Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Mini Review Volume 3 Issue 4

Basis-set extrapolation-a way to achieve the best possible

Mohit K Sharma

Amity Centre for Astronomy & Astrophysics, Amity Institute of Applied sciences, Amity University, India

Correspondence: Mohit K Sharma, Amity Centre for Astronomy & Astrophysics, Amity Institute of Applied sciences, Amity University Sector-125, Noida -201313 (U.P.), India

Received: July 30, 2018 | Published: June 28, 2019

Citation: Sharma MK. Basis-set extrapolation-a way to achieve the best possible. Phys Astron Int J. 2019;3(3):132-135. DOI: 10.15406/paij.2019.03.00171

Download PDF

Abstract

For dealing with the MOLPRO, for example, the quality of results improves when one uses better basis-set, besides the use of the best available method. The best available basis-set is the aug-cc-pVnZ, where n denotes the number of zeta used. With the increase of the value of n, the requirement of memory-size and the computer-time becomes beyond the affordable limit. A possible solution for the requirement of memory-size and computer-time may be the extrapolation of basis-set, where two exponents α and β are used. These α and β are the indices for the power laws for reference energy (HF) and the energy of correlations (COR), respectively, are used. In the calculations, for a given system, the exponents are taken as constant. We find that the α and β are not constant, but vary from position to position in a system. Taking the case of calculation of potential energy surfaces, we have discussed the way for dealing with such situation. We have discussed the method for calculation of the values of α and β for various points in the system.

Keywords: ISM: molecules, potential energy surface, basis sets

Introduction

For reliable results in the scattering phenomenon, accurate interaction potential is required.17 The interaction potential may be calculated with the help of MOLPRO (Werner et al., 2012), for example, where one has to use the best available method and the best available basis-set. The best method available is the couple dcluster with Single and Double, and perturvative Triple excitations CCSD(T).8 The best basis-set available may be the aug-cc-pVnZ, where n denotes the number of zeta used and it stands for one of the D (Double-zeta), T (Triple-zeta), Q (Quadruple-zeta), 5 (Quintuple-zeta), etc. The prefix ’aug’ denotes the augmented version of the basis set. With the increase of n, the accuracy increases, and one would like to have n=∞. But, the requirement of memory size and computer-time increases extremely fast with the increase of n, which is not affordable, beyond n=6 (say). Truhlar9 proposed a nice concept for extrapolation of basis-set, where total energy is expressed as the sum of the reference energy (HF) and the energy of correlations.

E tot = E HF + E cor MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweadaahaa qabeaacaWG0bGaam4BaiaadshaaaGaeyypa0JaamyramaaCaaabeqc fauaaiaadIeacaWGgbaaaKqbakabgUcaRiaadweadaahaaqabeaaca WGJbGaam4Baiaadkhaaaaaaa@42B9@  (1)

Each of the components of the energy is assumed to approach its basis-set limit according to the power laws:

E n HF = E HF + A HF n α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaavadabeqaai aad6gaaeaacaWGibGaamOraaqaaiaadweaaaGaeyypa0Zaaubmaeqa baGaeyOhIukabaGaamisaiaadAeaaeaacaWGfbaaaiabgUcaRiaadg eadaahaaqabeaacaWGibGaamOraaaacaWGUbWaaWbaaeqabaGaeyOe I0IaeqySdegaaaaa@45AB@  (2)

And

E n cor = E cor + A cor n β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaavadabeqaai aad6gaaeaacaWGJbGaam4BaiaadkhaaeaacaWGfbaaaiabg2da9maa vadabeqaaiabg6HiLcqaaiaadogacaWGVbGaamOCaaqaaiaadweaaa Gaey4kaSIaamyqamaaCaaabeqaaiaadogacaWGVbGaamOCaaaacaWG UbWaaWbaaeqabaGaeyOeI0IaeqOSdigaaaaa@495E@  (3)

where the exponents α and β are the indices for the power law for HF and COR respectively and they are real and positive numbers. The energy with the suffix ∞ denotes the limiting value, corresponding to n=∞. The A HF MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaaaape Gaamyqa8aadaahaaqabeaapeGaamisaiaadAeaaaaaaa@389F@ and A cor MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaaaape Gaamyqa8aadaahaaqabeaapeGaam4yaiaad+gacaWGYbaaaaaa@39DA@ are some parameters for the interacting system. The n has the values 2, 3 or 4 when the basis-set used are the aug-cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ, respectively. Let use consider n=2 and n=3 and have

