Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Short Communication Volume 1 Issue 6

About a new self–tuning mechanism in string theory

Park EK,1 kwon PS2

1Department of Physics, Pusan National University, Korea
2Department of Energy Science, Kyungsung University, Busan 48434, Korea

Correspondence: Pyung Seong Kwon, Department of Energy Science, Kyungsung University, Busan 48434, Korea

Received: December 09, 2017 | Published: December 8, 2017

Citation: Kwon PS, Park EK. About a new self–tuning mechanism in string theory. Phys Astron Int J. 2017;1(6):189-191. DOI: 10.15406/paij.2017.01.00032

Download PDF

Abstract

We briefly review the main points of a new self-tuning mechanism in string theory which is very distinguished from the existing theories. PACS number: 11.25.-w, 11.25.Uv

Keywords: cosmological constant problem, KKLT, supersymmetry breaking, self-tuning

Introduction

Recently a new type self-tuning mechanism has been proposed to address the cosmological constant problem in the framework of the string theory.1 This self-tuning mechanism is very distinguished from the conventional theories in which the cosmological constant λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ is directly determined from the scalar potential V scalar MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvdaWgaaqa aKqzadGaae4CaiaadogacaWGHbGaamiBaiaadggacaWGYbaajuaGbe aaaaa@495E@ alone (see for instance).2,3 In the self-tuning mechanism λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ contains a supersymmetry breaking term SB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFWesrlmaaBaaa juaGbaqcLbmacaqGtbGaamOqaaqcfayabaaaaa@453C@ besides the usual V scalar MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvlmaaBaaa juaGbaqcLbmacaqGZbGaam4yaiaadggacaWGSbGaamyyaiaadkhaaK qbagqaaaaa@49F7@ of the N=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOtai aai2dacaaIXaaaaa@38D9@ super gravity and where SB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFWesrdaWgaaqa aKqzadGaae4uaiaadkeaaKqbagqaaaaa@44A3@ has its own gauge arbitrariness. Also in this mechanism, whether λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ vanishes or not is basically determined by the tensor structure of V scalar MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvlmaaBaaa juaGbaqcLbmacaqGZbGaam4yaiaadggacaWGSbGaamyyaiaadkhaaK qbagqaaaaa@49F7@ , not by the zero or nonzero values of V scalar MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvlmaaBaaa juaGbaqcLbmacaqGZbGaam4yaiaadggacaWGSbGaamyyaiaadkhaaK qbagqaaaaa@49F7@ itself, unlikely to the ordinary theories. In,1 this self-tuning mechanism has been applied to the well-known KKLT model3 and it was shown that λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ must be fine-tuned to zero λ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW MaaGypaiaaicdaaaa@39B9@ , at the supergravity level.

Such a story is continued in4 to the case where the α ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde 2cdaahaaqcfayabeaajugWaiaadEcaaaaaaa@3AB8@ -corrections of the string theory is not neglected anymore. In,4 it was shown that λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@  is still fine-tuned to zero as in1 at the super gravity level. But once we admit α ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde 2cdaahaaqcfayabeaajugWaiaadEcaaaaaaa@3AB8@ -corrections, the fine-tuning λ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW MaaGypaiaaicdaaaa@39B9@ changes into λ= 2 3 Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW MaaGypamaalaaabaGaaGOmaaqaaiaaiodaaaGaamyuaaaa@3B5E@ , where Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyuaa aa@375A@ is a constant representing quantum correction of the 6D action defined on the internal dimensions and its value is determined by the α ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde 2cdaahaaqcfayabeaajugWaiaadEcaaaaaaa@3AB8@ -corrections. Also in4 it was shown that the nonzero value of λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ acquired from the α ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde 2cdaahaaqcfayabeaajugWaiaadEcaaaaaaa@3AB8@ -corrections must be very small and positive.

In,4 the complex structure moduli (or the geometry) of the internal dimensions are still stabilized by the three-form fluxes as in the the usual flux compactifications. But the scale factor (or the K hler moduli) of the internal dimensions is not fixed by the KKLT scenario. In4 it is assumed that the internal dimensions are basically allowed to evolve with time. But nevertheless, it can be shown that the scale factor (as well as λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ ) is fixed at the super gravity level by a set of 4D equations including an extra (a constraint) equation which is associated with the self-tuning of λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ , not by the K hler modulus-dependent nonperturbative corrections of KKLT. So in,4 the new type self-tuning mechanism of1 has still been used, but this time it has not been applied to the KKLT because the scale factor of the internal dimensions is allowed to evolve with time.

As described above, the self-tuning mechanism used in1 and4 is very new and distinguished from the conventional theories. But at the same time it is also true that the structures of the scenario in1 and4 are quite complicated and this acts as an obstacle for readers to understand the scenarios thoroughly. For this reason, in this short report we want to briefly review the cores of the scenario in1 so that the readers can understand the points of the self-tuning mechanism used in1 more easily and quickly, and then later we can make a similar discussion on the scenario presented in.4

The core principle of the self-tuning mechanism in1 can be described by the two independent equations for λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ : i.e. Equations. (3.20) and (3.41) of.1 The first equation takes the form1

λ= κ 2 8 κ 10 2 g s 2 d 6 y h 6 (N1)V+ κ 2 2 ( I ^ brane + I ^ topological ),( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW MaaGypamaalaaabaGaeqOUdS2aaWbaaKqbGeqabaGaaGOmaaaaaKqb agaacaaI4aGaeqOUdS2aa0baaKqbGeaacaaIXaGaaGimaaqaaiaaik daaaqcfaOaam4zamaaDaaajuaibaGaam4CaaqaaiaaikdaaaaaaKqb aoaapeaabeqabeqacqGHRiI8aiaadsgadaahaaqabKqbGeaacaaI2a aaaKqbakaadMhadaGcaaqaaiaadIgadaWgaaqcfasaaiaaiAdaaKqb agqaaaqabaGaaGikamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8 KBLbacfaGae8xdX7KaeyOeI0IaaGymaiaaiMcacaWGwbGaey4kaSYa aSaaaeaacqaH6oWAdaahaaqcfasabeaacaaIYaaaaaqcfayaaiaaik daaaGaaGikaiqadMeagaqcamaaBaaajuaibaGaaeOyaiaadkhacaWG HbGaamOBaiaadwgaaeqaaKqbakabgUcaRiqadMeagaqcamaaBaaaju aibaGaaeiDaiaad+gacaWGWbGaam4BaiaadYgacaWGVbGaam4zaiaa dMgacaWGJbGaamyyaiaadYgaaKqbagqaaiaaiMcacaaMi8UaaGjcVl aaiYcadaqadaqaaiaaigdaaiaawIcacaGLPaaaaaa@7C66@

