

To finish this Section we would like to mention that Villecco's independent analysis endorsed our claims on discontinuity problem in the classical electromagnetic theory. He found that [8]: " ...the transition between two different states of uniform velocity via an intermediate state of acceleration results in a type of discontinuity in functional form: Though no known law is violated in this processes, there is a sense of intrinsic continuity which is nevertheless violated...”

Mathematical inconsistencies in the formulation of maxwell-lorentz equations for one charge system

To understand what is happening inside a dipole with transfer of energy and momentum from one dipole charge to another, we must first understand what is happening to one charge in terms of the conventional electrodynamics, when it moves.

Let us come back again to the original set of Maxwell's equations (10)-(13) for the reference system at rest supplemented by the continuity equation

ϱ t +j=0 .                                                           ( 29 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaeyOaIy7efv3ySLgznfgDOfdaryqr1ngB PrginfgDObYtUvgaiuGacqWFXpq8a8aabaWdbiabgkGi2kaadshaaa Gaey4kaSIaey4bIeTaeyyXICTaaCOAaiabg2da9iaaicdacaGGGcGa aiOlaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaikdacaaI5aaacaGL OaGaayzkaaaaaa@965C@

In the phenomenological theory of electromagnetism the hypothesis about the continuous nature of the medium was one of the foundations of Maxwell's theoretical scheme. This point of view succeeded in uniting so many electromagnetic phenomena without the necessity to consider a specific structure of matter. Nevertheless, a macroscopic character of the charge conception defines all well-known limitations on Maxwell's theory. For instance, the system of equations (10)-(13) in a steady state approximation corresponds to a quite particular case of continuous and closed conduction currents (motionless as a whole).

In 1895, the theory was extended by Lorentz for a system of charged particles moving in vacuum. Since then it has been widely assumed that the same basic laws are valid microscopically as it is macroscopically in the case of original Maxwell's equations. This means that in Lorentz form all macroscopic values of charge and current densities have to be substituted by their microscopic values. Let us write explicitly the Lorentz field equations for one charged point particle moving in vacuum:2

 E=4πqδ( r r q ( t ) ),                                          ( 30 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaey4bIeTaeyyXICTaaCyraiabg2da9iaaisdacqaH apaCcaWGXbGaeqiTdq2aaeWaa8aabaWdbiaahkhacqGHsislcaWHYb WdamaaBaaajuaibaWdbiaadghaaKqba+aabeaapeWaaeWaa8aabaWd biaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaacaGGSaGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcWaaeWaa8aabaWdbiaaiodacaaIWaaacaGLOaGaayzkaaaaaa@7F77@

H=0,                                                          (31) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHflY1caWHibGaeyypa0JaaGimaiaacYcacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiikaiaaiodacaaIXaGaaiykaaaa@82AF@

×H= 4π c qvδ( r r q ( t ) )+ 1 c E t ,                            ( 32 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHxdaTcaWHibGaeyypa0ZaaSaaa8aabaWdbiaa isdacqaHapaCa8aabaWdbiaadogaaaGaamyCaiaahAhacqaH0oazda qadaWdaeaapeGaaCOCaiabgkHiTiaahkhapaWaaSbaaKqbGeaapeGa amyCaaqcfa4daeqaa8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawM caaaGaayjkaiaawMcaaiabgUcaRmaalaaapaqaa8qacaaIXaaapaqa a8qacaWGJbaaamaalaaapaqaa8qacqGHciITcaWHfbaapaqaa8qacq GHciITcaWG0baaaiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWaaeWaa8 aabaWdbiaaiodacaaIYaaacaGLOaGaayzkaaaaaa@7816@

×E= 1 c H t ,                                                  ( 33 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHxdaTcaWHfbGaeyypa0JaeyOeI0YaaSaaa8aa baWdbiaaigdaa8aabaWdbiaadogaaaWaaSaaa8aabaWdbiabgkGi2k aahIeaa8aabaWdbiabgkGi2kaadshaaaGaaiilaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWaaeWa a8aabaWdbiaaiodacaaIZaaacaGLOaGaayzkaaaaaa@80B2@

Where r q ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHYbWdamaaBaaajuaibaWdbiaadghaaKqba+aabeaapeWa aeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@3C51@  is the coordinate of a charge at the moment of time t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0baaaa@379D@ .

In order to achieve a complete description of a system consisting of fields and charges in the framework of electromagnetic theory, Lorentz supplemented (30)-(33) by the equation of motion:

dp dt =qE+ q c ( v×H ),                                          ( 34 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamizaiaahchaa8aabaWdbiaadsgacaWG 0baaaiabg2da9iaadghacaWHfbGaey4kaSYaaSaaa8aabaWdbiaadg haa8aabaWdbiaadogaaaWaaeWaa8aabaWdbiaahAhacqGHxdaTcaWH ibaacaGLOaGaayzkaaGaaiilaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOamaabmaapaqaa8qacaaI ZaGaaGinaaGaayjkaiaawMcaaaaa@79D9@

where p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHWbaaaa@379E@ is the momentum of the particle.

The equation of motion (34) introduces an expression for the mechanical force known as Lorentz force which in the electron theory formulated by Lorentz has a clear axiomatic and empirical status. Later on we shall discuss some disadvantages related with the adopted status of the Lorentz force conception.

Macroscopic Maxwell's equations (10)-(13) may be obtained now from Lorentz's equations (30)-(33) by some statistical averaging process, using the structure of material media. The mathematical language for equations (30)-(33) is nowadays widely accepted in the conventional classical electrodynamics. However, there is an ambiguity in the application of these equations to the case of one uniformly moving charge. A simple charge translation in space produces alterations of field components. Nevertheless, they cannot be treated in terms of Maxwell's displacement currents. Strictly speaking, in this case all Maxwell's displacement currents proportional to E/t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHciITcaWHfbGaai4laiabgkGi2kaadshaaaa@3BEB@  and H/t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHciITcaWHibGaai4laiabgkGi2kaadshaaaa@3BEE@  vanish from (32), (33). This statement can be reasoned in two different ways:

1. E/t=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHciITcaWHfbGaai4laiabgkGi2kaadshacqGH9aqpcaaI Waaaaa@3DAA@  and H/t=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHciITcaWHibGaai4laiabgkGi2kaadshacqGH9aqpcaaI Waaaaa@3DAE@ , since all field components of one uniformly moving charge are implicit time-dependent functions (time does not enter as an independent parameter but only through space variable) so that from the mathematical standpoint only total time derivative makes sense in this case whereas partial time derivative turns out to be not adequate (time and distance are not independent variables); 2. A non-zero value of E/ t * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHciITcaWHfbGaai4laiabgkGi2kaadshadaahaaqcfasa beaacaGGQaaaaaaa@3CE9@ and H/ t * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHciITcaWHibGaai4laiabgkGi2kaadshadaahaaqcfasa beaacaGGQaaaaaaa@3CEC@  would imply a local variation of fields in time regardless any change in the position of the charge (space coordinate is fixed when partial time derivative is taken) and, hence, would imply the propagation of those local variations in form of transverse electromagnetic waves.

This would strongly contradict the well-established in special relativity fact that one uniformly moving charge does not produce any electromagnetic radiation at all.

Thus, a mathematically rigorous interpretation of (32), (33) in the case of a charge moving with a constant velocity leads to the following conclusion: in a charge-free space the value of * E/t=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaahaaqcfasabeaacaGGQaaaaKqbakabgkGi2kaahweacaGG VaGaeyOaIyRaamiDaiabg2da9iaaicdaaaa@3F36@  and, therefore, the value of ×H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHxdaTcaWHibaaaa@3B13@  is also equal to zero in free space.

×H= 4π c qvδ( r r q ( t ) ).                                   ( 35 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHxdaTcaWHibGaeyypa0ZaaSaaa8aabaWdbiaa isdacqaHapaCa8aabaWdbiaadogaaaGaamyCaiaahAhacqaH0oazda qadaWdaeaapeGaaCOCaiabgkHiTiaahkhapaWaaSbaaKqbGeaapeGa amyCaaqcfa4daeqaa8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawM caaaGaayjkaiaawMcaaiaac6cacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOamaabmaapaqa a8qacaaIZaGaaGynaaGaayjkaiaawMcaaaaa@7863@

On the other hand, field components of one uniformly moving charge can be treated exactly in the framework of Lorentz's transformations. Therefore, for any purpose exact relativistic expressions for electric and magnetic fields and potentials should be applied.2

 E=q ( 1 β 2 )( RRβ ) ( RRβ ) 3  ,                                    ( 36 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaaCyraiabg2da9iaadghadaWcaaWdaeaapeWaaeWa a8aabaWdbiaaigdacqGHsislcqaHYoGypaWaaWbaaeqajuaibaWdbi aaikdaaaaajuaGcaGLOaGaayzkaaWaaeWaa8aabaWdbiaahkfacqGH sislcaWGsbGaaCOSdaGaayjkaiaawMcaaaWdaeaapeWaaeWaa8aaba WdbiaahkfacqGHsislcaWGsbGaaCOSdaGaayjkaiaawMcaa8aadaah aaqabKqbGeaapeGaaG4maaaaaaqcfaOaaiiOaiaacYcacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckadaqadaWdaeaapeGaaG4maiaaiAdaaiaawIcacaGL Paaaaaa@7C58@

H= 1 c ( v×E ) ,                                           ( 37 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHibGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaa dogaaaWaaeWaa8aabaWdbiaahAhacqGHxdaTcaWHfbaacaGLOaGaay zkaaGaaiiOaiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaio dacaaI3aaacaGLOaGaayzkaaaaaa@75FF@

Where β=v/c. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHYoGaeyypa0JaaCODaiaac+cacaWGJbGaaiOlaaaa@3C34@

Thus, we arrive here at the important conclusion: generally speaking, according to special relativity theory the value of ×H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHxdaTcaWHibaaaa@3B13@ is not equal to zero in any point out of moving charge and takes a well-defined value.

  ×H= 1 c ( ×( v×E ) ) .                                  ( 38 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaaiiOaiabgEGirlabgEna0kaahIeacqGH9aqpdaWc aaWdaeaapeGaaGymaaWdaeaapeGaam4yaaaadaqadaWdaeaapeGaey 4bIeTaey41aq7aaeWaa8aabaWdbiaahAhacqGHxdaTcaWHfbaacaGL OaGaayzkaaaacaGLOaGaayzkaaGaaiiOaiaac6cacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWaae Waa8aabaWdbiaaiodacaaI4aaacaGLOaGaayzkaaaaaa@76E8@

For instance, this gives immediately a non-zero value of ×H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHxdaTcaWHibaaaa@3B13@  along the direction of motion (X-axis):

×H( x, x> x 0 )=q 2β( 1 β 2 ) ( 1β ) 3 ( x x 0 ) 3  .                   ( 39 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHxdaTcaWHibWaaeWaa8aabaWdbiaadIhacaGG SaGaaiiOaiaadIhacqGH+aGpcaWG4bWdamaaBaaajuaibaWdbiaaic daaKqba+aabeaaa8qacaGLOaGaayzkaaGaeyypa0JaamyCamaalaaa paqaa8qacaaIYaGaaCOSdmaabmaapaqaa8qacaaIXaGaeyOeI0Iaeq OSdi2damaaCaaajuaibeqaa8qacaaIYaaaaaqcfaOaayjkaiaawMca aaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcqaHYoGyaiaawI cacaGLPaaapaWaaWbaaKqbGeqabaWdbiaaiodaaaqcfa4aaeWaa8aa baWdbiaadIhacqGHsislcaWG4bWdamaaBaaajuaibaWdbiaaicdaaK qba+aabeaaa8qacaGLOaGaayzkaaWdamaaCaaabeqcfasaa8qacaaI ZaaaaaaajuaGcaGGGcGaaiOlaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckadaqadaWdae aapeGaaG4maiaaiMdaaiaawIcacaGLPaaaaaa@78C4@

The conflict with the previous statement of the equation (31) is inevitable. In order to obtain adequacy between the set of field equations (30)-(33) and their relativistic solutions in the case of uniformly moving charge, it is necessary to consider an additional term like that considered in (38). As will be shown in continuation, this assumption for static and quasi-static fields is a supplement of Maxwell's displacement currents introduced for explicitly time varying fields (explanation of the light as the propagation of transverse electromagnetic waves).

As it is well-known, the necessity of Maxwell's displacement current was realized on the basis of the following formal reasoning. In order to make equation (8) consistent with the electric charge conservation law in form of continuity equation (29), Maxwell supplemented (12) with an additional term. However, for stationary processes, as we already have seen, this term disappears and equation (12) becomes consistent only with closed (or continuous going off to infinity) currents.

dQ dt = V { ϱ t +j } dV=0                              ( 41 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamizaiaadgfaa8aabaWdbiaadsgacaWG 0baaaiabg2da9maapmfabaWaaiWaa8aabaWdbmaalaaapaqaa8qacq GHciITtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab =f=aXdWdaeaapeGaeyOaIyRaamiDaaaacqGHRaWkcqGHhis0cqGHfl Y1caWHQbaacaGL7bGaayzFaaGaaiiOaiaadsgacaWGwbGaeyypa0Ja aGimaaqaaiaadAfaaeqacqGHRiI8cqGHRiI8cqGHRiI8aiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaisdacaaIXaaaca GLOaGaayzkaaaaaa@8319@

It is also a direct consequence of continuity equation (29) in any stationary state when all magnitudes have to be treated as implicit time-dependent functions. Thereby, we meet here another difficulty of Lorentz's equations: uniform movement of a single charged particle (as an example of open steady current), generally speaking, does not satisfy the limitations imposed by (40). It implies some additional term to be taken into account in (40) to fulfil Maxwell's hypothesis on the circuital character of total currents (conduction plus displacement currents).

Let us have a close look on the continuity equation and its conventional interpretation. In developing the mathematical formalism of his theory Maxwell adopted Faraday's idea of field tubes for electric and magnetic fields as well as for electric charge flow (conduction currents). As a consequence, in accordance with hydrodynamics language, the continuity equation was accepted as valid to express the hypothesis that a net sum of electric charge could not be annihilated. In this case, the continuity equation reproduces the charge conservation law in the given fixed volume V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbaaaa@3780@ .

dQ dt = V { ϱ t +j } dV=0                              ( 41 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamizaiaadgfaa8aabaWdbiaadsgacaWG 0baaaiabg2da9maapmfabaWaaiWaa8aabaWdbmaalaaapaqaa8qacq GHciITtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab =f=aXdWdaeaapeGaeyOaIyRaamiDaaaacqGHRaWkcqGHhis0cqGHfl Y1caWHQbaacaGL7bGaayzFaaGaaiiOaiaadsgacaWGwbGaeyypa0Ja aGimaaqaaKqzadGaamOvaaqcfayabiabgUIiYlabgUIiYlabgUIiYd GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckadaqadaWdaeaapeGaaGinai aaigdaaiaawIcacaGLPaaaaaa@84D5@

Or in the form of a differential equation

ϱ t +j=0 ,   ( dQ dt =0 ).                                  ( 42 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaeyOaIy7efv3ySLgznfgDOfdaryqr1ngB PrginfgDObYtUvgaiuGacqWFXpq8a8aabaWdbiabgkGi2kaadshaaa Gaey4kaSIaey4bIeTaeyyXICTaaCOAaiabg2da9iaaicdacaGGGcGa aiilaiaacckacaGGGcGaaiiOamaabmaapaqaa8qadaWcaaWdaeaape Gaamizaiaadgfaa8aabaWdbiaadsgacaWG0baaaiabg2da9iaaicda aiaawIcacaGLPaaacaGGUaGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOamaabmaapaqaa8qacaaI0a GaaGOmaaGaayjkaiaawMcaaaaa@8546@

It should be remarked that equation (42) describes exclusively the conservation but not the change of the amount of charge (or matter) in the given volume V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbaaaa@3780@ . In many scientific writings on electromagnetic theory there is no clear distinction between these two aspects. If one wants to describe the change of something in the given volume V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbaaaa@3780@ , the equation (41) should be replaced by a balance equation (see, for instance,9)

dQ dt = d dt V ϱdV= S   jdS,                               ( 43 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamizaiaadgfaa8aabaWdbiaadsgacaWG 0baaaiabg2da9maalaaapaqaa8qacaWGKbaapaqaa8qacaWGKbGaam iDaaaadaWdtbqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfiGae8x8deVaamizaiaadAfacqGH9aqpcqGHsisldaGfWbqab8 aabaqcLbmapeGaam4uaaqcfa4daeaapeGaaiiOaaWdaeaatCvAUfeB Sn0BKvguHDwzZbqehiuy0fMBNbacgaWdbiaa+XIiaaGaey4bIeTaey yXICTaaCOAaiaadsgacaWGtbGaaiilaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckadaqadaWdaeaapeGaaGinaiaaiodaaiaa wIcacaGLPaaaaeaajugWaiaadAfaaKqbagqacqGHRiI8cqGHRiI8cq GHRiI8aaaa@921D@

Here j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHQbaaaa@3798@  is a total current of electric charges through a surface S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbaaaa@377D@  that bounds the given volume V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbaaaa@3780@ . In the mathematical language common to all physical theories it means that the rate of increase in the total quantity of electrostatic charge within any fixed volume mathematical language common to all physical theories it means that the rate of increase in the total quantity of electrostatic charge within any fixed volume V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbaaaa@3780@  is equal to the excess of the influx over the efflux of current through a closed surface S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbaaaa@377D@ . On contracting the surface to an infinitesimal sphere around a point one can arrive at the differential equation.9

ϱ t +j=0 ,   ( dQ dt 0 ).                                         ( 43 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaeyOaIy7efv3ySLgznfgDOfdaryqr1ngB PrginfgDObYtUvgaiuGacqWFXpq8a8aabaWdbiabgkGi2kaadshaaa Gaey4kaSIaey4bIeTaeyyXICTaaCOAaiabg2da9iaaicdacaGGGcGa aiilaiaacckacaGGGcGaaiiOamaabmaapaqaa8qadaWcaaWdaeaape Gaamizaiaadgfaa8aabaWdbiaadsgacaWG0baaaiabgcMi5kaaicda aiaawIcacaGLPaaacaGGUaGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckadaqadaWdaeaapeGaaGinaiaaioda aiaawIcacaGLPaaaaaa@8E04@

The balance equation (43) covers the continuity equation (42) as a particular case in which the amount of something (charge or matter) is kept constant in V during the course of time. Earlier we mentioned that a single charge in motion, generally speaking, could not be treated in terms of the continuity equation (42). When the particle leaves the given volume, it violates locally the charge conservation, invalidating the continuity equation (42). Instead of it the balance equation (43) has to be used. One simple method to prove that is to consider again the example of point-charge moving with a constant velocity. In particular, the charge density is assumed to have implicit time dependence as follows.