E 2 HF = E HF + A HF 2 α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaavadabeqaai aaikdaaeaacaWGibGaamOraaqaaiaadweaaaGaeyypa0Zaaubmaeqa baGaeyOhIukabaGaamisaiaadAeaaeaacaWGfbaaaiabgUcaRiaadg eadaahaaqabeaacaWGibGaamOraaaacaaIYaWaaWbaaeqabaWaaWba aeqabaGaeyOeI0IaeqySdegaaaaaaaa@455F@  (4)

And

E 3 HF = E HF + A HF 3 α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaavadabeqaai aaiodaaeaacaWGibGaamOraaqaaiaadweaaaGaeyypa0Zaaubmaeqa baGaeyOhIukabaGaamisaiaadAeaaeaacaWGfbaaaiabgUcaRiaadg eadaahaaqabeaacaWGibGaamOraaaacaaIZaWaaWbaaeqabaWaaWba aeqabaGaeyOeI0IaeqySdegaaaaaaaa@4561@  (5)

Equations (4) and (5) can be rearranged as (Truhlar, 1998) as

E HF = 3α 3α 2 α E 3 HF 2α 3α 2 α E 2 HF MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaavadabeqaai abg6HiLcqaaiaadIeacaWGgbaabaGaamyraaaacqGH9aqpdaWcaaqa aiaaiodacqaHXoqyaeaacaaIZaGaeqySdeMaeyOeI0IaaGOmamaaCa aabeqaaiabeg7aHbaaaaWaaubmaeqabaGaaG4maaqaaiaadIeacaWG gbaabaGaamyraaaacqGHsisldaWcaaqaaiaaikdacqaHXoqyaeaaca aIZaGaeqySdeMaeyOeI0IaaGOmamaaCaaabeqaaiabeg7aHbaaaaWa aubmaeqabaGaaGOmaaqaaiaadIeacaWGgbaabaGaamyraaaaaaa@532D@  (6)

Similarly, for the energy of correlations, one can get (Truhlar, 1998)

E cor = 3α 3α 2 α E 3 cor 2α 3α 2 α E 2 cor MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaavadabeqaai abg6HiLcqaaiaadogacaWGVbGaamOCaaqaaiaadweaaaGaeyypa0Za aSaaaeaacaaIZaGaeqySdegabaGaaG4maiabeg7aHjabgkHiTiaaik dadaahaaqabeaacqaHXoqyaaaaamaavadabeqaaiaaiodaaeaacaWG JbGaam4BaiaadkhaaeaacaWGfbaaaiabgkHiTmaalaaabaGaaGOmai abeg7aHbqaaiaaiodacqaHXoqycqGHsislcaaIYaWaaWbaaeqabaGa eqySdegaaaaadaqfWaqabeaacaaIYaaabaGaam4yaiaad+gacaWGYb aabaGaamyraaaaaaa@56DE@  (7)

Equations (6) and (7) show that by using the energies corresponding to n=2 and n=3, one can calculate the energies corresponding to n=∞, which one would like to have. This method of extrapolation is a nice idea and has been used for the calculation of potential energy surfaces (PES).10 In the calculations, the values of α and β are taken constant for all positions in the system.9,10 In the present investigation, we find that the α and β are not constant, but they vary from position to position in the system. The effect of the variations of α and β is discussed. In section 2, we have presented the method for calculation of α and β. The effect of the variation of α and β is presented in section 3. Summary of the work is given in section 4.

Calculation of α and β

In order to calculate the values of α and β, we consider one more basis set corresponding to n = 4 in equations (2) and (3), to have

E 4 HF = E HF + A HF 4 α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaavadabeqaai aaisdaaeaacaWGibGaamOraaqaaiaadweaaaGaeyypa0Zaaubmaeqa baGaeyOhIukabaGaamisaiaadAeaaeaacaWGfbaaaiabgUcaRiaadg eadaahaaqabeaacaWGibGaamOraaaacaaI0aWaaWbaaeqabaWaaWba aeqabaGaeyOeI0IaeqySdegaaaaaaaa@4563@  (8)

And

E 4 cor = E cor + A cor 4 β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaavadabeqaai aaisdaaeaacaWGJbGaam4BaiaadkhaaeaacaWGfbaaaiabg2da9maa vadabeqaaiabg6HiLcqaaiaadogacaWGVbGaamOCaaqaaiaadweaaa Gaey4kaSIaamyqamaaCaaabeqaaiaadogacaWGVbGaamOCaaaacaaI 0aWaaWbaaeqabaWaaWbaaeqabaGaeyOeI0IaeqOSdigaaaaaaaa@4916@  (9)

That is, we have to perform calculations with one more basis-set, aug-cc-pVQZ. From equations (4), (5) and (8), we get