 Where N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFneVtaaa@41DF@ is a functional operator defined by N h mn h mn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFneVtcqGHHjIU caWGObWaaWbaaeqajuaibaGaamyBaiaad6gaaaqcfa4aaSaaaeaacq GHciITaeaacqGHciITcaWGObWaaWbaaeqajuaibaGaamyBaiaad6ga aaaaaaaa@4D56@  (where h mn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiAam aaBaaajuaibaGaamyBaiaad6gaaKqbagqaaaaa@3A33@  represents the 6D internal metric) and V represents the scalar potential density related with V scalar MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvlmaaBaaa juaGbaqcLbmacaqGZbGaam4yaiaadggacaWGSbGaamyyaiaadkhaaK qbagqaaaaa@49F7@  by the equation               

V scalar = 1 2 κ 10 2 g s 2 d 6 y h 6 V.( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvdaWgaaqa aKqzadGaae4CaiaadogacaWGHbGaamiBaiaadggacaWGYbaajuaGbe aacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaiabeQ7aRnaaDaaajuai baGaaGymaiaaicdaaeaacaaIYaaaaKqbakaadEgadaqhaaqcfasaai aadohaaeaacaaIYaaaaaaajuaGdaWdbaqabeqabeGaey4kIipacaWG KbWaaWbaaKqbGeqabaGaaGOnaaaajuaGcaWG5bWaaOaaaeaacaWGOb WaaSbaaKqbGeaacaaI2aaajuaGbeaaaeqaaiaayIW7caWGwbGaaGjc VlaayIW7caaIUaWaaeWaaeaacaaIYaaacaGLOaGaayzkaaaaaa@6479@

 Since N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFneVtaaa@41DF@ is a number operator, it pulls out the number of the contracted indices of the given density V n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvaS WaaSbaaKqbagaajugWaiaad6gaaKqbagqaaaaa@3AC8@ . Namely if V n A m 1 m n B m 1 m n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvam aaBaaajuaibaGaamOBaaqabaqeeuuDJXwAKbsr4rNCHbacfaqcfaOa e8hpIOJaamyqamaaBaaabaqcLbmacaWGTbWcdaWgaaqcfasaaKqzad GaaGymaaqcfasabaqcLbmacqWIVlctcaWGTbWcdaWgaaqcfayaaKqz adGaamOBaaqcfayabaaabeaacaWGcbWaaWbaaeqabaqcLbmacaWGTb WcdaWgaaqcfayaaKqzadGaaGymaaqcfayabaqcLbmacqWIVlctcaWG TbWcdaWgaaqcfayaaKqzadGaamOBaaqcfayabaaaaaaa@5988@ it gives N V n =n V n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFneVtcaWGwbWa aSbaaKqbGeaacaWGUbaabeaajuaGcaaI9aGaamOBaiaadAfadaWgaa qcfasaaiaad6gaaeqaaaaa@4861@  because the number of contracted indices of V n A m 1 m n B m 1 m n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvam aaBaaajuaibaGaamOBaaqabaqeeuuDJXwAKbsr4rNCHbacfaqcfaOa e8hpIOJaamyqamaaBaaabaqcLbmacaWGTbWcdaWgaaqcfasaaKqzad GaaGymaaqcfasabaqcLbmacqWIVlctcaWGTbWcdaWgaaqcfayaaKqz adGaamOBaaqcfayabaaabeaacaWGcbWaaWbaaeqabaqcLbmacaWGTb WcdaWgaaqcfayaaKqzadGaaGymaaqcfayabaqcLbmacqWIVlctcaWG TbWcdaWgaaqcfayaaKqzadGaamOBaaqcfayabaaaaaaa@5988@  is .

In the heterotic string theory the three-form structure of the potential density with a gaugino condensation <tr λ ¯ Γ mnp λ> MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGipai aabshacaWGYbGafq4UdWMbaebacqqHtoWrdaahaaqabeaajugWaiaa d2gacaWGUbGaamiCaaaajuaGcqaH7oaBcaaI+aaaaa@43A0@  is manifest in the action5–8

I het = 1 2 κ 10 2 e ϕ ( H (3) α ' 16 e ϕ/2 tr λ ¯ Γ (3) λ) 2 .( 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysaS WaaSbaaKqbagaajugWaiaabIgacaWGLbGaamiDaaqcfayabaGaaGyp aiabgkHiTmaalaaabaGaaGymaaqaaiaaikdacqaH6oWAlmaaDaaaju aGbaqcLbmacaaIXaGaaGimaaqcfayaaKqzadGaaGOmaaaaaaqcfa4a a8qaaeqabeqabiabgUIiYdGaamyzaSWaaWbaaKqbagqabaqcLbmacq GHsislcqaHvpGzaaqcfaOaaGikaiaadIealmaaBaaajuaGbaqcLbma caaIOaGaaG4maiaaiMcaaKqbagqaaiabgkHiTmaalaaabaGaeqySde 2aaWbaaeqabaGaam4jaaaaaeaacaaIXaGaaGOnaaaacaWGLbWaaWba aeqabaqcLbmacqaHvpGzcaaIVaGaaGOmaaaajuaGcaqG0bGaamOCai qbeU7aSzaaraGaeu4KdC0aaSbaaeaajugWaiaaiIcacaaIZaGaaGyk aaqcfayabaGaeq4UdWMaaGykaSWaaWbaaKqbagqabaqcLbmacaaIYa aaaKqbakaayIW7caaMi8UaaGOlamaabmaabaGaaG4maaGaayjkaiaa wMcaaaaa@75BD@

But in the type IIB theory the tensor structure of V scalar MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvdaWgaaqa aKqzadGaae4CaiaadogacaWGHbGaamiBaiaadggacaWGYbaajuaGbe aaaaa@495E@ is not quite obvious, unlikely to the case of the heterotic theory. So in the case of type IIB theory we need further discussion to find the tensor structure of V scalar MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvdaWgaaqa aKqzadGaae4CaiaadogacaWGHbGaamiBaiaadggacaWGYbaajuaGbe aaaaa@495E@ . Indeed, through a complicated analysis one can show that the density V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvaa aa@375F@ of the type IIB V scalar MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvdaWgaaqa aKqzadGaae4CaiaadogacaWGHbGaamiBaiaadggacaWGYbaajuaGbe aaaaa@495E@ also belongs to V 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvaS WaaSbaaKqbagaajugWaiaaiodaaKqbagqaaaaa@3A92@ (see Sec. 4 of1) as follows.

