Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 2

Analytical comparison of photonic crystal fibers for dispersion compensation with different structures using FDTD method

Faramarz E Seraji, Vajieh Arsang

Department of Communication Technology, Iran Telecom Research Center, Iran

Correspondence: Faramarz E Seraji, Faculty member Optical Communication Group, Department of Communication Technology, Iran Telecom Research Center, Tehran, Iran, Tel 98?21?84977723

Received: March 26, 2017 | Published: April 25, 2018

Citation: Seraji FE Arsang V. Analytical comparison of photonic crystal fibers for dispersion compensation with different structures using FDTD method. Phys Astron Int J. 2018;2(2):155-158. DOI: 10.15406/paij.2018.02.00078

Download PDF

Abstract

In new generation of optical communication networks, simultaneous transmission of several information channels has become possible over a single optical fiber. But dispersion and dispersion slope of optical fibers are important factors, which limit high capacity optical fiber communication systems to perform high speed transmission.

In this paper, silica core photonic crystal fibers (PCFs) with three and six air–hole rings in the cladding are investigated for effective refractive index, propagation constant and dispersion characteristics, using FDTD method. It is shown that by increasing the number of the air–hole rings in the cladding around the core, the negative dispersion of the PCFs will increase, too. The obtained negative dispersion of –300 ps/nm.km is comparatively high with respect to the published results in the related literature.

Keywords: dispersion, modeling, FDTD method, photonic crystal fibers

Introduction

Photonic crystal fibers (PCFs) have attained popularity in designing of compact optical devices utilized in optical networks1,2 and optical sensing systems.3,4 The widely used applications are in designing of dispersion compensators commonly used in WDM optical networks reducing the number of required repeaters.5,6 One of the comparative characteristic features of the PCFs is their flexibilities in response to dispersion effects on propagating pulses present in a long–haul transmission optical fiber line.7,8

Till date, the photonic crystal fibers (PCFs) are known to be new types of optical fibers with different structures and profiles as compared to conventional optical fibers that are used in optical communication systems.9,10 Having different optical characteristics, the PCFs as optical devices have been used in various applications in optical systems, such as super continuum spectrum generation,11 high optical power transfer,12 dispersion compensations,13 tunable optical filters,14 Erbium–doped optical amplifiers,15 Bragg grating–based devices,16 optical nonlinear applications.17,18

Different methods are used to evaluate dispersion properties of the PCFs with various structures.19 In this paper, by using FDTD analysis, two different PCF structures are investigated for utilization in compensations of positive dispersion in optical fiber as a transmission link.

For determination of optimal parameters values of the PCF, analytical and numerical methods, such as the scalar effective index method,20 the vectorial effective index method (VEIM),21 the improved vectorial effective index method (IVEIM),22 and the finite difference frequency domain (FDFD) method,23,24 are usually utilized. Couple of reports on designs of dispersion compensating fibers (DCFs) are published on optimization of compensation of the dispersions using PCFs in optical transmission bands ranging from 1460 nm to 1675 nm.25,26

A survey shows a design of a pentagonal PCF with large flattened negative dispersion by using the full vector finite element method (FEM) where the average negative dispersions for two optimized designs were −611.9 ps/nm/km over 1,460–1,625 nm and −474 ps/nm.km over 1425–1675 nm wavelength bands, respectively.27 In another report a porous–core circular PCF with circular arrangement of air holes, both in the periodic cladding and the porous core is simulated by using an efficient FEM. It has shown a flattened dispersion of ± MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacqGHXc qSaaa@3882@ 0.09 ps/THz/cm of 0.9–1.3 THz.28

An ultra–flattened dispersion over the range of –210 – 15 ps/nm.km is reported in29 by doping the core of a PCF with Germanium. In another report, a design of a hybrid PCF with elliptical and circular air holes of hexagonal layout with triangular lattice of five rings around the solid core is presented in,30 where they obtained large flattened dispersion is of the order of 4.88 ps/nm.km over a wavelength range of 1200–1800 nm.

In our previous report, by using two–dimensional finite difference time domain (2D–FDTD), three PCF structures were proposed to optimize the dispersions by considering the effects of the geometrical parameters, such as air–hole diameters and the center–to–center spacing between the holes (pitch). The air–holes were arranged in the cladding in the form of triangular lattice by constituting 11 rings around the core.31,32

FDTD numerical method

For a linear, isotropic, non–dispersive material with no source, the time–variant Maxwell’s equations are expressed as follows:9,33,34

H t = 1 μ(r) × E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqaqFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaWaaSaaaeaaju gibiabgkGi2QWaa8HaaeaajugibiaadIeaaOGaay51GaaabaqcLbsa cqGHciITcaWG0baaaiabg2da9iabgkHiTOWaaSaaaeaajugibiaaig daaOqaaKqzGeGaeqiVd0MaaiikaiaadkhacaGGPaaaaiabgEGirlab gEna0QWaa8HaaeaajugibiaadweaaOGaay51Gaaaaa@4C4E@                 (1)

