Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 4 Issue 5

Analysis of JET component parameters of AGN - brightness, speed, size, distance and acceleration

Onuchukwu C Chika

Department of Industrial Physics, Chukwuemeka Odumegwu Ojukwu University, Nigeria

Correspondence: Onuchukwu C Chika, Department of Industrial Physics, Chukwuemeka Odumegwu Ojukwu University, Anambra State, Nigeria

Received: July 06, 2020 | Published: November 2, 2020

Citation: Chika OC.Analysis of JET component parameters of AGN - brightness, speed, size, distance and acceleration. Phys Astron Int J. 2020;4(5):188-196. DOI: 10.15406/paij.2020.04.00221

Download PDF

Abstract

We statistically analysed the jet component parameters of superluminal sources which comprises of radio galaxy (G), radio quasar (Q) and BL Lac (B) objects. Subsamples were formed based on brightness, speed, size, distance D from the assumed stationary core, jet components with positive and negative perpendicular and parallel acceleration. Results show that there is a strong positive correlation between the jet component size and distance away from the core, which supports the self-similarity model of AGN evolution and that jet component accelerations are independent of any size, distance from the core, radio power and speed of the jet component. Moreover, jet components with negative/positive acceleration have similar range in values in the observed parameters.

Keywords: general, miscellaneous, method, data analysis, galaxies, jet, galaxies, active

Introduction

Several Very Long Baseline Interferometer observation of Active Galactic Nuclei(AGN), have revealed that on pc-scale, the jets of radio sources are not continuous but form blobs of radio-emitting plasma called jet component that speed away from the assumed stationary core with superluminal velocity.1,2 The jet components observed characteristics are varied with positive or negative acceleration, different speed, different sizes and brightness temperature, beside evolution in size with distance from an assumed stationary core.3,4 The observed jet component properties include acceleration, apparent speed, size distance from the core have been used to infer the jet dynamics and evolution, yet the origin and properties of these jet components are still poorly understood.5–7 In this paper, we wish to analyse the statistical behaviour of jet component selected based on radio power, size, speed, distance away from the core and acceleration (jet components with positive or negative acceleration).

Data

The data we used in this analysis were obtained from Lister et al.2 Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments (MOJAVE) observed at 15 GHz and Piner et al.1 Radio Reference Frame Image Database (RRFID) observed at 8 GHz. We selected the sources with redshift (z); flux density (S) in Jy converted to radio power (P) in WHz−1; the Full Width at Half Maximum (FWHM) in milliarcsecond (mas) which we converted to pc and used it to indicate the size of the jet component;8 the projected distance from the assumed stationary core (D); the observed apparent speed ( β a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq OSdi2aaSbaaSqaaiaadggaaeqaaaGccaGLOaGaayzkaaaaaa@3B54@ ; the observed perpendicular ( η ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq 4TdGMaeyyPI4facaGLOaGaayzkaaaaaa@3BF4@  and parallel ( η ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq 4TdGMaeSyjIafacaGLOaGaayzkaaaaaa@3B6B@ acceleration. We also estimated the observed apparent brightness temperature TB. The RRFID sample consists of 85 sources (10 BL Lac Objects (B), 5 Radio Loud Galaxies (G) and 70 Radio Loud Quasars (Q)) with 226 jet components. The MOJAVE sample consists of 296 sources with about 1237 jet components (201 Q, 17 G, 36 B and 5 narrow line radio galaxies-Seyfert I). The narrow line radio galaxies-Seyfert I were subsequently removed from our analysis since there are no counterpart in the RRFID). Each source may have more than one jet components that were observed several times. The MOJAVE sources have been observed since 19942 while the RRFID sources have been observed since 1997 (Piner et al.1 with each jet component a minimum of 20 different epochs of observations). Each observation records different values for the observable source parameters from which we estimated the average values of all the recorded observations which we used in the analysis except for the dynamical properties like acceleration and speed which were calculated by the original authors.

To select the smaller (SM)/bigger (BG) subsamples, each sample (either MOJAVE or RRFID) was divided along the median value of the size, those with sizes less than the median value formed the smaller subsample while those with sizes greater than the median value formed the bigger subsample. This choice though arbitrary, enabled us to include all the jet components in the subsamples as either SM/BG. An alternative choice would be to select for each source, the biggest or smallest jet component, leaving out others, this will lead to none inclusion of all the observed jet components in our analysis. We employed similar procedure to select dimmer (DM)/bigger (BG) subsample (looking at the size), slower (SL)/faster (FS) subsample (looking at the apparent speed) and inner (INs)/outer (OT) subsample (looking at the projected distance from the core).

We also formed subsamples consisting of jet components with positive (+VE) and negative (-VE) perpendicular/parallel accelerations for different classes of radio sources. The MOJAVE sample consists of 320 jet components with -VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqbaa@39E2@ (comprising 60 BL Lacs (Bs) jet components, 43 radio-loud galaxies (Gs) jet components, 214 radio loud quasars (Qs) jet components and 3 narrow line radio galaxies jet components) and 342 jet components with +VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqbaa@39E2@  (comprising 60 Bs jet components, 61 Gs jet components, 220 Qs jet components). The MOJAVE jet components associated with perpendicular accelerations consist of 324 jet components having -VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEbaa@3A6B@  (62 Bs jet components, 53 Gs jet components, 207 Qs jet components) and 338 jet components having +VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEbaa@3A6B@ (59 Bs jet components, 50 Gs jet components, 227 Qs jet components and 2 narrow line galaxies jet components). The RRFID sample consists 101 jet components with -VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqbaa@39E2@ (17 Bs jet components, 5 Gs jet components and 79 radio loud quasars Qs) and 117 jet components with +VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqbaa@39E2@ (21 Bs jet components, 12 Gs jet components and 84 Qs jet components). The RRFID jet components exhibiting perpendicular acceleration consist of 101 jet components with -VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEbaa@3A6B@ (13 Bs jet components, 8 Gs jet components and 79 radio loud quasars Qs) and 117 jet components with +VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEbaa@3A6B@ (25Bsjetcomponents, 6 Gs jet components and 86 Qs jet components). Due to low number statistics of Gs in the RRFID sources, we will form only the Qs and Bs subclasses of RRFID sources, but Qs, Gs, and Bs subclasses of MOJAVE sources.

We converted flux density (S) in Jy to radio power (P) in WHz−1, also estimated the observed apparent brightness temperature TB. To obtain the radio power P in WHz−1sr−1 at a given frequency of observation ( v ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam ODaaGaayjkaiaawMcaaiaacYcaaaa@3A42@  the measured flux density ( Sv ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam 4uaiaadAhaaiaawIcacaGLPaaaaaa@3A6A@ in Jansky is easily converted into specific radio power by the expression given by Leahy9