The V scalar MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvdaWgaaqa aKqzadGaae4CaiaadogacaWGHbGaamiBaiaadggacaWGYbaajuaGbe aaaaa@495E@ of the type IIB theory consists of two part. The first is the no-scale part V noscale MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvdaWgaaqa aKqzadGaaeOBaiaad+gacqGHsislcaWGZbGaam4yaiaadggacaWGSb Gaamyzaaqcfayabaaaaa@4B3F@ . In KKLT the superpotential of the AdS vacuum is given by

W= W 0 +A e iaρ ,( 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4vai aai2dacaWGxbWaaSbaaKqbGeaacaaIWaaajuaGbeaacqGHRaWkcaWG bbGaamyzamaaCaaajuaibeqaaiaadMgacaWGHbGaeqyWdihaaKqbak aayIW7caaMi8UaaGilamaabmaabaGaaGinaaGaayjkaiaawMcaaaaa @47BD@

Where W 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4vam aaBaaabaqcLbmacaaIWaaajuaGbeaaaaa@39F7@ is a tree level contribution arising from the fluxes:

W 0 = 6 G (3) Ω, ( G (3) = F (3) τ H (3) ),( 5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4vaS WaaSbaaKqbagaajugWaiaaicdaaKqbagqaaiaai2dadaWdraqabeaa tuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaKqzadGae8 3mH00cdaWgaaqcfayaaKqzadGaaGOnaaqcfayabaaabeGaey4kIipa caWGhbWaaSbaaeaajugWaiaaiIcacaaIZaGaaGykaaqcfayabaGaey 4jIKTaeuyQdCLaaGjcVlaayIW7caaISaGaaGiiaiaaiccacaaIOaGa am4raSWaaSbaaKqbagaajugWaiaaiIcacaaIZaGaaGykaaqcfayaba GaaGypaiaadAealmaaBaaajuaGbaqcLbmacaaIOaGaaG4maiaaiMca aKqbagqaaiabgkHiTiabes8a0jaadIealmaaBaaajuaGbaqcLbmaca aIOaGaaG4maiaaiMcaaKqbagqaaiaaiMcacaaMi8UaaGjcVlaaiYca daqadaqaaiaaiwdaaiaawIcacaGLPaaaaaa@74BB@

And the second term is a nonperturbative correction coming from Euclidean -branes,9 or the gaugino condensation generated by the stack of coincident D7-branes.10 The superpotential V noscale MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvdaWgaaqa aKqzadGaaeOBaiaad+gacqGHsislcaWGZbGaam4yaiaadggacaWGSb Gaamyzaaqcfayabaaaaa@4B3F@ acquires the nonzero contribution from the three fluxes G (3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4raS WaaSbaaKqbagaajugWaiaaiIcacaaIZaGaaGykaaqcfayabaaaaa@3BE8@ in W 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4vaS WaaSbaaKqbagaajugWaiaaicdaaKqbagqaaaaa@3A90@ . It takes the form

V noscale = 1 12 κ 10 2 Imτ d 6 y h 6 χ 1/2 g s G mnp + G ¯ +mnp ,( 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvlmaaBaaa juaGbaqcLbmacaqGUbGaam4BaiabgkHiTiaadohacaWGJbGaamyyai aadYgacaWGLbaajuaGbeaacaaI9aWaaSaaaeaacaaIXaaabaGaaGym aiaaikdacqaH6oWAlmaaDaaajuaGbaqcLbmacaaIXaGaaGimaaqcfa yaaKqzadGaaGOmaaaajuaGcaWGjbGaamyBaiabes8a0baadaWdbaqa beqabeGaey4kIipacaWGKbWaaWbaaeqabaqcLbmacaaI2aaaaKqbak aadMhadaGcaaqaaiaadIgadaWgaaqaaKqzadGaaGOnaaqcfayabaaa beaacaaMi8+aaSaaaeaacqaHhpWydaahaaqcfasabeaacaaIXaGaaG 4laiaaikdaaaaajuaGbaGaam4zamaaBaaajuaibaGaam4Caaqcfaya baaaaiaadEeadaqhaaqaaKqzadGaamyBaiaad6gacaWGWbaajuaGba Gaey4kaScaaiqadEeagaqeamaaCaaabeqaaKqzadGaey4kaSIaamyB aiaad6gacaWGWbaaaKqbakaayIW7caaMi8UaaGilamaabmaabaGaaG OnaaGaayjkaiaawMcaaaaa@80AB@

 Where G mnp + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4raS Waa0baaKqbagaajugWaiaad2gacaWGUbGaamiCaaqcfayaaKqzadGa ey4kaScaaaaa@3EB1@ represents the ISAD part of G (3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4raS WaaSbaaKqbagaajugWaiaaiIcacaaIZaGaaGykaaqcfayabaaaaa@3BE8@ . In the ISD compacti cations in which W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4vaa aa@3760@ is given by W= W 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4vai aai2dacaWGxbWaaSbaaeaajugWaiaaicdaaKqbagqaaaaa@3B9A@ , G mnp + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4raS Waa0baaKqbagaajugWaiaad2gacaWGUbGaamiCaaqcfayaaKqzadGa ey4kaScaaaaa@3EB1@ vanishes and therefore V noscale MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvlmaaBaaa juaGbaqcLbmacaqGUbGaam4BaiabgkHiTiaadohacaWGJbGaamyyai aadYgacaWGLbaajuaGbeaaaaa@4BD8@ also vanishes. But once we add the nonperturbative term as in (4), G mnp + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4raS Waa0baaKqbagaajugWaiaad2gacaWGUbGaamiCaaqcfayaaKqzadGa ey4kaScaaaaa@3EB1@ does not vanish anymore and hence V noscale MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvlmaaBaaa juaGbaqcLbmacaqGUbGaam4BaiabgkHiTiaadohacaWGJbGaamyyai aadYgacaWGLbaajuaGbeaaaaa@4BD8@ acquires nonzero values in this case.