E t = 1 ε(r) × H σ(r) ε(r) E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqaqFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaWaaSaaaeaaju gibiabgkGi2QWaa8HaaeaajugibiaadweaaOGaay51GaaabaqcLbsa cqGHciITcaWG0baaaiabg2da9OWaaSaaaeaajugibiaaigdaaOqaaK qzGeGaeqyTduMaaiikaiaadkhacaGGPaaaaiabgEGirlabgEna0QWa a8HaaeaajugibiaadIeaaOGaay51GaqcLbsacqGHsislkmaalaaaba qcLbsacqaHdpWCcaGGOaGaamOCaiaacMcaaOqaaKqzGeGaeqyTduMa aiikaiaadkhacaGGPaaaaOWaa8HaaeaajugibiaadweaaOGaay51Ga aaaa@593B@   (2)

Where ε(r),μ(r),σ(r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqaqFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaqcLbsacqaH1o qzcaGGOaGaamOCaiaacMcacaGGSaGaaGPaVlaaykW7cqaH8oqBcaGG OaGaamOCaiaacMcacaGGSaGaaGPaVlaaykW7cqaHdpWCcaGGOaGaam OCaiaacMcaaaa@49AE@ are susceptibility, permeability, and conductivity of the dielectric material, respectively, and E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqaqFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaqcLbsaceWGfb GbaSaaaaa@36EE@ and H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabaqaamaabaabaaGcbaqcLbsaceWGib GbaSaaaaa@3744@ are respective electric and magnetic fields vectors. Using Yee cell approach, the Maxwell’s equations can be written in the form of partial differential equations with respect to time and space.35

If we indicate β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGIYo aaaa@37A7@ as the propagation constant along z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG6b aaaa@3765@ direction in a PCF, then the expression φ(x,y,z)=φ(x,y) e jβz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaqcLbsacqaHgp GAcaGGOaGaamiEaiaacYcacaWG5bGaaiilaiaadQhacaGGPaGaeyyp a0JaeqOXdOMaaiikaiaadIhacaGGSaGaamyEaiaacMcacaWGLbWcda ahaaqcbasabeaajugWaiaadQgacqaHYoGycaWG6baaaaaa@4A96@  will denote component of each field where j 2 =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGQb qcfa4aaWbaaKqaafqabaqcLbmacaaIYaaaaKqzGeGaeyypa0JaeyOe I0IaaGymaaaa@3FA6@ . Therefore, the differentiation of Maxwell’s equations with respect to z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG6b aaaa@3785@ may be replaced by jβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGQb GaeqOSdigaaa@38F5@ and the fields would be expressed only in terms of transverse components.

A 2D Yee unit cell across the fiber cross section is shown in Figure 1.35 The x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk HiTaaa@37BF@ component of first curl of the Maxwell’s equation for magnetic field is derived as:33

H x t = 1 μ ( E z y E y z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaWaaSaaaeaaju gibiabgkGi2kaadIealmaaBaaajeaibaqcLbmacaWG4baajeaibeaa aOqaaKqzGeGaeyOaIyRaamiDaaaacqGH9aqpcqGHsislkmaalaaaba qcLbsacaaIXaaakeaajugibiabeY7aTbaakmaabmaabaWaaSaaaeaa jugibiabgkGi2kaadweakmaaBaaajeaibaqcLbmacaWG6baaleqaaa GcbaqcLbsacqGHciITcaWG5baaaiabgkHiTOWaaSaaaeaajugibiab gkGi2kaadwealmaaBaaajeaibaqcLbmacaWG5baajeaibeaaaOqaaK qzGeGaeyOaIyRaamOEaaaaaOGaayjkaiaawMcaaaaa@5758@      (3)

Figure 1 2D yee unit cell across the fiber cross section.35

By discretization of Equation (3) in terms of time and space and by using Yee cell technique, we obtain:

H x | i,k n+1/2 = H x | i,k n1/2 Δt μ i,k ( E z | i,k+1 n E z | i,k n Δy jβ E y | i,k n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqaqFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaWaa8Haaeaaju gibiaadIealmaaBaaajeaibaqcLbmacaWG4baajeaibeaaaOGaay51 GaWaaqqaaKaaGeaalmaaDaaajeaibaqcLbmacaWGPbGaaiilaiaayk W7caWGRbaajeaibaqcLbmacaWGUbGaey4kaSIaaGymaiaac+cacaaI YaaaaaGccaGLhWoajugibiabg2da9OWaa8HaaeaajugibiaadIeakm aaBaaajeaibaqcLbmacaWG4baaleqaaaGccaGLxdcadaabbaqcaasa aSWaa0baaKqaGeaajugWaiaadMgacaGGSaGaam4AaaqcbasaaKqzad GaamOBaiabgkHiTiaaigdacaGGVaGaaGOmaaaaaOGaay5bSdqcLbsa cqGHsislcaaMc8UaaGPaVRWaaSaaaeaajugibiabfs5aejaadshaaO qaaKqzGeGaeqiVd02cdaWgaaqcbasaaKqzadGaamyAaiaacYcacaWG RbaajeaibeaaaaGcdaqadaqaamaalaaabaWaa8Haaeaajugibiaadw eakmaaBaaajeaibaqcLbmacaWG6baaleqaaaGccaGLxdcadaabbaqc aasaaSWaa0baaKqaGeaajugWaiaadMgacaGGSaGaam4AaiabgUcaRi aaigdaaKqaGeaajugWaiaad6gaaaaakiaawEa7aKqzGeGaeyOeI0Ic daWhcaqaaKqzGeGaamyraSWaaSbaaKqaGeaajugWaiaadQhaaKqaGe qaaaGccaGLxdcadaabbaqcaasaaSWaa0baaKqaGeaajugWaiaadMga caGGSaGaam4AaaqcbasaaKqzadGaamOBaaaaaOGaay5bSdaabaqcLb sacqqHuoarcaWG5baaaiabgkHiTiaadQgacqaHYoGykmaaFiaabaqc LbsacaWGfbWcdaWgaaqcbasaaKqzadGaamyEaaqcbasabaaakiaawE niamaaeeaajaaibaWcdaqhaaqcbasaaKqzadGaamyAaiaacYcacaWG RbaajeaibaqcLbmacaWGUbaaaaGccaGLhWoaaiaawIcacaGLPaaaaa a@9D83@ (4)

