Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Opinion Volume 3 Issue 4

An explanation of the Titius-Bode law resulted by a Kant-Laplace type model of the solar system’s forming

Marius Arghirescu

Patents Department, State office for inventions and trademarks, Romania

Correspondence: Marius Arghirescu, Patents Department, State office for inventions and trademarks, Romania

Received: July 30, 2019 | Published: August 16, 2019

Citation: Arghirescu. An explanation of the titius-bode law resulted by a Kant-Laplace type model of the solar systems forming. Phys Astron Int J.2019;3(4):152-154. DOI: 10.15406/paij.2019.03.00174

Download PDF

Abstract

In the paper is shows that the Titius-Bode relation of the distances Sun-planet may be explained by a Kant-Laplace type model of planetary system forming, considering a linear decreasing of the lenticular protoplanetary nebula’s density and the constancy of its rotation speed. The resulted conclusions is that the protoplanetary material rings were formed by the successive halving of the nebular mass MN and thereafter- of the remained part and may be generalized for the star clusters, for the galaxies forming but also for the expansion of the galaxies super-clusters and of the Universe.

Keywords: titius-bode relation, kant-laplace model, solar system, protoplanetary rings, galaxy rotation, star clusters

Introduction

From the Kepler's Second Law, it is expected that the rotation velocities of the stars in a galaxy around the galactic center will decrease with the distance from the center, similar to the planets in the Solar System, but this effect was not observed,1 the galaxy rotation curve remaining flat as the distance from the center increases. The conclusion was that there is a lot of non-luminous matter (dark matter) in the outskirts of the galaxy. Rubin and Ford showed in 1980 that most galaxies must contain about six times as much dark as visible mass. In a cold genesis theory,2,3,4 which explain also the elementary astroparticles as quantified structures generated by quantum and sub-quantum (etherono-quantonic) vortexes, the main axiom postulates that the basic mechanism of material structures forming process is the cascade vortexes forming process, in accordance also with other theories (AN Kolmogorov, etc.). Relative to the Universe structure, a consequence of this axiom’ generalization is the fact that the vortices cascade fractalic organization of the Universe is governed by the similitude’ principle by which may be argued also the existence of a similitude between the Kant-Laplace genesis mechanism of a planetary system and a vortexial mechanism of the galaxies forming or also of the Universe’ genesis. This similitude results from the generality of the vortexial movement also to the Universe’ scale and may be better understood by the fact that the relation Titius-Bode referring to the distance between Sun and a planet:

d=0,4+0,3x 2 n ( u.a ); (n=, 0,1,2,...7); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaaaaaaaape Gaamizaiabg2da9iaaicdacaGGSaGaaGinaiabgUcaRiaaicdacaGG SaGaaG4maiaadIhacaaIYaGcdaahaaqcfaAabeaajugibiaad6gaaa GcpaWaaeWaaKqbGgaajugib8qacaWG1bGaaiOlaiaadggaaKqbG+aa caGLOaGaayzkaaqcLbsapeGaai4oaiaabccapaGaaiika8qacaWGUb Gaeyypa0JaeyOeI0IaeyOhIuQaaiilaiaabccacaaIWaGaaiilaiaa igdacaGGSaGaaGOmaiaacYcacaGGUaGaaiOlaiaac6cacaaI3aWdai aacMcapeGaai4oaaaa@59FA@   (1)

(u.a. – astronomical unit), can be explained using the Kant-Laplace theory (1755 and 1796) about the genesis of the Solar system, theory which assumes that the planets arises in the vortex nuclei of some material “rings” separated successively from a rotating protoplanetary nebula, (Figure 1). The Kant-Laplace’s model of the Solar System forming seems to be confirmed by the discovery in 1992 of a proto-planetary system around the Beta Pictoris star (that appears surrounded by a disk of cosmic dust of 360 u.a.). The known explanation of the Titius-Bode relation assumes a specific distribution of the vortex centers which generated the planets. Is well known the theory of Karl Weizsäcker (1944) who proposes the empiric relation:

r n = r 0 ( 1,894 ) M , with:  r 0 =0,3 u.a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKyqcLbsaca WGYbGcdaWgaaqcfayaaKqzadGaamOBaaqcfayabaqcLbsacqGH9aqp caWGYbWcdaahaaqcfayabeaajugWaiaaicdaaaGcdaqadaqcfayaaK qzGeGaaGymaiaacYcacaaI4aGaaGyoaiaaisdaaKqbakaawIcacaGL PaaalmaaCaaajuaGbeqaaKqzadGaamytaaaajugibiaacYcaqaaaaa aaaaWdbiaacckacaWG3bGaamyAaiaadshacaWGObGaaiOoaiaaccka caWGYbWcdaahaaqcfayabeaajugWaiaaicdaaaqcLbsacqGH9aqpca aIWaGaaiilaiaaiodacaGGGcGaamyDaiaac6cacaWGHbaaaa@5E40@   (2)

Figure 1 The Solar system forming.

which was amended by Chandrasekhar (1946), D der Haar (1950) and by V Vilcovici (1954)- which used the Kant-Laplace hypothesis completed by VG Fesenkan.

