Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 1 Issue 5

A new class of anisotropic charged compact star

Ratanpal BS,1 Bhar P1

1Department of Applied Mathematics, The MS University of Baroda, India
2Department of Mathematics, Government General Degree College, India

Correspondence: BS Ratanpal, Department of Applied Mathematics, Faculty of Technology & Engineering, The MS University of Baroda, Vadodara-390 001, India, Tel 919825185736

Received: July 29, 2017 | Published: November 24, 2017

Citation: Ratanpal BS, Bhar P. A new class of anisotropic charged compact star. Phys Astron Int J. 2017;1(5):151-157. DOI: 10.15406/paij.2017.01.00027

Download PDF

Abstract

A new model of charged compact star is reported by solving the Einstein-Maxwell field equations by choosing a suitable form of radial pressure. The model parameters ρ, p r , p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi NaaiilaiaadchadaWgaaqcfasaaiaadkhaaeqaaKqbakaacYcacaWG WbWaaSbaaKqbGeaacqGHLkIxaKqbagqaaaaa@3FF0@ and E 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaCaaabeqcfasaaiaaikdaaaaaaa@385A@  are in closed form and all are well behaved inside the stellar interior. A comparative study of charged and uncharged model is done with the help of graphical analysis.

Keywords: general relativity, exact solutions, anisotropy, relativistic compact stars, charged distribution

Introduction

To find the exact solution of Einstein’s field equations is difficult due to its non-linear nature. A large number of exact solutions of Einstein’s field equations in literature but not all of them are physically relevant. A comprehensive collection of static, spherically symmetric solutions are found in.1,2 A large collection of models of stellar objects incorporating charge can be found in literature.3 Proposed that a fluid sphere of uniform density with a net surface charge is more stable than without charge. An interesting observation of4 is that in the presence of charge, the gravitational collapse of a spherically symmetric distribution of matter to a point singularity may be avoided. Charged anisotropic matter with linear equation of state is discussed by.5,6 Found that the solutions of Einstein-Maxwell system of equations are important to study the cosmic censorship hypothesis and the formation of naked singularities. The presence of charge affects the values for redshifts, luminosities, and maximum mass for stars. Charged perfect fluid sphere satisfying a linear equation of state was discussed by.7 Regular models with quadratic equation of state were discussed by.8 They obtained exact and physically reasonable solution of Einstein-Maxwell system of equations. Their model is well behaved and regular. In particular there is no singularity in the proper charge density.9 Considered a self gravitating, charged and anisotropic fluid sphere. To solve Einstein-Maxwell field equation they have assumed both linear and nonlinear equation of state and discussed the result analytically.10 Extend the work of5 by considering quadratic equation of state for the matter distribution to study the general situation of a compact relativistic body in presence of electromagnetic field and anisotropy.

Ruderman R11 investigated that for highly compact astrophysical objects like X-ray pulsar, Her-X-1, X-ray buster 4U 1820-30, millisecond pulsar SAX J 1804.4-3658, PSR J1614-2230, LMC X-4 etc. having core density beyond the nuclear density ( 10 15 gm/c m 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikae bbfv3ySLgzGueE0jxyaGqbaiab=XJi6iaaiccacaaIXaGaaGimamaa CaaajuaibeqaaiaaigdacaaI1aaaaKqbakaadEgacaWGTbGaaG4lai aadogacaWGTbWaaWbaaeqajuaibaGaaG4maaaajuaGcaaIPaaaaa@4825@ there can be pressure anisotropy, i.e, the pressure inside these compact objects can be decomposed into two parts radial pressure p r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaamOCaaqabaaaaa@38BF@ and transverse pressure p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaeyyPI4fajuaGbeaaaaa@3A07@  perpendicular direction to p r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaamOCaaqabaaaaa@38BF@ . Δ= p r p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiLdq KaaGypaiaadchadaWgaaqcfasaaiaadkhaaeqaaKqbakabgkHiTiaa dchadaWgaaqcfasaaiabgwQiEbqabaaaaa@3F5C@ is called the anisotropic factor which measures the anisotropy. The reason behind these anisotropic nature are the existence of solid core, in presence of type 3A super fluid,12 phase transition,13 pion condensation,14 rotation, magnetic field, mixture of two fluid, existence of external field etc. Local anisotropy in self gravitating systems was studied by.15,16 Demonstrated that pressure anisotropy affects the physical properties, stability and structure of stellar matter. Relativistic stellar model admitting a quadratic equation of state was proposed by17 in finch-skea space-time.18 Has generalized earlier work in modified Finch-Skea spacetime by incorporating a dimensionless parameter n. In a very recent work19 obtained a new model of an anisotropic super dense star which admits conformal motions in the presence of a quintessence field which is characterized by a parameter ω q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGXbaajuaGbeaaaaa@3A24@ with 1< ω q <1/3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaaGymaiaaiYdacqaHjpWDdaWgaaqcfasaaiaadghaaeqaaKqbakaa iYdacqGHsislcaaIXaGaaG4laiaaiodaaaa@4076@ . The model has been developed by choosing ansatz.20,21 Have studied the behavior of static spherically symmetric relativistic objects with locally anisotropic matter distribution considering the Tolman VII form for the gravitational potential g rr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4zam aaBaaajuaibaGaamOCaiaadkhaaeqaaaaa@39AD@ in curvature coordinates together with the linear relation between the energy density and the radial pressure.