P v =8.557× 10 25 h 2 Z q 2 ( 1+z ) ( 1+α ) S v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaamODaaqabaGccqGH9aqpcaaI4aGaaiOlaiaaiwdacaaI1aGa aG4naiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacaaIYaGaaGynaa aakiaadIgadaahaaWcbeqaaiabgkHiTiaaikdaaaGccaWGAbWaa0ba aSqaaiaadghaaeaacaaIYaaaaOWaaeWaaeaacaaIXaGaey4kaSIaam OEaaGaayjkaiaawMcaamaaCaaaleqabaWaaeWaaeaacaaIXaGaey4k aSIaeqySdegacaGLOaGaayzkaaaaaOGaam4uamaaBaaaleaacaWG2b aabeaaaaa@53C0@   (1)

where is the effective redshift and for q 0 =0.5, Z q =22 ( 1+z ) 0.5 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadghadaWgaa WcbaGaaGimaaqabaGccqGH9aqpcaaIWaGaaiOlaiaaiwdacaGGSaGa amOwamaaBaaaleaacaWGXbaabeaakiabg2da9iaaikdacqGHsislca aIYaWaaeWaaeaacaaIXaGaey4kaSIaamOEaaGaayjkaiaawMcaamaa CaaaleqabaGaeyOeI0IaaGimaiaac6cacaaI1aaaaOGaaiilaaaa@4A6F@  where z is the observed redshift, α is the spectral index and here is generally assumed α=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaicdaaaa@3A6D@  (we are analysing the core components and jet components within few pc from the core), q 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadghadaWgaa WcbaGaaGimaaqabaaaaa@38EA@  is the deceleration parameter, h is the Hubble parameter. For simplicity, we adopt H0=71 km/s/Mpc.10 Sokolovsky et al.8 had used the FWHM (a) as a representation of the size (R), of the jet component in pc. Thus, we estimate R from the a-data using the expression Leahy9

R=14.53 h 1 ( Z q 1+z )a. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacqGH9a qpcaaIXaGaaGinaiaac6cacaaI1aGaaG4maiaadIgadaahaaWcbeqa aiabgkHiTiaaigdaaaGcdaqadaqaamaalaaabaGaamOwamaaBaaale aacaWGXbaabeaaaOqaaiaaigdacqGHRaWkcaWG6baaaaGaayjkaiaa wMcaaiaadggacaGGUaaaaa@4736@   (2)

Apparently, calculation of both R and P is expected to be world modeldependent due to the tight dependence of radio source size (R) and radio power (P) on the assumed world model. In the Friedman-Robertson-Walker universe, R and P respectively depend on luminosity distance ( d L ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGKbWaaSbaaSqaaiaadYeaaeqaaaGcpaGaayjkaiaa wMcaaaaa@3AB6@  as11

Rθ d L ( 1+z ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacqWI8i IocqaH4oqCcaWGKbWaaSbaaSqaaiaadYeaaeqaaOWaaeWaaeaacaaI XaGaey4kaSIaamOEaaGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0 IaaGymaaaaaaa@42AE@   (3)

And

P4π d L 2 S v ( 1+z ) α+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacqWI8i IocaaI0aGaeqiWdaNaamizamaaDaaaleaacaWGmbaabaGaaGOmaaaa kiaadofadaWgaaWcbaGaamODaaqabaGcdaqadaqaaiaaigdacqGHRa WkcaWG6baacaGLOaGaayzkaaWaaWbaaSqabeaacqaHXoqycqGHRaWk caaIXaaaaaaa@47CB@   (4)

In the current ΛCDM cosmology

d L = H 0 1 0 z [ ( 1+z ) 2 ( 1+ Ω m )z( 2+z ) Ω ] 1/2 dz, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa WcbaGaamitaaqabaGccqGH9aqpcaWGibWaa0baaSqaaiaaicdaaeaa cqGHsislcaaIXaaaaOWaa8qCaeaadaWadaqaamaabmaabaGaaGymai abgUcaRiaadQhaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGc daqadaqaaiaaigdacqGHRaWkcqqHPoWvdaWgaaWcbaGaamyBaaqaba aakiaawIcacaGLPaaacqGHsislcaWG6bWaaeWaaeaacaaIYaGaey4k aSIaamOEaaGaayjkaiaawMcaaiabfM6axnaaBaaaleaacqGHNis2ae qaaaGccaGLBbGaayzxaaaaleaacaaIWaaabaGaamOEaaqdcqGHRiI8 aOWaaWbaaSqabeaacqGHsislcaaIXaGaai4laiaaikdaaaGccaWGKb GaamOEaiaacYcaaaa@5DE6@   (5)

where Ω m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfM6axnaaBa aaleaacaWGTbaabeaaaaa@39BA@ and Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfM6axnaaBa aaleaacqGHNis2aeqaaaaa@3A76@ are, respectively, the contributions of baryonic matter and cosmological constant to the energy content of the expanding universe. Planck collaboration (2015) gives Ω m =0.3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfM6axnaaBa aaleaacaWGTbaabeaakiabg2da9iaaicdacaGGUaGaaG4maaaa@3CF3@ and Ω =0.7. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfM6axnaaBa aaleaacqGHNis2aeqaaOGaeyypa0JaaGimaiaac6cacaaI3aGaaiOl aaaa@3E65@ However, this does not introduce any significant changes in the values of the parameters we have calculated. Onuora et al.12 pointed out that at low redshift, different cosmologies vary very little and would not have any significant effect on estimated values of radio source parameters. A vast majority of objects in our samples are located at low redshift (z < 5,  z max 3.4 for MOJAVE sources &  z max 3.9) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcaqaaaaa aaaaWdbiaadQhacaqGGaGaeyipaWJaaeiiaiaaiwdacaGGSaGaaeii aiaadQhapaWaaSbaaSqaa8qacaWGTbGaamyyaiaadIhaa8aabeaak8 qacqGH8iIFcaaIZaGaaiOlaiaaisdacaqGGaGaamOzaiaad+gacaWG YbGaaeiiaiaad2eacaWGpbGaamOsaiaadgeacaWGwbGaamyraiaabc cacaWGZbGaam4BaiaadwhacaWGYbGaam4yaiaadwgacaWGZbGaaeii aiaacAcacaqGGaGaamOEamaaBaaaleaacaWGTbGaamyyaiaadIhaae qaaOGaeyipI4NaaG4maiaac6cacaaI5aWdaiaacMcaaaa@5FA8@ for RRFID sources). It is thus apparent, that for these relatively low redshift sources, the non-zero cosmological constant does not significantly scale up the estimated radio power as would be the case for high redshift sources. The observed flux is also converted into brightness temperature TB (see Piner et al. 2010) using

T B =1.22× 10 12 S( 1+z ) a 2 v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamOqaaqabaGccqGH9aqpcaaIXaGaaiOlaiaaikdacaaIYaGa ey41aqRaaGymaiaaicdadaahaaWcbeqaaiaaigdacaaIYaaaaOWaaS aaaeaacaWGtbWaaeWaaeaacaaIXaGaey4kaSIaamOEaaGaayjkaiaa wMcaaaqaaiaadggadaahaaWcbeqaaiaaikdaaaGccaWG2bWaaWbaaS qabeaacaaIYaaaaaaaaaa@4AD3@   (6)

Analyses and results

Comparison between Smaller (SM) & Bigger (BG)

The average values of the parameters for SM and BG are shown in Table 1, the large standard error is an indicative of the wide spread in their values. Results from mean values indicate that for quasars, both radio power and brightness temperature are higher for SM than for BG subsamples, while for radio galaxies, while for galaxies, the BG have higher radio power than SM. For BL Lac, the radio power of SM subsample on average is higher than BG for MOJAVE sources, while the reverse is the case for RRFID sources. Generally, the smaller jet components of all classes of radio sources are closer to their core as indicated by D, For quasar and BL Lacs of both samples, the brightness temperature of SM subsamples are higher than BG subsamples. Nevertheless, for radio galaxies, while the brightness temperature is higher for SM objects in the MOJAVE sample, it is higher for BG objects in the RRFID sample. BG jet components are further away from the core than SM sources.