Theoretical model of kant-laplace type

Based on the mentioned similitude, we may consider that- excepting a little central part M0, the proto-solar nebula formed as a mass MN of gas (H2) and dust, which became lenticular, had a rotation speed ω·r =  v w ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbiabeM 8a3jaacElacaWGYbGaaeiiaiabg2da9iaabccacaWG2bWdamaaBaaa leaapeGaam4DaaWdaeqaaKqba+qacqaHjpWDkiabgkHiTaaa@42AD@ constant of the rest part M N0 =  M N   M 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqaaaaaaaaaWdbi aad2eapaWaaSbaaeaapeGaamOtaiabgkHiTiaaicdaa8aabeaapeGa eyypa0Jaaeiiaiaad2eapaWaaSbaaeaapeGaamOtaaWdaeqaa8qaca GGtaIaaeiiaiaad2eapaWaaSbaaeaapeGaaGimaaWdaeqaaaaa@41CA@ , this speed being kept after its dividing into proto-planetary material rings, by the kinetic energy, preserving for the nebular particles circulated on the quasi-tangential direction of the rotation, a constant kinetic energy: ET = mpv2w/2 = constant. A constant rotation speed: v ω =ω.r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaOqaaaaaaaaaWdbi aadAhajuaGpaWaaSbaaKqbGgaapeGaeqyYdChapaqabaWdbiabg2da 9iabeM8a3jaac6cacaWGYbaaaa@403C@  is specific to galaxies such as M33 or NGC5055, for example, and was observed also to some star clusters with expanding periphery. A possible explanation supposes by CGT the existence of a galactic sinergono-quantonic (pseudo)vortex of a central super-black hole and a ‘dark matter’ vortex or a local accumulation of galactic dust.

Having: k- the proto-planet’s number in the sense of its distance from the Sun, the material ring of the rank k is stabilized- according to the hypothesis, at a distance RK given by the dynamic equilibrium between the gravitational attracting force exerted by the nebular rest  (remained after the detaching of the material ring of rank k) considered formally with the mass concentrated in its center and the centrifugal inertia force:

G m M N-k R k 2   =   m. v ω 2 R k , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcaWGhbWaaSaaae aacaWGTbGaeyyXIC9aaubeaeqabaGaamOtaiaad2cacaWGRbaabeqa aiaad2eaaaaabaGaamOuamaaDaaabaqcLbmacaWGRbaajuaGbaqcLb macaaIYaaaaaaajuaGcaqGGaGaamiiaiaad2dacaWGGaGaaeiiamaa laaabaGaamyBaiaad6cadaqfWaqabeaacqaHjpWDaeaajugWaiaadk daaKqbagaacaqG2baaaaqaaiaadkfadaWgaaqaaiaadUgaaeqaaaaa caWGGaGaamilaaaa@5292@   (3)

(MN –the initial nebulary mass). The value RK results according to the relation:

R k =   G v ω 2 M (N-k)    = λ M (N-k) ;     λ = G v ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkfada WgaaqaaiaadUgaaeqaaiaadccacaWG9aGaamiiaiaabccabaWaaSaa aeaacaWGhbaabaWaaubmaeqabaGaeqyYdChabaqcLbmacaWGYaaaju aGbaGaaeODaaaaaaaacaWGGaWaaubeaeqabaGaaiikaiaad6eacaWG TaGaam4AaiaacMcaaeqabaGaamytaaaacaqGGaGaaeiiaiaadccaca WG9aGaamiiaiabeU7aSjaadccacqGHflY1daqfqaqabeaacaGGOaGa amOtaiaad2cacaWGRbGaaiykaaqabeaacaWGnbaaaiaadccacaWG7a GaamiiaiaadccacaWGGaGaamiiaiaadccacaWGGaGaaeiiaiaabcca caqGGaGaamiiaiabeU7aSjaadccacaWG9aGaamiiamaalaaabaGaam 4raaqaamaavadabeqaaiabeM8a3bqaaKqzadGaamOmaaqcfayaaiaa bAhaaaaaaaaa@66C0@   (4)

Having k=9, it results R9 = λ∙MN-9, but: M N9 =  M 0 + M 1 + M 2 +...+ M 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyta8aadaWgaaqaaKqzadWdbiaad6eacqGHsislcaaI5aaa juaGpaqabaWdbiabg2da9iaabccacaWGnbWdamaaBaaabaqcLbmape GaaGimaaqcfa4daeqaa8qacqGHRaWkcaWGnbWdamaaBaaabaqcLbma peGaaGymaaqcfa4daeqaa8qacqGHRaWkcaWGnbWdamaaBaaabaqcLb mapeGaaGOmaaqcfa4daeqaa8qacqGHRaWkcaGGUaGaaiOlaiaac6ca cqGHRaWkcaWGnbWdamaaBaaabaqcLbmapeGaaGioaaqcfa4daeqaaa aa@530A@ , (the remained mass), so generally:

R K = λ. M NK = λ.( M o + M 1 + M 2 +...+ M K1 ) [ a.u. ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOua8aadaWgaaqaaKqzadWdbiaadUeaaKqba+aabeaapeGa eyypa0JaaeiiaiabeU7aSjaac6cacaWGnbWdamaaBaaabaqcLbmape GaamOtaiabgkHiTiaadUeaaKqba+aabeaapeGaeyypa0Jaaeiiaiab eU7aSjaac6capaWaaeWaaeaapeGaamyta8aadaWgaaqaaKqzadWdbi aad+gaaKqba+aabeaapeGaey4kaSIaamyta8aadaWgaaqaaKqzadWd biaaigdaaKqba+aabeaapeGaey4kaSIaamyta8aadaWgaaqaaKqzad WdbiaaikdaaKqba+aabeaapeGaey4kaSIaaiOlaiaac6cacaGGUaGa ey4kaSIaamyta8aadaWgaaqaaKqzadWdbiaadUeacqGHsislcaaIXa aajuaGpaqabaaacaGLOaGaayzkaaWdbiaacckapaWaamWaaeaapeGa amyyaiaac6cacaWG1bGaaiOlaaWdaiaawUfacaGLDbaaaaa@677E@   (5)

On the other side, according to the Titius-Bode relation, we may write:

R K = 0.4+ 0,3x  2 K2 = 0,1+ 0,3x  2 K1 [ a.u. ] ; k1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOua8aadaWgaaqaaKqzadWdbiaadUeaaKqba+aabeaapeGa eyypa0JaaeiiaiaaicdacaGGUaGaaGinaiabgUcaRiaabccacaaIWa GaaiilaiaaiodacaWG4bGaaeiiaiaaikdapaWaaWbaaeqabaqcLbma peGaam4saiabgkHiTiaaikdaaaqcfaOaeyypa0Jaaeiiaiaaicdaca GGSaGaaGymaiabgUcaRiaabccacaaIWaGaaiilaiaaiodacaWG4bGa aeiiaiaaikdapaWaaWbaaeqabaqcLbmapeGaam4saiabgkHiTiaaig daaaqcfa4damaadmaabaWdbiaadggacaGGUaGaamyDaiaac6caa8aa caGLBbGaayzxaaWdbiaabccacaGG7aGaaeiiaiaadUgacqGHLjYSca aIXaaaaa@6304@   (6)

From the relations (4) and (5) it results in consequence that:

R 1 = 0.4 = λ. M 0 [ a.u. ] R 2 = 0.4 + 0.3 = 0.4 + 0.3x 2 0 = λ.( M 0 + M 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOua8aadaWgaaqaaKqzadWdbiaaigdaaKqba+aabeaapeGa eyypa0JaaeiiaiaaicdacaGGUaGaaGinaiaabccacqGH9aqpcaqGGa Gaeq4UdWMaaiOlaiaad2eapaWaaSbaaeaajugWa8qacaaIWaaajuaG paqabaWaamWaaeaapeGaamyyaiaac6cacaWG1bGaaiOlaaWdaiaawU facaGLDbaapeGaamOua8aadaWgaaqaaKqzadWdbiaaikdaaKqba+aa beaapeGaeyypa0JaaeiiaiaaicdacaGGUaGaaGinaiaabccacqGHRa WkcaqGGaGaaGimaiaac6cacaaIZaGaaeiiaiabg2da9iaabccacaaI WaGaaiOlaiaaisdacaqGGaGaey4kaSIaaeiiaiaaicdacaGGUaGaaG 4maiaadIhacaaIYaWdamaaCaaabeqaaKqzadWdbiaaicdaaaqcfaOa eyypa0JaaeiiaiabeU7aSjaac6capaGaaiika8qacaWGnbWdamaaBa aabaqcLbmapeGaaGimaaqcfa4daeqaa8qacqGHRaWkcaWGnbWdamaa BaaabaqcLbmapeGaaGymaaqcfa4daeqaaiaacMcaaaa@739B@   (7)