ϱ( r,  r q ( t ) )=qδ( r r q ( t ) ),                                      ( 44 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGajuaGqaaaaaaaaaWdbiab =f=aXpaabmaapaqaa8qacaWHYbGaaiilaiaacckacaWHYbWcpaWaaS baaKqbagaajugWa8qacaWGXbaajuaGpaqabaWdbmaabmaapaqaa8qa caWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyypa0JaamyCai abes7aKnaabmaapaqaa8qacaWHYbGaeyOeI0IaaCOCa8aadaWgaaqa aKqzadWdbiaadghaaKqba+aabeaapeWaaeWaa8aabaWdbiaadshaai aawIcacaGLPaaaaiaawIcacaGLPaaacaGGSaGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckadaqadaWdaeaapeGaaGinaiaaisdaaiaawI cacaGLPaaaaaa@8B62@

Where r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHYbaaaa@37A0@  is a fixed distance from the point of observation to the origin of the reference system at rest; r q ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHYbWdamaaBaaabaqcLbmapeGaamyCaaqcfa4daeqaa8qa daqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@3D52@  and v q =d r q /dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWH2bWdamaaBaaajuaibaWdbiaadghaa8aabeaajuaGpeGa eyypa0JaamizaiaahkhapaWaaSbaaKqbGeaapeGaamyCaaWdaeqaaK qba+qacaGGVaGaamizaiaadshaaaa@4145@  are the distance and the velocity of the charge at the instant.

It is easy to show that the total density derivative with respect to time consist of the convection term only , since time enters in equation (44) as a parameter ( ϱ/t=0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeGaeyOaIy7efv3ySLgznfgDOfdaryqr1ngB PrginfgDObYtUvgaiuGacqWFXpq8caGGVaGaeyOaIyRaamiDaiabg2 da9iaaicdaaiaawIcacaGLPaaaaaa@4A7B@ :

dϱ dt = ϱ t +{ d dt ( r r q ( t ) ) }ϱ=( v q ϱ ).                        ( 45 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamizamrr1ngBPrwtHrhAXaqeguuDJXwA KbstHrhAG8KBLbacfiGae8x8depapaqaa8qacaWGKbGaamiDaaaacq GH9aqpdaWcaaWdaeaapeGaeyOaIyRae8x8depapaqaa8qacqGHciIT caWG0baaaiabgUcaRmaacmaapaqaa8qadaWcaaWdaeaapeGaamizaa WdaeaapeGaamizaiaadshaaaWaaeWaa8aabaWdbiaahkhacqGHsisl caWHYbWdamaaBaaajuaibaqcLbmapeGaamyCaaqcfa4daeqaa8qada qadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaGa ay5Eaiaaw2haaiabgEGirlab=f=aXlabg2da9iabgkHiTmaabmaapa qaa8qacaWH2bWdamaaBaaajuaibaWdbiaadghaa8aabeaajuaGpeGa eyyXICTaey4bIeTae8x8depacaGLOaGaayzkaaGaaiOlaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOamaabmaapaqa a8qacaaI0aGaaGynaaGaayjkaiaawMcaaaaa@8DF8@

Thus, the balance equation for a single charged particle is fulfilled directly:

( v q ϱ )+( ϱ v q )=( v q ϱ )+( v q ϱ )=0.                   ( 46 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHsisldaqadaWdaeaapeGaaCODa8aadaWgaaqcfasaa8qa caWGXbaapaqabaqcfa4dbiabgwSixlabgEGirprr1ngBPrwtHrhAXa qeguuDJXwAKbstHrhAG8KBLbacfiGae8x8depacaGLOaGaayzkaaGa ey4kaSIaey4bIe9aaeWaa8aabaWdbiab=f=aXlaahAhapaWaaSbaaK qbGeaapeGaamyCaaqcfa4daeqaaaWdbiaawIcacaGLPaaacqGH9aqp cqGHsisldaqadaWdaeaapeGaaCODa8aadaWgaaqcfasaa8qacaWGXb aajuaGpaqabaWdbiabgwSixlabgEGirlab=f=aXdGaayjkaiaawMca aiabgUcaRmaabmaapaqaa8qacaWH2bWdamaaBaaajuaibaWdbiaadg haaKqba+aabeaapeGaeyyXICTaey4bIeTae8x8depacaGLOaGaayzk aaGaeyypa0JaaGimaiaac6cacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWaaeWaa8aaba WdbiaaisdacaaI2aaacaGLOaGaayzkaaaaaa@8997@

The next step is to analyze equation (45) in terms of Maxwell's hypothesis in respect to the circuital character of the total electric current (including displacement current). In other words, the total current of one uniformly moving charge has to be formed by two contributions: the motion of the charge itself (conduction current) and displacement current in outer space:

( j cond + j displ )=0,                                             ( 47 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHflY1daqadaWdaeaapeGaaCOAa8aadaWgaaqc fasaa8qacaqGJbGaae4Baiaab6gacaqGKbaapaqabaqcfa4dbiabgU caRiaahQgapaWaaSbaaKqbGeaapeGaaeizaiaabMgacaqGZbGaaeiC aiaabYgaaKqba+aabeaaa8qacaGLOaGaayzkaaGaeyypa0JaaGimai aacYcacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckadaqadaWdaeaapeGaaG inaiaaiEdaaiaawIcacaGLPaaaaaa@8261@

Where j cond MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHQbWdamaaBaaajuaibaWdbiaabogacaqGVbGaaeOBaiaa bsgaa8aabeaaaaa@3BC5@  and j displ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHQbWdamaaBaaajuaibaWdbiaabsgacaqGPbGaae4Caiaa bchacaqGSbaajuaGpaqabaaaaa@3D4E@  are conduction and displacement currents, respectively.

Thus, we can rewrite (43) in the form of equation (47).

j displ =  dϱ dt =  d dt ( 1 4π E ).                                   ( 48 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHflY1caWHQbWdamaaBaaajuaibaqcLbmapeGa aeizaiaabMgacaqGZbGaaeiCaiaabYgaaKqba+aabeaapeGaeyypa0 JaaiiOamaalaaapaqaa8qacaWGKbWefv3ySLgznfgDOfdaryqr1ngB PrginfgDObYtUvgaiuGacqWFXpq8a8aabaWdbiaadsgacaWG0baaai abg2da9iaacckadaWcaaWdaeaapeGaamizaaWdaeaapeGaamizaiaa dshaaaWaaeWaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qaca aI0aGaeqiWdahaaiabgEGirlabgwSixlaahweaaiaawIcacaGLPaaa caGGUaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckadaqadaWdaeaapeGaaGinaiaaiIdaai aawIcacaGLPaaaaaa@8E68@

It may be easily verified that two field operations  and d dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaq Fr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qq Q8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqa aaaaaaaaWdbmaaliaapaqaa8qacaWGKbaapaqaa8qacaWGKbGaamiD aaaaaaa@3BA8@  are completely interchangeable in (48). Thus, for general motion of the charge when one can disregard its size, Maxwell's condition on a total current takes the following form (see for the sake of comparison the formula (45)) taking into account the standard expansion of the total time derivative (the index for MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0aaa@382B@  indicates which of the functions it operates on):

j displ = 1 4π ( { E t ( v r )E( a v )E } ),                ( 49 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHflY1caWHQbWcpaWaaSbaaKazfa4=baqcLbma peGaaeizaiaabMgacaqGZbGaaeiCaiaabYgaaKazfa4=paqabaqcfa 4dbiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaaI0aGaeqiW dahaamaabmaapaqaa8qacqGHhis0cqGHflY1daGadaWdaeaapeWaaS aaa8aabaWdbiabgkGi2kaahweaa8aabaWdbiabgkGi2kaadshaaaGa eyOeI0YaaeWaa8aabaWdbiaahAhacqGHflY1cqGHhis0l8aadaWgaa qcfasaaKqzadWdbiaadkhaaKqbG8aabeaaaKqba+qacaGLOaGaayzk aaGaaCyraiabgkHiTmaabmaapaqaa8qacaWHHbGaeyyXICTaey4bIe 9cpaWaaSbaaKqbagaajugWa8qacaWG2baajuaGpaqabaaapeGaayjk aiaawMcaaiaahweacqGHsislcqGHMacVaiaawUhacaGL9baaaiaawI cacaGLPaaacaGGSaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOamaabmaapaqaa8qacaaI0aGaaGyoaaGaayjkaiaa wMcaaaaa@8759@

Here a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHHbaaaa@378F@ is acceleration and further terms correspond to derivatives of non-uniform acceleration. So far we have made use of the formal mathematical approach without any physical interpretation. More specifically, in calculating the full time derivative of E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHfbaaaa@3773@ , the convective term (second right-hand term in (49)) should be considered as implicit time-dependent (time variable is fixed when space partial derivative is taken) in agreement with the mathematical definition of partial derivatives. In mathematical language it means that all field alterations produced by a simple charge translation (convective part of the total derivative) take place at the same time in every space point (i.e. instantaneously). This interpretation has no precedents in conventional classical electrodynamics for the case of arbitrary motion whereas for uniformly moving charge this description is the only possible formalism (in special relativity field lines of uniformly moving charge remain radial, i.e. exhibit no retardation in respect to the space position of the charge). Turning back to (49), it is clear that the first right-hand term with partial time derivative describes explicit time-dependent phenomena. Thus, in the same way as it was independently concluded in the Section 2, all field components can be split up into two independent classes with explicit E * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHfbWdamaaCaaajuaibeqaa8qacaGGQaaaaaaa@3890@  and implicit E 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHfbWdamaaBaaajuaibaWdbiaaicdaaKqba+aabeaaaaa@3938@  time dependencies, respectively:

dE dt = E * t ( v r ) E 0 ( a v ) E 0                            ( 50 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamizaiaahweaa8aabaWdbiaadsgacaWG 0baaaiabg2da9maalaaapaqaa8qacqGHciITcaWHfbWdamaaCaaabe qcfasaa8qacaGGQaaaaaqcfa4daeaapeGaeyOaIyRaamiDaaaacqGH sisldaqadaWdaeaapeGaaCODaiabgwSixlabgEGirVWdamaaBaaaju aibaqcLbmapeGaamOCaaqcfaYdaeqaaaqcfa4dbiaawIcacaGLPaaa caWHfbWdamaaBaaajuaibaWdbiaaicdaa8aabeaajuaGpeGaeyOeI0 YaaeWaa8aabaWdbiaahggacqGHflY1cqGHhis0paWaaSbaaKqbGeaa peGaamODaaWdaeqaaaqcfa4dbiaawIcacaGLPaaacaWHfbWdamaaBa aajuaibaWdbiaaicdaa8aabeaajuaGpeGaeyOeI0IaeyOjGWRaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcWaaeWaa8aabaWdbiaaiwdacaaIWaaacaGLOaGaayzk aaaaaa@800E@

A general expression of full displacement current is then taken by the formula:

j displ = 1 4π E * t 1 4π ( v r ) E 0 1 4π ( a v ) E 0                    ( 51 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHQbWdamaaBaaajuaibaWdbiaabsgacaqGPbGaae4Caiaa bchacaqGSbaapaqabaqcfa4dbiabg2da9maalaaapaqaa8qacaaIXa aapaqaa8qacaaI0aGaeqiWdahaamaalaaapaqaa8qacqGHciITcaWH fbWdamaaCaaabeqcfasaa8qacaGGQaaaaaqcfa4daeaapeGaeyOaIy RaamiDaaaacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGin aiabec8aWbaadaqadaWdaeaapeGaaCODaiabgwSixlabgEGir=aada Wgaaqcfasaa8qacaWGYbaapaqabaaajuaGpeGaayjkaiaawMcaaiaa hweapaWaaSbaaeaapeGaaGimaaWdaeqaa8qacqGHsisldaWcaaWdae aapeGaaGymaaWdaeaapeGaaGinaiabec8aWbaadaqadaWdaeaapeGa aCyyaiabgwSixlabgEGir=aadaWgaaqcfasaa8qacaWG2baajuaGpa qabaaapeGaayjkaiaawMcaaiaahweapaWaaSbaaKqbGeaapeGaaGim aaWdaeqaaKqba+qacqGHsislcqGHMacVcaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWaae Waa8aabaWdbiaaiwdacaaIXaaacaGLOaGaayzkaaaaaa@822A@

Let us stress here one subtle point which will be indispensable in the following discussion of relativistic invariance properties of the Helmholtz-type approach. The derivation of (50) has considered the partial time derivative to be independent from the space derivative in full agreement with the mathematical formalism of partial derivatives. Thus, the time parameter of implicit time-dependent components (let us call it t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0baaaa@379E@ ) comes into consideration as an afterthought through the space variable R( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@3A1D@  and, therefore, can be, in principle, considered as independent from the time variable of explicit time-dependent components (in special relativity this is the so-called proper time τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHepaDaaa@386A@ ). As we will discuss later, special relativity does not distinguish these two time dependences and tacitly implies t=τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0bGaeyypa0JaeqiXdqhaaa@3A69@  that leads to the Lorentz invariance of electromagnetic field components. In order to come back to the previous discussion of the displacement current concept, let us remind that our initial aim was to find a reasonable form for Maxwell's circuital condition (50). It would allow relating field alterations in free space produced by one moving charge with the Maxwell conception of displacement current. From the standpoint of conventional classical electrodynamics, the first term represents the well-known Maxwell displacement current coming up only in non-steady processes whereas the second term can be interpreted only as quasistationary due to its dependence on a charge translation in space (with time as implicit parameter). Further, we will call that term as "convection displacement current". By the same token, the third right-hand term is due to uniform acceleration and could be called "uniform acceleration displacement current" etc.

The above results motivate an important extension of displacement current concept. First, it postulates the circuital character of the total electric current as it was originally assumed by Maxwell. Second, it permits to fulfil the circuital condition for non-steady as well as for steady processes (static and quasistatic fields), contrary to the conventional approach. Let us give an equivalent mathematical expression of the convection displacement current (in the case of single charged particle):

1 c ( v )E= 1 c v( E ) 1 c ( ×( v×E ) ) .                                 ( 52 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaam4yaaaadaqadaWd aeaapeGaaCODaiabgwSixlabgEGirdGaayjkaiaawMcaaiaahweacq GH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaam4yaaaacaWH2bWa aeWaa8aabaWdbiabgEGirlabgwSixlaahweaaiaawIcacaGLPaaacq GHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaam4yaaaadaqadaWd aeaapeGaey4bIeTaey41aq7aaeWaa8aabaWdbiaahAhacqGHxdaTca WHfbaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaiiOaiaac6cacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka daqadaWdaeaapeGaaGynaiaaikdaaiaawIcacaGLPaaaaaa@8263@

Accordingly, for our purpose we need to remind that in the right-hand side of equation (32) the total current ( j tot = j cond + j displ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeGaaCOAa8aadaWgaaqcfasaa8qacaqG0bGa ae4Baiaabshaa8aabeaajuaGpeGaeyypa0JaaCOAa8aadaWgaaqcfa saa8qacaqGJbGaae4Baiaab6gacaqGKbaapaqabaqcfa4dbiabgUca RiaahQgapaWaaSbaaKqbGeaapeGaaeizaiaabMgacaqGZbGaaeiCai aabYgaaKqba+aabeaaa8qacaGLOaGaayzkaaaaaa@4B9A@ must be considered as:

×H= 4π c qvδ( r r q ( t ) )+ 1 c E t 1 c v( E )+ 1 c ( ×( v×E ) )+                         ( 53 )  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHxdaTcaWHibGaeyypa0ZaaSaaa8aabaWdbiaa isdacqaHapaCa8aabaWdbiaadogaaaGaamyCaiaahAhacqaH0oazda qadaWdaeaapeGaaCOCaiabgkHiTiaahkhapaWaaSbaaKqbGeaapeGa amyCaaqcfa4daeqaa8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawM caaaGaayjkaiaawMcaaiabgUcaRmaalaaapaqaa8qacaaIXaaapaqa a8qacaWGJbaaamaalaaapaqaa8qacqGHciITcaWHfbaapaqaa8qacq GHciITcaWG0baaaiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qa caWGJbaaaiaahAhadaqadaWdaeaapeGaey4bIeTaeyyXICTaaCyraa GaayjkaiaawMcaaiabgUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qa caWGJbaaamaabmaapaqaa8qacqGHhis0cqGHxdaTdaqadaWdaeaape GaaCODaiabgEna0kaahweaaiaawIcacaGLPaaaaiaawIcacaGLPaaa cqGHRaWkcqGHMacVcaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaiwdacaaIZaaacaGL OaGaayzkaaGaaiiOaaaa@8F58@

For the sake of simplicity we omit acceleration and other expansion terms in this general formula but they are tacitly implied. This approach allows the treatment of equation (33) in the same way as (32):

×E= 1 c H t + 1 c ( v )H= 1 c H t + 1 c v( H ) 1 c ( ×( v×H ) )+                     ( 54 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHxdaTcaWHfbGaeyypa0JaeyOeI0YaaSaaa8aa baWdbiaaigdaa8aabaWdbiaadogaaaWaaSaaa8aabaWdbiabgkGi2k aahIeaa8aabaWdbiabgkGi2kaadshaaaGaey4kaSYaaSaaa8aabaWd biaaigdaa8aabaWdbiaadogaaaWaaeWaa8aabaWdbiaahAhacqGHfl Y1cqGHhis0aiaawIcacaGLPaaacaWHibGaeyypa0JaeyOeI0YaaSaa a8aabaWdbiaaigdaa8aabaWdbiaadogaaaWaaSaaa8aabaWdbiabgk Gi2kaahIeaa8aabaWdbiabgkGi2kaadshaaaGaey4kaSYaaSaaa8aa baWdbiaaigdaa8aabaWdbiaadogaaaGaaCODamaabmaapaqaa8qacq GHhis0cqGHflY1caWHibaacaGLOaGaayzkaaGaeyOeI0YaaSaaa8aa baWdbiaaigdaa8aabaWdbiaadogaaaWaaeWaa8aabaWdbiabgEGirl abgEna0oaabmaapaqaa8qacaWH2bGaey41aqRaaCisaaGaayjkaiaa wMcaaaGaayjkaiaawMcaaiabgUcaRiabgAci8kaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOamaabmaapaqaa8qacaaI1aGaaGinaaGaayjkaiaa wMcaaaaa@8C11@

Turning back to the beginning of this Section we note now that for uniform motion ×H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHxdaTcaWHibaaaa@3B13@  is defined by (53) in every space point out of the charge in the expected way (see (38)). As a final remark, the set of equations (30), (31) and (53), (54) can be regarded as a generalized form of Maxwell-Lorentz system of field equations. In the next section they will be compared with modified Maxwell-Hertz equations extended on one charge system.