E 4 HF E 2 HF E 3 HF E 2 HF =F α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaabaWaau bmaeqabaGaaGinaaqaaiaadIeacaWGgbaabaGaamyraaaacqGHsisl daqfWaqabeaacaaIYaaabaGaamisaiaadAeaaeaacaWGfbaaaaqaam aavadabeqaaiaaiodaaeaacaWGibGaamOraaqaaiaadweaaaGaeyOe I0YaaubmaeqabaGaaGOmaaqaaiaadIeacaWGgbaabaGaamyraaaaaa Gaeyypa0JaamOramaabmaabaGaeqySdegacaGLOaGaayzkaaaaaa@4A72@  (10)

where

F α = 4 α 2 α 3 α 2 α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeadaqada qaaiabeg7aHbGaayjkaiaawMcaaiabg2da9maalaaabaGaaGinamaa CaaabeqaaiabgkHiTiabeg7aHbaacqGHsislcaaIYaWaaWbaaeqaba GaeyOeI0IaeqySdegaaaqaaiaaiodadaahaaqabeaacqGHsislcqaH XoqyaaGaeyOeI0IaaGOmamaaCaaabeqaaiabgkHiTiabeg7aHbaaaa aaaa@4A6E@  (11)

Similarly, for the energy of correlations, we get

E 4 cor E 2 cor E 3 cor E 2 cor =F β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaabaWaau bmaeqabaGaaGinaaqaaiaadogacaWGVbGaamOCaaqaaiaadweaaaGa eyOeI0YaaubmaeqabaGaaGOmaaqaaiaadogacaWGVbGaamOCaaqaai aadweaaaaabaWaaubmaeqabaGaaG4maaqaaiaadogacaWGVbGaamOC aaqaaiaadweaaaGaeyOeI0YaaubmaeqabaGaaGOmaaqaaiaadogaca WGVbGaamOCaaqaaiaadweaaaaaaiabg2da9iaadAeadaqadaqaaiab ek7aIbGaayjkaiaawMcaaaaa@4F60@  (12)

Where

F β = 4 β 2 β 3 β 2 β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeadaqada qaaiabek7aIbGaayjkaiaawMcaaiabg2da9maalaaabaGaaGinamaa CaaabeqaaiabgkHiTiabek7aIbaacqGHsislcaaIYaWaaWbaaeqaba GaeyOeI0IaeqOSdigaaaqaaiaaiodadaahaaqabeaacqGHsislcqaH YoGyaaGaeyOeI0IaaGOmamaaCaaabeqaaiabgkHiTiabek7aIbaaaa aaaa@4A78@  (13)

Equations (11) and (13) can be combined as

F γ = 4 γ 2 γ 3 γ 2 γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeadaqada qaaiabeo7aNbGaayjkaiaawMcaaiabg2da9maalaaabaGaaGinamaa CaaabeqaaiabgkHiTiabeo7aNbaacqGHsislcaaIYaWaaWbaaeqaba GaeyOeI0Iaeq4SdCgaaaqaaiaaiodadaahaaqabeaacqGHsislcqaH ZoWzaaGaeyOeI0IaaGOmamaaCaaabeqaaiabgkHiTiabeo7aNbaaaa aaaa@4A96@  (14)

where γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaaaape Gaeq4SdCgaaa@37A7@  is either α or β, depending on the kind of energy. In Figure 1, we have plotted F γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaaaape GaamOra8aadaqadaqaa8qacqaHZoWza8aacaGLOaGaayzkaaaaaa@3A29@ versus γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaaaape Gaeq4SdCgaaa@37A7@ . This is a smooth curve, and can be used for finding the value of γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaaaape Gaeq4SdCgaaa@37A7@ , corresponding to the known value of F γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaaaape GaamOra8aadaqadaqaa8qacqaHZoWza8aacaGLOaGaayzkaaaaaa@3A29@ . For the known values of E 2 HF ,  E 3 HF MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaaaape Gaamyra8aadaqhaaqaa8qacaaIYaaapaqaa8qacaWGibGaamOraaaa caGGSaGaaeiOaiaadweapaWaa0baaeaapeGaaG4maaWdaeaapeGaam isaiaadAeaaaaaaa@3ED0@ and E 4 HF MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaaaape Gaamyra8aadaqhaaqaaiaaisdaaeaapeGaamisaiaadAeaaaaaaa@3961@ we can calculate F(α) from equation (10), and corresponding to F(α), the value of α can be obtained from Figure 1. Similarly, for the known values of E 2 cor MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaavadabeqaai aaikdaaeaacaWGJbGaam4BaiaadkhaaeaacaWGfbaaaaaa@3A86@ , E 3 cor MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaavadabeqaai aaiodaaeaacaWGJbGaam4BaiaadkhaaeaacaWGfbaaaaaa@3A87@ and E 4 cor MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaavadabeqaai aaisdaaeaacaWGJbGaam4BaiaadkhaaeaacaWGfbaaaaaa@3A88@ , we can calculate F β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeadaqada qaaiabek7aIbGaayjkaiaawMcaaaaa@39D5@  from equation (12), and corresponding to F β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeadaqada qaaiabek7aIbGaayjkaiaawMcaaaaa@39D5@ , the value of β can be obtained from Figure 1. For better accuracy, this graphical method is replaced by the numerical interpolation.