R 3 = 0.4+0.3+0.3= 0.4 + 0.3x 2 1 =0.4 + 0.3x( 2 0 +  2 0 ) =λ.( M 0 + M 1 + M 2 ) R 4 =0.4+0.3+0.3+0.6 = 0.4 + 0.3x( 2 0 +  2 0 + 2 1 ) =λ.( M 0 + M 1 + M 2 + M 3 ) R 5 =0.4+0.3+0.3+0.6+ 1.2= 0.4 + 0.3x( 2 0 + 2 0 + 2 1 +  2 2 ) =λ.( M 0 + M 1 + M 2 + M 3 + M 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaieaa aaaaaaa8qacaWGsbWdamaaBaaabaqcLbmapeGaaG4maaqcfa4daeqa a8qacqGH9aqpcaqGGaGaaGimaiaac6cacaaI0aGaey4kaSIaaGimai aac6cacaaIZaGaey4kaSIaaGimaiaac6cacaaIZaGaeyypa0Jaaeii aiaaicdacaGGUaGaaGinaiaabccacqGHRaWkcaqGGaGaaGimaiaac6 cacaaIZaGaamiEaiaaikdapaWaaWbaaeqabaqcLbmapeGaaGymaaaa juaGcqGH9aqpcaaIWaGaaiOlaiaaisdacaqGGaGaey4kaSIaaeiiai aaicdacaGGUaGaaG4maiaadIhapaWaaeWaaeaapeGaaGOma8aadaah aaqabeaajugWa8qacaaIWaaaaKqbakabgUcaRiaabccacaaIYaWdam aaCaaabeqaaKqzadWdbiaaicdaaaaajuaGpaGaayjkaiaawMcaa8qa caqGGaGaeyypa0Jaeq4UdWMaaiOla8aacaGGOaWdbiaad2eapaWaaS baaeaajugWa8qacaaIWaaajuaGpaqabaWdbiabgUcaRiaad2eapaWa aSbaaeaajugWa8qacaaIXaaajuaGpaqabaWdbiabgUcaRiaad2eapa WaaSbaaeaajugWa8qacaaIYaaajuaGpaqabaGaaiykaaqaa8qacaWG sbWdamaaBaaabaqcLbmapeGaaGinaaqcfa4daeqaa8qacqGH9aqpca aIWaGaaiOlaiaaisdacqGHRaWkcaaIWaGaaiOlaiaaiodacqGHRaWk caaIWaGaaiOlaiaaiodacqGHRaWkcaaIWaGaaiOlaiaaiAdacaqGGa Gaeyypa0JaaeiiaiaaicdacaGGUaGaaGinaiaabccacqGHRaWkcaqG GaGaaGimaiaac6cacaaIZaGaamiEa8aacaGGOaWdbiaaikdapaWaaW baaeqabaqcLbmapeGaaGimaaaajuaGcqGHRaWkcaqGGaGaaGOma8aa daahaaqabeaajugWa8qacaaIWaaaaKqbakabgUcaRiaaikdapaWaaW baaeqabaqcLbmapeGaaGymaaaajuaGpaGaaiyka8qacaqGGaGaeyyp a0Jaeq4UdWMaaiOla8aacaGGOaWdbiaad2eapaWaaSbaaeaajugWa8 qacaaIWaaajuaGpaqabaWdbiabgUcaRiaad2eapaWaaSbaaeaajugW a8qacaaIXaaajuaGpaqabaWdbiabgUcaRiaad2eapaWaaSbaaeaaju gWa8qacaaIYaaajuaGpaqabaWdbiabgUcaRiaad2eapaWaaSbaaeaa jugWa8qacaaIZaaajuaGpaqabaGaaiykaaGcbaqcfa4dbiaadkfapa WaaSbaaeaajugWa8qacaaI1aaajuaGpaqabaWdbiabg2da9iaaicda caGGUaGaaGinaiabgUcaRiaaicdacaGGUaGaaG4maiabgUcaRiaaic dacaGGUaGaaG4maiabgUcaRiaaicdacaGGUaGaaGOnaiabgUcaRiaa bccacaaIXaGaaiOlaiaaikdacqGH9aqpcaqGGaGaaGimaiaac6caca aI0aGaaeiiaiabgUcaRiaabccacaaIWaGaaiOlaiaaiodacaWG4bWd aiaacIcapeGaaGOma8aadaahaaqabeaajugWa8qacaaIWaaaaKqbak abgUcaRiaaikdapaWaaWbaaeqabaqcLbmapeGaaGimaaaajuaGcqGH RaWkcaaIYaWdamaaCaaabeqaaKqzadWdbiaaigdaaaqcfaOaey4kaS IaaeiiaiaaikdapaWaaWbaaeqabaqcLbmapeGaaGOmaaaajuaGpaGa aiyka8qacaqGGaGaeyypa0Jaeq4UdWMaaiOla8aacaGGOaWdbiaad2 eapaWaaSbaaeaajugWa8qacaaIWaaajuaGpaqabaWdbiabgUcaRiaa d2eapaWaaSbaaeaajugWa8qacaaIXaaajuaGpaqabaWdbiabgUcaRi aad2eapaWaaSbaaeaajugWa8qacaaIYaaajuaGpaqabaWdbiabgUca Riaad2eapaWaaSbaaeaajugWa8qacaaIZaaajuaGpaqabaWdbiabgU caRiaad2eapaWaaSbaaeaajugWa8qacaaI0aaajuaGpaqabaGaaiyk aaaaaa@013A@