 Charged anisotropic star on paraboloidal space-time was studied by.22,23 Studied anisotropic star on pseudo-spheroidal space time. Charged anisotropic star on pseudo-spheroidal space time was studied by.24 The study of compact stars having Matese and Whitman mass function was carried out by.25 Motivated by these earlier works in the present paper we develop a model of compact star by incorporating charge. Our paper is organized as follows: In section 2, interior space time and the Einstein-Maxwell system is discussed. Section 3 deals with solution of field equations. Section 4 contains exterior space time and matching conditions. Physical analysis of the model is discussed in section 5. Section 6 contains conclusion.

Interior spacetime

We consider the static spherically symmetric spacetime metric as,

d s 2 = e ν(r) d t 2 e λ(r) d r 2 r 2 ( d θ 2 + sin 2 θd ϕ 2 ).               ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizai aadohadaahaaqcfasabeaacaaIYaaaaKqbakaai2dacaWGLbWaaWba aKqbGeqabaGaeqyVd4MaaGikaiaadkhacaaIPaaaaKqbakaadsgaca WG0bWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHsislcaWGLbWaaWba aKqbGeqabaGaeq4UdWMaaGikaiaadkhacaaIPaaaaKqbakaadsgaca WGYbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHsislcaWGYbWaaWba aeqajuaibaGaaGOmaaaajuaGdaqadaqaaiaadsgacqaH4oqCdaahaa qcfasabeaacaaIYaaaaKqbakabgUcaRmaavacabeqabKqbGeaacaaI YaaajuaGbaGaci4CaiaacMgacaGGUbaaaiabeI7aXjaadsgacqaHvp GzdaahaaqcfasabeaacaaIYaaaaaqcfaOaayjkaiaawMcaaiaai6ca qaaaaaaaaaWdbiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOa8aadaqadaqaa8qacaaIXaaapaGaayjkaiaawMcaaaaa@7774@

 Where v and λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ are functions of the radial coordinate ‘r’ only.

Einstein-Maxwell Field Equations is given by

R i j 1 2 R δ i j =8π( T i j + π i j + E i j ),               ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuam aaDaaajuaibaGaamyAaaqaaiaadQgaaaqcfaOaeyOeI0YaaSaaaeaa caaIXaaabaGaaGOmaaaacaWGsbGaeqiTdq2aa0baaKqbGeaacaWGPb aabaGaamOAaaaajuaGcaaI9aGaaGioaiabec8aWnaabmaabaGaamiv amaaDaaajuaibaGaamyAaaqaaiaadQgaaaqcfaOaey4kaSIaeqiWda 3aa0baaKqbGeaacaWGPbaabaGaamOAaaaajuaGcqGHRaWkcaWGfbWa a0baaKqbGeaacaWGPbaabaGaamOAaaaaaKqbakaawIcacaGLPaaaca aISaaeaaaaaaaaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckapaWaaeWaaeaapeGaaGOmaaWdaiaawIcacaGLPaaaaaa@684A@