In addition to this V noscale MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvlmaaBaaa juaGbaqcLbmacaqGUbGaam4BaiabgkHiTiaadohacaWGJbGaamyyai aadYgacaWGLbaajuaGbeaaaaa@4BD8@ there is another important contribution to the type IIB scalar potential when the "no-scale structure" is broken by the nonperturbative term as in (4). In the AdS vacua of KKLT we have

V AdS = 3 2 κ 10 2 e K |W | 2 ( 7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvdaWgaaqa aKqzadGaaeyqaiaadsgacaWGtbaajuaGbeaacaaI9aGaeyOeI0YaaS aaaeaacaaIZaaabaGaaGOmaiabeQ7aRTWaa0baaKqbagaajugWaiaa igdacaaIWaaajuaGbaqcLbmacaaIYaaaaaaajuaGcaWGLbWaaWbaae qabaqcLbmacqWFke=saaqcfaOaaGiFaiaadEfacaaI8bWaaWbaaeqa baqcLbmacaaIYaaaaKqbakaayIW7caaMi8+aaeWaaeaacaaI3aaaca GLOaGaayzkaaaaaa@6125@

In addition to (6) and through a complicated discussion (see Sec. 4 of1) One can show that this V AdS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvdaWgaaqa aKqzadGaaeyqaiaadsgacaWGtbaajuaGbeaaaaa@4651@ also has the same tensor structure as V noscale MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvlmaaBaaa juaGbaqcLbmacaqGUbGaam4BaiabgkHiTiaadohacaWGJbGaamyyai aadYgacaWGLbaajuaGbeaaaaa@4BD8@ in (6). Namely the densities V noscale MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvlmaaBaaa juaGbaqcLbmacaqGUbGaam4BaiabgkHiTiaadohacaWGJbGaamyyai aadYgacaWGLbaajuaGbeaaaaa@4BD8@ and V AdS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvdaWgaaqa aKqzadGaaeyqaiaadsgacaWGtbaajuaGbeaaaaa@4651@ of V noscale MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvlmaaBaaa juaGbaqcLbmacaqGUbGaam4BaiabgkHiTiaadohacaWGJbGaamyyai aadYgacaWGLbaajuaGbeaaaaa@4BD8@ and V AdS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvdaWgaaqa aKqzadGaaeyqaiaadsgacaWGtbaajuaGbeaaaaa@4651@ both belong to V 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvam aaBaaajuaibaGaaG4maaqcfayabaaaaa@38F9@ :

N V noscale =3 V noscale , N V AdS =3 V AdS ,( 8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFneVtcaWGwbWa aSbaaeaajugWaiaab6gacaWGVbGaeyOeI0Iaam4CaiaadogacaWGHb GaamiBaiaadwgaaKqbagqaaiaai2dacaaIZaGaamOvamaaBaaabaqc LbmacaqGUbGaam4BaiabgkHiTiaadohacaWGJbGaamyyaiaadYgaca WGLbaajuaGbeaacaaMi8UaaGjcVlaaiYcacaaIGaGaaGiiaiaaicca caaIGaGaaGiiaiab=1q8ojaadAfadaWgaaqaaKqzadGaaeyqaiaads gacaWGtbaajuaGbeaacaaI9aGaaG4maiaadAfadaWgaaqaaKqzadGa aeyqaiaadsgacaWGtbaajuaGbeaacaaMi8UaaGjcVlaaiYcadaqada qaaiaaiIdaaiaawIcacaGLPaaaaaa@72D5@

And therefore λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ in (1) reduces to

λ= κ 2 2 ( V scalar + I ^ brane + I ^ topological ),( 9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW MaaGypamaalaaabaGaeqOUdS2cdaahaaqcfayabeaajugWaiaaikda aaaajuaGbaGaaGOmaaaacaaIOaWefv3ySLgznfgDOfdaryqr1ngBPr ginfgDObYtUvgaiuaacqWFveVvlmaaBaaajuaGbaqcLbmacaqGZbGa am4yaiaadggacaWGSbGaamyyaiaadkhaaKqbagqaaiabgUcaRiqadM eagaqcamaaBaaabaqcLbmacaqGIbGaamOCaiaadggacaWGUbGaamyz aaqcfayabaGaey4kaSIabmysayaajaWaaSbaaeaajugWaiaabshaca WGVbGaamiCaiaad+gacaWGSbGaam4BaiaadEgacaWGPbGaam4yaiaa dggacaWGSbaajuaGbeaacaaIPaGaaGjcVlaayIW7caaISaWaaeWaae aacaaI5aaacaGLOaGaayzkaaaaaa@6FD7@

In the AdS vacua and this becomes the first equation for λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ . The equation in (9) tells about the constituents of λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ . Now we have second equation for λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ of the form

β= 1 6 χ 1/2 (N1)(N3)(13 b 0 Π(N))V,( 10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypamaalaaabaGaaGymaaqaaiaaiAdaaaGaeq4Xdm2cdaahaaqc fayabeaajugWaiaaigdacaaIVaGaaGOmaaaajuaGcaaIOaWefv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFneVtcqGHsisl caaIXaGaaGykaiaaiIcacqWFneVtcqGHsislcaaIZaGaaGykaiaaiI cacaaIXaGaeyOeI0IaaG4maiaadkgadaWgaaqaaKqzadGaaGimaaqc fayabaGaeuiOdaLaaGikaiab=1q8ojaaiMcacaaIPaGaamOvaiaayI W7caaMi8UaaGilamaabmaabaGaaGymaiaaicdaaiaawIcacaGLPaaa aaa@67CA@

Where β=4λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaisdacqaH7oaBaaa@3B5E@ for maximally symmetric spacetime. Equation (10) can be obtained from the 6D Einstein equation of the internal space and it acts as a constraint (or a self-tuning) equation for . Note that (10) becomes

β=0 λ=0( 11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaicdacaaIGaGaaGiiaiabgkziUkabeU7aSjaai2dacaaI WaWaaeWaaeaacaaIXaGaaGymaaGaayjkaiaawMcaaaaa@431B@