R K =0,4+0,3 ( 2 0 + 2 0 + 2 1 + 2 2 +...+ 2 K3 ) = λ.Σ M K1 [ a.u. ]; R 9 =0,4+0,3 ( 1+2+ 2 2 +...+ 2 6 ) [ a.u. ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOua8aadaWgaaqaaKqzadWdbiaadUeaaKqba+aabeaapeGa eyypa0JaaGimaiaacYcacaaI0aGaey4kaSIaaGimaiaacYcacaaIZa Gaaeiia8aadaqadaqaa8qacaaIYaWdamaaCaaabeqaaKqzadWdbiaa icdaaaqcfaOaey4kaSIaaGOma8aadaahaaqabeaajugWa8qacaaIWa aaaKqbakabgUcaRiaaikdapaWaaWbaaeqabaqcLbmapeGaaGymaaaa juaGcqGHRaWkcaaIYaWdamaaCaaabeqaaKqzadWdbiaaikdaaaqcfa Oaey4kaSIaaiOlaiaac6cacaGGUaGaey4kaSIaaGOma8aadaahaaqa beaajugWa8qacaWGlbGaeyOeI0IaaG4maaaaaKqba+aacaGLOaGaay zkaaWdbiaabccacqGH9aqpcaqGGaGaeq4UdWMaaiOlaiabfo6atjaa d2eapaWaaSbaaeaapeGaam4saiabgkHiTiaaigdaa8aabeaadaWada qaa8qacaWGHbGaaiOlaiaadwhacaGGUaaapaGaay5waiaaw2faaiaa cUdapeGaamOua8aadaWgaaqaaKqzadWdbiaaiMdaaKqba+aabeaape Gaeyypa0JaaGimaiaacYcacaaI0aGaey4kaSIaaGimaiaacYcacaaI ZaGaaeiia8aadaqadaqaa8qacaaIXaGaey4kaSIaaGOmaiabgUcaRi aaikdapaWaaWbaaeqabaqcLbmapeGaaGOmaaaajuaGcqGHRaWkcaGG UaGaaiOlaiaac6cacqGHRaWkcaaIYaWdamaaCaaabeqaaKqzadWdbi aaiAdaaaaajuaGpaGaayjkaiaawMcaa8qacaqGGaWdamaadmaabaWd biaadggacaGGUaGaamyDaiaac6caa8aacaGLBbGaayzxaaaaaa@8DF4@

i.e.: M o = 0,4 [a.u.] λ ; M 1 = 0,3 [a.u.] λ ; M 2 = 0,3 [a.u.] λ ; M 3 = 0,6 [a.u.] λ ;........ M 9 = 0,3 [a.u.] λ x 2 7 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaavababe qaaKqzadGaam4BaaqcfayabeaacaWGnbaaaiaadccacaWG9aGaamii amaalaaabaGaamimaiaadYcacaWG0aGaaeiiaiaacUfacaWGHbGaai OlaiaadwhacaGGUaGaaiyxaaqaaiabeU7aSbaacaWGGaGaam4oaiaa dccadaqfqaqabeaajugWaiaadgdaaKqbagqabaGaamytaaaacaWGGa GaamypaiaadccadaWcaaqaaiaadcdacaWGSaGaam4maiaabccacaGG BbGaamyyaiaac6cacaWG1bGaaiOlaiaac2faaeaacqaH7oaBaaGaam iiaiaadUdacaWGGaWaaubeaeqabaqcLbmacaWGYaaajuaGbeqaaiaa d2eaaaGaamiiaiaad2dacaWGGaWaaSaaaeaacaWGWaGaamilaiaado dacaqGGaGaai4waiaadggacaGGUaGaamyDaiaac6cacaGGDbaabaGa eq4UdWgaaiaadccacaWG7aGaamiiamaavababeqaaKqzadGaam4maa qcfayabeaacaWGnbaaaiaadccacaWG9aGaamiiamaalaaabaGaamim aiaadYcacaWG2aGaaeiiaiaacUfacaWGHbGaaiOlaiaadwhacaGGUa GaaiyxaaqaaiabeU7aSbaacaWGGaGaam4oaiaad6cacaWGUaGaamOl aiaad6cacaWGUaGaamOlaiaad6cacaWGUaGaamiiamaavababeqaaK qzadGaaGyoaaqcfayabeaacaWGnbaaaiaadccacaWG9aGaamiiaeaa daWcaaqaaiaadcdacaWGSaGaam4maiaabccacaGGBbGaamyyaiaac6 cacaWG1bGaaiOlaiaac2faaeaacqaH7oaBaaaacaWG4bWaaubiaeqa beqaaKqzadGaaG4naaqcfayaaiaadkdaaaGaai4oaaaa@9600@   (8a)

or - generally:

M k = 0,3 [a.u.] λ x 2 k-2   ;    k  2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadccada qfqaqabeaajugWaiaadUgaaKqbagqabaGaamytaaaacaWGGaGaamyp aiaadccabaWaaSaaaeaacaWGWaGaamilaiaadodacaqGGaGaai4wai aadggacaGGUaGaamyDaiaac6cacaGGDbaabaGaeq4UdWgaaaGaamiE amaavacabeqabeaajugWaiaadUgacaWGTaGaamOmaaqcfayaaKqzad GaamOmaaaajuaGcaWGGaGaaeiiaiaabccacaqG7aGaaeiiaiaabcca caqGGaGaaeiiaiaabUgacaqGGaGaeyyzImRaaeiiaiaabkdaaaa@592A@   (8b)

It is understood that over the material parts mk of a Mk -ring acts gravitationally also the mass of the previous Mk’ material rings (k’>k), but the higher distance from the material parts mk’ to the mk –parts permits to consider as negligible the attraction of the previous Mk’ material rings.