 

P

R

TB

D

βa

RR

(WHz−1sr−1)

(pc)

(K)

(pc)

 

Quasars

×1022

 

×109

   

SM

15.5±6.1

2.2±0.8

62.6±7.6

10.3±7.4

5.7±3.6

BG

5.4±1.9

7.9±3.2

1.7±0.9

23.8±14.6

10.8±7.3

BL Lac

×1021

 

×109

   

SM

1.8±0.7

0.8±0.3

12.5±17.1

2.5±1.1

2.2±1.1

BG

4.8±0.4

3.8±2.1

2.8±1.6

13.2±8.4

5.6±2.9

Galaxy

×1021

       

SM

< 0.1±0.1

0.3±0.2

3.5 ± 2.6

1.3 ± 0.9

0.4±0.1

BG

169.8±20.4

3.8±2.9

29.4±3.3

8.8±5.9

2.9±0.8

MO

         

Quasar

×1025

 

×1013

   

SM

11.3 ± 3.4

1.7 ±0.5

6.9 ± 5.8

7.9 ± 4.7

6.3 ± 4.6

BG

3.5 ± 2.3

6.9 ±3.4

0.2 ± 0.1

36.6 ±28.5

9.4 ± 5.6

BL Lac

×1024

       

SM

8.4 ± 2.5

0.8± 0.4

6.2 ± 4.9

3.1 ± 1.9

2.5 ± 2.1

BG

5.2 ± 2.8

4.4± 2.2

0.2 ± 0.2

15.7 ± 9.1

4.9 ± 3.6

Galaxy

×1023

       

SM

4.1 ± 1.3

0.3± 0.2

1.5 ± 0.2

3.3 ± 0.8

0.3 ± 0.2

BG

38.3 ± 9.2

4.1± 2.4

0.2 ± 0.1

69.2 ± 7.7

0.7 ± 0.5

Table 1 Average values of the parameters for different classes of radio sources in our sample for smaller (SM), bigger (BG), jet components (for RRFID and MOJAVE samples)

In Table 2, we display the the results of correlation analyses to check for possible relation between the analysed parameters of the jet components. Generally, the results show that there is fairly strong positive R−D dependence for SM and BG of RRFID/MOJAVE sources with r ranging from 0.4 to 0.9 in the subsamples. However, the SM quasars of RRFID sample show a poor correlation with r=0.2. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGH9a qpcaaIWaGaaiOlaiaaikdacaGGUaaaaa@3BE5@  a fairly significant P-R correlation, with r0.3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGHLj YScaaIWaGaaiOlaiaaiodaaaa@3BF4@  which is attributable to strong temporal evolution in the samples.13 The P−T correlation is fairly negative for most of the subsamples, with BG of RRFID having r∼0.1, which might be due to low number statistics. The P−D correlation is strong and positive for only SM of galaxy class of both samples. This result is actually as expected from the strong positive R - D correlation observed for majority of the objects in the samples. In fact, at small scales, a positive P - D correlation would be expected due to the positive temporal evolution in such sources that are usually located at low redshifts. The coefficient results show no P β a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacqGHsi slcqaHYoGydaWgaaWcbaGaamyyaaqabaaaaa@3B83@ correlation which suggests that the observed radio power is independent of kinetic power of the jet components.

 

SM

BG

SM

BG

SM

BG

 

Q

Q

B

B

G

G

 

RR

RR

RR

RR

RR

RR

P − R

-0.1

-0.1

0.3

-0.1

0.3

0.2

P − TB

-0.4

-0.9

-0.2

-0.7

-0.9

0.1

P − D

-0.2

-0.2

0

-0.2

0.5

-0.4

P − βa

0

-0.1

0.1

-0.1

0.9

0.1

R − TB

-0.5

-0.3

-0.3

-0.4

0

-0.5

R − D

0.2

0.6

0.9

0.7

0.9

0.9

R − βa

0

0.1

0.7

0.3

0.5

-0.3

TB − D

-0.1

-0.2

-0.4

-0.3

0.1

-0.5

TB − βa

0

0

-0.3

-0.2

0.7

0.3

D − βa

0.2

0.1

0.9

0.6

0.7

-0.3

MO

MO

MO

MO

MO

MO

MO

P − R

-0.1

-0.1

0

-0.1

0.3

0

P − TB

-0.7

-0.8

-0.6

-0.8

-0.2

-0.4

P − D

-0.1

-0.1

0.1

-0.2

0.8

-0.2

P − βa

-0.1

-0.1

0

0

0.2

-0.1

R − TB

-0.4

-0.3

-0.2

-0.3

-0.2

-0.4

R − D

0.4

0.4

0.7

0.7

0.5

0.5

R − βa

0.3

0.1

0.3

0.2

0.6

0.1

TB −D

-0.2

-0.2

0.1

-0.3

0

-0.2

TB −βa

-0.2

-0.1

0

-0.2

-0.1

-0.1

D −βa

0.1

-0.2

0.4

0.3

0.2

-0.2

Table 2 Correlation coefficient results for smaller (SM), bigger (BG) (for MOJAVE (MO) and RRFID (RR) samples)

The R−T correlation is fairly negative for majority of the subsamples with r0.3. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGHLj YScqGHsislcaaIWaGaaiOlaiaaiodacaGGUaaaaa@3D93@ For majority of the subsamples, positive R β a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacqGHsi slcqaHYoGydaWgaaWcbaGaamyyaaqabaaaaa@3B85@ correlation is observed. This is an indication of increased size due to acceleration of the jet plasma. However, for the BG galaxy subsample of RRFID objects, a somewhat anti-correlation is observed. Nevertheless, we note that due the low number statistics of galaxy in RRFID sample, we put little statistical significance on any inference derived form the galaxy subsamples of RRFID. For the MOJAVE sources, there is a fair negative TB−D correlation for the RRFID sample, for the subsamples the SM/BG (r ∼−0.4/−0.3) of BL Lac and BG (r ∼−0.5) of galaxy, other subsamples of MOJAVE sources showed no correlation. TB−βa shows no correlation. D−βa shows positive correlation for BL Lac of RRFID and MOJAVE sources with r ≥ 0.3 suggesting that for these objects, the jet components are accelerated as they propagate out from the core.

Comparison between dimmer (DM) & brighter (BR)

In Table 3, the mean values and the standard errors of the parameters of jet components were shown. For quasars of both samples, the DM and BR subsamples have comparable sizes within the limit of error, while for BL Lac and galaxies of both samples, the BR jet components are larger than the DM jet components. The DM jet components have less average brighter temperature than BR for all the classes of radio sources for both samples. The DM jets components seems further from the core & have similar speed than the BR jet components for quasars of both samples, while BR jets components appear to be further from the core & have higher speed than the DM for both galaxies and BL Lac for the two samples. Several authors13,14 have argued that in flux density limited radio source samples, there is a steep change in luminosity related effects around a redshift (z), z∼0.3. Apparently, a vast majority of BL Lacs and radio galaxies in current samples are located at low redshifts z≤0.3, while majority of the quasars are located at z≥0.3. Thus the observed differences in trend of relationships between DM and BR objects for quasars and radio galaxies or/and BL Lacs could be interpreted in terms of the differences in their redshift distributions. Actually, Onah et al.13 argued that there is a positive P −D correlation for sources at z≤0.3, which upturns into an anti-correlation at z≥0.3. Our results can be understood in terms of the turnover of P −D relation between low and high redshift sources. The correlation results between the parameters of DM/BR are shown in Table 4. We note again the significant positive correlation between R−D for all the subsamples of all classes of radio sources of the two samples.