Where n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb aaaa@3779@ is the discrete time step, i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGPb aaaa@3764@ and k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRb aaaa@3766@ denote grid points of discretization in xy MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b GaamyEaiabgkHiTaaa@396E@ plane, and Δt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaqcLbsacqqHuo arcaWG0baaaa@38D5@ , Δx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaqcLbsacqqHuo arcaWG4baaaa@38D9@ , and Δy MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaqcLbsacqqHuo arcaWG5baaaa@38DA@  denote the time increment, distances between two adjacent points along x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b aaaa@3763@ and y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWG5b aaaa@3764@ directions, respectively. Similarly, the components of the other fields can also be derived.

To reduce the computational time, one prefers to consider the real numbers in above equation. For this particular reason, let us consider the real parts of E z , H x ,and H y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacaWGfb WcdaWgaaqcbasaaKqzadGaamOEaaqcbasabaqcLbsacaGGSaGaaGPa VlaaykW7caWGibWcdaWgaaqcbasaaKqzadGaamiEaaqcbasabaqcLb sacaGGSaGaaGPaVlaaykW7caqGHbGaaeOBaiaabsgacaaMc8UaaGPa VlaadIealmaaBaaajeaibaqcLbmacaWG5baajeaibeaaaaa@4F4A@  to be cos(βz+φ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaciGGJb Gaai4BaiaacohacaGGOaGaaOOSdiaadQhacqGHRaWkcaGIgpGaaiyk aaaa@3F08@ and that of H z , E x ,and E y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacaWGib WcdaWgaaqcbawaaKqzadGaamOEaaqcbasabaqcLbsacaGGSaGaaGPa VlaaykW7caWGfbGcdaWgaaqcbawaaKqzadGaamiEaaWcbeaajugibi aacYcacaaMc8UaaGPaVlaabggacaqGUbGaaeizaiaaykW7caaMc8Ua amyraSWaaSbaaKqaGfaajugWaiaadMhaaKqaGeqaaaaa@4FE7@ to be sin(βz+φ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaciGGZb GaaiyAaiaac6gacaGGOaGaaOOSdiaadQhacqGHRaWkcaGIgpGaaiyk aaaa@3F0D@ . Therefore, Equation (4) reduces to:35

H x | i,k n+1/2 = H x | i,k n1/2 Δt μ i,k ( E z | i,k+1 n E z | i,k n Δy β E y | i,k n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqaqFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaWGib WcdaWgaaqcbasaaKqzadGaamiEaaqcbasabaGcdaabbaqcaasaaSWa a0baaKqaGeaajugWaiaadMgacaGGSaGaam4AaaqcbasaaKqzadGaam OBaiabgUcaRiaaigdacaGGVaGaaGOmaaaaaOGaay5bSdqcLbsacqGH 9aqpcaWGibGcdaWgaaqcbasaaKqzadGaamiEaaWcbeaakmaaeeaaja aibaWcdaqhaaqcbasaaKqzadGaamyAaiaacYcacaWGRbaajeaibaqc LbmacaWGUbGaeyOeI0IaaGymaiaac+cacaaIYaaaaaGccaGLhWoaju gibiabgkHiTOWaaSaaaeaajugibiabfs5aejaadshaaOqaaKqzGeGa eqiVd02cdaWgaaqcbasaaKqzadGaamyAaiaacYcacaWGRbaajeaibe aaaaGcdaqadaqaamaalaaabaqcLbsacaWGfbWcdaWgaaqcbasaaKqz adGaamOEaaqcbasabaGcdaabbaqcaasaaSWaa0baaKqaGeaajugWai aadMgacaGGSaGaam4AaiabgUcaRiaaigdaaKqaGeaajugWaiaad6ga aaaakiaawEa7aKqzGeGaeyOeI0IaamyraSWaaSbaaKqaGeaajugWai aadQhaaKqaGeqaaOWaaqqaaKaaGeaalmaaDaaajeaibaqcLbmacaWG PbGaaiilaiaadUgaaKqaGeaajugWaiaad6gaaaaakiaawEa7aaqaaK qzGeGaeuiLdqKaamyEaaaacqGHsislcqaHYoGycaWGfbWcdaWgaaqc basaaKqzadGaamyEaaqcbasabaGcdaabbaqcaasaaSWaa0baaKqaGe aajugWaiaadMgacaGGSaGaam4AaaqcbasaaKqzadGaamOBaaaaaOGa ay5bSdaacaGLOaGaayzkaaaaaa@8DC4@     (5)