Reconsidered maxwell-hertz theory and relativistic invariant formulation of generalized Maxwell’s equations

Independently of Heaviside, the problem of the modification of Maxwell's equations for bodies in motion was posed by Hertz in his attempts to build up a comprehensive and consistent electrodynamics.8,9 A starting point of that approach was the fundamental character of Faraday's law of induction represented for the first time by Maxwell in the form of integral equations.

C   Hdl= 4π c S   jdS+ 1 c d dt S   EdS ,                             ( 55 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaGfWbqabKqbG8aabaqcLbmapeGaam4qaaqcfa4daeaapeGa aiiOaaWdaeaatCvAUfeBSn0BKvguHDwzZbqegiuy0fMBNbacfaWdbi aa=5IiaaGaaCisaiaadsgacaWGSbGaeyypa0ZaaSaaa8aabaWdbiaa isdacqaHapaCa8aabaWdbiaadogaaaWaaybCaeqajuaipaqaa8qaca WGtbaajuaGpaqaa8qacaGGGcaapaqaa8qacaWFSicaaiaahQgacaWG KbGaam4uaiabgUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGJb aaamaalaaapaqaa8qacaWGKbaapaqaa8qacaWGKbGaamiDaaaadaGf WbqabKqbG8aabaWdbiaadofaaKqba+aabaWdbiaacckaa8aabaWdbi aa=XIiaaGaaCyraiaadsgacaWGtbGaaiiOaiaacYcacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOamaabmaapaqaa8qacaaI1aGaaGynaaGaayjk aiaawMcaaaaa@85F0@

C   Edl= 1 c d dt S   HdS ,                                      ( 56 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaGfWbqabKqbG8aabaqcLbmapeGaam4qaaqcfa4daeaapeGa aiiOaaWdaeaatCvAUfeBSn0BKvguHDwzZbqegiuy0fMBNbacfaWdbi aa=5IiaaGaaCyraiaadsgacaWGSbGaeyypa0JaeyOeI0YaaSaaa8aa baWdbiaaigdaa8aabaWdbiaadogaaaWaaSaaa8aabaWdbiaadsgaa8 aabaWdbiaadsgacaWG0baaamaawahabeqcfaYdaeaajugWa8qacaWG tbaajuaGpaqaa8qacaGGGcaapaqaa8qacaWFSicaaiaahIeacaWGKb Gaam4uaiaacckacaGGSaGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckadaqadaWdaeaapeGaaGynaiaaiAdaaiaawIcacaGLPaaaaaa@8697@

Where C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGdbaaaa@376C@ is a contour, S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbaaaa@377D@  is a surface bounded by C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGdbaaaa@376D@ .

In qualitative physical language Faraday's observations had been expressed in form of the following statement: the effect of magnetic induction in the circuit C takes place always with the change of the magnetic flux through the surface S regardless whether it relates to the change of intensity of adjacent magnet or occurs due to the relative motion. Moreover, Faraday established that the same effect was detected in a circuit at rest as well as in that in motion. The latter fact provided the principal basis of Hertz's relativity principle based on Galileo invariance. In order to avoid details of Hertz's original investigations,10,11 let us only note its similarity with the traditional non-relativistic treatment of the integral form of Faraday's law.12 Namely, if the circuit C is moving with a velocity v in some direction, the total time derivative in (53), (56) must take into account this motion (convection derivative) as well as the flux changes with time at a point (partial time derivative).12

  C   Edl= 1 c d dt S   HdS= 1 c { t +( v ) } S   HdS ,               ( 57 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcWaaybCaeqajuaipaqaa8qacaWGdbaajuaGpaqaa8qa caGGGcaapaqaamXvP5wqSX2qVrwzqf2zLnharyGqHrxyUDgaiuaape Gaa8NlIaaacaWHfbGaamizaiaadYgacqGH9aqpcqGHsisldaWcaaWd aeaapeGaaGymaaWdaeaapeGaam4yaaaadaWcaaWdaeaapeGaamizaa WdaeaapeGaamizaiaadshaaaWaaybCaeqajuaipaqaa8qacaWGtbaa juaGpaqaa8qacaGGGcaapaqaa8qacaWFSicaaiaahIeacaWGKbGaam 4uaiabg2da9iabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaWG Jbaaamaacmaapaqaa8qadaWcaaWdaeaapeGaeyOaIylapaqaa8qacq GHciITcaWG0baaaiabgUcaRmaabmaapaqaa8qacaWH2bGaeyyXICTa ey4bIenacaGLOaGaayzkaaaacaGL7bGaayzFaaWaaybCaeqajuaipa qaa8qacaWGtbaajuaGpaqaa8qacaGGGcaapaqaa8qacaWFSicaaiaa hIeacaWGKbGaam4uaiaacckacaGGSaGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaiwdacaaI3aaaca GLOaGaayzkaaaaaa@83C8@

Where S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbaaaa@377D@  is any surface bounded by circuit C, moving together with a medium.

This approach is valid only for non-relativistic consideration and leads to Galilean field transformation (46). In Hertz's theory any motion of the ether relative to the material particles had not been taken into account, so that the moving bodies were regarded simply as homogeneous portions of the medium distinguished only by special values of electric and magnetic constants. Among the consequences of such assumption, Hertz saw the necessity to move the surface of integration in equations (55), (56) at the same time with the moving medium. Thus the generation of a magnetic (or electric) force within a moving dielectric was calculated with implicit use of Galilean invariance in equation (57) unless one makes any additional assumptions on the special character of transformations in a moving frame of reference. Recently, T. Phipps Jr. again drew attention to the failure of Maxwell's equations in partial time derivative to describe first-order effects related to convective terms of total time derivatives.13,14 He proposed to revive Hertz's Galilean-invariant version of Maxwell's theory written in total time derivatives. He only differs from Hertz's own interpretation of the velocity parameter. However, in this review we shall show how total time derivatives can be compatible with the requirements of special relativity in inertial frames of reference.

Let us now examine the case of a point source of electric and magnetic fields. In order to abstain from the use of moving contour C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGdbaaaa@376D@  and surface S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbaaaa@377D@  that implies a priori application of some relativity principle (Galileo's or Einstein's), we limit our consideration to a fixed region ( C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGdbaaaa@376D@  and S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbaaaa@377D@  are at rest) whereas the source is moving through a free space. According to Faraday's law, there must be an electromotive force in the contour C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGdbaaaa@376D@  due to the flux changes with time and convection derivatives simultaneously. Using the mathematical language for total time derivatives, we arrive at the expression analogous to the differential form (50).

dΦ dt = Φ * t ( v S r ) Φ 0 ( a S v ) Φ 0 ,                    ( 58 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamizaiaabA6aa8aabaWdbiaadsgacaWG 0baaaiabg2da9maalaaapaqaa8qacqGHciITcaqGMoWdamaaCaaaju aibeqaa8qacaGGQaaaaaqcfa4daeaapeGaeyOaIyRaamiDaaaacqGH sisldaqadaWdaeaapeGaaCODa8aadaWgaaqcfawaaKqzadWdbiaado faaKqba+aabeaapeGaeyyXICTaey4bIe9damaaBaaabaqcLbmapeGa amOCaaqcfa4daeqaaaWdbiaawIcacaGLPaaacaqGMoWdamaaBaaaju aibaWdbiaaicdaa8aabeaajuaGpeGaeyOeI0YaaeWaa8aabaWdbiaa hggapaWaaSbaaKqbGeaapeGaam4uaaWdaeqaaKqba+qacqGHflY1cq GHhis0paWaaSbaaKqbGeaajugWa8qacaWG2baajuaGpaqabaaapeGa ayjkaiaawMcaaiaabA6apaWaaSbaaKqbGeaapeGaaGimaaWdaeqaaK qba+qacqGHsislcqGHMacVcaGGSaGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka daqadaWdaeaapeGaaGynaiaaiIdaaiaawIcacaGLPaaaaaa@805D@

Making use of the definitions:

Φ 0 E = S   E 0 ( r r S ( t ) )dS,  or,   Φ 0 B = S   B 0 ( r r S ( t ) )dS                                 ( 59 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaybaeqabm qaaaqaaabaaaaaaaaapeGaaeOPd8aadaqhaaqcfasaa8qacaaIWaaa paqaa8qacaWGfbaaaKqbakabg2da9maawahabeqcfaYdaeaapeGaam 4uaaqcfa4daeaapeGaaiiOaaWdaeaatCvAUfeBSn0BKvguHDwzZbqe giuy0fMBNbacfaWdbiaa=XIiaaGaaCyra8aadaWgaaqcfasaa8qaca aIWaaapaqabaqcfa4dbmaabmaapaqaa8qacaWHYbGaeyOeI0IaaCOC a8aadaWgaaqcfasaa8qacaWGtbaapaqabaqcfa4dbmaabmaapaqaa8 qacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaamizaiaadofa caGGSaGaaiiOaiaacckacaqGVbGaaeOCaiaacYcaa8aabaWdbiaacc kaa8aabaWdbiaabA6apaWaa0baaKqbGeaapeGaaGimaaWdaeaapeGa amOqaaaajuaGcqGH9aqpdaGfWbqabKqbG8aabaWdbiaadofaaKqba+ aabaWdbiaacckaa8aabaWdbiaa=XIiaaGaaCOqa8aadaWgaaqcfasa a8qacaaIWaaajuaGpaqabaWdbmaabmaapaqaa8qacaWHYbGaeyOeI0 IaaCOCa8aadaWgaaqcfasaa8qacaWGtbaapaqabaqcfa4dbmaabmaa paqaa8qacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaamizai aadofaaaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckadaqadaWdaeaapeGaaGynaiaaiMdaaiaawIcacaGLPaaaaaa@9B0D@

and

Φ *( E ) = S   E * ( r, t )dS,  or,   Φ *( B ) = S   B * ( r, t )dS,                                         ( 60 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaybaeqabm qaaaqaaabaaaaaaaaapeGaaeOPd8aadaahaaqcfasabeaapeGaaiOk aKqbaoaabmaajuaipaqaa8qacaWGfbaacaGLOaGaayzkaaaaaKqbak abg2da9maawahabeqcfaYdaeaapeGaam4uaaqcfa4daeaapeGaaiiO aaWdaeaatCvAUfeBSn0BKvguHDwzZbqegiuy0fMBNbacfaWdbiaa=X IiaaGaaCyra8aadaahaaqcfasabeaapeGaaiOkaaaajuaGdaqadaWd aeaapeGaaCOCaiaacYcacaGGGcGaamiDaaGaayjkaiaawMcaaiaads gacaWGtbGaaiilaiaacckacaGGGcGaae4BaiaabkhacaGGSaaapaqa a8qacaGGGcaapaqaa8qacaqGMoWdamaaCaaabeqcfasaa8qacaGGQa qcfa4aaeWaaKqbG8aabaWdbiaadkeaaiaawIcacaGLPaaaaaqcfaOa eyypa0ZaaybCaeqajuaipaqaa8qacaWGtbaajuaGpaqaa8qacaGGGc aapaqaa8qacaWFSicaaiaahkeapaWaaWbaaKqbGeqabaWdbiaacQca aaqcfa4aaeWaa8aabaWdbiaahkhacaGGSaGaaiiOaiaadshaaiaawI cacaGLPaaacaWGKbGaam4uaiaacYcacaGGGcGaaiiOaaaacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOamaabmaapaqaa8qacaaI2aGaaG imaaGaayjkaiaawMcaaaaa@A195@

Where r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHYbaaaa@37A0@  is a fixed distance from the point of observation to the origin of the reference systems at rest; r S ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHYbWdamaaBaaajuaibaWdbiaadofaaKqba+aabeaapeWa aeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@3C34@ , v S =d r S /dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWH2bWdamaaBaaajuaibaqcLbmapeGaam4uaaqcfa4daeqa a8qacqGH9aqpcaWGKbGaaCOCa8aadaWgaaqcfasaa8qacaWGtbaaju aGpaqabaWdbiaac+cacaWGKbGaamiDaaaa@4237@ , a S =d v S /dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHHbWdamaaBaaajuaibaWdbiaadofaaKqba+aabeaapeGa eyypa0JaamizaiaahAhapaWaaSbaaKqbGeaapeGaam4uaaqcfa4dae qaa8qacaGGVaGaamizaiaadshaaaa@40F8@  are the distance, the instant velocity, the instant acceleration of the electric (or magnetic) field source.

For the sake of simplicity, we can conserve for the present the same denomination of field flux in two independent parts of total time derivative (59), taking into account additional (fixed space and fixed time) conditions, respectively, in the following expression:

d dt Φ={ t ( v S r )( a S v ) }Φ .                                 ( 61 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamizaaWdaeaapeGaamizaiaadshaaaGa aeOPdiabg2da9maacmaapaqaa8qadaWcaaWdaeaapeGaeyOaIylapa qaa8qacqGHciITcaWG0baaaiabgkHiTmaabmaapaqaa8qacaWH2bWd amaaBaaajuaibaWdbiaadofaa8aabeaajuaGpeGaeyyXICTaey4bIe 9damaaBaaajuaibaWdbiaadkhaa8aabeaaaKqba+qacaGLOaGaayzk aaGaeyOeI0IaaiikaiaahggapaWaaSbaaKqbGeaapeGaam4uaaqcfa 4daeqaa8qacqGHflY1cqGHhis0l8aadaWgaaqcfasaaKqzadWdbiaa dAhaaKqbG8aabeaajuaGpeGaaiykaiabgkHiTiabgAci8cGaay5Eai aaw2haaiaabA6acaqGGcGaaiOlaiaabckacaqGGcGaaeiOaiaabcka caqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOai aabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGa aeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckaca qGGcGaaiiOaiaacckacaGGGcGaaiiOamaabmaapaqaa8qacaaI2aGa aGymaaGaayjkaiaawMcaaaaa@8852@

Using a well-known representation for the convection part in equation (59),

 ( v ) S   EdS= S   v( E )dS+ S   ×( E×v )dS ,                      ( 62 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcWaaeWaa8aabaWdbiaahAhacqGHflY1cqGHhis0aiaa wIcacaGLPaaadaGfWbqabKqbG8aabaWdbiaadofaaKqba+aabaWdbi aacckaa8aabaWexLMBbXgBd9gzLbvyNv2CaeHbcfgDH52zaGqba8qa caWFSicaaiaahweacaWGKbGaam4uaiabg2da9maawahabeqcfaYdae aapeGaam4uaaqcfa4daeaapeGaaiiOaaWdaeaapeGaa8hlIaaacaWH 2bWaaeWaa8aabaWdbiabgEGirlabgwSixlaahweaaiaawIcacaGLPa aacaWGKbGaam4uaiabgUcaRmaawahabeqcfaYdaeaapeGaam4uaaqc fa4daeaapeGaaiiOaaWdaeaapeGaa8hlIaaacqGHhis0cqGHxdaTda qadaWdaeaapeGaaCyraiabgEna0kaahAhaaiaawIcacaGLPaaacaWG KbGaam4uaiaacckacaGGSaGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOamaabmaapaqaa8qacaaI2aGaaGOmaaGaayjkaiaawMcaaaaa @8A43@

We obtain an alternative form of Maxwell's integral equations (55), (56) for a moving electric charge in the reference system at rest.

C   Hdl= 4π c S   jdS+ 1 c S   { E t v( E )×( E×v ) }dS ,       ( 63 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaGfWbqabKqbG8aabaWdbiaadoeaaKqba+aabaWdbiaaccka a8aabaWexLMBbXgBd9gzLbvyNv2CaeHbcfgDH52zaGqba8qacaWFUi caaiaahIeacaWGKbGaamiBaiabg2da9maalaaapaqaa8qacaaI0aGa eqiWdahapaqaa8qacaWGJbaaamaawahabeqcfaYdaeaapeGaam4uaa qcfa4daeaapeGaaiiOaaWdaeaapeGaa8hlIaaacaWHQbGaamizaiaa dofacqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaapeGaam4yaaaada GfWbqabKqbG8aabaWdbiaadofaaKqba+aabaWdbiaacckaa8aabaWd biaa=XIiaaWaaiWaa8aabaWdbmaalaaapaqaa8qacqGHciITieWaca GFfbaapaqaa8qacqGHciITcaWG0baaaiabgkHiTiaahAhadaqadaWd aeaapeGaey4bIeTaeyyXICTaaCyraaGaayjkaiaawMcaaiabgkHiTi abgEGirlabgEna0oaabmaapaqaa8qacaWHfbGaey41aqRaaCODaaGa ayjkaiaawMcaaiabgkHiTiabgAci8cGaay5Eaiaaw2haaiaadsgaca WGtbGaaiiOaiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcWaaeWaa8aabaWdbiaaiAdacaaIZaaacaGLOaGaayzkaa aaaa@83B9@

  C   Edl= 1 c S   { E t +×( v×H )+ }dS .                         ( 64 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcWaaybCaeqajuaipaqaa8qacaWGdbaajuaGpaqaa8qa caGGGcaapaqaamXvP5wqSX2qVrwzqf2zLnharyGqHrxyUDgaiuaape Gaa8NlIaaacaWHfbGaamizaiaadYgacqGH9aqpcqGHsisldaWcaaWd aeaapeGaaGymaaWdaeaapeGaam4yaaaadaGfWbqabKqbG8aabaWdbi aadofaaKqba+aabaWdbiaacckaa8aabaWdbiaa=XIiaaWaaiWaa8aa baWdbmaalaaapaqaa8qacqGHciITieWacaGFfbaapaqaa8qacqGHci ITcaWG0baaaiabgUcaRiabgEGirlabgEna0oaabmaapaqaa8qacaWH 2bGaey41aqRaaCisaaGaayjkaiaawMcaaiabgUcaRiabgAci8cGaay 5Eaiaaw2haaiaadsgacaWGtbGaaiiOaiaac6cacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWaaeWaa8aaba WdbiaaiAdacaaI0aaacaGLOaGaayzkaaaaaa@8654@

Here we omit, for the sake of simplicity, acceleration and other expansion terms in general formula but they, of course, are tacitly implied.