 

P

R

TB

D

βa

RR

(WHz−1sr−1)

(pc)

(K)

(pc)

 
           

Quasars

×1022

 

×109

   
           

DM

1.3 ± 0.7

5.4 ±3.3

40.5 ± 7.3

24.1 ± 7.7

8.9 ± 3.9

BR

19.9 ±6.3

4.7 ±2.9

55.3 ± 7.2

10.9 ± 4.3

8.1 ± 5.7

BL Lac

×1021

       
           

DM

0.2 ± 0.1

1.3 ± 0.9

1.7 ± 0.9

4.7 ± 3.3

2.9 ± 1.8

BR

6.4 ± 4.7

3.3 ± 2.2

13.6 ± 8.1

11.3 ± 4.2

4.9 ± 2.7

           

Galaxy

×1021

       
           

DM

< 0.4 ± 0.3

0.3 ± 0.2

1.9 ± 0.9

1.7 ± 1.3

1.5 ± 0.8

BR

169.8 ± 20.4

3.8 ± 2.9

30.9 ± 3.3

8.3 ± 4.1

2.8 ± 0.7

           

MO

         

Quasar

×1025

 

×1013

   

DM

0.8 ± 0.5

4.5 ± 2.9

0.5 ± 0.1

23.9 ± 8.9

8.3 ± 5.2

BR

14.1 ± 3.4

4.1 ± 2.9

6.8 ± 2.8

19.6 ± 8.1

8.3 ± 5.5

           

BL Lac

×1024

       
           

DM

0.2 ± 0.1

1.6 ± 1.3

0.3 ± 0.3

5.9 ± 4.1

3.1 ± 2.5

BR

11.7 ± 7.1

3.4 ± 2.3

5.6 ± 2.9

11.1 ± 7.9

4.7 ± 3.8

Galaxy

×1023

       
           

DM

0.1 ± 0.1

0.5 ± 0.2

0.6 ± 0.1

2.2 ± 0.9

1.0 ± 0.7

BR

22.9 ± 7.9

3.3 ± 2.6

0.9 ± 0.1

38.1 ± 7.4

1.9 ± 0.9

Table 3 Average values of the parameters for different classes of radio sources in our sample for dimmer (DM) brighter (BR), jet components (for RRFID and MOJAVE samples)

 

DM

BR

DM

BR

DM

BR

 

Q

Q

B

B

G

G

 

RR

RR

RR

RR

RR

RR

P − R

-0.1

-0.3

0.3

-0.1

0.4

0.2

P − TB

-0.2

-0.4

-0.6

-0.1

-0.7

0.2

P − D

-0.2

-0.2

0.1

-0.2

0.5

-0.3

P − βa

0

-0.2

0.1

-0.1

0.9

0.3

R − TB

-0.3

-0.3

-0.4

-0.3

-0.2

-0.5

R − D

0.6

0.7

0.8

0.8

0.9

0.9

R − βa

0.2

0.4

0.4

0.5

0.7

-0.2

TB −D

-0.3

-0.2

-0.5

-0.3

-0.1

-0.5

TB −βa

-0.2

-0.1

-0.3

-0.3

0.4

0.5

D − βa

0.2

0.4

0.8

0.7

0.8

-0.3

 

MO

MO

MO

MO

MO

MO

P − R

0.1

-0.2

0.2

-0.2

0.4

0.2

P − TB

-0.2

-0.7

-0.1

-0.6

-0.1

0.1

P − D

0

-0.1

0.1

-0.2

0.6

0.1

P − βa

0

-0.1

0.2

-0.1

0.8

-0.3

R − TB

-0.3

-0.2

-0.3

-0.2

-0.2

-0.4

R − D

0.6

0.5

0.9

0.8

0.9

0.6

R − βa

0.2

0.2

0.1

0.3

0.3

0.2

TB −D

-0.2

-0.1

-0.2

-0.1

-0.2

-0.3

TB −βa

-0.2

-0.2

-0.1

-0.1

-0.1

-0.2

Table 4 Correlation results for dimmer (DM) brighter (BR) components for (for MOJAVE (MO)and RRFID (RR) samples)

The P−R correlation is not significant for all the subsamples, P−T correlation is mildly negative for the BR subsamples of quasars (r ∼−0.7) and BL Lac (r ∼−0.6) of MOJAVE sources as well as the DM subsamples of BL Lac (r∼−0.6) and galaxies (r ∼−0.7) of RRFID sources. The P −D and P−βa do not show any correlation except for DM of galaxies for both samples, suggestive that the radio brightness of a source does not solely depend of simple conversion of jet kinetic power, but may depend on a number of other effects, such as the density of the ambient medium.15 R−T coefficient of correlation is mild (∼−0.3) while R−βa is mild positive for all the subsamples. There is no TB −D correlation except for DM of BL Lac and BR of galaxies for RRFID sources which appears mild and negative. Also, there no TB− βa but for RRFID sources of BL Lac which is mildly negative (∼−0.3) and for galaxies which is positive (∼0.4−0.5). D−βa seems significant for all the subsamples of RRFID sources but only significant for the subsamples of galaxies and BR of BL Lac of MOJAVE sources.

Comparison between slower (SL & faster (FS)

In Table 5, we display the mean values of the parameters we analysed for different classes of radio sources. For the RRFID sources and MOJAVE sources with the exception of the quasar class, jet components that are faster appear to be brighter (higher average values of radio power), but for quasars of MOJAVE sources, slower jet components appear brighter (higher average values of radio power). This can be explained in terms of the differences in density of the ambient medium. For the quasars, the slower jet components may be propagating through denser medium while the faster jet components propagate through less dense medium. This implies that the conversion of jet Kinetic energy into radio emission increases with density of the ambient medium.15 Generally, slower jet components have lower average values in size and are closer to the core than the faster jet components. The average values of the brightness temperature of slower jet components have higher brightness temperature for all the subsamples.

 

P

R

TB

D

βa

RR

(WHz−1sr−1)

(pc)

(K)

(pc)

 

Quasars

×1022

 

×109

   

SL

1.2 ± 0.4

4.4 ± 2.4

32.2 ± 4.3

14.7 ± 5.4

2.9 ± 1.3

FS

8.1 ± 4.5

5.7 ± 3.3

25.9 ± 9.4

20.4 ± 5.9

14.1 ± 5.9

BL Lac

×1021

       

SL

3.5 ± 0.7

2.1 ± 0.9

15.2 ± 10.1

5.2 ± 4.1

1.8 ± 0.9

FS

4.7 ± 2.5

3.1 ± 1.7

3.7 ± 1.2

12.2 ± 3.3

6.5 ± 2.8

Galaxy

×1021

       
           

SL

4.7 ± 2.6

1.8 ± 1.1

2.5 ± 1.3

5.1 ± 2.1

0.7 ± 0.5

FS

15.2 ± 8.8

0.7 ± 0.3

4.6 ± 3.1

3.6 ± 1.5

3.5 ± 0.5

MO

         

Quasar

×1025

 

×1013

   
           

SL

8.9 ± 1.8

3.7 ± 2.6

5.5 ± 1.7

18.3 ± 5.1

3.1 ± 1.8

FS

5.9 ± 3.9

5.1 ± 3.1

1.2 ± 0.7

20.3 ± 5.7

13.6 ± 4.5

           