The y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWG5b aaaa@3784@ and z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWG6b aaaa@3785@ components of magnetic fields are obtained as follows:

H y | i,k n+1/2 = H y | i,k n1/2 + Δt μ i,k ( E z | i+1,k n E z | i,k n Δx β E x | i,k n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqaqFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaWGib GcdaWgaaWcbaqcLbmacaWG5baaleqaaOWaaqqaaKaaGeaalmaaDaaa jeaibaqcLbmacaWGPbGaaiilaiaadUgaaKqaGeaajugWaiaad6gacq GHRaWkcaaIXaGaai4laiaaikdaaaaakiaawEa7aKqzGeGaeyypa0Ja amisaSWaaSbaaKqaGeaajugWaiaadMhaaKqaGeqaaOWaaqqaaKaaGe aalmaaDaaajeaibaqcLbmacaWGPbGaaiilaiaadUgaaKqaGeaajugW aiaad6gacqGHsislcaaIXaGaai4laiaaikdaaaaakiaawEa7aKqzGe Gaey4kaSIaaGPaVRWaaSaaaeaajugibiabfs5aejaadshaaOqaaKqz GeGaeqiVd0McdaWgaaqcbasaaKqzadGaamyAaiaacYcacaWGRbaale qaaaaakmaabmaabaWaaSaaaeaajugibiaadwealmaaBaaajeaibaqc LbmacaWG6baajeaibeaakmaaeeaajaaibaWcdaqhaaqcbasaaKqzad GaamyAaiabgUcaRiaaigdacaGGSaGaam4AaaqcbasaaKqzadGaamOB aaaaaOGaay5bSdqcLbsacqGHsislcaWGfbWcdaWgaaqcbasaaKqzad GaamOEaaqcbasabaGcdaabbaqcaasaaSWaa0baaKqaGeaajugWaiaa dMgacaGGSaGaam4AaaqcbasaaKqzadGaamOBaaaaaOGaay5bSdaaba qcLbsacqqHuoarcaWG4baaaiabgkHiTiabek7aIjaadwealmaaBaaa jeaibaqcLbmacaWG4baajeaibeaakmaaeeaajaaibaWcdaqhaaqcba saaKqzadGaamyAaiaacYcacaWGRbaajeaibaqcLbmacaWGUbaaaaGc caGLhWoaaiaawIcacaGLPaaaaaa@8F05@    (6)

H z | i,k n+1/2 = H z | i,k n1/2 + Δt μ i,k ( E x | i,k+1 n E x | i,k n Δy E y | i+1,k n E y | i,k n Δx ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqaqFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaWGib WcdaWgaaqcbasaaKqzadGaamOEaaqcbasabaGcdaabbaqcaasaaSWa a0baaKqaGeaajugWaiaadMgacaGGSaGaam4AaaqcbasaaKqzadGaam OBaiabgUcaRiaaigdacaGGVaGaaGOmaaaaaOGaay5bSdqcLbsacqGH 9aqpcaWGibGcdaWgaaqcbasaaKqzadGaamOEaaWcbeaakmaaeeaaja aibaWcdaqhaaqcbasaaKqzadGaamyAaiaacYcacaWGRbaajeaibaqc LbmacaWGUbGaeyOeI0IaaGymaiaac+cacaaIYaaaaaGccaGLhWoaju gibiabgUcaRiaaykW7kmaalaaabaqcLbsacqqHuoarcaWG0baakeaa jugibiabeY7aTTWaaSbaaKqaGeaajugWaiaadMgacaGGSaGaam4Aaa qcbasabaaaaKqzGeGaaGPaVlaaykW7kmaabmaabaWaaSaaaeaajugi biaadwealmaaBaaajeaibaqcLbmacaWG4baajeaibeaakmaaeeaaja aibaWcdaqhaaqcbasaaKqzadGaamyAaiaacYcacaWGRbGaey4kaSIa aGymaaqcbasaaKqzadGaamOBaaaaaOGaay5bSdqcLbsacqGHsislca WGfbGcdaWgaaqcbasaaKqzadGaamiEaaWcbeaakmaaeeaajaaibaWc daqhaaqcbasaaKqzadGaamyAaiaacYcacaWGRbaajeaibaqcLbmaca WGUbaaaaGccaGLhWoaaeaajugibiabfs5aejaadMhaaaGaeyOeI0Ic daWcaaqaaKqzGeGaamyraOWaaSbaaKqaGeaajugWaiaadMhaaSqaba GcdaabbaqcaasaaSWaa0baaKqaGeaajugWaiaadMgacqGHRaWkcaaI XaGaaiilaiaadUgaaKqaGeaajugWaiaad6gaaaaakiaawEa7aKqzGe GaeyOeI0IaamyraSWaaSbaaKqaGeaajugWaiaadMhaaKqaGeqaaOWa aqqaaKaaGeaalmaaDaaajeaibaqcLbmacaWGPbGaaiilaiaadUgaaK qaGeaajugWaiaad6gaaaaakiaawEa7aaqaaKqzGeGaeuiLdqKaamiE aaaaaOGaayjkaiaawMcaaaaa@A36B@    (7)

Similarly, one can obtain the components of electrical fields. The stability of the FDTD numerical method is determined by the following expression:35