Before going on to a more general consideration of a large number of sources, it is worth to draw attention that we arrived to the most compact differential form of Maxwell- Hertz equations in the reference system at rest.15

E=4πϱ ,                                                           ( 65 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHflY1caWHfbGaeyypa0JaaGinaiabec8aWnrr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8x8deVaai iOaiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOamaabmaapaqaa8qacaaI2aGaaGynaa GaayjkaiaawMcaaaaa@9301@

H=0 ,                                                            ( 66 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHflY1caWHibGaeyypa0JaaGimaiaacckacaGG SaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaiAdacaaI2aaa caGLOaGaayzkaaaaaa@8672@

×H= 4π c ϱv+ 1 c dE dt  ,                                             ( 67 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHxdaTcaWHibGaeyypa0ZaaSaaa8aabaWdbiaa isdacqaHapaCa8aabaWdbiaadogaaaWefv3ySLgznfgDOfdaryqr1n gBPrginfgDObYtUvgaiuGacqWFXpq8caWH2bGaey4kaSYaaSaaa8aa baWdbiaaigdaa8aabaWdbiaadogaaaWaaSaaa8aabaWdbiaadsgaca WHfbaapaqaa8qacaWGKbGaamiDaaaacaGGGcGaaiilaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOamaabmaapaqaa8qacaaI2aGaaG4naaGaayjk aiaawMcaaaaa@8BCA@

×E= 1 c dH dt  ,                                                  ( 68 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHxdaTcaWHfbGaeyypa0JaeyOeI0YaaSaaa8aa baWdbiaaigdaa8aabaWdbiaadogaaaWaaSaaa8aabaWdbiaadsgaca WHibaapaqaa8qacaWGKbGaamiDaaaacaGGGcGaaiilaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWa aeWaa8aabaWdbiaaiAdacaaI4aaacaGLOaGaayzkaaaaaa@80E4@

Where the total time derivative of any vector field value E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHfbaaaa@3773@  (or H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHibaaaa@3776@ ) is,

dE dt = E t ( v )E( a v )E                             ( 69 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamizaiaahweaa8aabaWdbiaadsgacaWG 0baaaiabg2da9maalaaapaqaa8qacqGHciITcaWHfbaapaqaa8qacq GHciITcaWG0baaaiabgkHiTmaabmaapaqaa8qacaWH2bGaeyyXICTa ey4bIenacaGLOaGaayzkaaGaaCyraiabgkHiTmaabmaapaqaa8qaca WHHbGaeyyXICTaey4bIe9damaaBaaajuaibaWdbiaadAhaa8aabeaa aKqba+qacaGLOaGaayzkaaGaaCyraiabgkHiTiabgAci8kaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaiAdacaaI5aaaca GLOaGaayzkaaaaaa@7992@

The above-mentioned form (65)-(68) was for the first time admitted by Hertz for electrodynamics of bodies in motion.10,11 It was the covering theory for Maxwell's original approach which became the limit case of motionless medium (a reference system at rest) when values of instant velocity V, instant acceleration a etc. tend to zero in (69) leaving only partial time derivatives in agreement with (10)-(13). The difference of the present approach15 with Hertz's covering theory (and with Phipps' neo-Hertzian approach13,14 consists in the definition of the total time derivative (66) for a medium at rest (not in motion with the possible implication of Galilean invariance). Below we shall demonstrate that the set (65)-(68) possesses invariance properties in any inertial frame of reference.

There is no difficulty in extending this approach to a many particle system, assuming the validity of the electrodynamics superposition principle. This extension is important in order to find out whether the generalized microscopic field equations cover the original (macroscopic) Maxwell's theory as a limiting case. To do so one ought to take into account all principal restrictions of Maxwell's equations (10)-(13) which deal only with a continuous and closed (or going off to infinity) conduction currents. They also have to be motionless as a whole (static tubes of charge flow), admitting only the variation of current intensity.

Under these assumptions, it is quite easy to show that the total (macroscopic) convection and others displacement currents are cancelled by itself by summing up all microscopic contributions,

i ( v i ) E i +( a i v ) E i +   i ( v i ) H i +( a i v ) H i +                                           ( 70 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaybaeqabm qaaaqaaabaaaaaaaaapeWaaybuaeqajuaipaqaa8qacaWGPbaajuaG beWdaeaapeGaeyyeIuoaamaabmaapaqaa8qacaWH2bWdamaaBaaaju aibaWdbiaadMgaaKqba+aabeaapeGaeyyXICTaey4bIenacaGLOaGa ayzkaaGaaCyraSWdamaaBaaajuaGbaqcLbmapeGaamyAaaqcfa4dae qaa8qacqGHRaWkdaqadaWdaeaapeGaaCyya8aadaWgaaqcfasaa8qa caWGPbaapaqabaqcfa4dbiabgwSixlabgEGir=aadaWgaaqcfasaa8 qacaWG2baapaqabaaajuaGpeGaayjkaiaawMcaaiaahweapaWaaSba aKqbGeaapeGaamyAaaqcfa4daeqaa8qacqGHRaWkcqGHMacVa8aaba Wdbiaacckaa8aabaWdbmaawafabeqcfaYdaeaapeGaamyAaaqcfaya b8aabaWdbiabggHiLdaadaqadaWdaeaapeGaaCODa8aadaWgaaqcfa saa8qacaWGPbaapaqabaqcfa4dbiabgwSixlabgEGirdGaayjkaiaa wMcaaiaahIeapaWaaSbaaKqbGeaapeGaamyAaaWdaeqaaKqba+qacq GHRaWkdaqadaWdaeaapeGaaCyya8aadaWgaaqcfasaa8qacaWGPbaa paqabaqcfa4dbiabgwSixlabgEGir=aadaWgaaqcfasaa8qacaWG2b aapaqabaaajuaGpeGaayjkaiaawMcaaiaahIeapaWaaSbaaKqbGeaa peGaamyAaaWdaeqaaKqba+qacqGHRaWkcqGHMacVaaGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWa aeWaa8aabaWdbiaaiEdacaaIWaaacaGLOaGaayzkaaaaaa@ACB8@

In other words, every additional terms in (53), (54) (as well as in (63), (64) disappears and we obtain the original set of Maxwell macroscopic equations (10)-(13) for continuous and closed (or going off to infinity) conduction currents as a valid approximation. To conclude this part we would like to note that the set of equations (63), (64) can be called as modified Maxwell-Hertz's equations extended to one charge system. It is easy to see that in this form they are completely equivalent to modified Maxwell-Lorentz equations (53), (54) obtained with the help of the balance equation. Thus, differential and integral approaches to extend the original Maxwell theory lead to the same result.

Let us write once again the generalized form of Maxwell-Lorentz equations explicitly for a single moving particle that is a source of electric and magnetic fields simultaneously,

E=4πϱ ,                                                      ( 71 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHflY1caWHfbGaeyypa0JaaGinaiabec8aWnrr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8x8deVaai iOaiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckadaqadaWd aeaapeGaaG4naiaaigdaaiaawIcacaGLPaaaaaa@8D4A@

 H=0 ,                                                           ( 72 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaey4bIeTaeyyXICTaaCisaiabg2da9iaaicdacaGG GcGaaiilaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaiEdacaaIYaaa caGLOaGaayzkaaaaaa@866F@

×H= 4π c ϱv+ 1 c { E t ( v )E( a v )E } ,                ( 73 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHxdaTcaWHibGaeyypa0ZaaSaaa8aabaWdbiaa isdacqaHapaCa8aabaWdbiaadogaaaWefv3ySLgznfgDOfdaryqr1n gBPrginfgDObYtUvgaiuGacqWFXpq8caWH2bGaey4kaSYaaSaaa8aa baWdbiaaigdaa8aabaWdbiaabogaaaWaaiWaa8aabaWdbmaalaaapa qaa8qacqGHciITcaWHfbaapaqaa8qacqGHciITcaWG0baaaiabgkHi Tmaabmaapaqaa8qacaWH2bGaeyyXICTaey4bIenacaGLOaGaayzkaa GaaCyraiabgkHiTmaabmaapaqaa8qacaWHHbGaeyyXICTaey4bIe9d amaaBaaajuaibaWdbiaadAhaa8aabeaaaKqba+qacaGLOaGaayzkaa GaaCyraiabgkHiTiabgAci8cGaay5Eaiaaw2haaiaacckacaGGSaGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOamaa bmaapaqaa8qacaaI3aGaaG4maaGaayjkaiaawMcaaaaa@82DB@

×E= 1 c H t 1 c ×( v×H ) 1 c ( a v )H              ( 74 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHxdaTcaWHfbGaeyypa0JaeyOeI0YaaSaaa8aa baWdbiaaigdaa8aabaWdbiaadogaaaWaaSaaa8aabaWdbiabgkGi2k aahIeaa8aabaWdbiabgkGi2kaadshaaaGaeyOeI0YaaSaaa8aabaWd biaaigdaa8aabaWdbiaabogaaaGaey4bIeTaey41aq7aaeWaa8aaba WdbiaahAhacqGHxdaTcaWHibaacaGLOaGaayzkaaGaeyOeI0YaaSaa a8aabaWdbiaaigdaa8aabaWdbiaabogaaaWaaeWaa8aabaWdbiaahg gacqGHflY1cqGHhis0paWaaSbaaKqbGeaapeGaamODaaWdaeqaaaqc fa4dbiaawIcacaGLPaaacaWHibGaeyOeI0IaeyOjGWRaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckadaqadaWdaeaapeGaaG4naiaais daaiaawIcacaGLPaaaaaa@719E@

At the same time with the balance equation,

dϱ  dt +( ϱv )=0.                                               ( 75 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamizamrr1ngBPrwtHrhAXaqeguuDJXwA KbstHrhAG8KBLbacfiGae8x8deVaaiiOaaWdaeaapeGaamizaiaads haaaGaey4kaSYaaeWaa8aabaWdbiabgEGirlabgwSixlab=f=aXlaa hAhaaiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiOlaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaiEdaca aI1aaacaGLOaGaayzkaaaaaa@8BD1@

Splitting up field components into explicit and implicit time-dependent contributions E * ( H * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHfbWdamaaCaaabeqcfasaa8qacaGGQaaaaKqbaoaabmaa paqaa8qacaWHibWdamaaCaaajuaibeqaa8qacaGGQaaaaaqcfaOaay jkaiaawMcaaaaa@3D42@  and E 0  ( H 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHfbWdamaaBaaajuaibaWdbiaaicdaaKqba+aabeaapeGa aiiOamaabmaapaqaa8qacaWHibWdamaaBaaajuaibaWdbiaaicdaaK qba+aabeaaa8qacaGLOaGaayzkaaaaaa@3EBA@ , respectively , the basic field equations (73), (74) can be rewritten as follows:

×H= 4π c ϱv+ 1 c { E * t ( v ) E 0  ( a v ) E 0   } ,                      ( 76 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHxdaTcaWHibGaeyypa0ZaaSaaa8aabaWdbiaa isdacqaHapaCa8aabaWdbiaadogaaaWefv3ySLgznfgDOfdaryqr1n gBPrginfgDObYtUvgaiuGacqWFXpq8caWH2bGaey4kaSYaaSaaa8aa baWdbiaaigdaa8aabaWdbiaabogaaaWaaiWaa8aabaWdbmaalaaapa qaa8qacqGHciITcaWHfbWdamaaCaaabeqcfasaa8qacaGGQaaaaaqc fa4daeaapeGaeyOaIyRaamiDaaaacqGHsisldaqadaWdaeaapeGaaC ODaiabgwSixlabgEGirdGaayjkaiaawMcaaiaahweapaWaaSbaaKqb GeaapeGaaGimaaqcfa4daeqaa8qacaGGGcGaeyOeI0YaaeWaa8aaba WdbiaahggacqGHflY1cqGHhis0paWaaSbaaKqbGeaapeGaamODaaWd aeqaaaqcfa4dbiaawIcacaGLPaaacaWHfbWdamaaBaaajuaibaWdbi aaicdaa8aabeaajuaGpeGaaiiOaiabgkHiTiabgAci8cGaay5Eaiaa w2haaiaacckacaGGSaGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOamaabmaapaqaa8qacaaI3aGaaGOnaaGaayjkaiaawMcaaaaa@9153@

×E= 1 c H * t 1 c ×( v× H 0 ) 1 c ( a v ) H 0 ,                     ( 77 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHxdaTcaWHfbGaeyypa0JaeyOeI0YaaSaaa8aa baWdbiaaigdaa8aabaWdbiaadogaaaWaaSaaa8aabaWdbiabgkGi2k aahIeapaWaaWbaaKqbGeqabaWdbiaacQcaaaaajuaGpaqaa8qacqGH ciITcaWG0baaaiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qaca qGJbaaaiabgEGirlabgEna0oaabmaapaqaa8qacaWH2bGaey41aqRa aCisa8aadaWgaaqcfasaa8qacaaIWaaapaqabaaajuaGpeGaayjkai aawMcaaiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaqGJbaa amaabmaapaqaa8qacaWHHbGaeyyXICTaey4bIe9damaaBaaajuaiba WdbiaadAhaa8aabeaaaKqba+qacaGLOaGaayzkaaGaaCisa8aadaWg aaqcfasaa8qacaaIWaaapaqabaqcfa4dbiabgkHiTiabgAci8kaacY cacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckadaqadaWdaeaapeGaaG4n aiaaiEdaaiaawIcacaGLPaaaaaa@7FA3@

Where the total field values have two independent parts,

E= E 0 + E * = E 0 ( r r q ( t ) )+ E * ( r,t ) ,                                    ( 78 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHfbGaeyypa0JaaCyra8aadaWgaaqcfasaa8qacaaIWaaa juaGpaqabaWdbiabgUcaRiaahweapaWaaWbaaeqajuaibaqcLbmape GaaiOkaaaajuaGcqGH9aqpcaWHfbWdamaaBaaajuaibaWdbiaaicda a8aabeaajuaGpeWaaeWaa8aabaWdbiaahkhacqGHsislcaWHYbWdam aaBaaajuaibaWdbiaadghaa8aabeaajuaGpeWaaeWaa8aabaWdbiaa dshaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHRaWkcaWHfbWdam aaCaaajuaibeqaa8qacaGGQaaaaKqbaoaabmaapaqaa8qacaWHYbGa aiilaiaadshaaiaawIcacaGLPaaacaGGGcGaaiilaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOamaabmaapaqaa8qacaaI3aGaaGioaaGaayjkaiaawMca aaaa@8241@

 H= H 0 + H * = H 0 ( r r q ( t ) )+ H * ( r,t ) .                                 ( 79 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaaCisaiabg2da9iaahIeapaWaaSbaaKqbGeaapeGa aGimaaqcfa4daeqaa8qacqGHRaWkcaWHibWdamaaCaaajuaibeqaa8 qacaGGQaaaaKqbakabg2da9iaahIeapaWaaSbaaKqbGeaapeGaaGim aaWdaeqaaKqba+qadaqadaWdaeaapeGaaCOCaiabgkHiTiaahkhapa WaaSbaaKqbGeaapeGaamyCaaqcfa4daeqaa8qadaqadaWdaeaapeGa amiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgUcaRiaahIeapa WaaWbaaKqbGeqabaWdbiaacQcaaaqcfa4aaeWaa8aabaWdbiaahkha caGGSaGaamiDaaGaayjkaiaawMcaaiaacckacaGGUaGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWaaeWaa8 aabaWdbiaaiEdacaaI5aaacaGLOaGaayzkaaaaaa@7EDD@

Here we note that implicit time-dependent field components E 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHfbWdamaaBaaajuaibaWdbiaaicdaa8aabeaaaaa@38A9@  and H 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHibWdamaaBaaajuaibaWdbiaaicdaa8aabeaaaaa@38AD@  depend only on the point of observation and on the source position at an instant whereas time varyingfields E * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHfbWdamaaCaaabeqcfasaaKqzadWdbiaacQcaaaaaaa@39BD@  and H * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHibWdamaaCaaajuaibeqaa8qacaGGQaaaaaaa@3893@  depend explicitly on time at a fixed point. The separation procedure may be similarly extended to the electric and magnetic potentials introduced as

E=φ ,      H=×A ,                                                ( 80 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHfbGaeyypa0JaeyOeI0Iaey4bIeTaeqOXdOMaaiiOaiaa cYcacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaWHibGaey ypa0Jaey4bIeTaey41aqRaaCyqaiaacckacaGGSaGaaeiOaiaabcka caqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOai aabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGa aeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckaca qGGcGaaeiOaiaabckacaqGGcGaaeiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaa iIdacaaIWaaacaGLOaGaayzkaaaaaa@872C@

Where

φ= φ 0 + φ * ,   A = A 0 + A * .                                          ( 81 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGAcqGH9aqpcqaHgpGApaWaaSbaaKqbGeaapeGaaGim aaWdaeqaaKqba+qacqGHRaWkcqaHgpGApaWaaWbaaKqbGeqabaWdbi aacQcaaaqcfaOaaiilaiaacckacaGGGcGaaiiOaiaahgeacaGGGcGa eyypa0JaaCyqa8aadaWgaaqcfasaa8qacaaIWaaapaqabaqcfa4dbi abgUcaRiaahgeapaWaaWbaaKqbGeqabaWdbiaacQcaaaqcfaOaaiOl aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOamaabmaapaqaa8qacaaI4aGaaGymaaGaayjkaiaawMca aaaa@8209@

Let us establish invariance of field equations in total time derivatives. As far as in special relativity the invariance is looking for inertial frames of reference moving with a constant velocity V, then in total time derivative expansion we should omit all acceleration and higher order terms. Thus, using definitions (80), (81) we obtain from equation (77) that

E=φ 1 c   A * t 1 c ( v× H 0 ) .                                    ( 82 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHfbGaeyypa0JaeyOeI0Iaey4bIeTaeqOXdOMaeyOeI0Ya aSaaa8aabaWdbiaaigdaa8aabaWdbiaabogaaaGaaiiOamaalaaapa qaa8qacqGHciITcaWHbbWdamaaCaaajuaibeqaa8qacaGGQaaaaaqc fa4daeaapeGaeyOaIyRaamiDaaaacqGHsisldaWcaaWdaeaapeGaaG ymaaWdaeaapeGaae4yaaaadaqadaWdaeaapeGaaCODaiabgEna0kaa hIeapaWaaSbaaKqbGeaapeGaaGimaaWdaeqaaaqcfa4dbiaawIcaca GLPaaacaGGGcGaaiOlaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOamaabmaapaqa a8qacaaI4aGaaGOmaaGaayjkaiaawMcaaaaa@7F7D@

Separation of implicit time-dependent from explicit time-dependent components in (82) is straightforward