BL Lac

×1024

       

SL

6.7 ± 3.9

1.8 ± 1.4

3.9 ± 1.3

6.3 ± 4.1

0.6 ± 0.5

FS

5.3 ± 2.3

3.5 ± 2.4

3.6 ± 1.4

10.5 ± 7.2

7.2 ± 3.1

Galaxy

×1023

       
           

SL

82.5 ± 3.6

1.2 ± 0.6

1.1 ± 0.6

15.2 ± 4.5

0.1 ± 0.1

FS

14.8 ± 9.8

3.7 ± 2.5

0.4 ± 0.1

25.2 ± 9.2

2.8 ± 1.9

Table 5 Average values of the parameters for different classes of radio sources in our sample for slower (SL) faster (FS), jet components (for RRFID and MOJAVE samples)

Table 6 is the correlation coefficient results for different classes of radio sources. We note the strong correlation between R −D which is similar to other subsamples. P−R is not significant for all subsamples of both samples except for galaxies of RRFID sources. The P−TB correlation is strong and negative for all subsamples except for galaxies of MOJAVE sources, while the P−D and P−βa correlation coefficients indicate no relation between P−D and P−βa for all the subsamples except for galaxies of RRFID which showed negative correlation for SL (r ∼−0.3) and positive correlation for FS (r∼0.9) and for galaxy FS subsamples of MOJAVE sources with r ∼−0.4. R−T show correlation, R −βa show positive correlation for some of the subsamples of RRFID sources,but no correlation for the MOJAVE sources. The correlation coefficient of TB−βa & TB−D indicate there in no form of relation between the parameters for all the subsamples. D−βa correlation coefficient indicates no correlation for MOJAVE samples, but a positive correlation for some RRFID subsamples.

 

SL

FS

SL

FS

SL

FS

 

Q

Q

B

B

G

G

 

RR

RR

RR

RR

RR

RR

P − R

-0.2

-0.2

0.1

0

0.8

0.5

P − TB

-0.6

-0.4

-0.1

-0.7

-1

-0.8

P − D

-0.2

-0.3

0.1

-0.1

0.1

0.4

P − βa

-0.2

0

0.2

0

-0.3

0.9

R − TB

-0.3

-0.2

-0.2

-0.3

0.6

0

R − D

0.6

0.6

0.9

0.9

0.6

1

R − βa

0.1

0.3

0.4

0.6

-0.4

0.8

TB −D

-0.2

-0.2

-0.3

-0.4

0

-0.1

TB −βa

-0.2

-0.1

-0.3

-0.2

-0.1

0.5

D − βa

0

0.3

0.5

0.7

-0.1

0.8

 

MO

MO

MO

MO

MO

MO

             

P − R

-0.1

-0.1

-0.1

-0.1

0.3

0.2

P − TB

-0.7

-0.7

-0.6

-0.9

0

-0.1

P − D

-0.1

-0.1

-0.1

0

0.1

0.2

P − βa

0

-0.1

0.2

0

0.1

-0.4

R − TB

-0.2

-0.2

-0.2

-0.1

-0.2

-0.3

R − D

0.6

0.7

0.9

0.8

0.9

0.5

R − βa

0.1

0.1

0.4

0.1

0.2

0

TB −D

-0.1

-0.2

-0.2

-0.1

-0.1

-0.2

TB −βa

-0.1

-0.1

0

-0.1

-0.2

-0.1

Table 6 Correlation results for slower (SL) faster (FS) components for (for MOJAVE (MO) and RRFID (RR) samples)

IN/OT

In Table 7, we showed the average values of the inner and outer jet components with associated error. The average values indicate that jet components closer to the core are brighter, higher brightness temperature, smaller in size and are slower in speed than jet components that are further away from the core. The correlation results shown in Table 8 indicate similar significant correlation in the R−D relation though small r∼0.2 for IN subsamples of quasar of RRFID sources and galaxies of MOJAVE sources. The P−T correlation is fair for some subsamples while the P−T correlation is mildly strong and negative except for galaxies of MOJAVE sources. There is no P−D nor P−βa correlation, though OT subsample of galaxies of RRFID subsample suggest strong positive correlation. For R−T, R−βa, TB−D, TB−βa and D−βa, correlation coefficients in Table 8 indicate that some subsamples correlation is strong and positive, some fairly negative, while some subsamples showed no correlation between the pairs of parameters studied.

 

P

R

TB

D

βa

RR

(WHz−1sr−1)

(pc)

(K)

(pc)

 

Quasars

×1022

 

×109

   

IN

15.1 ± 5.6

3.2 ± 1.5

99.6 ± 6.3

5.8 ± 2.3

6.1 ± 3.9

OT

5.4 ± 1.4

6.9 ± 3.5

83.6 ± 13.3

29.4 ± 14.9

10.8 ± 6.8

BL Lac

×1021

       
           

IN

4.4 ± 0.8

1.1 ± 0.5

17.2 ± 2.1

2.8 ± 1.1

2.7 ± 1.7

OT

3.8 ± 2.3

4.1 ± 2.2

1.5 ± 1.1

14.7 ± 8.6

5.7 ± 3.3

Galaxy

×1021

       

IN

78.8 ± 13.8

0.3 ± 0.2

18.5 ± 2.6

1.1 ± 0.7

1.1 ± 0.3

OT

11.7 ± 8.8

2.3 ± 1.1

16.7 ± 2.9

8.1 ± 5.6

3.1 ± 0.8

MO

         
           

Quasar

×1025

 

×1013

   

IN

11.5 ± 3.3

2.2 ± 1.1

6.3 ± 1.9

5.9 ± 2.4

7.2 ± 4.7

OT

3.3 ± 2.3

6.5 ± 3.6

0.7 ± 0.7

37.7 ± 15.1

9.6 ± 5.7

BL Lac

×1024

       

IN

6.3 ± 1.8

0.9 ± 0.5

3.4 ± 2.8

2.5 ± 1.1

2.6 ± 2.8

OT

5.6 ± 3.4

4.1 ± 2.3

2.9 ± 1.8

15.2 ± 8.3

5.3 ± 3.6

Galaxy

×1023

       
           

IN

3.2 ± 1.2

0.4 ± 0.3

1.9 ± 0.4

0.9 ± 0.6

1.1 ± 0.4

OT

3.8 ± 0.9

3.3 ± 2.5

0.3 ± 0.2

39.5 ± 9.2

1.9 ± 0.9

Table 7 Average values of the parameters for different classes of radio sources in our sample for inner (IN) outer (OT), jet components (for RRFID and MOJAVE samples)

 

IN

OT

IN

OT

IN

OT

 

Q

Q

B

B

G

G

 

RR

RR

RR

RR

RR

RR

P − R

-0.2

-0.1

0.6

0.1

0.1

0.9

P − TB

-0.4

-0.8

-0.1

-0.7

-0.8

-1

P − D

-0.4

-0.2

0.2

0

-0.1

0.7

P − βa

0

-0.1

0.4

-0.1

0.1

0.4

R − TB

-0.3

-0.2

-0.2

-0.3

-0.3

0.9

R − D

0.2

0.5

0.8

0.7

1

0.9

R − βa

0.2

0.2

0.8

0.3

-0.3

0.5

TB −D

-0.3

-0.1

-0.4

-0.2

-0.3

0.8

TB −βa

0

-0.2

-0.3

-0.2

0.4

0.5

D − βa

0.3

0

0.8

0.6

-0.3

0.7

             
 