Δt 1 c Δ x 2 +Δ y 2 + (β/2) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqaqFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaqcLbsacqqHuo arcaWG0bGaeyizImQcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaWG JbGcdaGcaaqaaKqzGeGaeuiLdqKaamiEaSWaaWbaaKqaGeqabaqcLb macqGHsislcaaIYaaaaKqzGeGaey4kaSIaeuiLdqKaamyEaSWaaWba aKqaGeqabaqcLbmacqGHsislcaaIYaaaaKqzGeGaey4kaSIaaiikai abek7aIjaac+cacaaIYaGaaiykaSWaaWbaaKqaGeqabaqcLbmacqGH sislcaaIYaaaaaWcbeaaaaaaaa@535B@             (8)

For our boundary computational treatment, we use perfectly matched layers method. One of the key characteristic parameters of PCF is chromatic dispersion, which is summation of waveguide and material dispersions. The expression for total dispersion, consisting of material and waveguide dispersion is given as:

D tot = λ 2πc ( 2 dβ dλ +λ d 2 β d λ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0de9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacaWGeb WcdaWgaaqcbasaaKqzadGaamiDaiaad+gacaWG0baajeaibeaajugi biabg2da9iabgkHiTOWaaSaaaeaajugibiabeU7aSbGcbaqcLbsaca aIYaGaeqiWdaNaam4yaaaakmaabmaabaqcLbsacaaIYaGcdaWcaaqa aKqzGeGaamizaiabek7aIbGcbaqcLbsacaWGKbGaeq4UdWgaaiabgU caRiabeU7aSPWaaSaaaeaajugibiaadsgalmaaCaaajeaibeqaaKqz adGaaGOmaaaajugibiabek7aIbGcbaqcLbsacaWGKbGaeq4UdWMcda ahaaWcbeqcbasaaKqzadGaaGOmaaaaaaaakiaawIcacaGLPaaaaaa@5B89@                (9)

To simplify the above equation, we define normalized propagation constant β N (=β/ k 0 =2πβ/λ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0de9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacqaHYo GylmaaBaaajeaibaqcLbmacaGIobaajeaibeaajugibiaakIcacaGI 9aGaeqOSdiMaaO4laiaakUgalmaaBaaajeaibaqcLbmacaGIWaaaje aibeaajugibiaak2dacaGIYaGaeqiWdaNaeqOSdiMaaO4laiabeU7a SjaakMcaaaa@4A72@ and substitute it in (9) to obtain:9,18,10

D tot = λ c ( d 2 β N d λ 2 )π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0de9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacaWGeb WcdaWgaaqcbasaaKqzadGaamiDaiaad+gacaWG0baajeaibeaajugi biabg2da9iabgkHiTOWaaSaaaeaajugibiabeU7aSbGcbaqcLbsaca WGJbaaaOWaaeWaaeaadaWcaaqaaKqzGeGaamizaOWaaWbaaSqabKqa GeaajugWaiaaikdaaaqcLbsacqaHYoGykmaaBaaaleaajugibiaak6 eaaSqabaaakeaajugibiaadsgacqaH7oaBlmaaCaaajeaibeqaaKqz adGaaGOmaaaaaaaakiaawIcacaGLPaaajugibiabec8aWbaa@52B2@             (10)

Where λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBaaa@382A@ and c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb aaaa@375E@ are wavelength and velocity of light in a vacuum, respectively. The effective refractive index of fundamental mode is defined as n eff =β(λ/2π) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaWGUb GcdaWgaaqcbasaaKqzadGaamyzaiaadAgacaWGMbaaleqaaKqzGeGa eyypa0JaeqOSdiMaaOikaiabeU7aSjaac+cacaaIYaGaeqiWdaNaaO ykaaaa@4524@ .36

To evaluate Equation (10) in terms of β N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0de9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacqaHYo GylmaaBaaajeaibaqcLbmacaWGobaajeaibeaaaaa@3A0A@ , d β N /dλ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0de9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacaWGKb GaeqOSdiMcdaWgaaqcbasaaKqzadGaaOOtaaWcbeaajugibiaac+ca caWGKbGaeq4UdWgaaa@3EB9@ , d 2 β N /d λ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0de9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacaWGKb GcdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiabek7aITWaaSba aKqaGeaajugWaiaak6eaaKqaGeqaaKqzGeGaai4laiaadsgacqaH7o aBlmaaCaaajeaibeqaaKqzadGaaGOmaaaaaaa@43F4@ , we use FDTD method. The refractive index of the core material is determined by using Sellmeier formula as:18,37

n silica 2 (λ)=1+ k=1 3 a k λ 2 λ 2 b k 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaWGUb WcdaqhaaqcbasaaKqzadGaam4CaiaadMgacaWGSbGaamyAaiaadoga caWGHbaajeaibaqcLbmacaaIYaaaaKqzGeGaaiikaiabeU7aSjaacM cacqGH9aqpcaaIXaGaey4kaSIcdaaeWbqaamaalaaabaqcLbsacaWG HbGcdaWgaaqcbasaaKqzadGaam4AaaWcbeaajugibiabeU7aSPWaaW baaSqabKqaGeaajugWaiaaikdaaaaakeaajugibiabeU7aSTWaaWba aKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaamOyaSWaa0baaK qaGeaajugWaiaadUgaaKqaGeaajugWaiaaikdaaaaaaaqcbasaaKqz adGaam4Aaiabg2da9iaaigdaaKqaGeaajugWaiaaiodaaKqzGeGaey yeIuoaaaa@63AE@     (11)