The interpretation of the eqn. (8) is that the protoplanetary material rings were formed by the successive halving of the rest part M N0 =  M N   M 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqaaaaaaaaaWdbi aad2eapaWaaSbaaeaajugWa8qacaWGobGaeyOeI0IaaGimaaqcfa4d aeqaa8qacqGH9aqpcaqGGaGaamyta8aadaWgaaqaaKqzadWdbiaad6 eaaKqba+aabeaapeGaai4eGiaabccacaWGnbWdamaaBaaabaqcLbma peGaaGimaaqcfa4daeqaaaaa@46FE@  of nebular mass MN and of the remained part having a rotation speed ω·r = vw – constant, etc , the remained part M0 (the nebular nucleus) forming the Sun. It may be presumed also that from the proto-planetary material ring were formed more proto-planets or pseudo-planets, but after the dissipation of the non-confined matter, only the planet(s) with dynamic equilibrium to the radial direction remained to stable orbit. In this case, the natural satellites (Moon, Titan etc.) of the planets, might represent independently formed planets, which, meeting the bigger planet (found on an orbit of a stable dynamic equilibrium) have been attracted and kept around it on a stable orbit.

The explaining of the law vw = constant

By returning to the case of a galaxy rotation, we may observe that - if we suppose the existence of a proto-galactic vortex of visible matter and of “dark” matter around a central quasar of radius R0 with massive black hole, with a total density variation given by the law of the material ring’s mass constancy:

dM( R ) = 2πHRdR· ρ m ( R ) = 2πH R 0 dρ· r m 0 = const.; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamizaiaad2eapaWaaeWaaeaapeGaamOuaaWdaiaawIcacaGL PaaapeGaaeiiaiabg2da9iaabccacaaIYaGaeqiWdaNaamisaiaadk facaWGKbGaamOuaiaacElacqaHbpGCpaWaaSbaaeaapeGaamyBaaWd aeqaamaabmaabaWdbiaadkfaa8aacaGLOaGaayzkaaWdbiaabccacq GH9aqpcaqGGaGaaGOmaiabec8aWjaadIeacaWGsbWdamaaBaaabaWd biaaicdaa8aabeaapeGaamizaiabeg8aYjaacElacaWGYbWdamaaBa aabaqcLbmapeGaamyBaaqcfa4daeqaamaaCaaabeqaaKqzadWdbiaa icdaaaqcfaOaeyypa0JaaeiiaiaadogacaWGVbGaamOBaiaadohaca WG0bGaaiOlaiaacUdaaaa@64E5@

( ρ m = ρ M + ρ DM )~ R 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaacIcacq aHbpGCdaWgaaqaaKqzadaeaaaaaaaaa8qacaWGTbaajuaGpaqabaWd biabg2da98aacqaHbpGCdaWgaaqaa8qacaWGnbaapaqabaWdbiabgU caR8aacqaHbpGCdaWgaaqaa8qacaWGebGaamytaaWdaeqaaiaacMca peGaaiOFaiaadkfapaWaaWbaaeqabaqcLbmapeGaeyOeI0IaaGymaa aaaaa@4B46@ ,  (9)

(H » 2R0 - the thick of the proto-galactic vortex, considered quasi-cylindrical), we may explain also the galaxy rotation law: vω=ct. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaiabeM8a3jabg2da9iaadogacaWG0bGaaiOlaaaa@3D8F@ , by the eqns:

M (R) 2 R 0 2πR ρ m (R)dR4π R 0 2 ρ m 0 R  ;    ( ρ m (R) = ρ m 0 ( R 0 /R);   R>> R 0 )            MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam ytamaaBaaabaqcLbmacaGGOaGaamOuaiaacMcaaKqbagqaaiabgwKi ajabgUIiYlaaikdacaWGsbWaaSbaaeaajugWaiaaicdaaKqbagqaai abgwSixlaaikdacqaHapaCcaWGsbGaeyyXICTaeqyWdi3aaSbaaeaa caWGTbaabeaacaGGOaGaamOuaiaacMcacaWGKbGaamOuaiabgIKi7k aaisdacqaHapaCcaWGsbWaa0baaeaajugWaiaaicdaaKqbagaajugW aiaaikdaaaqcfaOaeqyWdi3aa0baaeaajugWaiaad2gaaKqbagaaju gWaiaaicdaaaqcfaOaeyyXICTaamOuaiaabccacaqGGaGaai4oaiaa bccacaqGGaGaaeiiaiabgkDiElaaysW7aOqaaKqbakaaysW7caaMe8 Uaaiikaiabeg8aYnaaBaaabaqcLbmacaWGTbaajuaGbeaacaGGOaGa amOuaiaacMcacaqGGaGaeyypa0JaeqyWdi3aa0baaeaajugWaiaad2 gaaKqbagaajugWaiaaicdaaaqcfaOaeyyXICTaaiikaiaadkfadaWg aaqaaiaaicdaaeqaaiaac+cacaWGsbGaaiykaiaacUdacaqGGaGaae iiaiaabccacaWGsbGaeyOpa4JaeyOpa4JaamOuamaaBaaabaGaaGim aaqabaGaaiykaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai aabccacaqGGaGaaeiiaiaabccacaqGGaaaaaa@97FD@   (10)