Figure 1 Variation of F =  4γ  2γ / 3γ  2γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaaaape GaamOra8aadaWadaqaa8qacqGH9aqpcaqGGaWdamaabmaabaWdbiaa isdacqGHsislcqaHZoWzcaqGGaGaeyOeI0IaaeiiaiaaikdacqGHsi slcqaHZoWza8aacaGLOaGaayzkaaWdbiaac+capaWaaeWaaeaapeGa aG4maiabgkHiTiabeo7aNjaabccacqGHsislcaqGGaGaaGOmaiabgk HiTiabeo7aNbWdaiaawIcacaGLPaaaaiaawUfacaGLDbaaaaa@505F@ versus γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaaaape Gaeq4SdCgaaa@37A7@ . The F is plotted on the horizontal axis and γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaaaape Gaeq4SdCgaaa@37A7@ on the vertical axis.

Results and discussion

We consider themolecule thioformaldehyde (H2CS), for example, whose identification11 in some cosmic object was considered as an achievement, because earlier attempts made several times remained unsuccessful, though they were based on very accurate laboratory studies. For analyzing spectrum, one considers an appropriate number of energy levels. These levels are connected through radiative and collisional transitions between them. Calculation of collisional cross sections is the most difficult task in the investigation. But, the scientists are interested to have accurate cross sections for collisional transitions. The collisions are due to the most abundant molecule H2. However, many scientists do not consider internal structure of H2, and therefore they replace H2 by the He atom,27,12 as both of the H2 and He have two electrons and two protons, and the interaction potential depends on the charges of the interacting particles.1315 For the calculation of collisional cross sections, the interaction potential between the H2CS and He is required, for which the scientists are putting their best efforts. We have calculated interaction potential between the H2CS and He with the help of MOLPRO by using the best method CCSD (T) and three basis-sets, -cc-pVDZ, aug-cc-pVTZ and aug-cc-pVQZ, separately. The position of He atom relative to the center-of-mass of H2CS is expressed in terms of the spherical polar coordinates (r, θ, φ). The interaction potential between the H2CS16 and He is calculated for various positions (r, θ, φ). We have considered17,18 532 positions specified by (r, θ, φ), with r=2 (0.25) 6.5 Å, θ=0◦ (30◦) 180◦, φ=0◦ (30◦) 90◦. The obtained values of α and β, are plotted in Figure 2 and Figure 3, respectively, as a function of position. Figure 2 and Figure 3 show that neither α nor β is constant. Both of them vary from position to position in the system.

Figure 2 Values of α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaaaape GaeqySdegaaa@379F@  for various positions. We have r =2 (0.25) 6.5 Å. Each r has 28 positions.

Figure 3 Values of β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaaaape GaeqOSdigaaa@37A1@ for various positions. We have r=2 (0.25) 6.5 Å. Each r has 28 positions.

For very large r, the α and β attain the limiting values, denoted by α0 and β0. The limiting values are α0=3.157 and β0=2.548, which can also be obtained with the help of the statistical methods and are used by the scientists. For small r, the deviations of α and β with respect to α0=3.157 and β0=2.548, are very significant. With the increase of r, the deviations decrease. Using the constant values α0 = 3.157 and β0=2.548, we have calculated the total energy E0 at each position. For the values of α and β at each position, we have calculated total energy E, and plotted in Figure 4, the value of (E−E0) as a function of position. The values of (E−E0) are found to have the value up to the order of 10−2 atomic unit (A U). The deviations shown in Figure 4 are quite significant, in particular for the small value of r, as the total energy is generally calculated up to the accuracy of 10−8 A U. Finally, by using these values of α and β at each position, the HF (reference energy) and the energy of correlations, and finally the total energy, corresponding to n=∞, can be calculated, and very accurate PES can be generated.1923

Figure 4 Values of (EE0) for various positions. We have r = 2 (0.25) 6.5 Å. Each r has 28 positions.