Where λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabaqaamaabaabaaGcbaqcLbsacqaH7o aBaaa@3818@ is the wavelength of light, and a k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacaWGHb GcdaWgaaqcbasaaKqzadGaam4AaaWcbeaaaaa@39CB@ and b k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacaWGIb GcdaWgaaqcbasaaKqzadGaam4AaaWcbeaaaaa@39CC@ are the Sellmeier coefficients. The practical values of a k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaWGHb WcdaWgaaqcbasaaKqzadGaam4Aaaqcbasabaaaaa@3A09@  and b k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaWGIb WcdaWgaaqcbasaaKqzadGaam4Aaaqcbasabaaaaa@3A0A@  for k=1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaWGRb Gaeyypa0JaaGymaiaacYcacaaMc8UaaGOmaiaacYcacaaMc8UaaG4m aaaa@3F05@  are given as:38

a 1 =0.6961663, a 2 =0.4079426, a 3 =0.8974794, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaWGHb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacqGH9aqpcaaI WaGaaiOlaiaaiAdacaaI5aGaaGOnaiaaigdacaaI2aGaaGOnaiaaio dacaGGSaGaaGPaVlaaykW7caaMc8UaamyyaOWaaSbaaKqaGeaajugW aiaaikdaaSqabaqcLbsacqGH9aqpcaaIWaGaaiOlaiaaisdacaaIWa GaaG4naiaaiMdacaaI0aGaaGOmaiaaiAdacaGGSaGaaGPaVlaaykW7 caWGHbWcdaWgaaqcbasaaKqzadGaaG4maaqcbasabaqcLbsacqGH9a qpcaaIWaGaaiOlaiaaiIdacaaI5aGaaG4naiaaisdacaaI3aGaaGyo aiaaisdacaGGSaGaaGPaVdaa@643E@

b 1 =0.0684043, b 2 =0.1162414, b 3 =9.896161. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaWGIb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacqGH9aqpcaaI WaGaaiOlaiaaicdacaaI2aGaaGioaiaaisdacaaIWaGaaGinaiaaio dacaGGSaGaaGPaVlaaykW7caWGIbWcdaWgaaqcbasaaKqzadGaaGOm aaqcbasabaqcLbsacqGH9aqpcaaIWaGaaiOlaiaaigdacaaIXaGaaG OnaiaaikdacaaI0aGaaGymaiaaisdacaGGSaGaaGPaVlaaykW7caaM c8UaamOyaSWaaSbaaKqaGeaajugWaiaaiodaaKqaGeqaaKqzGeGaey ypa0JaaGyoaiaac6cacaaI4aGaaGyoaiaaiAdacaaIXaGaaGOnaiaa igdacaGGUaaaaa@61FD@

In this paper, by using the above equations and other related expressions in FDTD method, two PCF samples with different numbers of air–hole rings are selected for design in order to study their dispersion behaviors.

PCF with three rings of air–holes

The selected PCF structure with air–hole of equal diameters d=0.75μm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacaWGKb Gaeyypa0JaaGimaiaac6cacaaI3aGaaGynaiaaykW7caaMc8UaeqiV d0MaaOyBaaaa@4107@ and air–hole spacing of Λ=2μm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacqqHBo atcqGH9aqpcaaIYaGaaGPaVlaaykW7cqaH8oqBcaGITbaaaa@3F63@ arranged in three rings in the form of triangular lattice is illustrated in Figure 2. The core diameter is taken as 1.45μm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacaaIXa GaaiOlaiaaisdacaaI1aGaaGPaVlaaykW7cqaH8oqBcaGITbaaaa@3F36@ .

The spectrum of chromatic dispersion of fundamental mode in the wavelength range of 1100–2000 nm is illustrated in Figure 3 (Red curve). The dispersion at 1510 nm is obtained as –140 ps/nm.km. The dispersion of the proposed PCF in this case is nearly twice the dispersion of conventional dispersion compensating fiber (i.e.,–80 ps/nm.km).

Figure 2 The designed PCF with three rings of air–holes.

Figure 3 Dispersion spectra of the PCFs with three and six circular air–hole rings in the cladding region.

The PCF with six rings of air–holes

As of previous analysis, a PCF structure is considered with the same air–hole diameter of d=0.75μm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacaWGKb Gaeyypa0JaaGimaiaac6cacaaI3aGaaGynaiaaykW7caaMc8UaeqiV d0MaaOyBaaaa@4107@ , core diameter of 1.45μm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacaaIXa GaaiOlaiaaisdacaaI1aGaaGPaVlabeY7aTjaak2gaaaa@3D9B@ and a different air–hole spacing of Λ=1.1μm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacqqHBo atcqGH9aqpcaaIXaGaaiOlaiaaigdacaaMc8UaaGPaVlabeY7aTjaa k2gaaaa@40CF@ . In this case, six air–hole rings are considered in the cladding region (in this case, figure not shown).36

By using the home–made programming code, in this case as well, the chromatic dispersion spectrum has been depicted in Figure 3 (Blue curve). In this case, the dispersion value of –300 ps/nm.km is obtained, which twice the value is obtained in the previous design of the PCF with three circular air–hole rings. The results obtained here is comparable to the ones reported,18 in which the proposed structure with seven air–hole rings were used. The reported dispersion value was –150 ps/nm.km.