MO

MO

MO

MO

MO

MO

             

P − R

-0.1

-0.1

0

-0.1

0.9

0.2

P − TB

-0.7

-0.6

-0.6

-0.9

0

-0.1

P − D

-0.1

0

0

-0.1

0.1

0.1

P − βa

-0.1

-0.1

0

0

0

-0.3

R − TB

-0.2

-0.2

-0.2

-0.1

-0.1

-0.4

R − D

0.4

0.4

0.7

0.7

0.2

0.6

R − βa

0.3

0.1

0.2

0.1

0.8

0.1

TB −D

-0.3

-0.1

-0.1

-0.1

-0.3

-0.2

TB −βa

-0.2

-0.1

-0.1

0

0

-0.1

Table 8 Correlation results for inner (IN), outer (OT) components for galaxies (for MOJAVE (MO )and RRFID (RR) samples)

Comparative analyses of jet components with positive and negative acceleration and parallel and perpendicular acceleration

Table 9 showed the average values of the analysed parameters (P, R, TB, D, βa perpendicular ( η ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq 4TdGMaeyyPI4facaGLOaGaayzkaaaaaa@3BF4@  parallel acceleration η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqbaa@39E2@ for jet components with negative (-VE) acceleration and jet components (+VE) acceleration) for the MOJAVE and RRFID sources, for all the classes of radio sources combined (ALL) and for different classes of radio sources (Q - quasars; B - BL Lac; G galaxies). For the G subclass of MOJAVE sources, the average values of the analysed jet components parameters are similar for all the subsamples except the acceleration, which seem to show higher magnitude from the average values for the | η | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaemaabaGaeq 4TdGMaeSyjIafacaGLhWUaayjcSdaaaa@3D04@ than | η |. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaemaabaGaeq 4TdGMaeyyPI4facaGLhWUaayjcSdGaaiOlaaaa@3E3F@ .

  η ∥  η ∥  η ⊥ η ⊥ η ∥  η ∥  η ⊥ η ⊥
 

MO

MO

MO

MO

RR

RR

RR

RR

ALL

-VE

+VE

-VE

+VE

-VE

+VE

-VE

+VE

P(WHz1sr1)  

1.1×1025

0.9×1025  

1.1×1025  

2.1×1022

2.1×1022

2.1×1022

2.1×1022

1.8×1022

R (pc)

3.1

2.4

2.7

2.5

3.7

2.5

3.2

3.1

TB (K)

0.1 ×1013 

0.2×1013

0.1×1013  

0.2×1013

1.4×109

2.8×109

2.2×109

2.1×109

D(pc)

11.6

7.4

7.9

9.6

9.3

8.6

10.5

7.4

βa

4.9

4.6

4.3

5.1

5.3

4.2

5.1

4.2

η

-13.1

12.6

-7.3

9.1

-0.6

0.5

-0.5

0.4

                 

B

B

B

B

B

B

B

B

B

                 

P (WHz1sr1)

1.4×1024

0.4×1024

0.6×1024

0.5×1024

9.4×1020

7.2×1020

7.2×1020

9.9 ×1020

R (pc)

1.6

1.5

2.1

1.3         

1.8

1.5

1.5

1.5

TB (K)

0.1×1013

0.1×1013 

0.1×1013  

0.2×1013

2.1×109

0.8×109

2.3×109

0.8×109

D(pc)

6.1

3.5

6

3.2

5.2

4.9

5.2

4.9

βa

1.1

2.7

3.5

1.1

2.7

4.1

2.8

4

η

-16.6

25.5

-21.1

4.6

-0.6

0.5

-0.3

0.3

                 

Q

Q

Q

Q

Q

Q

Q

Q

Q

                 

P (WHz1sr1)  

2.4×1025  

2.3×1025  

2.3×1025  

2.6×1025  

3.1×1022

3.8×1022  

3.5×1022

3.6×1022

R (pc)

4.2

2.8

3.5

3.3

4.2

3.6

3.7

3.8

TB (K)

0.1×1013  

0.4×1013  

0.2×1013  

0.3×1013

1.3×109

3.4×109

1.9×109

3.5×109

D(pc)

16.4

11.1

13.2

13.9

11.6

9.9

11.8

8.7

βa

7.6

6.7

6.2

8.1

6.7

5.4

6.9

5.4

η

-10.9

10.4

-5.6

10.2

-0.6

0.5

-0.5

0.5

                 

G

G

G

G

G

G

G

G

G

                 

P (WHz1sr1)

0.4×1023

0.3×1023

0.4×1023

0.3×1023

       

R (pc)

0.4

0.3

0.4

0.4

       

TB (K)

0.1×1013

0.1×1013

0.1×1013

0.1×1013

       

D (pc)

1.7

1.5

1.4

1.6

       

βa

0.2

0.3

0.2

0.3

       

η

-23.3

18.3

-13

9.2

       

Table 9 The average values for p, R , TB, D, ΒA, η⊥ and for jet component with negative (-ve) and positive (+ve) acceleration respectively for the mojave and rrfid sources (for all the subclasses of radio sources combined (all), bl lac (B), galaxies (G) and radio quasars (Q))

For the B subclass of MOJAVE sources using the average values shown in Table 9, the average values P of the jet components showing-VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqbaa@39E2@ appears to be higher than those showing +VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqbaa@39E2@ but is similar for both jet components showing -VE η. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEjaac6caaaa@3B1D@ and +VE η. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEjaac6caaaa@3B1D@ Comparison between η/η, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqjaac+cacqaH3oaAcqGHLkIxcaGGSaaaaa@3EA2@ jet components with -VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqbaa@39E2@ have higher average values of P than jet components with -VE η, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEjaacYcaaaa@3B1B@ while those with +VE acceleration have similar average P. The average R is similar for both subsamples of jet components showing η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqbaa@39E2@ but those of VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEbaa@3A6B@  is higher than that of +VE η. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEjaac6caaaa@3B1D@ Average values of TB are similar for all the subsamples, while the average value of D is generally higher for jet components with -VE acceleration. The average value of βa for jet components with -VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqbaa@39E2@ is higher than that of +VE η, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw IiqjaacYcaaaa@3A92@  while jet components with -VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEbaa@3A6B@  have lower average value of βa than the +VE counterpart. Generally, the jet components of B show higher magnitude of -VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEbaa@3A6B@ than η, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw IiqjaacYcaaaa@3A92@ but higher +VE.