   E 0 = φ 0 1 c ( v× H 0 ),   E * = φ * 1 c   A * t  .                                          ( 83 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaaiiOa8aafaqabeWabaaabaWdbiaahweapaWaaSba aKqbGeaapeGaaGimaaWdaeqaaKqba+qacqGH9aqpcqGHsislcqGHhi s0cqaHgpGApaWaaSbaaKqbGeaapeGaaGimaaqcfa4daeqaa8qacqGH sisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaae4yaaaadaqadaWdae aapeGaaCODaiabgEna0kaahIeapaWaaSbaaKqbGeaapeGaaGimaaqc fa4daeqaaaWdbiaawIcacaGLPaaacaGGSaaapaqaa8qacaGGGcaapa qaa8qacaWHfbWdamaaCaaajuaibeqaa8qacaGGQaaaaKqbakabg2da 9iabgkHiTiabgEGirlabeA8aQ9aadaahaaqcfasabeaapeGaaiOkaa aajuaGcqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaae4yaaaa caGGGcWaaSaaa8aabaWdbiabgkGi2kaahgeapaWaaWbaaKqbGeqaba WdbiaacQcaaaaajuaGpaqaa8qacqGHciITcaWG0baaaiaacckacaGG UaaaaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcWaaeWaa8aabaWdbiaaiIdacaaIZaaacaGLOaGaayzkaaaa aa@96BE@

Using this separation we obtain two second order differential equations for total potentials (81)

ΔA= 4π c ϱv+F,                                                  ( 84 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWHbbGaeyypa0ZaaSaaa8aabaWdbiaaisdacqaH apaCa8aabaWdbiaadogaaaWefv3ySLgznfgDOfdaryqr1ngBPrginf gDObYtUvgaiuGacqWFXpq8caWH2bGaey4kaSIaaCOraiaacYcacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOamaabmaapaqaa8qacaaI4aGaaGinaaGaayjkaiaawMcaaaaa@8912@

Δφ=4πϱ+Φ,                                                ( 85 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcqaHgpGAcqGH9aqpcqGHsislcaaI0aGaeqiWda3e fv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFXpq8cq GHRaWkcqqHMoGrcaGGSaGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcWaaeWaa8aabaWdbiaaiIdacaaI1aaacaGLOaGa ayzkaaaaaa@8721@

Where

F={ ( A 0 + A * ) } 1 c ( v ) φ 0 + 1 c φ * t + 1 c 2 2 A * t 2  ,               ( 86 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHgbGaeyypa0Jaey4bIe9aaiWaa8aabaWdbiabgEGirlab gwSixpaabmaapaqaa8qacaWHbbWdamaaBaaajuaibaWdbiaaicdaaK qba+aabeaapeGaey4kaSIaaCyqa8aadaahaaqcfasabeaapeGaaiOk aaaaaKqbakaawIcacaGLPaaaaiaawUhacaGL9baacqGHsisldaWcaa WdaeaapeGaaGymaaWdaeaapeGaae4yaaaadaqadaWdaeaapeGaaCOD aiabgwSixlabgEGirdGaayjkaiaawMcaaiabgEGirlabeA8aQ9aada Wgaaqcfasaa8qacaaIWaaapaqabaqcfa4dbiabgUcaRmaalaaapaqa a8qacaaIXaaapaqaa8qacaqGJbaaamaalaaapaqaa8qacqGHciITcq GHhis0cqaHgpGApaWaaWbaaKqbGeqabaWdbiaacQcaaaaajuaGpaqa a8qacqGHciITcaWG0baaaiabgUcaRmaalaaapaqaa8qacaaIXaaapa qaa8qacaWGJbWdamaaCaaajuaibeqaa8qacaaIYaaaaaaajuaGdaWc aaWdaeaapeGaeyOaIy7damaaCaaabeqcfasaa8qacaaIYaaaaKqbak aahgeapaWaaWbaaKqbGeqabaWdbiaacQcaaaaajuaGpaqaa8qacqGH ciITcaWG0bWdamaaCaaabeqcfasaaKqzadWdbiaaikdaaaaaaKqbak aacckacaGGSaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcWaaeWaa8aabaWdbiaaiIdacaaI2aaacaGLOaGaayzkaaaaaa@87C9@

Φ= 1 c ( A * t ) .                                               ( 87 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrcqGH9aqpcqGHsisldaWcaaWdaeaapeGaaGymaaWd aeaapeGaae4yaaaadaqadaWdaeaapeGaey4bIeTaeyyXIC9aaSaaa8 aabaWdbiabgkGi2kaahgeapaWaaWbaaKqbGeqabaWdbiaacQcaaaaa juaGpaqaa8qacqGHciITcaWG0baaaaGaayjkaiaawMcaaiaacckaca GGUaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckadaqada WdaeaapeGaaGioaiaaiEdaaiaawIcacaGLPaaaaaa@829E@

The second term in (86) can be easily transformed using mathematical operations of field theory,

( v ) φ 0 =( v φ 0 )v×( × φ 0 ) .                          ( 88 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeGaaCODaiabgwSixlabgEGirdGaayjkaiaa wMcaaiabgEGirlabeA8aQ9aadaWgaaqcfasaa8qacaaIWaaajuaGpa qabaWdbiabg2da9iabgEGirpaabmaapaqaa8qacaWH2bGaeyyXICTa ey4bIeTaeqOXdO2damaaBaaajuaibaWdbiaaicdaaKqba+aabeaaa8 qacaGLOaGaayzkaaGaeyOeI0IaaCODaiabgEna0oaabmaapaqaa8qa cqGHhis0cqGHxdaTcqGHhis0cqaHgpGApaWaaSbaaKqbGeaajugWa8 qacaaIWaaajuaGpaqabaaapeGaayjkaiaawMcaaiaacckacaGGUaGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckadaqadaWdaeaapeGaaGioaiaaiIdaaiaawIcacaGLPaaa aaa@8101@

Since ×( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHxdaTcqGHhis0daqadaWdaeaapeGaeyOjGWla caGLOaGaayzkaaaaaa@3EFE@  is always equal to zero, we can rewrite F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHgbaaaa@3774@  in a new form,

 F=[ { A 0 1 c v φ 0 }+{ A * + 1 c φ * t } ]+ 1 c 2 2 A * t 2  .          ( 89 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaaCOraiabg2da9iabgEGirpaadmaapaqaa8qadaGa daWdaeaapeGaey4bIeTaeyyXICTaaCyqa8aadaWgaaqcfasaa8qaca aIWaaapaqabaqcfa4dbiabgkHiTmaalaaapaqaa8qacaaIXaaapaqa a8qacaqGJbaaaiaahAhacqGHflY1cqGHhis0cqaHgpGApaWaaSbaaK qbGeaapeGaaGimaaWdaeqaaaqcfa4dbiaawUhacaGL9baacqGHRaWk daGadaWdaeaapeGaey4bIeTaeyyXICTaaCyqa8aadaahaaqcfasabe aapeGaaiOkaaaajuaGcqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaa peGaae4yaaaadaWcaaWdaeaapeGaeyOaIyRaeqOXdO2damaaCaaaju aibeqaa8qacaGGQaaaaaqcfa4daeaapeGaeyOaIyRaamiDaaaaaiaa wUhacaGL9baaaiaawUfacaGLDbaacqGHRaWkdaWcaaWdaeaapeGaaG ymaaWdaeaapeGaam4ya8aadaahaaqcfasabeaapeGaaGOmaaaaaaqc fa4aaSaaa8aabaWdbiabgkGi2+aadaahaaqcfasabeaapeGaaGOmaa aajuaGcaWHbbWdamaaCaaajuaibeqaa8qacaGGQaaaaaqcfa4daeaa peGaeyOaIyRaamiDa8aadaahaaqabKqbGeaapeGaaGOmaaaaaaqcfa OaaiiOaiaac6cacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaiIdacaaI5a aacaGLOaGaayzkaaaaaa@83E5@

The principal feature of (89) consists in the fact that all implicit and explicit time-dependent components of total electric and magnetic potentials enter independently and, therefore, can be characterized by respective gauge conditions,

  A 0 1 c v φ 0 =0 ,                                           ( 90 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaey4bIeTaeyyXICTaaCyqa8aadaWgaaqcfasaa8qa caaIWaaapaqabaqcfa4dbiabgkHiTmaalaaapaqaa8qacaaIXaaapa qaa8qacaqGJbaaaiaahAhacqGHflY1cqGHhis0cqaHgpGApaWaaSba aKqbGeaapeGaaGimaaWdaeqaaKqba+qacqGH9aqpcaaIWaGaaiiOai aacYcacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaiMdacaaIWaaaca GLOaGaayzkaaaaaa@813A@

  A * + 1 c φ * t =0 .                                             ( 91 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaey4bIeTaeyyXICTaaCyqa8aadaahaaqabKqbGeaa peGaaiOkaaaajuaGcqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaape Gaae4yaaaadaWcaaWdaeaapeGaeyOaIyRaeqOXdO2damaaCaaajuai beqaa8qacaGGQaaaaaqcfa4daeaapeGaeyOaIyRaamiDaaaacqGH9a qpcaaIWaGaaiiOaiaac6cacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckada qadaWdaeaapeGaaGyoaiaaigdaaiaawIcacaGLPaaaaaa@826A@

Lorentz's gauge (91) is applicable now only for explicit time-dependent potentials and is invariant under Lorentz's transformations. It suggests that the proper time τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHepaDaaa@386A@  (let us call here the time τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHepaDaaa@386A@  variable of explicit time-dependent components in the entire spirit of the special relativity theory) for two inertial frames moving with respect to each other are related by an imaginary rotation in space-time. The amount of rotation depends on the relative velocity. Implicit time-dependent potentials turn out to be related through the novel gauge (90) which covers the well-known relationship between the components of electric and magnetic field potentials of uniformly moving charge],92

A 0 = v c   φ 0  .                                                     ( 92 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaWdbiaaicdaaKqba+aabeaapeGa eyypa0ZaaSaaa8aabaWdbiaahAhaa8aabaWdbiaabogaaaGaaiiOai abeA8aQ9aadaWgaaqcfasaa8qacaaIWaaajuaGpaqabaWdbiaaccka caGGUaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckadaqadaWdaeaapeGaaG yoaiaaikdaaiaawIcacaGLPaaaaaa@82A4@

Strictly speaking, this relationship is true for Galilean as well as for Lorentz's transformations. The difference is attributed to a mathematical formulation of potentials in a new frame of reference. For instance, the Lorentz transformation corresponds to a rotation in the space-time plane whereas the Galilean one leaves A 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaWdbiaaicdaaKqba+aabeaaaaa@3934@  and φ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGApaWaaSbaaKqbGeaapeGaaGimaaqcfa4daeqaaaaa @3A27@  unchanged, for it is assumed that no operation can rotate the time axis into the space axis or vice versa. For Galilean invariance, the time direction is supposed to be the same for all inertial frames of reference.

The expression (90) and all physically possible transformations based on it, do not involve explicitly any time dimension. The time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0baaaa@379E@  here can be added as an afterthought (a parameter describing the space coordinate R( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHsbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@3A21@ ). In above discussion of full time derivative we noted that time variable τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHepaDaaa@386A@  (for explicit) and time parameter t (for implicit time behaviours) are, generally speaking, independent. If we assume, as they do it tacitly in special relativity with no distinction of time behaviours, that both time variables are identical t=τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0bGaeyypa0JaeqiXdqhaaa@3A69@  then we arrive to the implication of Lorentz's invariance for A 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaWdbiaaicdaaKqba+aabeaaaaa@3934@  and φ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGApaWaaSbaaKqbGeaapeGaaGimaaqcfa4daeqaaaaa @3A27@ . Without additional hypothesis, the present Helmholtzian approach cannot rule in favour of Galilean or Lorentz's transformations for implicit time dependences. The novel gauge (90) as well as (92) is compatible with both of them. The only way of resolving this dilemma now seems to be to suggest experimental verification of electric field transformation in a moving frame. In fact, Leus recently proposed such experiment.16 A uniform beam of electrons moving with the velocity close to has to produce electric field strength which differs for Galilean and Lorentz transformations.

Two gauge conditions (90) and (91) can be written jointly in a more compact formula that we can call the generalized Lorentz condition.

A   + 1 c d φ   dt =0 ,                                            ( 93 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHflY1caWHbbWdamaaCaaabeqaa8qacaGGGcaa aiabgUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qacaqGJbaaamaala aapaqaa8qacaWGKbGaeqOXdO2damaaCaaabeqaa8qacaGGGcaaaaWd aeaapeGaamizaiaadshaaaGaeyypa0JaaGimaiaacckacaGGSaGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckadaqadaWdaeaapeGaaGyoaiaaiodaaiaawI cacaGLPaaaaaa@7E9C@

Where A 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaWdbiaaicdaaKqba+aabeaaaaa@3934@  and φ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGApaWaaSbaaKqbGeaapeGaaGimaaqcfa4daeqaaaaa @3A27@  are defined by (81) and the total time derivative is taken as in (69) up to the convection term. We have not done it yet and will do it elsewhere but, perhaps, it is possible to prove that generalized Lorentz gauge (93) is valid also for non-inertial frames (acceleration and higher order terms in the total time derivative expansion). It would have a very attractive consequence that the field equations (65)-(68) written in total time derivatives could be considered invariant regardless a frame of reference (inertial or non-inertial). Recall that in special relativity, electric and magnetic potentials of uniformly moving charge A 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaWdbiaaicdaaKqba+aabeaaaaa@3934@  and φ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGApaWaaSbaaKqbGeaapeGaaGimaaqcfa4daeqaaaaa @3A27@  are interrelated through the relationship (92) under application of Lorentz transformation. Here we found that relativistic potentials (or components of potential four-vector) are connected in a more general way (90). Another important aspect of the present approach can be attributed to the verification of some ambiguity in the use of Lorentz gauge since it is applicable only to explicit time-dependent potentials. In fact, there are some difficulties in the conventional electrodynamics concerning the inconsistency of this gauge with implicit time-dependent functions. The standards Lorentz gauge condition is assumed to be valid for total electric and magnetic potentials (transverse plus longitudinal) and is considered suffice to hold Maxwell's equations invariant under Lorentz transformation. In the quasi-stationary approximation, the Lorentz condition in every frame of references takes the form of the so-called radiation gauge.17

A   + 1 c φ   t =0                                                  ( 94 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHflY1caWHbbWdamaaCaaabeqaa8qacaGGGcaa aiabgUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qacaqGJbaaamaala aapaqaa8qacqGHciITcqaHgpGApaWaaWbaaeqabaWdbiaacckaaaaa paqaa8qacqGHciITcaWG0baaaiabg2da9iaaicdacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOamaabm aapaqaa8qacaaI5aGaaGinaaGaayjkaiaawMcaaaaa@849B@

A   =0 .                                                      ( 95 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHflY1caWHbbWdamaaCaaabeqaa8qacaGGGcaa aiabg2da9iaaicdacaGGGcGaaiOlaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOamaabmaapaqaa8qacaaI5aGaaGynaaGaayjkaiaawMca aaaa@80FC@

It contradicts the expected relation (92) (or in our approach (90)) between electric and magnetic implicit time-dependent potentials. To make (95) consistent with (92) in the given frame, they used to put an additional condition on the electric potential satisfying the so-called Coulomb gauge.17

A   =0 ,     φ=0 .                                           ( 96 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHhis0cqGHflY1caWHbbWdamaaCaaabeqaa8qacaGGGcaa aiabg2da9iaaicdacaGGGcGaaiilaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaeqOXdOMaeyypa0JaaGimaiaacckacaGGUaGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOamaabmaapaqaa8qacaaI5aGaaGOnaaGaayjkaiaawMcaaaaa @7F76@

In mathematical language the invariance of implicit time-dependent fields in the conventional approach involves more strong limitations than those imposed previously by the Lorentz gauge. Generally speaking, the conventional classical electrodynamics has to admit more than one invariance principle since every time the Lorentz transformation is done, one needs also simultaneously to transform all physical quantities in accordance with the Coulomb gauge (96). This problem was widely discussed and in the language adopted in the general Lorentz group theory, is known as gauge dependent representation (or joint representation) of the Lorentz group.17 In fact, it means an additional non-relativistic adjustment of electric potential, every time we change the frame of reference. This difficulty vanishes when the relativistic gauge (90) for implicit time-dependent potentials is introduced. A rigorous consideration of (84), (85) gives another important conclusion: simultaneous application of two independent gauge transformations (90), (91) discomposes the initial set (71)-(74) into two pairs of differential equations, namely.

Δ A 0 = 4π c ϱv ,                                                 ( 97 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWHbbWdamaaBaaajuaibaWdbiaaicdaaKqba+aa beaapeGaeyypa0JaeyOeI0YaaSaaa8aabaWdbiaaisdacqaHapaCa8 aabaWdbiaadogaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYt UvgaiuGacqWFXpq8caWH2bGaaiiOaiaacYcacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbi aaiMdacaaI3aaacaGLOaGaayzkaaaaaa@8A27@

Δ φ 0 =πϱ                                                        ( 98 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcqaHgpGApaWaaSbaaeaapeGaaGimaaWdaeqaa8qa cqGH9aqpcqGHsislcqaHapaCtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGqbciab=f=aXlaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaiMdacaaI4aaacaGLOa Gaayzkaaaaaa@8D94@

At the same time with the homogeneous wave equations,

 Δ A * 4π c 2 A * t 2 =0,                                         ( 99 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcqcfaOaeuiLdqKaaCyqa8aadaahaaqcfasabeaapeGaaiOk aaaajuaGcqGHsisldaWcaaWdaeaapeGaaGinaiabec8aWbWdaeaape Gaam4yaaaadaWcaaWdaeaapeGaeyOaIy7damaaCaaajuaibeqaa8qa caaIYaaaaKqbakaahgeapaWaaWbaaKqbGeqabaWdbiaacQcaaaaaju aGpaqaa8qacqGHciITcaWG0bWdamaaCaaajuaibeqaa8qacaaIYaaa aaaajuaGcqGH9aqpcaaIWaGaaiilaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaiMda caaI5aaacaGLOaGaayzkaaaaaa@7E9E@

Δ φ * 4π c 2 φ * t 2 =0 .                                     ( 100 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcqaHgpGApaWaaWbaaKqbGeqabaWdbiaacQcaaaqc faOaeyOeI0YaaSaaa8aabaWdbiaaisdacqaHapaCa8aabaWdbiaado gaaaWaaSaaa8aabaWdbiabgkGi2+aadaahaaqabKqbGeaapeGaaGOm aaaajuaGcqaHgpGApaWaaWbaaKqbGeqabaWdbiaacQcaaaaajuaGpa qaa8qacqGHciITcaWG0bWdamaaCaaajuaibeqaa8qacaaIYaaaaaaa juaGcqGH9aqpcaaIWaGaaiiOaiaac6cacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcWaaeWaa8aabaWdbiaaigdacaaIWaGaaGimaaGaayjkaiaa wMcaaaaa@7C9F@

Likewise (92), Poisson's second order differential equations (97), (98) for electric and magnetic potentials covers the conventional approach in the steady-state approximation and can be considered as valid extension to implicit time-dependent potentials. A general solution, as one would expect, satisfies a pair of uncoupled inhomogeneous D'Alembert's equations. It can be verified by summing up (97), (98) and (99), (100) (here we omit premeditatedly all boundary conditions for the sake of simplicity).