G m M (R) R 2 4πG R 0 2 ρ m 0 m R =m v 2 R ;               v ω   =   R 0 4πG ρ m 0 =constant ( ρ m (R) = ρ m 0 (R 0 /R);   R>> R 0 )  ;            ρ m 0 = ρ m (R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaae 4ramaalaaabaGaaeyBaiabgwSixlaab2eadaWgaaqaaiaabIcacaqG sbGaaeykaaqabaaabaGaamOuamaaCaaabeqaaiaaikdaaaaaaiabgI Ki7kaaisdacqaHapaCcaWGhbGaamOuamaaDaaabaGaaGimaaqaaiaa ikdaaaGaeqyWdi3aa0baaeaacaWGTbaabaGaaGimaaaacqGHflY1da Wcaaqaaiaad2gaaeaacaWGsbaaaiaaysW7cqGH9aqpcaWGTbWaaSaa aeaacaqG2bWaaWbaaeqabaGaaeOmaaaaaeaacaWGsbaaaiaacUdaca qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaeyO0H4Ta aeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabAhada WgaaqaaiabeM8a3bqabaGaaeiiaiaabccacqGH9aqpcaqGGaGaaeii aiaabkfadaWgaaqaaiaabcdaaeqaaiabgwSixpaakaaabaGaaGinai abec8aWjaadEeacqaHbpGCdaqhaaqaaiaad2gaaeaacaaIWaaaaaqa baGaeyypa0Jaam4yaiaad+gacaWGUbGaam4CaiGacshacaGGHbGaai OBaiaadshaaOqaaKqbakaaysW7caaMe8Uaaiikaiabeg8aYnaaBaaa baGaaeyBaaqabaGaaeikaiaabkfacaqGPaGaaeiiaiaab2dacqaHbp GCdaqhaaqaaiaad2gaaeaacaaIWaaaaiabgwSixlaabIcacaqGsbWa aSbaaeaacaqGWaaabeaacaqGVaGaaeOuaiaabMcacaqG7aGaaeiiai aabccacaqGGaGaaeOuaiabg6da+iabg6da+iaabkfadaWgaaqaaiaa bcdaaeqaaiaabMcacaqGGaGaaeiiaiaabUdacaqGGaGaaeiiaiaabc cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeii aiabeg8aYnaaDaaabaGaamyBaaqaaiaaicdaaaGaeyypa0JaeqyWdi 3aaSbaaeaacaqGTbaabeaacaqGOaGaaeOuamaaBaaabaGaaeimaaqa baGaaeykaiaabccaaaaa@ACD6@   (11)

It results from eqn. (11) that –like in the case of the solar system’s forming, the rotation speed vw of the proto-galactic mass MG was maintained constant during its expanding.

This result: constant, is given –according to eqn. (11), by the fact that over a particle with mass m found at the distance R from the proto-galactic center, the proto-galactic vortex acts gravitationally with all its mass M(R) contained by the volume V( R )2 R 0 ·πR2 = 4π R 0 R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaaaaaaaape GaamOvaOWdamaabmaajuaGbaqcLbsapeGaamOuaaqcfa4daiaawIca caGLPaaajugibiabgIKi7+qacaaIYaGaamOuaOWdamaaBaaajuaGba WdbmaaBaaabaqcLbmacaaIWaaajuaGbeaaa8aabeaajugib8qacaGG 3cGaeqiWdaNaamOuaKqzadGaaGOmaKqzGeGaaeiiaiabg2da9iaabc cacaaI0aGaeqiWdaNaamOuaOWdamaaBaaajuaGbaqcLbmapeGaaGim aaqcfa4daeqaaKqzGeWdbiaadkfaaaa@5515@ , considered quasi-cylindrical. After the stars forming by rotated nebulae of molecular hydrogen, in more parts of a material ring of R-radius, the gravitational attraction between adjacent stars in correlation with the total remained mass M’(R) determined the forming of the galactic spiral arms, in the case of the spiral galaxies. In the case of the star clusters with expanding periphery, to which was observed also the law vw=w×r = constant, this law may be explained similarly, by eqns. (10), (11), by equivalenting a quasi-cylindrical mass distribution M(R) with a spherical mass distribution according to the equation:

M fR 2R 0 2πR ρ m (R)dR4π R 2 ρ m ' (R)dR = M sR  =4π R 0 2 R; ρ m (R) = ρ m 0 (R 0 /R);    ρ m ' (R) = ρ m 0 (R 0 /R) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaae ytamaaBaaabaqcLbmacaqGMbGaaeOuaaqcfayabaGaeyyrIaKaey4k IiVaaeOmaiaabkfadaahaaqabeaajugWaiaabcdaaaqcfaOaeyyXIC TaaeOmaiabec8aWjaabkfacqGHflY1cqaHbpGCdaWgaaqaaKqzadGa aeyBaaqcfayabaGaaeikaiaabkfacaqGPaGaaeizaiaabkfacqGHfj cqcqGHRiI8caqG0aGaeqiWdaNaaeOuamaaCaaabeqaaKqzadGaaeOm aaaajuaGcqGHflY1cqaHbpGCdaWgaaqaaiaab2gaaeqaamaaCaaabe qaaiaabEcaaaGaaeikaiaabkfacaqGPaGaaeizaiaabkfacaqGGaGa aeypaiaabccacaqGnbWaaSbaaeaajugWaiaabohacaqGsbqcfaOaae iiaaqabaGaeyypa0JaaGinaiabec8aWjabgwSixlaadkfadaqhaaqa aKqzadGaaGimaaqcfayaaKqzadGaaGOmaaaajuaGcaWGsbGaaGjbVl aacUdaaOqaaKqbakabgsDiBlaaysW7caaMe8UaeqyWdi3aaSbaaeaa jugWaiaab2gaaKqbagqaaiaabIcacaqGsbGaaeykaiaabccacaqG9a GaeqyWdi3aaSbaaeaajugWaiaab2gaaKqbagqaamaaCaaabeqaaKqz adGaaeimaaaajuaGcqGHflY1caqGOaGaaeOuamaaCaaabeqaaKqzad GaaeimaaaajuaGcaqGVaGaaeOuaiaabMcacaqG7aGaaeiiaiaabcca caqGGaGaeqyWdi3aaSbaaeaajugWaiaab2gaaKqbagqaamaaCaaabe qaaiaabEcaaaGaaeikaiaabkfacaqGPaGaaeiiaiaab2dacqaHbpGC daWgaaqaaKqzadGaaeyBaaqcfayabaWaaWbaaeqabaqcLbmacaqGWa aaaKqbakabgwSixlaabIcacaqGsbWaaWbaaeqabaqcLbmacaqGWaaa aKqbakaab+cacaqGsbGaaeykamaaCaaabeqaaKqzadGaaeOmaaaaaa aa@B72C@   (12)

Conclusion

By the paper it results that the Titius-Bode relation of the Rk distances Sun-planet may be explained by a Kant-Laplace type model of planetary system forming, considering a linear decreasing of the lenticular protoplanetary nebula’s density and the constancy of its rotation speed, by the conclusion that the protoplanetary material rings were formed by the successive halving of the rest part M N0 =  M N   M 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyta8aadaWgaaqaa8qacaWGobGaeyOeI0IaaGimaaWdaeqa a8qacqGH9aqpcaqGGaGaamyta8aadaWgaaqaa8qacaWGobaapaqaba WdbiaacobicaqGGaGaamyta8aadaWgaaqaa8qacaaIWaaapaqabaaa aa@4249@  of the nebular mass MN and of the remained part having a constant rotation speed, v ω( R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamODaSWdamaaBaaajuaGbaqcLbmacqaHjpWDlmaabmaajuaG baqcLbmapeGaamOuaaqcfa4daiaawIcacaGLPaaaaeqaaaaa@414F@ , the remained part M0 (the nebular nucleus) forming the Sun. This phenomenon seems to be specific also to the Saturn’s rings system, in the sense that the A- ring and B-ring, separated by the Cassini division, seems to have approximately equal quantities of particles and they are fragmented into many ringlets separated by small gaps, according to astrophysical observations, as consequence of the basic ring’s instability (demonstrated by Cassini, Laplace and Maxwell).

It results also that the previously presented conclusions regarding the planetary system forming by a Kant-Laplace type model, may be generalized for the star clusters, for the galaxies forming but also for the expansion of the galaxies super-clusters and of the Universe, by considering an initially rotated proto-supercluster of galaxies which was split in annular meta-layers of galaxies assemblies according to eqn. (8), forming structures of cosmic ‚bubbles’ inside our Universe, with galaxies expanded by the antigravitic charge of a central (super)quasar. Relative to the Universe structure, a consequence of the of a similitude between the Kant-Laplace genesis mechanism of a planetary system and a vortexial mechanism of the Universe genesis, presuming the formation in a similar way, at a critical vortexial speed of the atomic matter, of material rings forming further planets and respective -of meta-haloes („layers”) formed from galaxies assemblies, discovered in the form of a quasi-regular three-dimensional network of super-clusters of galaxies and voids,5 with regions of high density separated by a distance of 120Mpc. on a distance of 7∙109 l.y.. This generalization is in accordance with the ‘Fractal cosmology’ and with the fact that the polarization of the cosmic microwave background radiation suggests an inflationary model for the early Universe.

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

Creative Commons Attribution License

©2019 Arghirescu.. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.