The results from the median values of the analysed parameters for the Q subclass of MOJAVE sources indicate that the averages P and βa of all the subsamples are similar, (though it seems that average values of βa of -VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqbaa@39E2@ is higher than +VE η, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw IiqjaacYcaaaa@3A92@ while average βa of +VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEbaa@3A6B@  is higher than that of -VE η). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEjaacMcacaGGUaaaaa@3BCA@  The median values of R and D suggest that the size and the projected distance of jet components with -VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqbaa@39E2@ are larger than those with +VE η. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqjaac6caaaa@3A94@ The average TB of +VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqbaa@39E2@ is higher than those of -VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqbaa@39E2@  but are similar for both -VE and +VE η. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEjaac6caaaa@3B1D@ Generally, jet components display similar average magnitude values of +VE/-VE η. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqjaac6caaaa@3A94@  The average values of R for all the subsamples are similar for each class of radio sources. Jet components with +VE η/η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEjaac+cacqaH3oaAcqWILicuaaa@3DF2@ show low values of average TB but higher values of average βa than those with -VE η/η. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEjaac+cacqaH3oaAcqWILicucaGGUaaaaa@3EA4@ All the subsamples have similar average values of D. The magnitudes of the average acceleration indicate that jet components have show higher parallel acceleration than perpendicular acceleration. For the Q subclass of RRFID, median results from Table 2 suggest that higher values of P for jet component with +VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqbaa@39E2@ but lower values of R than those with -VE η, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw IiqjaacYcaaaa@3A92@  but similar values for jet components with +VE/-VE η. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEjaac6caaaa@3B1D@ For TB, jet components with -VE η/η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEjaac+cacqaH3oaAcqWILicuaaa@3DF2@ have lower average TB, higher average D and βa than jet components with +VE η/η. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEjaac+cacqaH3oaAcqWILicucaGGUaaaaa@3EA4@ Generally, all the subsamples indicate similar average magnitude of η. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjaac6 caaaa@396C@

Using the ALL subclass in both Table 9, we compare the jet component parameters of MOJAVE (observed at 15 GHz) and RRFID (observed at 8GHz) sources. Generally, the radio power and the brightness temperature of the MOJAVE sources are higher than those of RRFID being observed at higher radio power may be sampling the inner regions of the radio sources. The average jet component sizes and apparent speeds are similar in range for both MOJAVE and RRFID samples Obviously, the observed physical size of radio sources is independent of frequency of observation (Onuora and Okoye 1983). Jet components with -VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqbaa@39E2@ of MOJAVE seem to have large average values of D than those of RRFID sources but the reverse is the case for jet components with +VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqbaa@39E2@ The jet components of RRFID sources -VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEbaa@3A6B@ appear to have larger values of average D than those of MOJAVE sources but reverses for jet components with +VE η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEbaa@3A6B@ Generally, the average values of η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aObaa@38BA@ of RRFID sources are lower than those of RRFID sources. From our results, both 8 GHz and 15 GHz observations have slightly varying D but with the 8 GHz observation having slightly higher average R across all the subsamples. These results suggest jet components may be composed of different layers/sheaths with the inner layers/sheaths accelerating faster than the outer layer/sheaths (with higher frequency observations sampling the inner layer/sheath).

In Table 10, we display the ratio of median values of the parameters of jet components with negative acceleration to jet components and positive acceleration columns 2 & 3 for MOJAVE sources and columns 6 & 7 for RRFID. Sources for η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqbaa@39E2@ and η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw QiEbaa@3A6B@ respectively; while in Columns 4 & 5(for MOJAVE sources) and 8& 9 (for RRFID Sources), we present the ratio η/η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjablw Iiqjaac+cacqaH3oaAcqGHLkIxaaa@3DF2@ for jet components with -VE and +VE acceleration respectively. This was done for various subclasses of radio sources (Bs, Gs and Qs). The results indicate that the jet component parameters have similar range of values (the ratio values ∼1) with few parameters of some subclasses at most about 2 factors greater or less (the values in Table 10 ranges from ∼0.5−2.3) except for -VE/+VE∼5 for ( η ),η6 for +VE and -VE/+VE~ 3 for η of MOJAVE Bs MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq 4TdGMaeyyPI4facaGLOaGaayzkaaGaaeilaiabeE7aOjablwIiqjab lYJi6iaabAdacaqGGaGaaeOzaiaab+gacaqGYbGaaeiiaiaabUcaca qGwbGaaeyraiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaaeylaiaa bAfacaqGfbGaae4laiaabUcacaqGwbGaaeyraiaab6hacaqGGaGaae 4maiaabccacaqGMbGaae4BaiaabkhacaqGGaGaeq4TdGMaeSyjIaLa aeiiaiaab+gacaqGMbGaaeiiaiaab2eacaqGpbGaaeOsaiaabgeaca qGwbGaaeyraiaabccacaqGcbGaae4Caiaab6cacaqGGaaaaa@65FD@ The similarities in values of the jet component parameters for the various subsamples considered indicates that jet components with -VE, +VE, parallel or perpendicular acceleration undergo similar dynamic and kinematic evolution.

 

MO

MO

MO

MO

RR

RR

RR

RR

  η ∥  η ⊥

−VE

+VE

η ∥  η ⊥

−VE

+VE

  VE +VE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaaeaa aaaaaaa8qacqGHsislcaWGwbGaamyraaWdaeaapeGaey4kaSIaamOv aiaadweaaaaaaa@3C76@ VE +VE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaaeaa aaaaaaa8qacqGHsislcaWGwbGaamyraaWdaeaapeGaey4kaSIaamOv aiaadweaaaaaaa@3C76@ η η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq 4TdGMaeSyjIafabaGaeq4TdGMaeyyPI4faaaaa@3D4F@ η η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq 4TdGMaeSyjIafabaGaeq4TdGMaeyyPI4faaaaa@3D4F@ VE +VE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaaeaa aaaaaaa8qacqGHsislcaWGwbGaamyraaWdaeaapeGaey4kaSIaamOv aiaadweaaaaaaa@3C76@ VE +VE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaaeaa aaaaaaa8qacqGHsislcaWGwbGaamyraaWdaeaapeGaey4kaSIaamOv aiaadweaaaaaaa@3C76@ η η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq 4TdGMaeSyjIafabaGaeq4TdGMaeyyPI4faaaaa@3D4F@ η η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq 4TdGMaeSyjIafabaGaeq4TdGMaeyyPI4faaaaa@3D4F@

Bs

               

P

3.4

1.1

2.3

0.8

1.3

0.7

1.3

0.7

R

1

1.7

0.8

1.2

1.2

1

1.2

1

TB

1.8

0.5

1.7

0.5

2.6

2.8

0.9

1

D

1.7

1.9

1

1.1

1.1

1.1

1

1

βa

0.4

3.3

0.3

2.6

0.7

0.7

1

1

η

0.7

4.6

0.8

5.5

1.3

1

2.1

1.7

Qs

               

P

1.1

0.9

1.1

0.9

0.8

1

0.9

1.1

R

1.5

1.1

1.2

0.9

1.2

1

1.1

0.9

TB

0.3

0.7

0.6

1.4

0.4

0.5

0.7

1

D

1.5

0.9

1.2

0.8

1.2

1.4

1

1.1

βa

1.1

0.8

1.2

0.8

1.2

1.3

1

1

η

1

0.5

1.9

1

1.1

1

1.4

1.1

Gs

               

P

1.3

1.1

1.2

1.1

n/a

n/a

n/a

n/a

R

1.2

1

1

0.9

n/a

n/a

n/a

n/a

TB

0.5

0.9

0.8

1.3

n/a

n/a

n/a

n/a

D

1.1

0.9

1.2

0.9

n/a

n/a

n/a

n/a

βa

0.9

0.9

1

1.1

n/a

n/a

n/a

n/a

η

1.3

1.4

1.8

2

n/a

n/a

n/a

n/a

Table 10 The ratio of median values of the parameters of jet component with negative acceleration to jet components with positive acceleration a

The correlation analysis results shown in Table 11 indicate that generally, the acceleration of jet components for the different subsamples, do not depend on the jet component parameters (P, R, TB, D, & βa) used in the analyses, though it does seem that for the Bs and Gs subclasses, acceleration shows slight dependence on observed apparent speed. The none dependence of the jet component acceleration on the analysed jet component parameters may be a pointer that other factors like density/pressure gradient can be playing a significant role. Perucho et al.(2019) noted that jets can undergo an acceleration phase as the jet head propagates down the galaxy negative density/pressure gradient, because of the drop in ambient density.