Summary

Using the best method, CCSD (T) and three basis-sets, aug-cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ, separately, we have calculated energies for H2CS-He system. We have shown that the exponents α and β used for the basis-set extrapolation are not constant, but vary from position to position in the system. The deviations of α and β are very significant for low values of r. For very large r, α and β approach to the constant values α0 and β0. Finally, we have calculated the deviations of energy E corresponding to the α and β from the energy E0 corresponding to the α0 and β0. The values of (E−E0) is of the order of 10−2 A U, while the energies are generally calculated up to the accuracy of 10−8 A U. Thus, the α and β cannot be taken as constant.

Acknowledgments

None.

Conflict of interest

The author declares there is no conflict of interest.

References

  1. Daniel F, Faure A, Wiesenfeld L, et al. Collisional excitation of singly deuterated ammonia NH2D by H2. MNRAS. 2014;444:2544–2554.
  2. Dumouchel F, Faure A, Lique F. The rotational excitation of HCN and HNC by He: temperature dependence of the collisional rate coefficients. MNRAS. 2010;406(4):2488–2492.
  3. Faure A, Wiesenfeld L, Scribano Y, et al. Rotational excitation of mono- and doubly-deuterated water by hydrogen molecules. MNRAS. 2012;420(1):699–704.
  4. Flower DR, Lique F. Excitation of the hyperfine levels of 13CN and C15N in collisions with H2 at low temperatures. MNRAS. 2015;446(2):1750–1755.
  5. Gotoum N, Nkem C, Hammami K, et al. Rotational excitation of aluminium monofluoride (AlF) by He atom at low temperature. Astr Space Sci. 2011;332(1):209–217.
  6. Machin L, Roueff E. Collisional excitation of monodeuterated ammonia NH2D by helium. A&A. 2006;460(3):953–958.
  7. Machin L, Roueff E. Collisional excitation of doubly deuterated ammonia ND2H by helium. A&A. 2007;465(2):647–650.
  8. Pople JA, Head-Gordon M, Raghavachari K. Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys. 1987;87(10):5968.
  9. Truhlar DG. Basis-set extrapolation. Chem Phys Lett. 1998;294(1-3):45–48.
  10. Wheeler MD, Ellis AM. A new potential energy surface for He–H2CO. Chem Phys Lett. 2003;3(4):392–399.
  11. Sinclair MW, Fourikis N, Ribes JC, et al. Detection of Interstellar Thioformaldehyde. Austral J Phys. 1973;26:85–92.
  12. Sarrasin E, Abdallah DB, Wernli M, et al. The rotational excitation of HCN and HNC by He: new insights on the HCN/HNC abundance ratio in molecular clouds. MNRAS. 2010;404(1):518–526.
  13. Pottage JT, Flower DR, Davis SL. The rotational excitation of methanol by para-hydrogen. MNRAS. 2004;352(1):39–43.
  14. Rabli D, Flower DR. The rotational structure of methanol and its excitation by helium. MNRAS. 2010a;403(10):2033–2040.
  15. Rabli D, Flower DR. The rotational excitation of methanol by molecular hydrogen. MNRAS. 2010b;406(1):95–101.
  16. Rabli D, Flower DR. Rotationally and torsionally inelastic scattering of methanol on helium. MNRAS. 2011;411(3):2093–2098.
  17. Sharma M, Sharma MK, Verma UP, et al. Collisional rates for rotational transitions in H2CO and their application. Adv Space Res. 2014a;54(2):252–260.
  18. Sharma MK, Sharma M, Verma UP, et al. Collisional excitation of vinylidene (H2CC). Adv Space Res. 2014b;54(9):1963–1971.
  19. Sharma MK, Sharma M, Verma UP, et al. Radiative transfer in silylidene. Serb Astron J. 2014c;188:37.
  20. Sharma MK, Sharma M, Verma UP, et al. Collisional excitation of thioformaldehyde and silylidene. Adv Space Res. 2015;55(1):434–439.
  21. Troscompt N, Faure A, Wiesenfeld L, et al. Rotational excitation of formaldehyde by hydrogen molecules: ortho-H2CO at low temperature. A&A. 2009;493(2):687–696.
  22. Wernli M, Wiesenfeld L, Faure A, et al. Collisional excitation of sulfur dioxide in cold molecular clouds. A&A. 2007a;464:1147.
  23. Wernli M, Wiesenfeld L, Faure A, et al. Rotational excitation of HC3N by H2 and He at low temperatures. A&A. 2007b;464(3):1147–1154.
Creative Commons Attribution License

©2019 Sharma. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.