 Δ A   4π c 2 A   t 2 = 4π c ϱv ,                                 ( 101 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcqcfaOaeuiLdqKaaCyqa8aadaahaaqabeaapeGaaiiOaaaa cqGHsisldaWcaaWdaeaapeGaaGinaiabec8aWbWdaeaapeGaam4yaa aadaWcaaWdaeaapeGaeyOaIy7damaaCaaajuaibeqaa8qacaaIYaaa aKqbakaahgeapaWaaWbaaeqabaWdbiaacckaaaaapaqaa8qacqGHci ITcaWG0bWdamaaCaaajuaibeqaa8qacaaIYaaaaaaajuaGcqGH9aqp cqGHsisldaWcaaWdaeaapeGaaGinaiabec8aWbWdaeaapeGaam4yaa aatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=f=a XlaahAhacaGGGcGaaiilaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOamaabmaapaqaa8qacaaIXaGaaGimai aaigdaaiaawIcacaGLPaaaaaa@8799@

 Δ φ   4π c 2 φ   t 2 =4πϱ ,                                     ( 102 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaeuiLdqKaeqOXdO2damaaCaaabeqaa8qacaGGGcaa aiabgkHiTmaalaaapaqaa8qacaaI0aGaeqiWdahapaqaa8qacaWGJb aaamaalaaapaqaa8qacqGHciITpaWaaWbaaKqbGeqabaWdbiaaikda aaqcfaOaeqOXdO2damaaCaaabeqaa8qacaGGGcaaaaWdaeaapeGaey OaIyRaamiDa8aadaahaaqcfasabeaapeGaaGOmaaaaaaqcfaOaeyyp a0JaeyOeI0IaaGinaiabec8aWnrr1ngBPrwtHrhAXaqeguuDJXwAKb stHrhAG8KBLbacfiGae8x8deVaaiiOaiaacYcacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcWaaeWaa8aabaWdbiaaigdacaaIWaGaaGOmaaGaay jkaiaawMcaaaaa@8BDB@

Where the total values A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbaaaa@376F@  and φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGAaaa@3862@  are defined by (81). The same result has been derived in the Section 2 independently, starting from the analysis of boundary conditions for inhomogeneous D'Alembert's equations.18 It has been shown mathematically that any general solution of Maxwell's equations has to be obligatory written as a superposition of implicit and explicit time-dependent functions. The above analysis endorsed that conclusion by demonstrating relativistic invariance of (101), (102) and, therefore, (71)-(74), if and only if the relativistic gauge condition (96) is satisfied by respective components of the total field. Thus, the covering theory based on the total time derivatives possesses all necessary relativistic symmetry properties. To conclude this section, some remarks worth to be done concerning the empirical and axiomatic status of the Lorentz force concept in the electron theory formulated by Lorentz. In the first version of Maxwell's theory published under the name “On Physical Lines of Force” (1861-1862) there was already admitted an unified character of a full electromotive force in the conductor in motion by describing it as.19,20

E=φ 1 c A t + 1 c v×H ,                                ( 103 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHfbGaeyypa0JaeyOeI0Iaey4bIeTaeqOXdOMaeyOeI0Ya aSaaa8aabaWdbiaaigdaa8aabaWdbiaadogaaaWaaSaaa8aabaWdbi abgkGi2kaahgeaa8aabaWdbiabgkGi2kaadshaaaGaey4kaSYaaSaa a8aabaWdbiaaigdaa8aabaWdbiaadogaaaGaaCODaiabgEna0kaahI eacaGGGcGaaiilaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcWaaeWaa8aabaWdbiaaigdacaaIWaGaaG4maaGaayjk aiaawMcaaaaa@754C@

Where (1) the first term is the electrostatic force, (2) the second one is the force of magnetic induction and (3) the third one is the force of electromagnetic induction due to the conductor motion. Later investigations began to distinguish between the electric force in a moving body and the electric force in the ether through which the body was moving and as a result, did not consider 1 c v×H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaam4yaaaacaWH2bGa ey41aqRaaCisaaaa@3C7D@  as a full-value part of the electric field, as afterwards was argued by Hertz. This distinction was one of the basic premises in Lorentz's electron theory and was closely related to the special status of the Lorentz force conception. It also can be noted in the way how it forms part the formalism of the conventional field theory . The equation of motion with total time derivative (34) should be contrasted from the form of partial differential equations (30)-(33). It does not correspond to the mathematical structure of a consistent system.

In special relativity the Lorentz force, is the result of the transformation of the components of Minkowski's force. Thus, the expression for the Lorentz force can be obtained in a purely mathematical way from the general relativistic relationships.2 In the present Helmholtz-type approach the Lorentz force is one of the terms in the total time derivative expansion. This has advantage to be consistent by itself with the set of generalized field equations. There is no need to supplement Maxwell's theory with equation of motion. Given such interpretation of Lorentz's force, we remind that in our approach it can be related only to implicit time-dependent components whereas in the conventional electrodynamics it was the product of the total magnetic field leading to some ambiguities. In this respect it is interesting to mention very recent works by 21 and Phipps22 challenging the sufficiency of the Lorentz force law to describe experimental observations. They advocated the use of total time derivatives (in the above-mentioned neo-Hertzian sense) and their data roughly agreed with theoretical predictions, while the conventional theory does not predict any effect at all.

Analysis of classical difficulties and the Hamiltonian form of generalized Maxwell's equations

Maxwell's equations in the form of D`Alembert’s equations lends them to the covariant description and are in agreement with the requirements of special relativity mathematical formalism. For four-vectors of separated potentials, the standard four vector form of basic equations can be used. We immediately have the following expressions:

( Δ 1 c 2 2 t 2   )( A 0μ + A μ * )= 4π c j μ ,    μ=0,1,2,3 ,                        ( 104 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeGaeuiLdqKaeyOeI0YaaSaaa8aabaWdbiaa igdaa8aabaWdbiaadogapaWaaWbaaeqajuaibaWdbiaaikdaaaaaaK qbaoaalaaapaqaa8qacqGHciITpaWaaWbaaKqbGeqabaWdbiaaikda aaaajuaGpaqaa8qacqGHciITcaWG0bWdamaaCaaabeqcfasaa8qaca aIYaaaaaaajuaGcaGGGcaacaGLOaGaayzkaaWaaeWaa8aabaWdbiaa hgeapaWaaSbaaKqbGeaapeGaaGimaiabeY7aTbqcfa4daeqaa8qacq GHRaWkcaWHbbWdamaaDaaajuaibaWdbiabeY7aTbWdaeaapeGaaiOk aaaaaKqbakaawIcacaGLPaaacqGH9aqpcqGHsisldaWcaaWdaeaape GaaGinaiabec8aWbWdaeaapeGaam4yaaaacaWHQbWdamaaBaaajuai baqcLbmapeGaeqiVd0gajuaGpaqabaWdbiaacYcacaGGGcGaaiiOai aacckacaGGGcGaeqiVd0Maeyypa0JaaGimaiaacYcacaaIXaGaaiil aiaaikdacaGGSaGaaG4maiaacckacaGGSaGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaigda caaIWaGaaGinaaGaayjkaiaawMcaaaaa@8ABB@

where

  A 0μ + A μ * =( φ 0 + φ * ,  A 0  + A   * ),       j μ =( cϱ, j  ).                      ( 105 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaaCyqa8aadaWgaaqcfasaaKqzadWdbiaaicdacqaH 8oqBaKqba+aabeaapeGaey4kaSIaaCyqa8aadaqhaaqcfasaa8qacq aH8oqBa8aabaWdbiaacQcaaaqcfaOaeyypa0ZaaeWaa8aabaWdbiab eA8aQ9aadaWgaaqcfasaa8qacaaIWaaajuaGpaqabaWdbiabgUcaRi abeA8aQ9aadaahaaqcfasabeaapeGaaiOkaaaajuaGcaGGSaGaaiiO aiaahgeapaWaaSbaaKqbGeaapeGaaGimaiaacckaa8aabeaajuaGpe Gaey4kaSIaaCyqa8aadaqhaaqcfasaa8qacaGGGcaapaqaa8qacaGG QaaaaaqcfaOaayjkaiaawMcaaiaacYcacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaWHQbWdamaaBaaajuaibaWdbiabeY7aTbqc fa4daeqaa8qacqGH9aqpdaqadaWdaeaapeGaam4yamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8x8deVaaiilaiaaccka caWHQbGaaiiOaaGaayjkaiaawMcaaiaac6cacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaigdacaaIWaGaaGyn aaGaayjkaiaawMcaaaaa@939C@

The first Poisson's operator Δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoaraaa@380B@  acts only on the four-vector of implicit time-dependent components A 0μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaqcLbmapeGaaGimaiabeY7aTbqc fa4daeqaaaaa@3C18@  whereas Δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoaraaa@380B@  and 2 / t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOaIy 7aaWbaaKqbGeqabaGaaGOmaaaajuaGcaGGVaGaeyOaIyRaamiDamaa Caaabeqcfasaaiaaikdaaaaaaa@3DA3@  act together on explicit time-dependent components A μ * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaDaaajuaibaWdbiabeY7aTbWdaeaapeGaaiOk aaaaaaa@3A61@ . The equation (104) is relativistically invariant under the generalized relativistic Lorentz gauge condition (93). T o give some substance to the above formality we exhibit explicitly Poisson's equation for implicit time-dependent four-vector A 0μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaqcLbmapeGaaGimaiabeY7aTbqc fa4daeqaaaaa@3C18@ .

Δ A 0μ = 4π c   j μ  ,                                                     ( 106 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWHbbWdamaaBaaajuaibaWdbiaaicdacqaH8oqB aKqba+aabeaapeGaeyypa0JaeyOeI0YaaSaaa8aabaWdbiaaisdacq aHapaCa8aabaWdbiaadogaaaGaaiiOaiaahQgapaWaaSbaaKqbGeaa peGaeqiVd0gajuaGpaqabaWdbiaacckacaGGSaGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckadaqadaWdaeaapeGaaGymaiaaicdacaaI2aaacaGL OaGaayzkaaaaaa@8910@

where

A 0μ =( φ 0 , A 0  ) .                                                       ( 107 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaWdbiaaicdacqaH8oqBa8aabeaa juaGpeGaeyypa0ZaaeWaa8aabaWdbiabeA8aQ9aadaWgaaqcfasaa8 qacaaIWaaajuaGpaqabaWdbiaacYcacaWHbbWdamaaBaaabaqcLbma peGaaGimaKqbakaacckaa8aabeaaa8qacaGLOaGaayzkaaGaaiiOai aac6cacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWaaeWa a8aabaWdbiaaigdacaaIWaGaaG4naaGaayjkaiaawMcaaaaa@8B1D@

As we demonstrated in the previous Section, equation (106) is relativistically invariant under the Lorentz gauge (86) if the time parameter t here is considered identical to the time variable  for explicit time components A μ * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaDaaajuaibaWdbiabeY7aTbWdaeaapeGaaiOk aaaaaaa@3A61@ . Under this condition, Poisson's differential operator Δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoaraaa@380B@  acting on implicit time-dependent potentials becomes invariant in every inertial frame of reference under Lorentz's transformations. This is due to the fact that time variable t is not any more independent from τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHepaDaaa@386A@  as it is assumed for partial derivatives in full time derivative formalism. Non-covariant representation of D'Alembert differential operator Δ 2 / t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcqGHsislcqGHciITpaWaaWbaaeqajuaibaWdbiaa ikdaaaqcfaOaai4laiabgkGi2kaadshapaWaaWbaaeqajuaibaWdbi aaikdaaaaaaa@4054@ or, in other words, non-covariance of equation (106) is not a stumbling block here for relativistic invariance and endorses the well-known fact that covariance is not necessary, it is only sufficient for relativistic invariance.

Moreover, it is tacitly implied in the conventional approach and corresponds to the relativistic invariance of field components of an uniformly moving charge (implicit time-dependent functions) that remain radial lines of electric field regardless the choice of inertial frame. This fact is odd to contemplate in the Faraday-Maxwell electrodynamics based on the concept of local (contact) field which mathematically fits explicit time- dependent behavior.

Actually, electric field lines of an unmoving charge are radial. Under Lorentz's transformation into the inertial frame of reference moving with the velocity v explicit time- dependence does not appear and field lines remain radial. Without any approximation, the influence of a possible retarded effect cancels itself at any distance from the moving charge. On the other hand, the conventional theory is unable to give any reasonable interpretation describing a transition from a uniform movement of a charge into an arbitrary one and then again into uniform over a limited interval of time. In this case, the first and the latter solutions can be given exactly by the Lorentz transformation as implicit time-dependent functions. What mechanism changes them at a distance unreachable for retarded Lienard-Wiechert fields? The lack of continuity between the corresponding solutions is obvious. It has the same nature as discussed in the Section 2.

The Helmholtz-type approach based on separation of implicit and explicit time behaviors also highlights serious ambiguities associated with the self-energy concept in the framework of the conventional electrodynamics. Let us confine our previous qualitative reasoning to the example of electrostatics. A rigorous analysis will be done later applying Hamiltonian formalism.

In electrostatics the total energy of N interacting charges is

W= 1 2 i=1 N j1 q i q j | r i r j |  .                                           ( 108 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGxbGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaa ikdaaaWaaybCaeqajuaipaqaa8qacaWGPbGaeyypa0JaaGymaaWdae aapeGaamOtaaqcfa4daeaapeGaeyyeIuoaamaawafabeqcfaYdaeaa peGaamOAaiabgcMi5kaaigdaaKqbagqapaqaa8qacqGHris5aaWaaS aaa8aabaWdbiaadghapaWaaSbaaKqbGeaapeGaamyAaaqcfa4daeqa a8qacaWGXbWdamaaBaaajuaibaWdbiaadQgaaKqba+aabeaaaeaape WaaqWaa8aabaWdbiaahkhapaWaaSbaaKqbGeaapeGaamyAaaqcfa4d aeqaa8qacqGHsislcaWHYbWdamaaBaaajuaibaWdbiaadQgaa8aabe aaaKqba+qacaGLhWUaayjcSdaaaiaacckacaGGUaGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOamaabmaapaqaa8qacaaIXaGaaGimaiaaiIdaaiaawIcacaGLPaaa aaa@8EBD@

Here, the infinite self-energy terms ( i=j ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeGaamyAaiabg2da9iaadQgaaiaawIcacaGL Paaaaaa@3B30@  are omitted in the double sum. The expression obtained by Maxwell for the energy in an electric field, expressed as a volume integral over the field, is20

W= 1 2 V   E 2 dV .                                          ( 109 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGxbGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaa ikdaaaWaaybCaeqajuaipaqaa8qacaWGwbaajuaGpaqaa8qacaGGGc aapaqaa8qacqGHRiI8aaGaamyraSWdamaaCaaajuaibeqaaKqzadWd biaaikdaaaqcfaOaamizaiaadAfacaGGGcGaaiOlaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOamaa bmaapaqaa8qacaaIXaGaaGimaiaaiMdaaiaawIcacaGLPaaaaaa@7ADB@

This corresponds to Maxwell's idea that the system energy must be stored somewhere in space. The expression (109) includes self-energy terms and in the case of point charges they make infinite contributions to the integral. In a relativistically covariant formulation the conservation of energy and the conservation of momentum are not independent principles. In particular, the local form of energy-momentum conservation can be written in a covariant form, using the energy- momentum tensor,

  T μν x μ =0 .                                             ( 110 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcqcfa4aaSaaa8aabaWdbiabgkGi2kaadsfapaWaaWbaaKqb GeqabaWdbiabeY7aTjabe27aUbaaaKqba+aabaWdbiabgkGi2kaadI hapaWaaWbaaeqajuaibaWdbiabeY7aTbaaaaqcfaOaeyypa0JaaGim aiaacckacaGGUaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWaaeWaa8aa baWdbiaaigdacaaIXaGaaGimaaGaayjkaiaawMcaaaaa@7E99@

For an electromagnetic field, it is well-known that (110) can be strictly satisfied only for a free field (when a charge is not taken into account), whereas, for the total field of a charge this is not true, since (110) is not satisfied mathematically (four-dimensional analogy of Gauss's theorem). As everyone knows in classical electrodynamics, this fact gives rise to the "electromagnetic mass" concept, which violates the exact relativistic mass-energy relationship ( E=m c 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeGaamyraiabg2da9iaad2gacaWGJbWdamaa Caaabeqcfasaa8qacaaIYaaaaaqcfaOaayjkaiaawMcaaaaa@3DB0@ . Let us examine this problem in a less formal manner. The equivalent three-dimensional form of (110) is the formula (3). The amount of electrostatic self-energy of an unmoving charge in a given volume v is proportional to E 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbWaaWbaaKqbGeqabaGaaGOmaaaaaaa@387A@ (see (109)). According to (110), in a new inertial frame, energy density w as well as electric field E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHfbaaaa@3772@  must be, generally speaking, an explicit time-dependent function ( w/t0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiabgkGi2kaadEhacaGGVaGaeyOaIyRaamiDaiabgcMi 5kaaicdaaaa@3EE2@ and E/t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHciITcaWHfbGaai4laiabgkGi2kaadshacqGHGjsUcaaI Waaaaa@3E6B@  ). On the other hand, the electric field strength of an unmoving charge keeps its implicit time behaviour under Lorentz's transformation (E/t=0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGca GGOaaeaaaaaaaaa8qacqGHciITcaWHfbGaai4laiabgkGi2kaadsha cqGH9aqpcaaIWaWdaiaacMcaaaa@3F5A@ . It contradicts the commonly accepted view that electrostatic self-energy is stored locally in space. In the framework of Helmholtzian approach these ambiguities can be cleared up. Actually, looking back at the general solution (27) with explicitly exposed longitudinal and transverse components, the term E 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaahweapaWaaSbaaKqbGeaapeGaaGimaaqcfa4daeqa aaaa@3980@  is responsible for bipartite interaction between charges. No local energy conservation law in the form (110) or (3) is adequate for implicit time-dependent field E 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaahweapaWaaSbaaKqbGeaapeGaaGimaaqcfa4daeqa aaaa@3980@ . We suggest that the original mathematical form (108) should be used. Nevertheless, the local form (110) or (3) is perfectly adequate for explicitly time-dependent free field E * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaahweapaWaaWbaaKqbGeqabaWdbiaacQcaaaaaaa@38D8@ . Clear separation on implicit and explicit time dependencies in Helmholtz-type electrodynamics leads to the correspondent separation in the total electric field energy expression,