 

MO

MO

MO

MO

RR

RR

RR

RR

  η ∥  η ∥  η ⊥ η ⊥ η ∥  η ∥  η ⊥ η ⊥
 

-VE

+VE

-VE

+VE

-VE

+VE

-VE

+VE

Bs

               

η − βa

-0.3

0.6

-0.2

0.5

-0.5

0.6

0.2

0

η − D

0.1

-0.2

0.1

-0.1

0.1

0.5

-0.6

0

η − TB

0.1

-0.1

0.2

-0.1

0.1

-0.2

0.2

0.2

η − R

0

-0.1

0.1

-0.1

0

0.3

-0.6

-0.1

η − P

0.1

-0.2

0.2

-0.1

-0.1

-0.2

0.1

0.6

Qs

               

η − βa

-0.1

0.2

-0.2

0.1

-0.2

0.1

0

0.1

η − D

0.1

0

0.1

-0.1

0

0

0.1

0

η − TB

0.1

-0.1

0.2

0

-0.1

0.3

-0.2

0.1

η − R

0

0

0

-0.1

0.1

-0.1

0

0

η − P

0.1

-0.1

0.1

-0.1

-0.4

0.1

-0.2

0.1

Gs

               

η − βa

-0.6

0.7

-0.5

0.5

n/a

n/a

n/a

n/a

η − D

0

-0.1

0.1

-0.1

n/a

n/a

n/a

n/a

η − TB

0.2

-0.1

0.1

-0.1

n/a

n/a

n/a

n/a

η − R

-0.4

-0.1

-0.1

0.4

n/a

n/a

n/a

n/a

Table 11 The correlation coefficients between η & other jet component parameters (z, P, R, TB, D, & βa) for negative (-ve) and positive (+ve) η ∥  & η ⊥ for MOJAVE (MO) and RRFID (RR) sources (for all the subclasses of radio sources combined (ALL), bl lac (B) and radio quasars (Q))

Discussions & summary

The R−D correlation found has been reported by Onuchukwu et al.3,4 and by Pushkarev et al.16 who reported a single power-law dependence α  R k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabseacaqGGa GaeqySdeMaaeiiaiaabkfadaahaaWcbeqaaiaabUgaaaaaaa@3CAA@ with k1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgacqWI8i IocaaIXaaaaa@39E2@ and indicates that self-similar model;17,18 applied to large scale jet may work on jet components. The general lack of P−R correlation for all the subsamples of quasars and BL Lac of both samples except for galaxies class of both samples can be attributed to environment within the inner regions of the radio source (the environmental factors responsible for brighter sources is also the factor that limits the growth in size since the mean values suggested that smaller sources are brighter for quasars. P−T −B correlation seems inverse for most of the quasar, BL Lac and galaxy subsamples, but according to equation 6, one would expect some kind of direct relation. The possible explanation is that within the core regions of jet components, other factors (which may include environment-19,20 play active role in the brightness of the source, not just the intrinsic kinetic power, since there is lack of P−βa correlation. Notice from the average values, that the brighter jet components are smaller, closer to the core where density are expected to be high and there is no difference in the average values of the speed of brighter and dimmer jet components. Similar environmental factors may be slowing down the jets, when they are closer to the core (average values of the speed of jet components closer to the core less than those further away from the core - Table 7).20–23

Acknowledgments

We acknowledge the contributions of our colleagues from the Astronomical Society of Nigeria (ASN) and the useful discussion we had with Prof. A. A. Ubachukwu of the Astronomy and Astrophysics Research Lab University of Nigeria Nsukka.

Conflicts of interest

The author declares there is no conflict of interest.

References

  1. Piner BG, Pushkarev AB, Kovalev YY, et al. Relativistic Jets in the Radio Reference Frame Image Database II: Blazar Jet Accelerations from the First 10 Years of Data (1994 - 2003). APJ. 2012;758:84.
  2. Lister MN, Aller MF, Aller HD, et al. Radio observations of active galactic nuclei with mm-VLBI. AJ. 2016;152:12.
  3. Onuchukwu CC, Ubachukwu AA. On the Lorentz factor of superluminal sources. Research in Astronomy and Astrophysics. 2013a;13(5):509.
  4. Onuchukwu CC, Ubachukwu AA. Ap & SS. 2013b;348:1930.
  5. La¨hteem¨aki A, Valtaoja E. APJ. 1999;521:493.
  6. Jorstad SG, Marscher AP, Lister ML, et al. Polarization structure in the core of 1803+784: a signature of recollimation shocks?. AJ. 2005;130:1418.
  7. Hovatta T, Valtaoja E, Tornikoski M, et al0 Measurement of the cross section for tt̄ production in pp̄ collisions using the kinematics of lepton+jets events. A&A. 2009;494:527.
  8. Sokolovsky KV, Kovalev YY, Pushkarev AB, et al. Identification of γ-ray emission from 3C 345 and NRAO 512. A&A. 2011;535A:24S.
  9. Leahy JP. Interpretation of Large Scale Extragalactic Jets in Beams and Jets in Astrophysics. In: PA Hughes editor. Cambridge University Press, Cambridge. 1991. p.585.
  10. Komatsu E, Dunkley J, Nolta MR, et al. Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation. APJS. 2009;180:330.
  11. Ubachukwu AA. Relativistic Beaming and Orientation Effects in Lobe-Dominated Quasars. AP&SS. 1998;257:23.
  12. Onuora LI, Okoye SE. Evolution of extragalactic radio sources andquasar/galaxy unification. APJ. 1983;270:360.
  13. Onah CI, Ubachukwu AA, Odo FC. Selection effects and structural symmetries in the orientation based unified scheme. Rev MeX AA. 2018;54:271.
  14. Alhassan JA, Ubachukwu AA, Odo FC. On the Absence of Core Luminosity–Core-Dominance Parameter (𝑃C - 𝑅) Correlation in Radio Galaxies and BL Lacs. JOAA. 2013;34:61.
  15. Baum, Stefi A, Zirbel, et al. Toward Understanding the Fanaroff-Riley Dichotomy in Radio Source Morphology and Power. ADS. 1795;451:88.
  16. Pushkarev AB, Kovalev YY, Lister ML, et al. MOJAVE - XIV. Shapes and opening angles of AGN jets. MNRAS. 2017;468:4992P.
  17. Falle SAEG. Self-similar jets. MNRAS. 1991;250:581.
  18. Scheuer PAG. On the jet speeds of classical double radio source. MNRAS. 1995;277:331.
  19. Falcke H, K¨ording E, Nagar NM. Compact radio cores: from the first black holes to the last. NewAR. 2004;48:1157.
  20. Giacalone J, Jokipii JR. Magnetic field amplification by shocks in turbulent fluids. The Astrophysical Journal. 2007;663:L41–L44.
  21. Perucho M, Mart´ı JMV, Quilis V. Simulating the dynamics and non-thermal emission of relativistic magnetized jets I. Dynamics. MNRAS. 2019;482:3718.
  22. Piner BG, Pant N, Edwards PG. The Innermost Regions of Relativistic Jets and Their Magnetic Fields. APJ. 2010;723:1150.
  23. Planck Collaboration XIII, Planck 2015 results. XIII. Cosmological parameters. A&A. 2016;594:A13.
Creative Commons Attribution License

©2020 Chika. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.