For the AdS background because in the AdS vacua of KKLT V scalar ( V noscale + V AdS ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvam aaBaaajuaybaGaae4CaiaadogacaWGHbGaamiBaiaadggacaWGYbaa juaGbeaacaaIOaGaeyyyIORaamOvaSWaaSbaaKqbagaajugWaiaab6 gacaWGVbGaeyOeI0Iaam4CaiaadogacaWGHbGaamiBaiaadwgaaKqb agqaaiabgUcaRiaadAfadaWgaaqaaKqzadGaaeyqaiaadsgacaWGtb aajuaGbeaacaaIPaaaaa@521F@  belongs to V 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvam aaBaaabaqcLbmacaaIZaaajuaGbeaaaaa@39F9@ : N V scalar =3 V scalar MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFneVtcaWGwbWa aSbaaeaajugWaiaabohacaWGJbGaamyyaiaadYgacaWGHbGaamOCaa qcfayabaGaaGypaiaaiodacaWGwbWcdaWgaaqcfayaaKqzadGaae4C aiaadogacaWGHbGaamiBaiaadggacaWGYbaajuaGbeaaaaa@5490@ as mentioned above and therefore (10) requires (11). So in the new self-tuning mechanism the background geometry of the AdS vacua does not necessarily mean that λ<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW MaaGipaiaaicdaaaa@39B8@ . (Note that the AdS vacua of KKLT are simply defined by V scalar <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvaS WaaSbaaKqbagaajugWaiaabohacaWGJbGaamyyaiaadYgacaWGHbGa amOCaaqcfayabaGaaGipaiaaicdaaaa@40E7@ .) Rather, λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ in (9) must be fine-tuned as in (11) even in the AdS vacua.

The fine-tuning of λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ in (9) can be achieved as follows. First, I ^ brane MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmysay aajaWcdaWgaaqcfayaaKqzadGaaeOyaiaadkhacaWGHbGaamOBaiaa dwgaaKqbagqaaaaa@3E77@  in (9) can be decomposed into three parts. We have

I ^ brane =( I ^ brane (NS) (tree)+ I ^ brane (R) (tree))+( δ Q I ^ brane (NS) + δ Q I ^ brane (R) ) SB .( 12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmysay aajaWaaSbaaKqbGeaacaqGIbGaamOCaiaadggacaWGUbGaamyzaaqa baqcfaOaaGypaiaaiIcaceWGjbGbaKaalmaaDaaajuaGbaqcLbmaca qGIbGaamOCaiaadggacaWGUbGaamyzaaqcfayaaKqzadGaaGikaiaa d6eacaWGtbGaaGykaaaajuaGcaaIOaGaaeiDaiaadkhacaWGLbGaam yzaiaaiMcacqGHRaWkceWGjbGbaKaalmaaDaaajuaGbaqcLbmacaqG IbGaamOCaiaadggacaWGUbGaamyzaaqcfayaaKqzadGaaGikaiaadk facaaIPaaaaKqbakaaiIcacaqG0bGaamOCaiaadwgacaWGLbGaaGyk aiaaiMcacqGHRaWkcaaIOaGaeqiTdq2aaSbaaKqbGeaacaWGrbaabe aajuaGceWGjbGbaKaadaqhaaqcfasaaiaabkgacaWGYbGaamyyaiaa d6gacaWGLbaabaGaaGikaiaad6eacaWGtbGaaGykaaaajuaGcqGHRa WkcqaH0oazdaWgaaqcfasaaiaadgfaaKqbagqaaiqadMeagaqcaSWa a0baaKqbagaajugWaiaabkgacaWGYbGaamyyaiaad6gacaWGLbaaju aGbaqcLbmacaaIOaGaamOuaiaaiMcaaaqcfaOaaGykaiabgkHiTmrr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8hmHu0aaS baaKqbGeaacaqGtbGaamOqaaqcfayabaGaaGjcVlaayIW7caaIUaWa aeWaaeaacaaIXaGaaGOmaaGaayjkaiaawMcaaaaa@96FC@