W= 1 2 i=1 N j1 q i q j | r i r j | + 1 2 V   E 2 dV .                               ( 112 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaadEfacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaa peGaaGOmaaaadaGfWbqabKqbG8aabaWdbiaadMgacqGH9aqpcaaIXa aapaqaa8qacaWGobaajuaGpaqaa8qacqGHris5aaWaaybuaeqajuai paqaa8qacaWGQbGaeyiyIKRaaGymaaqcfayab8aabaWdbiabggHiLd aadaWcaaWdaeaapeGaamyCa8aadaWgaaqcfasaa8qacaWGPbaajuaG paqabaWdbiaadghapaWaaSbaaKqbGeaapeGaamOAaaqcfa4daeqaaa qaa8qadaabdaWdaeaapeGaaCOCa8aadaWgaaqcfasaa8qacaWGPbaa juaGpaqabaWdbiabgkHiTiaahkhapaWaaSbaaKqbGeaapeGaamOAaa qcfa4daeqaaaWdbiaawEa7caGLiWoaaaGaey4kaSYaaSaaa8aabaWd biaaigdaa8aabaWdbiaaikdaaaWaaybCaeqajuaipaqaa8qacaWGwb aajuaGpaqaa8qacaGGGcaapaqaa8qacqGHRiI8aaGaamyra8aadaah aaqabKqbGeaapeGaaGOmaaaajuaGcaWGKbGaamOvaiaacckacaGGUa GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOamaabmaapa qaa8qacaaIXaGaaGymaiaaikdaaiaawIcacaGLPaaaaaa@8DAF@

This is a logical conclusion of our qualitative reasoning that will be mathematically verified below in Hamiltonian formulation. Let us discuss generalized field equations in total time derivatives (65)-(68) for arbitrary fields from the standpoint of the principle of least action. Applying explicitly separation of field components we have not done any modifications in the general four-vector representation of Maxwell equations (104), (105). We only noted that in this case the set of field equations can be split up for equations of implicit and explicit time-dependent potentials such as (20)-(23) or (97)-(100). A relativistic action for implicit time potential A 0μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGbbWdamaaBaaaleaapeGaaGimaiabeY7aTbWdaeqaaaaa@39A7@  can be written in the conventional form.2

S m + S mf = 1 2 ( a=1 N m a cd s a a=1 N q a c μ=0 3 A 0( ma ) d x a μ ).                  ( 112 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaadofapaWaaSbaaKqbGeaapeGaamyBaaqcfa4daeqa a8qacqGHRaWkcaWGtbWdamaaBaaajuaibaWdbiaad2gacaWGMbaaju aGpaqabaWdbiabg2da9maawahabeqcfaYdaeaapeGaaGymaaWdaeaa peGaaGOmaaqcfa4daeaapeGaey4kIipaamaabmaapaqaa8qacqGHsi sldaGfWbqabKqbG8aabaWdbiaadggacqGH9aqpcaaIXaaapaqaa8qa caWGobaajuaGpaqaa8qacqGHris5aaGaamyBa8aadaWgaaqcfasaa8 qacaWGHbaajuaGpaqabaWdbiaadogacaWGKbGaam4Ca8aadaWgaaqc fasaa8qacaWGHbaajuaGpaqabaWdbiabgkHiTmaawahabeqcfaYdae aapeGaamyyaiabg2da9iaaigdaa8aabaWdbiaad6eaaKqba+aabaWd biabggHiLdaadaWcaaWdaeaapeGaamyCa8aadaWgaaqcfasaa8qaca WGHbaajuaGpaqabaaabaWdbiaadogaaaWaaybCaeqajuaipaqaa8qa cqaH8oqBcqGH9aqpcaaIWaaajuaGpaqaa8qacaaIZaaapaqaa8qacq GHris5aaGaamyqa8aadaWgaaqaaKqbG8qacaaIWaqcfa4aaeWaa8aa baWdbiaad2gacaWGHbaacaGLOaGaayzkaaaapaqabaWdbiaadsgaca WG4bWdamaaDaaajuaibaWdbiaadggaa8aabaWdbiabeY7aTbaaaKqb akaawIcacaGLPaaacaGGUaGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaig dacaaIXaGaaGOmaaGaayjkaiaawMcaaaaa@8D95@

This expression is sufficient to derive the first couple of equations (20), (21) (or (97), (98)) from the least action principle. It can be directly verified by rewriting the second term in (112) as

S mf = 1 c μ A 0μ j μ dV                                               ( 113 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaadofapaWaaSbaaKqbGeaapeGaamyBaiaadAgaaKqb a+aabeaapeGaeyypa0JaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aaba WdbiaadogaaaWdamaavacabeqabeaacaaMb8oabaWdbiabgUIiYdaa daGfqbqabKqbG8aabaWdbiabeY7aTbqcfayab8aabaWdbiabggHiLd aacaWGbbWdamaaBaaajuaibaWdbiaaicdacqaH8oqBaKqba+aabeaa peGaamOAa8aadaahaaqabKqbGeaapeGaeqiVd0gaaKqbakaadsgaca WGwbGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckadaqada WdaeaapeGaaGymaiaaigdacaaIZaaacaGLOaGaayzkaaaaaa@8A44@

And using Dirac's expression for four-current,

j μ ( r, t )= a [ q a 4π Δ( a | r r a | ) ] U μa  ,                                  ( 114 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaadQgapaWaaSbaaKqbGeaapeGaeqiVd0gapaqabaqc fa4dbmaabmaapaqaa8qacaWHYbGaaiilaiaacckacaWG0baacaGLOa GaayzkaaGaeyypa0ZaaybuaeqajuaipaqaaKqzadWdbiaadggaaKqb agqapaqaa8qacqGHris5aaWaamWaa8aabaWdbiabgkHiTmaalaaapa qaa8qacaWGXbWdamaaBaaajuaibaWdbiaadggaaKqba+aabeaaaeaa peGaaGinaiabec8aWbaacqqHuoardaqadaWdaeaapeWaaSaaa8aaba Wdbiaadggaa8aabaWdbmaaemaapaqaa8qacaWHYbGaeyOeI0IaaCOC a8aadaWgaaqcfasaa8qacaWGHbaajuaGpaqabaaapeGaay5bSlaawI a7aaaaaiaawIcacaGLPaaaaiaawUfacaGLDbaacaWHvbWdamaaBaaa juaibaWdbiabeY7aTjaadggaaKqba+aabeaapeGaaiiOaiaacYcaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcWaaeWaa8aabaWdbiaaigdacaaIXaGaaGinaaGaayjkaiaa wMcaaaaa@8C57@

Where U μa MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHvbWdamaaBaaajuaibaWdbiabeY7aTjaadggaaKqba+aa beaaaaa@3B2A@  is the four-velocity of the charged particle a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGHbaaaa@378B@ , and r a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHYbWdamaaBaaajuaibaWdbiaadggaaKqba+aabeaaaaa@3991@  is the radius vector of the particle a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGHbaaaa@378B@ .

Let us consider the second pair of equations (22), (23) or (99), (100) defining explicitly time-dependent potentials ( φ * ,  A * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaacIcacqaHgpGApaWaaWbaaKqbGeqabaWdbiaacQca aaqcfaOaaiilaiaacckacaWHbbWdamaaCaaajuaibeqaa8qacaGGQa aaaKqbakaacMcaaaa@3FF7@ or A μ * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaahgeapaWaa0baaKqbGeaapeGaeqiVd0gapaqaa8qa caGGQaaaaaaa@3AA9@  in representation (104). It is easy to see that the conventional Hamiltonian form can be adopted to describe transverse components of electromagnetic field,2

  S f = 1 16π μ,ν F μν F μν dVdt ,                                      ( 115 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubqaaaaa aaaaWdbiaacckajuaGcaWGtbWdamaaBaaajuaibaWdbiaadAgaaKqb a+aabeaapeGaeyypa0JaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aaba WdbiaaigdacaaI2aGaeqiWdahaa8aadaqfGaqabeqabaGaaGzaVdqa a8qacqGHRiI8aaWaaybuaeqajuaipaqaa8qacqaH8oqBcaGGSaGaeq yVd4gajuaGbeWdaeaapeGaeyyeIuoaaiaadAeapaWaaSbaaKqbGeaa peGaeqiVd0MaeqyVd4gapaqabaqcfa4dbiaadAeapaWaaWbaaeqaju aibaWdbiabeY7aTjabe27aUbaajuaGcaWGKbGaamOvaiaadsgacaWG 0bGaaiiOaiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOam aabmaapaqaa8qacaaIXaGaaGymaiaaiwdaaiaawIcacaGLPaaaaaa@8B39@

Where

F μν = A ν * x μ A μ * x ν  .                                                  ( 116 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaadAeapaWaaSbaaKqbGeaapeGaeqiVd0MaeqyVd4ga juaGpaqabaWdbiabg2da9maalaaapaqaa8qacqGHciITcaWGbbWdam aaDaaajuaibaWdbiabe27aUbWdaeaapeGaaiOkaaaaaKqba+aabaWd biabgkGi2kaadIhapaWaaWbaaeqakeaajugWa8qacqaH8oqBaaaaaK qbakabgkHiTmaalaaapaqaa8qacqGHciITcaWGbbWcpaWaa0baaKqb GeaajugWa8qacqaH8oqBaKqbG8aabaqcLbmapeGaaiOkaaaaaKqba+ aabaWdbiabgkGi2kaadIhal8aadaahaaqcfasabeaajugWa8qacqaH 9oGBaaaaaKqbakaacckacaGGUaGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckadaqadaWdaeaapeGaaG ymaiaaigdacaaI2aaacaGLOaGaayzkaaaaaa@97EC@

Finally, it remains to be proved that the variational derivative,

δ  S f = μ ( 1 4π ν F μν x ν )δ A μ * dVdt                                ( 117 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiabes7aKjaacckacaWGtbWdamaaBaaajuaibaWdbiaa dAgaa8aabeaajuaGpeGaeyypa0JaeyOeI0Ydamaavacabeqabeaaca aMb8oabaWdbiabgUIiYdaadaGfqbqabKqbG8aabaWdbiabeY7aTbqc fayab8aabaWdbiabggHiLdaadaqadaWdaeaapeWaaSaaa8aabaWdbi aaigdaa8aabaWdbiaaisdacqaHapaCaaWaaybuaeqajuaipaqaa8qa cqaH9oGBaKqbagqapaqaa8qacqGHris5aaWaaSaaa8aabaWdbiabgk Gi2kaadAeapaWaaSbaaKqbGeaapeGaeqiVd0MaeqyVd4gajuaGpaqa baaabaWdbiabgkGi2kaadIhapaWaaWbaaeqajuaibaWdbiabe27aUb aaaaaajuaGcaGLOaGaayzkaaGaeqiTdqMaamyqa8aadaqhaaqcfasa a8qacqaH8oqBa8aabaWdbiaacQcaaaqcfaOaamizaiaadAfacaWGKb GaamiDaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcWaaeWaa8aabaWdbiaaigdacaaIXaGaaG4naaGaayjkaiaawMca aaaa@8EDE@

Can be used to obtain the covariant analogue of (22), (23) or (99), (100) in the following form:

   ν F μν x ν = ν x ν ( A   *ν x μ A   *μ x ν )=0 .                             ( 118 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaacckacaGGGcWaaybuaeqajuaipaqaa8qacqaH9oGB aKqbagqapaqaa8qacqGHris5aaWaaSaaa8aabaWdbiabgkGi2kaadA eapaWaaWbaaKqbGeqabaWdbiabeY7aTjabe27aUbaaaKqba+aabaWd biabgkGi2kaadIhapaWaaWbaaeqajuaibaWdbiabe27aUbaaaaqcfa Oaeyypa0Zaaybuaeqapaqaa8qacqaH9oGBaeqapaqaa8qacqGHris5 aaWaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaamiEa8aada ahaaqcfasabeaapeGaeqyVd4gaaaaajuaGdaqadaWdaeaapeWaaSaa a8aabaWdbiabgkGi2kaadgeapaWaa0baaeaapeGaaiiOaaqcfaYdae aapeGaaiOkaiabe27aUbaaaKqba+aabaWdbiabgkGi2kaadIhapaWa aSbaaKqbGeaapeGaeqiVd0gajuaGpaqabaaaa8qacqGHsisldaWcaa WdaeaapeGaeyOaIyRaamyqa8aadaqhaaqcfasaa8qacaGGGcaapaqa a8qacaGGQaGaeqiVd0gaaaqcfa4daeaapeGaeyOaIyRaamiEa8aada WgaaqcfasaaKqzadWdbiabe27aUbqcfa4daeqaaaaaa8qacaGLOaGa ayzkaaGaeyypa0JaaGimaiaacckacaGGUaGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckadaqadaWdaeaapeGaaGymaiaaigdacaaI4aaacaGLOa Gaayzkaaaaaa@9ACC@

The difference with the conventional interpretation consists in the way electromagnetic potentials A 0μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaadgeapaWaaSbaaKqbGeaapeGaaGimaiabeY7aTbqc fa4daeqaaaaa@3B2E@  and A μ * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaadgeapaWaa0baaKqbGeaapeGaeqiVd0gapaqaa8qa caGGQaaaaaaa@3AA5@  take part in this Hamiltonian formulation. In the light of the Helmholtzian approach, the electromagnetic energy-momentum tensor demands some corrections in the interpretation of its mathematical formulation,2

T μν = 1 4π ϱ F ϱ μ F νϱ + 1 16π g μν β,γ F βγ F βγ .                             ( 119 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaadsfapaWaaWbaaeqajuaibaWdbiabeY7aTjabe27a UbaajuaGcqGH9aqpcqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaape GaaGinaiabec8aWbaadaGfqbqabKqbG8aabaWefv3ySLgznfgDOfda ryqr1ngBPrginfgDObYtUvgaiuGajugWa8qacqWFXpq8aKqbagqapa qaa8qacqGHris5aaGaamOra8aadaqhaaqcfasaa8qacqWFXpq8a8aa baWdbiabeY7aTbaajuaGcaWGgbWdamaaCaaajuaibeqaa8qacqaH9o GBcqWFXpq8aaqcfaOaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWd biaaigdacaaI2aGaeqiWdahaaerbbjxAHXgaiyaacaGFNbWdamaaCa aabeqcfasaaKqzadWdbiabeY7aTjabe27aUbaajuaGdaGfqbqabKqb G8aabaWdbiabek7aIjaacYcacqaHZoWzaKqbagqapaqaa8qacqGHri s5aaGaamOra8aadaWgaaqcfasaa8qacqaHYoGycqaHZoWzaKqba+aa beaapeGaamOra8aadaahaaqcfasabeaapeGaeqOSdiMaeq4SdCgaaK qbakaac6cacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOamaabmaapaqaa8 qacaaIXaGaaGymaiaaiMdaaiaawIcacaGLPaaaaaa@A264@

As a consequence of the definition (116), it can describe the energy-momentum conservation law for, exclusively, free electromagnetic field as follows.

ν T μν x ν  =0 .                                                      (120) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbmaawafabeqcfaYdaeaapeGaeqyVd4gajuaGbeWdaeaa peGaeyyeIuoaamaalaaapaqaa8qacqGHciITcaWGubWdamaaCaaabe qcfasaa8qacqaH8oqBcqaH9oGBaaaajuaGpaqaa8qacqGHciITcaWG 4bWdamaaCaaabeqcfasaa8qacqaH9oGBaaaaaKqbakaacckacqGH9a qpcaaIWaGaaiiOaiaac6cacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGOaGaaGymaiaaikdacaaIWaGaaiykaaaa@8D9E@

Consequently, contrary to the traditional interpretation, the quantity F μν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaadAeapaWaaWbaaeqajuaibaWdbiabeY7aTjabe27a Ubaaaaa@3B95@  can be defined as a transverse electromagnetic field tensor because it contains only transverse field components but not total as in the conventional approach. There is no more violation of (120) even if the charge is taken into account, contrary to the situation in the conventional theory (see above discussion of equation (110)).

Strictly speaking, the total field energy W should be split up into two parts:

  1. Energy W mf MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaadEfapaWaaSbaaKqbGeaapeGaamyBaiaadAgaaKqb a+aabeaaaaa@3AB1@  of longitudinal implicit time-dependent fields responsible for electro- and loc magneto-static interaction between charges (non-local term) and
  2. Energy W f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaadEfapaWaaSbaaKqbGeaajugWa8qacaWGMbaajuaG paqabaaaaa@3AED@  of transverse explicitly time-dependent electromagnetic field (local term),

W= W mf + W f  .                                                       ( 121 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaadEfacqGH9aqpcaWGxbWdamaaBaaajuaibaWdbiaa d2gacaWGMbaajuaGpaqabaWdbiabgUcaRiaadEfapaWaaSbaaKqbGe aapeGaamOzaaqcfa4daeqaa8qacaGGGcGaaiOlaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckadaqadaWdaeaapeGaaGymaiaaik dacaaIXaaacaGLOaGaayzkaaaaaa@84D3@

Following these results we suggest that the concept of potential (non-local) energy and potential forces must be re-established in classical electrodynamics. So, the system of charges and currents in absence of free electromagnetic field W f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaadEfapaWaaSbaaKqbGeaajugWa8qacaWGMbaajuaG paqabaaaaa@3AED@  must be considered as a conservative system without any idealization. Introduction of interaction energy W mf MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaadEfapaWaaSbaaKqbGeaapeGaamyBaiaadAgaaKqb a+aabeaaaaa@3AB1@ in the form (112) equivalent to (108) definitely eliminates the problem of infinities of self-energy terms.