In the simulations performed by FDTD method, by varying β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0de9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacqaHYo Gyaaa@3789@ values in each case, the resonance fundamental frequencies, wavelengths, and effective refractive indices are determined and tabulated in Table 1.17,18

×1 0 6 β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaacbeqcLbsaqa aaaaaaaaWdbiaa=DnacaWFXaGaa8hmaSWdamaaCaaajeaibeqaaKqz adWdbiaa=zdaaaqcLbsapaGaa8NSdaaa@3D7A@

n eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqaqFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaacbmqcLbsaca WFUbWcdaWgaaqcbasaaKqzadGaa8xzaiaa=zgacaWFMbaajeaibeaa aaa@3B6F@

λ(μm) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaacbeqcLbsaca WF7oGaaGPaVlaa=HcacaWF8oGaa8xBaiaa=Lcaaaa@3CBB@

Fundamental Frequency (THz)

5

1.3010

1.6349

183.50

6

1.3343

1.3973

214.70

7

1.3575

1.2185

246.20

8

1.3745

1.0795

277.90

9

1.3884

0.9631

309.50

12

1.4116

0.7391

405.90

15

1.4239

0.59641

503.00

Table 1 Calculated effective refractive index used for determination of dispersion of PCF with six air-hole rings

Conclusion

In this paper, by using FDTD method, two proposed photonic crystal fibers have been analyzed with three and six air–hole rings in the cladding arranged in triangular lattices. In the case of three air–hole rings in the cladding of the PCF, for air–hole with equal diameters of d=0.75μm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacaWGKb Gaeyypa0JaaGimaiaac6cacaaI3aGaaGynaiaaykW7caaMc8UaeqiV d0MaaOyBaaaa@4107@ and air–hole spacing of Λ=2μm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacqqHBo atcqGH9aqpcaaIYaGaaGPaVlaaykW7cqaH8oqBcaGITbaaaa@3F63@ , the dispersion value is determined to be –140ps/nm.km at wavelength 1510nm.

In case of the PCF with six air–hole rings, air–hole spacing of Λ=1.1μm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacqqHBo atcqGH9aqpcaaIXaGaaiOlaiaaigdacaaMc8UaaGPaVlabeY7aTjaa k2gaaaa@40CF@ , and with the same air–hole of diameter of d=0.75μm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacaWGKb Gaeyypa0JaaGimaiaac6cacaaI3aGaaGynaiaaykW7caaMc8UaeqiV d0MaaOyBaaaa@4107@ , the dispersion value is found to be –300ps/nm.km. In both the cases, the diameters of the PCF core are taken as 1.45μm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacaaIXa GaaiOlaiaaisdacaaI1aGaaGPaVlabeY7aTjaak2gaaaa@3D9B@ .

It is further shown that when the air–hole spacing Λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabiqaamaabaabaaGcbaqcLbsacqqHBo ataaa@37DC@ is decreased by a ratio of 55% and by doubling the number of air–hole rings, the dispersion will increase more than twice the value. The PCF with high negative dispersion value is suitable for design of high dispersion compensating fiber used in long–haul optical transmission links.

Acknowledgements

The authors greatly acknowledge the allotment of the post–graduate student by GJK Institute of Higher Education, Qazvin, Iran, for collaboration in the running academic project of optical group at ITRC.

Conflict of interest

Authors declare there is no conflict of interest.