 In (12) I ^ brane (NS) (tree) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmysay aajaWcdaqhaaqcfayaaKqzadGaaeOyaiaadkhacaWGHbGaamOBaiaa dwgaaKqbagaajugWaiaaiIcacaWGobGaam4uaiaaiMcaaaqcfaOaaG ikaiaabshacaWGYbGaamyzaiaadwgacaaIPaaaaa@486B@ and I ^ brane (R) (tree) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmysay aajaWcdaqhaaqcfayaaKqzadGaaeOyaiaadkhacaWGHbGaamOBaiaa dwgaaKqbagaajugWaiaaiIcacaWGsbGaaGykaaaajuaGcaaIOaGaae iDaiaadkhacaWGLbGaamyzaiaaiMcaaaa@4797@  are NS-NS and R-R parts of the tree level actions while δ Q I ^ brane (NS) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq 2aaSbaaeaajugWaiaadgfaaKqbagqaaiqadMeagaqcaSWaa0baaKqb agaajugWaiaabkgacaWGYbGaamyyaiaad6gacaWGLbaajuaGbaqcLb macaaIOaGaamOtaiaadofacaaIPaaaaaaa@470E@ and δ Q I ^ brane (R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq 2aaSbaaeaajugWaiaadgfaaKqbagqaaiqadMeagaqcaSWaa0baaKqb agaajugWaiaabkgacaWGYbGaamyyaiaad6gacaWGLbaajuaGbaqcLb macaaIOaGaamOuaiaaiMcaaaaaaa@463A@ represent quantum fluctuations of the gravitational and standard model degrees of freedom with support on the D3-brane. So δ Q I ^ brane (NS) + δ Q I ^ brane (R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq 2aaSbaaeaajugWaiaadgfaaKqbagqaaiqadMeagaqcaSWaa0baaKqb agaajugWaiaabkgacaWGYbGaamyyaiaad6gacaWGLbaajuaGbaqcLb macaaIOaGaamOtaiaadofacaaIPaaaaKqbakabgUcaRiabes7aKnaa BaaabaqcLbmacaWGrbaajuaGbeaaceWGjbGbaKaalmaaDaaajuaGba qcLbmacaqGIbGaamOCaiaadggacaWGUbGaamyzaaqcfayaaKqzadGa aGikaiaadkfacaaIPaaaaaaa@5834@ correspond to the gravitational plus electroweak and QCD vacuum energies of the standard model configurations of the brane region. Among these terms the tree level term I ^ brane (tree)( I ^ brane (NS) (tree)+ I ^ brane (R) (tree)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmysay aajaWcdaWgaaqcfayaaKqzadGaaeOyaiaadkhacaWGHbGaamOBaiaa dwgaaKqbagqaaiaaiIcacaqG0bGaamOCaiaadwgacaWGLbGaaGykai aaiIcacqGHHjIUceWGjbGbaKaalmaaDaaajuaGbaqcLbmacaqGIbGa amOCaiaadggacaWGUbGaamyzaaqcfayaaKqzadGaaGikaiaad6eaca WGtbGaaGykaaaajuaGcaaIOaGaaeiDaiaadkhacaWGLbGaamyzaiaa iMcacqGHRaWkceWGjbGbaKaalmaaDaaajuaGbaqcLbmacaqGIbGaam OCaiaadggacaWGUbGaamyzaaqcfayaaKqzadGaaGikaiaadkfacaaI PaaaaKqbakaaiIcacaqG0bGaamOCaiaadwgacaWGLbGaaGykaiaaiM caaaa@6AA8@ vanishes by field equations in the ISD (i.e. tree level) background (Secction VIII of4). Similarly the topological term I ^ topological MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmysay aajaWcdaWgaaqcfayaaKqzadGaaeiDaiaad+gacaWGWbGaam4Baiaa dYgacaWGVbGaam4zaiaadMgacaWGJbGaamyyaiaadYgaaKqbagqaaa aa@442A@ in (9) can be decomposed as I ^ topological = I ^ topological (tree)+ δ Q I ^ topological MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmysay aajaWcdaWgaaqcfayaaKqzadGaaeiDaiaad+gacaWGWbGaam4Baiaa dYgacaWGVbGaam4zaiaadMgacaWGJbGaamyyaiaadYgaaKqbagqaai aai2daceWGjbGbaKaalmaaBaaajuaGbaqcLbmacaqG0bGaam4Baiaa dchacaWGVbGaamiBaiaad+gacaWGNbGaamyAaiaadogacaWGHbGaam iBaaqcfayabaGaaGikaiaabshacaWGYbGaamyzaiaadwgacaaIPaGa ey4kaSIaeqiTdq2aaSbaaeaajugWaiaadgfaaKqbagqaaiqadMeaga qcaSWaaSbaaKqbagaajugWaiaabshacaWGVbGaamiCaiaad+gacaWG SbGaam4BaiaadEgacaWGPbGaam4yaiaadggacaWGSbaajuaGbeaaaa a@6A9E@ and where I ^ topological (tree) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmysay aajaWcdaWgaaqcfayaaKqzadGaaeiDaiaad+gacaWGWbGaam4Baiaa dYgacaWGVbGaam4zaiaadMgacaWGJbGaamyyaiaadYgaaKqbagqaai aaiIcacaqG0bGaamOCaiaadwgacaWGLbGaaGykaaaa@4951@ also vanishes by field equations as in the case of I ^ brane (tree) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmysay aajaWaaSbaaeaajugWaiaabkgacaWGYbGaamyyaiaad6gacaWGLbaa juaGbeaacaaIOaGaaeiDaiaadkhacaWGLbGaamyzaiaaiMcaaaa@4305@ . So after all these Eq. (9) reduces to

λ= κ 2 2 ( V scalar + δ Q I ^ brane (NS) + δ Q I ^ brane (R) + δ Q I ^ topological SB ).( 13 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW MaaGypamaalaaabaGaeqOUdS2aaWbaaeqajuaibaGaaGOmaaaaaKqb agaacaaIYaaaaiaaiIcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbaiab=vr8wnaaBaaajuaibaGaae4CaiaadogacaWGHbGa amiBaiaadggacaWGYbaabeaajuaGcqGHRaWkcqaH0oazdaWgaaqcfa saaiaadgfaaeqaaKqbakqadMeagaqcamaaDaaajuaibaGaaeOyaiaa dkhacaWGHbGaamOBaiaadwgaaeaacaaIOaGaamOtaiaadofacaaIPa aaaKqbakabgUcaRiabes7aKnaaBaaajuaibaGaamyuaaqcfayabaGa bmysayaajaWaa0baaKqbGeaacaqGIbGaamOCaiaadggacaWGUbGaam yzaaqaaiaaiIcacaWGsbGaaGykaaaajuaGcqGHRaWkcqaH0oazdaWg aaqcfasaaiaadgfaaeqaaKqbakqadMeagaqcamaaBaaajuaibaGaae iDaiaad+gacaWGWbGaam4BaiaadYgacaWGVbGaam4zaiaadMgacaWG JbGaamyyaiaadYgaaKqbagqaaiabgkHiTiab=btifnaaBaaajuaiba Gaae4uaiaadkeaaeqaaKqbakaaiMcacaaMi8UaaGjcVlaai6cadaqa daqaaiaaigdacaaIZaaacaGLOaGaayzkaaaaaa@8670@

Now in (13) the last term SB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFWesrdaWgaaqa aKqzadGaae4uaiaadkeaaKqbagqaaaaa@44A3@ plays crucial role in the fine-tuning of λ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW MaaGypaiaaicdaaaa@39B9@ as follows. First, SB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFWesrdaWgaaqa aKqzadGaae4uaiaadkeaaKqbagqaaaaa@44A3@ is given by

SB = δ 0 r 5 dr ε 5 ρ T (1) , ( δ 0 =constant),( 14 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFWesrlmaaBaaa juaGbaqcLbmacaqGtbGaamOqaaqcfayabaGaaGypaiabgkHiTiabes 7aKnaaBaaabaqcLbmacaaIWaaajuaGbeaadaWdbaqabeqabeGaey4k IipacaWGYbWaaWbaaeqajuaibaGaaGynaaaajuaGcaWGKbGaamOCai abew7aLnaaBaaajuaibaGaaGynaaqcfayabaGaeqyWdi3aa0baaKqb GeaacaqGubaabaGaaGikaiaaigdacaaIPaaaaKqbakaayIW7caaMi8 UaaGilaiaaiccacaaIGaGaaGiiaiaaiIcacqaH0oazdaWgaaqcfasa aiaaicdaaeqaaKqbakaai2dacaqGJbGaam4Baiaad6gacaWGZbGaam iDaiaadggacaWGUbGaamiDaiaaiMcacaaMi8UaaGjcVlaaiYcadaqa daqaaiaaigdacaaI0aaacaGLOaGaayzkaaaaaa@7404@