The physical meaning of the Pointing vector has been changed notably. So far the conventional theory dealt with it as a quantity describing dynamic properties of the total electromagnetic field. Now it is adequate only for conservation law in the form of equation (120) and, therefore, makes sense only for transverse components of electromagnetic field. Longtime well-known ambiguities related to the definition of the field energy location in space; do not take place in Helmholtz-type electrodynamics. In particular, there should be no flux of electromagnetic energy for stationary currents. Contrary, the conventional approach predicts senseless flux of energy coming from infinity towards the current.23

At the end of this Section we would like to present a valuable mechanical analogy of Maxwell's equations in the form of (20)-(23) or (97)-(100). It helps to understand why general solutions must be split up into (orthogonal) potentials (22), (23) (or (81)) with explicit and implicit time-dependence, respectively. The set of differential equations for elastic waves in an isotropic media24 can be considered as mechanical analogy of Maxwell's equations to endorse Helmholtzian foundations of classical electrodynamics

  2 u l t 2 c l 2 Δ u l =0 ,                                                   ( 122 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubqaaaaa aaaaWdbiaacckajuaGdaWcaaWdaeaapeGaeyOaIy7damaaCaaajuai beqaa8qacaaIYaaaaKqbakaahwhapaWaaSbaaKazfa4=baqcLbmape GaamiBaaqcfa4daeqaaaqaa8qacqGHciITcaWG0bWdamaaCaaajuai beqaa8qacaaIYaaaaaaajuaGcqGHsislcaWGJbWdamaaDaaajuaiba WdbiaadYgaa8aabaWdbiaaikdaaaqcfaOaeuiLdqKaaCyDa8aadaWg aaqcfasaa8qacaWGSbaapaqabaqcfa4dbiabg2da9iaaicdacaGGGc GaaiilaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOamaabmaapaqaa8qacaaIXaGaaGOmaiaa ikdaaiaawIcacaGLPaaaaaa@901B@

2 u t t 2 c t 2 Δ u t =0 ,                                                  ( 123 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbmaalaaapaqaa8qacqGHciITpaWaaWbaaeqajuaibaWd biaaikdaaaqcfaOaaCyDa8aadaWgaaqcfasaa8qacaWG0baapaqaba aajuaGbaWdbiabgkGi2kaadshapaWaaWbaaKqbGeqabaWdbiaaikda aaaaaKqbakabgkHiTiaadogal8aadaqhaaqcfasaaKqzadWdbiaads haaKqbG8aabaqcLbmapeGaaGOmaaaajuaGcqqHuoarcaWH1bWdamaa BaaajuaibaWdbiaadshaa8aabeaajuaGpeGaeyypa0JaaGimaiaacc kacaGGSaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckadaqadaWdaeaapeGaaGymaiaaikdacaaIZaaa caGLOaGaayzkaaaaaa@8D90@

Here c l   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaadogapaWaa0baaKqbGeaapeGaamiBaaqcfa4daeaa peGaaiiOaaaaaaa@3B06@  and c t   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaadogapaWaa0baaKqbGeaapeGaamiDaaWdaeaapeGa aiiOaaaaaaa@3A7F@  are spreading velocities of longitudinal and transverse waves, respectively.

The general solution of (113), (114) is the sum of two independent and orthogonal terms corresponding to longitudinal u l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaahwhapaWaaSbaaKqbGeaapeGaamiBaaWdaeqaaaaa @3959@  and transversal u t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWH1bWdamaaBaaajuaibaWdbiaadshaa8aabeaaaaa@3918@  waves,

  u   =  u l + u t  .                                                        ( 124 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubqaaaaa aaaaWdbiaacckajuaGcaWH1bWdamaaBaaabaWdbiaacckaa8aabeaa peGaeyypa0JaaiiOaiaahwhapaWaaSbaaKqbGeaapeGaamiBaaWdae qaaKqba+qacqGHRaWkcaWH1bWdamaaBaaajuaibaWdbiaadshaa8aa beaajuaGpeGaaiiOaiaac6cacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOamaabmaapaqaa8qacaaIXaGaaGOmaiaaisda aiaawIcacaGLPaaaaaa@894D@

If the longitudinal spreading velocity approaches formally to infinity ( c l   ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaacIcacaWGJbWdamaaDaaajuaibaWdbiaadYgaa8aa baWdbiaacckaaaqcfaOaeyOKH4QaeyOhIuQaaiykaaaa@3FBD@  then (122) transforms into Laplace's equation whereas the general solution turns out to have implicit time dependence. Solution (124) takes the form of separated potential solution (22), (23) (or (81)). Longitudinal component does not vanish in this limit from mathematical consideration, though the time behavior undergoes a fundamental transformation. Thus, longitudinal waves have to be considered as full-value solution of the total system of differential equations (122), (123). It allows understanding why Hertz had no right to eliminate longitudinal components from mathematical solutions of Helmholtz's theory in Maxwellian limit (see Hertz's own words:25 "...Helmholtz distinguishes between two forms of electrical force the electromagnetic and the electrostatic to which, until the contrary is proved by experience, two different velocities are attributed. An interpretation of the experiments from this point of view could certainly not be incorrect, but it might perhaps be unnecessarily complicated. In a special limiting case Helmholtz's theory becomes considerably simplified, and its equations in this case become the same as those of Maxwell's theory; only one form of the force remains, and this is propagated with the velocity of light. I had to try whether the experiments would not agree with these much simpler assumptions of Maxwell's theory. The attempt was successful. The result of the calculation is given in the paper on ' The Forces of Electric Oscillations, treated according to Maxwell's Theory'..".25

To end this Section we conclude that the idea of non-local interactions is enclosed into the framework of Helmholtzian electromagnetic theory as unambiguous mathematical feature. On the other hand, some of the quantum mechanical effects like Aharonov-Bohm effect, violation of the Bell's inequalities etc. point out indirectly on the possibility of non-local interactions in electromagnetism. During the last century modern physics had faced fundamental difficulties in unifying relativistic classical physics elaborated mainly in the framework of the locality concept of relativistic theory and quantum physics characterized essentially by the emergence of non-locality. Regretfully, nowadays there is no rigorous mutual correspondence between these two fundamental areas of physical science. Helmholtz-type approach offers an altogether more promising solution.

Instead of conclusion

Almost all the above arguments we have taken verbatim from the previous work6 of one of the authors of the present article. Did we resolve the problem of the intra-dipole radiation? No, we did not, may be... But as one can see, the problem of propagation of electromagnetic interactions cannot be considered as fully resolved by conventional classical electrodynamics. And we can see from previous sections that taking into account the double dependence (implicit and explicit) electrodynamics functions on time cannot help us to resolve the specific particular problem of the intra-dipole radiation…

However, the problem of the intra-dipole radiation could be resolved if we declare that only electric dipole must radiate electromagnetic waves rather than an electric charge. Indeed, how to theoretical physics got the idea that the accelerated charge must radiate? The vast majority of textbooks and monographs on classical electrodynamics are beginning to consider the process of emission of electromagnetic waves, starting with the study of the behavior of the electric dipole. Then, obtaining the formula for the total radiation of the dipole, they ignore the fixed dipole charge, usually located at the origin, and apply the mentioned formula to the moving second charge of the dipole. As an example, consider the textbook of Landau:2 Unlike other books in2 more accurately states that the charges can radiate only if they move with acceleration rather than must! Landau finds for the total radiation of the dipole

I= 2 3 c 3 d ¨ 2 .                                                      ( 125 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaadMeacqGH9aqpdaWcaaWdaeaapeGaaGOmaaWdaeaa peGaaG4maiaadogapaWaaWbaaKqbGeqabaWdbiaaiodaaaaaaKqbak qahsgapaGbamaadaahaaqabKqbGeaapeGaaGOmaaaajuaGcaGGUaGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcWaaeWaa8aabaWdbiaaig dacaaIYaGaaGynaaGaayjkaiaawMcaaaaa@8202@

Then he writes:2 “If we have just one charge moving in the external field, then d=er MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubieWaju aGqaaaaaaaaaWdbiaa=rgacqGH9aqpcaWGLbGaaCOCaaaa@3AC9@  and d ¨ =ew MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubieWaju aGqaaaaaaaaaWdbiqa=rgapaGbamaapeGaeyypa0Jaamyzaiaa=Dha aaa@3AEF@ , where W is the acceleration of the charge. Thus(Landau writes)the total radiation of the moving charge is

I= 2 e 2 w 2 3 c 3 ."                                                    ( 126 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaadMeacqGH9aqpdaWcaaWdaeaapeGaaGOmaiaadwga l8aadaahaaqcfasabeaajugWa8qacaaIYaaaaKqbakaadEhal8aada ahaaqcfayabKqbGeaajugWa8qacaaIYaaaaaqcfa4daeaapeGaaG4m aiaadogapaWaaWbaaKqbGeqabaWdbiaaiodaaaaaaKqbakaac6caca GGIaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOamaabmaapaqaa8qacaaIXaGaaGOm aiaaiAdaaiaawIcacaGLPaaaaaa@8609@

It is here that is hidden the deep logical error! The point is that w= r ¨ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubieWaju aGqaaaaaaaaaWdbiaa=DhacqGH9aqpceWHYbWdayaadaaaaa@3A0B@  in the beginning is the acceleration of the change of the vector r of the intra-dipole distance rather than an acceleration of the moving charge. Of course, if one of the dipole charges is at rest in this case w is the acceleration of the moving charge. But Landau2 uses the following definition of the dipole moment of the system of charges

d= e a r a ,                                                  ( 127 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaahsgacqGH9aqppaWaaubiaeqabeqaaiaaygW7aeaa peGaeyyeIuoaaiaadwgapaWaaSbaaKqbGeaapeGaamyyaaqcfa4dae qaa8qacaWHYbWdamaaBaaajuaibaWdbiaadggaaKqba+aabeaapeGa aiilaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcWaaeWaa8aabaWdbiaaigdacaaIYaGaaG4naaGaay jkaiaawMcaaaaa@7FEA@

Where the origin is anywhere within the system of charges (it means that also in a point where is no any charge), and the radius vectors of the various charges are r a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHYbWdamaaBaaajuaibaWdbiaadggaaKqba+aabeaaaaa@3991@ . Then Landau defines the dipole moment of two charges (positive and negative)

 d=e R + ,                                                                 ( 128 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaacckacaWHKbGaeyypa0JaamyzaiaahkfapaWaaSba aeaajuaipeGaey4kaSIaeyOeI0scfaOaaiiOaiaacYcacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcaapaqabaWdbiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOamaabm aapaqaa8qacaaIXaGaaGOmaiaaiIdaaiaawIcacaGLPaaaaaa@8D68@

Where R + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaahkfadaWgaaqcfasaaiabgUcaRiabgkHiTaqabaaa aa@39E6@  is the radius vector from the center of negative to the center of positive charge. Let us now return to the logical error mentioned above. Obtaining Equation (125) Landau2 evaluates the amount of energy radiated by the system of charges in unit time into the element of solid angle do.

dI= 1 4π c 3 ( d ¨ ×n ) 2 dο= d ¨ 2 4π c 3 sin 2 θ dο.                            ( 129 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaadsgacaWGjbGaeyypa0ZaaSaaa8aabaWdbiaaigda a8aabaWdbiaaisdacqaHapaCcaWGJbWdamaaCaaabeqcfasaa8qaca aIZaaaaaaajuaGdaqadaWdaeaaieWapeGab8hza8aagaWaa8qacqGH xdaTcaWHUbaacaGLOaGaayzkaaWdamaaCaaajuaibeqaa8qacaaIYa aaaKqbakaadsgacqaH=oWBcqGH9aqpdaWcaaWdaeaapeGabCiza8aa gaWaamaaCaaabeqcfasaa8qacaaIYaaaaaqcfa4daeaapeGaaGinai abec8aWjaadogapaWaaWbaaeqajuaibaWdbiaaiodaaaaaaKqbakaa bohacaqGPbGaaeOBa8aadaahaaqcfasabeaapeGaaGOmaaaajuaGcq aH4oqCcaGGGcGaamizaiabe+7aVjaac6cacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcWaaeWaa8aabaWdbiaaigdacaaIYaGaaGyoaaGaayjkaiaawMca aaaa@81AC@

The point is that the intensity of radiation Equation (129) is obtained for the complex of charges (for the dipole R + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaubjuaGqa aaaaaaaaWdbiaahkfadaWgaaqcfasaaiabgUcaRiabgkHiTaqabaaa aa@39E6@  in our case) rather than for a unit charge! However, the question arises: why, then, it is generally assumed that just an accelerated charge radiates electromagnetic energy (electromagnetic waves), rather than the dipole considered as an aggregate? In connection with the above, we believe that an electric dipole is the most fundamental concept of electromagnetism with respect to electromagnetic radiation than a single electric charge. It should be assumed also that not all of the time-varying dipoles emit, but only those in which the modulus of the dipole moment varies with time with acceleration that is clear from Equation (125). It could mean, for example, that the widespread belief that the classical hydrogen atom in which the electron moves in a circular orbit with a constant radius must radiate is wrong!

However the problem of the double dependence (implicit and explicit) electrodynamics functions on time remains open and requires further research. The logical analysis of Maxwell-Lorentz equations for one charge system shows ambiguous conventional treatment of implicit and explicit time dependencies. It was found that all conventional approach is beset with the same ambiguities leading to many mathematical inconsistencies and paradoxes.

We suggested that it is possible to solve those difficulties by clear distinguishing between functions with implicit and explicit time dependencies. This consideration provided self-consistency for mathematical description of electromagnetic theory. Maxwell's equations resulted to be written in full time derivatives that consistently covers conventional approach. We showed that the covering theory possesses all necessary relativistic invariance properties for inertial frames of references. Usual Lorentz's gauge condition is covered by generalized gauge condition. It promises to keep generalized Maxwell's equations invariant also in non-inertial frames but this issue will be studied elsewhere.

Consistent mathematical interpretation of generalized field equations gives a solid ground for Helmholtzian foundations of classical electrodynamics25,26based on the superposition of implicit time-dependent longitudinal and explicit time-dependent transverse components. This approach demonstrates advantages over the conventional field description in eliminating the large number of internal inconsistencies from classical electrodynamics and promises more adequate solution to fundamental problems of modern physics. Recent experimental data21,22 highlighted certain limitations of the conventional approach. Graneau's monograph on modern Newtonian electrodynamics27 reviewed numerous research data in exploding wires, railguns, different electromagnetic accelerators, jet propulsion in liquid metals, arc plasma explosions, capillary fusion etc. as unambiguous indication on the existence of non-local longitudinal forces. Thus, a new area of electromagnetic research emerges that is interested in the study of longitudinal components by experimental as well as by theoretical means.

We would like to hope that our article will attract researchers' interest to the unresolved problems of classical electrodynamics, which, remaining unresolved, directly migrated to quantummechanics and electrodynamics!

As a final conclusion of this paper, we would like to quote Duhem's significant words:28 " ... An excessive admiration for Maxwell's work has led many physicists to the view that it does not matter whether a theory is logic al or absurd, all it is required to do is suggest experiments: A day will come, I am certain, when it will be recognized: that above all the objects of a theory is to bring classification and order into the chaos of facts shown by experience. Then it will be acknowledged that Helmholtz's electrodynamics is a fine work and that I did well to adhere to it. Logic can be patient, for it is eternal".

Acknowledgments

None.

Conflicts of interest

Authors declare that there are no conflicts of interests.

References

  1. Arnoldus YF, Berg MJ. Energy transport in the near field of an electric dipole near a layer of material. Journal of Modern Optics. 2014;62(3).
  2. Landau LD, Lifshitz EM. Classical Theory of Field 3rd edn. Oxford: Pergamon press, UK, 1985. p. 1–387.
  3. Chubykalo A, Espinoza A, Tzonchev R. Experimental test of the compatibility of the definitions of the electromagnetic energy density and the Poynting vector. The European Physical Journal D. 2004;31:113–120.
  4. Dirac PAM. Directions in Physics. John Wiley & Sons, New York, USA. 1978.
  5. Woodruff AE. The Contribution of Hermann von Helmholtz to Electrodynamics. ISIS. 1968;59(3).
  6. Chubykalo A, Smirnov-Rueda R. Modern Helmholtzian Electrodynamics as a Covering Classical Electromagnetic. Theory Electromagnetic Phenomena. 2001;2:1–28.
  7. Tikhonov AN, Samarski AN. Equations of Mathematical Physics 2nd edn. Oxford, Pergamon Press, UK. 1963.
  8. Villecco RA. Instantaneous action-at-a-distance representation of field theories. Physical Review E. 1993;48(5):4008–4026.
  9. Hylleraas EA. Mathematical and Theoretical Physics Volume 2. 1st edn. Wiley-Interscience, New York, USA. 1970.
  10. Hertz H. Wied Annalen. 1890;41:369.
  11. Hertz H. Ges Werke. 1894;2:256.
  12. Jackson LD. Classical Electrodynamics. John Wiley & Sons, New York, USA. 1963. p. 1–656.
  13. Phipps TE Jr. Heretical Verities: Mathematical Themes in Physical Description 1st edn. Classical Non-fiction, Urbana, USA. 1986.
  14. Phipps T E Jr. On Hertz's Invariant Form of Maxwell's Equations. Physics Essays. 1993;6(2):1–15.
  15. Chubykalo A, Smirnov-Rueda R. Convection Displacement Current and Generalized Form of Maxwell-Lorentz Equations. Modern Physics Letters A. 1997;12(1).
  16. Leus V. Proceedings of the 2nd Siberian Conference on mathematical problems of physics. Institute of Mathematics (Novosibirsk: Russian Academy of Sciences), Russia, 1991. p. 134–148.
  17. Barut AO. Electrodynamics and Classical Theory of Fields and Particles. Dover Publications. Inc, USA.
  18. Chubykalo A, Smirnov-Rueda R. Action at a Distance as a Full-value Solution of Maxwell equations: The basis and Application of the Separated-Potentials Method. Physical Review E. 1996;53(5):5373–5381.
  19. Maxwell JC. On Physical Lines of Force. Scientist Papers. 1864.
  20. Maxwell JC. Treatise on Electricity and Magnetism. Oxford Univ. Press, London. 1892.
  21. Wesley JP. The Marinov Motor, Notional Induction without a Magnetic B Field. Apeiron. 1998. p.1–7.
  22. Phipps TE Jr. Observations of the Marinov Motor. Apeiron. 1998. p. 1–16.
  23. Feynman RP. Lectures on Physics: Mainly Electromagnetism and Matter. Addison-Wesley, New York, USA. 1964.
  24. Landau LD, Lifshitz EM. Theory of Elasticity. Oxford: Pergamon press, UK. 1970.
  25. Hertz H. Electric Waves. Dover Publications. Inc, USA. 1962.
  26. Helmholtz H. Wissenschaftliche Abhandlungen. Barth, Germany. 1882.
  27. Graneau P, Graneau N. Newtonian Electrodynamics. World Scientic Publish. Inc, Singapore. 1996.
  28. Duhem P. Les Theories Electriques. In: de J Clerk Maxwell editor. (Paris). 1905.
Creative Commons Attribution License

©2017 Chubykalo, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.