References

  1. Nielsen MD, Jacobsen C, Mortensen NA, et al. Low–loss photonic crystal fibers for transmission systems and their dispersion properties. Optics Express. 2004;12(7):1372–1376.
  2. Habib MS, Habib MS, Razzak SMA, et al. Broadband dispersion compensation of conventional single mode fibers using microstructure optical fibers. Optik: International Journal for Light and Electron Optics. 2013;124(19):3851–3855.
  3. Quintero SMM, Martelli C, Braga AMB, et al. Magnetic field measurements based on terfenol coated photonic crystal fibers. Sensors. 2011;11(12):11103–11111.
  4. Pinto MR, Lopez–Amo M. Photonic crystal fibers for sensing applications. Journal of Sensors. 2012:1–21.
  5. Saitoh K, Koshiba M. Chromatic dispersion control in photonic crystal fibers: application to ultra–flattened dispersion. Optics Express. 2003;11(8):843–852.
  6. Saitoh K, Koshiba M. Numerical modeling of photonic crystal fibers. IEEE: Journal of Lightwave Technology. 2005;23(11).
  7. Hoo YL, Jin W, Ju J, et al. Design of photonic crystal fibers with ultra–low, ultra–flattened chromatic dispersion. Optics Communications. 2004;242(4–6):327–332.
  8. Li YF, Wang CY, Hu ML. A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation. Optics Communications. 2004;238(1–3):29–33.
  9. Buczynski R. Photonic crystal fibers. Acta Physica Polonica A. 2004;106(2):141–168.
  10. Sharma KK, Kumar P. On photonic bandgap pcf structures based on pascal’s triangle and its propagation characteristics. International Journal of Advanced Electronics and Communication Systems. 2012;1(2).
  11. Maji PS, Chaudhuri PR. Supercontinuum generation in ultra–flat near zero dispersion PCF with selective liquid infiltration. Optik: International Journal for Light and Electron Optics. 2014;125(20):5986–5992.
  12. Dianov EM, Bufetov IA, Frolov AA, et al. Fiber fuse effect in microstructured fibers. IEEE Photonics Technology Letters. 2004;16(1):180–181.
  13. Haque MM, Rahman MS, Habib MS, et al. Design and characterization of single mode circular photonic crystal fiber for broadband dispersion compensation. Optik. 2014;125(11):2608–2611.
  14. Hoo YL, Ho HL, Jin W, et al. Numerically study of short wavelength filtering of a depressed–index core photonic crystal fiber. Sensors and Actuators B: Chemical. 2009;143(1):35–41.
  15. Chen W, Li S, Luo W, et al. Fabrication and gain characteristics of the erbium–doped photonic crystal fiber. Int’l Wire & Cable Symp Proc 60th IWCS Conf. 2011:346–349.
  16. Seraji FE, Anzabi LC, Farsinezhad S. Design of compact long–period gratings imprinted in optimized photonic crystal fibers. Applied Physics B. 2009;97(2):425–429.
  17. Stone JM. Photonic crystal fibers and their applications in the nonlinear regime. UK: University Of Bath; 2009. p. 1–117.
  18. Nozhat N, Granpayeh N. Specialty fibers designed by photonic crystals. Progress in Electromagnetics Research. 2009;99:225–244.
  19. Li Y, Wang C, Zhang N, et al. Analysis and design of terahertz photonic crystal fibers by an effective–index method. Applied Optics. 2006;45(33):8462–8465.
  20. Sinha RK, Varshney AD. Dispersion properties of photonic crystal fiber: comparison by scalar and fully vectorial effective index methods. Optical and Quantum Electronics. 2005;37(8):711–722.
  21. Raja AJ, Porsezian K. A fully vectorial effective index method to analyses the propagation properties of microstructured fiber. Photonics and Nanostructures–Fundamentals and Applications. 2007;5(4):171–177.
  22. Li Y, Yao Y, Hu M, et al. Improved fully vectorial effective index method for photonic crystal fibers: evaluation and enhancement. Applied Optics. 2008;47(3):399–406.
  23. Geng Y, Tan X, Wang P, et al. Design of terahertz photonic crystal fibers by finite difference frequency domain method. Journal of Optics A: Pure and Applied Optics. 2007;9(11):1019–1023.
  24. Seraji FE, Asghari F. Determination of refractive index and confinement losses in photonic crystal fibers using FDFD method: A comparative analysis. International Journal of Optics and Photonics. 2009;3(1):1–10.
  25. Habib MS, Habib MS, Hasan MI, et al. A single mode ultra flat high negative residual dispersion compensating photonic crystal fiber. Optical Fiber Technology. 2014;20(4):328–332.
  26. Shaker MM, Majeed MS, Daoud RW. Functioning the intelligent programming to find minimum dispersion wavelengths. WSEAS Trans Commnu. 2009;8(2):237–248.
  27. Li X, Liu P, Xu Z, et al. Design of a pentagonal photonic crystal fiber with high birefringence and large flattened negative dispersion. Applied Optics. 2015;54(24):7351–7357.
  28. Islam R, Rana S. Dispersion flattened, low–loss porous fiber for single–mode terahertz wave guidance. Optical Engineering. 2015;54(5):1–5.
  29. Medjouri A, Mokhtar SL, Ziane O, et al. Investigation of high birefringence and chromatic dispersion management in photonic crystal fiber with square air holes. Optik–International Journal for Light and Electron Optics. 2015;12620:2269–2274.
  30. Sharma V, Sharma R. Design of hybrid photonic crystal fiber with elliptical and circular air holes analyzed for large flattened dispersion and high birefringence. Journal of Nanophotonics. 2016;10(2).
  31. Bhattacharya R, Konar S. Design of microstructure fibers with flat negative dispersion over large wavelength bands. Journal of Optoelectronics and Advanced Materials. 2008;10(12):3159–3164.
  32. Seraji FE, Nouri M. Design of structural parameters of photonic crystal fibers for optimization of dispersion flattening management using FDTD method. International Journal of Optics and Applications. 2017;7(3):62–67.
  33. Hagness SC. FDTD computational electromagnetic modeling of microcavity. USA: Northwestern University; 1998. p. 1–114.
  34. Hoang NM. Two dimensional photonic crystal devices. Netherlands: Delft University; 2012.
  35. Qiu M. Analysis of guided modes in photonic crystal fibers using the finite–difference time–domain method. Microwave and Optical Technology Letters. 2001;30(5):327–330.
  36. Konar S, Bhattacharya R. Design of photonic crystal fibers for dispersion compensation over S, C and L bands. Optoelectronics and Advanced Materials–Rapid Communications. 2007;1(9):442–447.
  37. Agrawal GP. Nonlinear Fiber optics. 4th ed. USA: Academic Press; 2007.
  38. Davison D. Single–mode wave propagation in cylindrical optical fibers. In: Basch EE, editor. USA: Sams Publishing; 1987.
Creative Commons Attribution License

©2018 Seraji, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.