Where ε 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyTdu 2cdaWgaaqcfayaaKqzadGaaGynaaqcfayabaaaaa@3B60@ is the volume-form of the base of the cone in the conifold metric, and ρ T (1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3aa0baaKqbGeaacaqGubaabaGaaGikaiaaigdacaaIPaaaaKqbakaa yIW7aaa@3DAA@ is defined by

ρ T (1) (y)= ν (1) m f m (y),( 15 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3cdaqhaaqcfayaaKqzadGaaeivaaqcfayaaKqzadGaaGikaiaaigda caaIPaaaaKqbakaaiIcacaWG5bGaaGykaiaai2dacqaH9oGBlmaaDa aajuaGbaqcLbmacaaIOaGaaGymaiaaiMcaaKqbagaajugWaiaad2ga aaqcfaOaamOzamaaBaaabaqcLbmacaWGTbaajuaGbeaacaaIOaGaam yEaiaaiMcacaaMi8UaaGjcVlaaiYcadaqadaqaaiaaigdacaaI1aaa caGLOaGaayzkaaaaaa@588D@

Where ν (1) m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyVd4 2cdaqhaaqcfayaaKqzadGaaGikaiaaigdacaaIPaaajuaGbaqcLbma caWGTbaaaaaa@3EF3@ represent quantum excitations on the brane with components along the transverse directions of the D3-branes and f m (y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aaBaaabaqcLbmacaWGTbaajuaGbeaacaaIOaGaamyEaiaaiMcaaaa@3CA1@ are arbitrary gauge parameters appearing in the gauge transformation of the four-form (Section VI of11):

A (4) A (4) +δ A (4) with δ A (4) =d Λ (3) ,( 16 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqaS WaaSbaaKqbagaajugWaiaaiIcacaaI0aGaaGykaaqcfayabaGaeyOK H4QaamyqaSWaaSbaaKqbagaajugWaiaaiIcacaaI0aGaaGykaaqcfa yabaGaey4kaSIaeqiTdqMaamyqaSWaaSbaaKqbagaajugWaiaaiIca caaI0aGaaGykaaqcfayabaGaaGiiaiaaiccacaqG3bGaamyAaiaads hacaWGObGaaGiiaiaaiccacqaH0oazcaWGbbWaaSbaaeaajugWaiaa iIcacaaI0aGaaGykaaqcfayabaGaaGypaiaadsgacqqHBoatlmaaBa aajuaGbaqcLbmacaaIOaGaaG4maiaaiMcaaKqbagqaaiaayIW7caaM i8UaaGilamaabmaabaGaaGymaiaaiAdaaiaawIcacaGLPaaaaaa@668F@

Where gauge parameter Λ (3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0cdaWgaaqcfayaaKqzadGaaGikaiaaiodacaaIPaaajuaGbeaaaaa@3C91@ is given by

Λ (3) =F(y) g 4 d x 1 d x 2 d x 3 ,( 17 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0cdaWgaaqcfayaaKqzadGaaGikaiaaiodacaaIPaaajuaGbeaacaaI 9aGaamOraiaaiIcacaWG5bGaaGykamaakaaabaGaeyOeI0Iaam4zam aaBaaabaGaaGinaaqabaaabeaacaWGKbGaamiEaSWaaWbaaKqbagqa baqcLbmacaaIXaaaaKqbakabgEIizlaadsgacaWG4bWcdaahaaqcfa yabeaajugWaiaaikdaaaqcfaOaey4jIKTaamizaiaadIhalmaaCaaa juaGbeqaaKqzadGaaG4maaaajuaGcaaMi8UaaGjcVlaaiYcadaqada qaaiaaigdacaaI3aaacaGLOaGaayzkaaaaaa@5CD2@

And where F(y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOrai aaiIcacaWG5bGaaGykaaaa@39B2@ , an arbitrary function of the internal coordinates y m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyEaS WaaWbaaKqbagqabaqcLbmacaWGTbaaaaaa@3A5D@ , is related with f m (y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aaBaaabaqcLbmacaWGTbaajuaGbeaacaaIOaGaamyEaiaaiMcaaaa@3CA1@ in (15) by the equation

f m (y)= m F(y).( 18 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzaS WaaSbaaKqbagaajugWaiaad2gaaKqbagqaaiaaiIcacaWG5bGaaGyk aiaai2dacqGHciITdaWgaaqaaKqzadGaamyBaaqcfayabaGaamOrai aaiIcacaWG5bGaaGykaiaayIW7caaMi8UaaGOlamaabmaabaGaaGym aiaaiIdaaiaawIcacaGLPaaaaaa@4C44@

So SB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFWesrdaWgaaqa aKqzadGaae4uaiaadkeaaKqbagqaaaaa@44A3@ in (14) has a gauge arbitrariness because it contains arbitrary gauge parameters f m (y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aaBaaabaqcLbmacaWGTbaajuaGbeaacaaIOaGaamyEaiaaiMcaaaa@3CA1@ , and any nonzero V scalar MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvlmaaBaaa juaGbaqcLbmacaqGZbGaam4yaiaadggacaWGSbGaamyyaiaadkhaaK qbagqaaaaa@49F7@ together with the quantum fluctuations δ Q I ^ brane (NS) + δ Q I ^ brane (R) + δ Q I ^ topological MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq 2aaSbaaeaajugWaiaadgfaaKqbagqaaiqadMeagaqcaSWaa0baaKqb agaajugWaiaabkgacaWGYbGaamyyaiaad6gacaWGLbaajuaGbaqcLb macaaIOaGaamOtaiaadofacaaIPaaaaKqbakabgUcaRiabes7aKnaa BaaabaqcLbmacaWGrbaajuaGbeaaceWGjbGbaKaalmaaDaaajuaGba qcLbmacaqGIbGaamOCaiaadggacaWGUbGaamyzaaqcfayaaKqzadGa aGikaiaadkfacaaIPaaaaKqbakabgUcaRiabes7aKnaaBaaabaqcLb macaWGrbaajuaGbeaaceWGjbGbaKaadaWgaaqaaKqzadGaaeiDaiaa d+gacaWGWbGaam4BaiaadYgacaWGVbGaam4zaiaadMgacaWGJbGaam yyaiaadYgaaKqbagqaaaaa@6B09@ in (13), can be gauged away (cancel out) by SB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFWesrdaWgaaqa aKqzadGaae4uaiaadkeaaKqbagqaaaaa@44A3@ so that λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ in (13) vanishes as a result. Such a cancellation between V scalar + δ Q I ^ brane (NS) + δ Q I ^ brane (R) + δ Q I ^ topological MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvaS WaaSbaaKqbagaajugWaiaabohacaWGJbGaamyyaiaadYgacaWGHbGa amOCaaqcfayabaGaey4kaSIaeqiTdq2aaSbaaeaajugWaiaadgfaaK qbagqaaiqadMeagaqcaSWaa0baaKqbagaajugWaiaabkgacaWGYbGa amyyaiaad6gacaWGLbaajuaGbaqcLbmacaaIOaGaamOtaiaadofaca aIPaaaaKqbakabgUcaRiabes7aKnaaBaaabaqcLbmacaWGrbaajuaG beaaceWGjbGbaKaalmaaDaaajuaGbaqcLbmacaqGIbGaamOCaiaadg gacaWGUbGaamyzaaqcfayaaKqzadGaaGikaiaadkfacaaIPaaaaKqb akabgUcaRiabes7aKTWaaSbaaKqbagaajugWaiaadgfaaKqbagqaai qadMeagaqcamaaBaaabaqcLbmacaqG0bGaam4BaiaadchacaWGVbGa amiBaiaad+gacaWGNbGaamyAaiaadogacaWGHbGaamiBaaqcfayaba aaaa@7567@ and SB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFWesrdaWgaaqa aKqzadGaae4uaiaadkeaaKqbagqaaaaa@44A3@ is of course forced by the self-tuning equation (10). So far we have briefly reviewed the main point of the self-tuning mechanism proposed in.1 In the scenario in1 the new self-tuning mechanism is basically discussed in the framework of KKLT. However, there is a crucial difference between the scenario in1 and the scenario in KKLT. In the scenario in1 the background geometry of our present universe is described by AdS vacua, which are supersymmetric and stable. But in the KKLT the AdS minimum is uplifted to a dS minimum by introducing anti-D3-branes at the tip of the KS throat and such a dS vacuum generally suffers from the two different kinds of tunneling instabilities (Section 5.2.2 of1) unlikely to the case of the AdS vacuum. So in the KKLT type models using these dS vacua the authors need show that their background vacua are sufficiently stable enough.

Besides this, the really important (and unique) point of the self-tuning mechanism proposed in1 (and in4 as well) is that there is neither any parameter nor any coefficient to be fine-tuned in the AdS vacuum scenario in [1]. λ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW MaaGypaiaaicdaaaa@39B9@  is automatically achieved by the cancelation between V scalar + δ Q I ^ brane (NS) + δ Q I ^ brane (R) + δ Q I ^ topological MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvaS WaaSbaaKqbagaajugWaiaabohacaWGJbGaamyyaiaadYgacaWGHbGa amOCaaqcfayabaGaey4kaSIaeqiTdq2aaSbaaeaajugWaiaadgfaaK qbagqaaiqadMeagaqcaSWaa0baaKqbagaajugWaiaabkgacaWGYbGa amyyaiaad6gacaWGLbaajuaGbaqcLbmacaaIOaGaamOtaiaadofaca aIPaaaaKqbakabgUcaRiabes7aKnaaBaaabaqcLbmacaWGrbaajuaG beaaceWGjbGbaKaalmaaDaaajuaGbaqcLbmacaqGIbGaamOCaiaadg gacaWGUbGaamyzaaqcfayaaKqzadGaaGikaiaadkfacaaIPaaaaKqb akabgUcaRiabes7aKTWaaSbaaKqbagaajugWaiaadgfaaKqbagqaai qadMeagaqcamaaBaaabaqcLbmacaqG0bGaam4BaiaadchacaWGVbGa amiBaiaad+gacaWGNbGaamyAaiaadogacaWGHbGaamiBaaqcfayaba aaaa@7567@ and SB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFWesrdaWgaaqa aKqzadGaae4uaiaadkeaaKqbagqaaaaa@44A3@ , forced by (10). Hence in the scenario in1 fine-tuning λ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW MaaGypaiaaicdaaaa@39B9@ is radically stable. Any nonzero contribution to V scalar MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFveVvlmaaBaaa juaGbaqcLbmacaqGZbGaam4yaiaadggacaWGSbGaamyyaiaadkhaaK qbagqaaaaa@49F7@ and quantum fluctuations (vacuum energies) on the visible sector D3-branes are all automatically gauged away by SB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFWesrdaWgaaqa aKqzadGaae4uaiaadkeaaKqbagqaaaaa@44A3@ (and by (10)) and as a result λ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW MaaGypaiaaicdaaaa@39B9@ is always preserved.

1Equation (3.20) of1 must include the term I ^ topological MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmysay aajaWcdaWgaaqcfayaaKqzadGaaeiDaiaad+gacaWGWbGaam4Baiaa dYgacaWGVbGaam4zaiaadMgacaWGJbGaamyyaiaadYgaaKqbagqaaa aa@442A@ as in Equation (1) of this paper. But the omission of this term will not change the story of Reference1 at all. See the footnotes 2 and 3 of Reference.4

Conclusion

Finally in,4 the above theory is continued to the case where the α ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde 2cdaahaaqcfayabeaajugWaiaadEcaaaaaaa@3AB8@ -corrections of the string theory are not neglected anymore. In4 it was shown that λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ acquires nonzero values due to α ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde 2cdaahaaqcfayabeaajugWaiaadEcaaaaaaa@3AB8@ -corrections and these nonzero λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ must be very small and positive. The scenario is distinguished from the conventional theories in which the k hler modules of the internal dimensions is fixed by the nonperturbative corrections in (4). In the scenario in4 the scale factor of the internal dimensions is basically allowed to change with time, unlikely to the scenario of the nonperturbative mechanism of KKLT. This scenario might be more natural as compared with the scenarios based on the KKLT because the cosmology based on the KKLT looks somewhat artificial in the sense that the internal dimensions are fixed by hand (i.e. by the nonperturbative corrections) while the external are expanding. Using this scenario the authors of4 anticipate that the well-known constants of nature like electric charges (or the coupling constants) might not be real constants. According to the scenario "the electric charges of our present universe" decrease in magnitudes at the rate in which they become half the original magnitude during about 1010 years.

Acknowledgments

None.

Conflicts of interest

Authors declare there is no conflict of interest.

References

Creative Commons Attribution License

©2017 Kwon, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.