 Where,

T i j =( ρ+p ) u i u j p δ i j ,             ( 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaDaaajuaibaGaamyAaaqaaiaadQgaaaqcfaOaaGypamaabmaabaGa eqyWdiNaey4kaSIaamiCaaGaayjkaiaawMcaaiaadwhadaWgaaqcfa saaiaadMgaaeqaaKqbakaadwhadaahaaqabKqbGeaacaWGQbaaaKqb akabgkHiTiaadchacqaH0oazdaqhaaqcfasaaiaadMgaaeaacaWGQb aaaKqbakaaiYcaqaaaaaaaaaWdbiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckapaWaaeWaaeaacaaIZaaacaGLOaGaayzkaaaaaa@5DCC@

π i j = 3 S[ c i c j 1 2 ( u i u j δ i j ) ],           ( 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiWda 3aa0baaKqbGeaacaWGPbaabaGaamOAaaaajuaGcaaI9aWaaOaaaeaa caaIZaaabeaacaWGtbWaamWaaeaacaWGJbWaaSbaaKqbGeaacaWGPb aabeaajuaGcaWGJbWaaWbaaeqajuaibaGaamOAaaaajuaGcqGHsisl daWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaamyDamaaBaaaju aibaGaamyAaaqabaqcfaOaamyDamaaCaaajuaibeqaaiaadQgaaaqc faOaeyOeI0IaeqiTdq2aa0baaKqbGeaacaWGPbaabaGaamOAaaaaaK qbakaawIcacaGLPaaaaiaawUfacaGLDbaacaaISaaeaaaaaaaaa8qa caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOa8aadaqadaqaaiaaisdaaiaawIcacaGLPaaa aaa@6350@

 And

E i j = 1 4π ( F ik F jk + 1 4 F mn F mn δ i j ).              ( 5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaDaaajuaibaGaamyAaaqaaiaadQgaaaqcfaOaaGypamaalaaabaGa aGymaaqaaiaaisdacqaHapaCaaWaaeWaaeaacqGHsislcaWGgbWaaS baaKqbGeaacaWGPbGaam4AaaqcfayabaGaamOramaaCaaajuaibeqa aiaadQgacaWGRbaaaKqbakabgUcaRmaalaaabaGaaGymaaqaaiaais daaaGaamOramaaBaaajuaibaGaamyBaiaad6gaaKqbagqaaiaadAea daahaaqcfasabeaacaWGTbGaamOBaaaajuaGcqaH0oazdaqhaaqcfa saaiaadMgaaeaacaWGQbaaaaqcfaOaayjkaiaawMcaaiaai6caqaaa aaaaaaWdbiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWdamaa bmaabaGaaGynaaGaayjkaiaawMcaaaaa@68A7@

Here ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@ is proper density, p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCaa aa@3779@ is fluid pressure, u i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaamyAaaqabaaaaa@38BB@ is unit four velocities, S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uaa aa@375C@ denotes magnitude of anisotropic tensor and C i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qam aaCaaajuaibeqaaiaadMgaaaaaaa@388A@ is radial vector given by ( 0, e λ/2 ,0,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaaIWaGaaGilaiabgkHiTiaadwgadaahaaqabKqbGeaacqGHsisl cqaH7oaBcaaIVaGaaGOmaaaajuaGcaaISaGaaGimaiaaiYcacaaIWa aacaGLOaGaayzkaaaaaa@4328@ . F ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aaBaaajuaibaGaamyAaiaadQgaaeqaaaaa@397B@ Denotes the anti-symmetric electromagnetic field strength tensor defined by

F ij = A j x i A i x j ,              ( 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aaBaaajuaibaGaamyAaiaadQgaaeqaaKqbakaai2dadaWcaaqaaiab gkGi2kaadgeadaWgaaqcfasaaiaadQgaaKqbagqaaaqaaiabgkGi2k aadIhadaWgaaqcfasaaiaadMgaaeqaaaaajuaGcqGHsisldaWcaaqa aiabgkGi2kaadgeadaWgaaqcfasaaiaadMgaaeqaaaqcfayaaiabgk Gi2kaadIhadaWgaaqcfasaaiaadQgaaKqbagqaaaaacaaISaaeaaaa aaaaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOa8aadaqa daqaaiaaiAdaaiaawIcacaGLPaaaaaa@5F4F@

 That satisfies the Maxwell equations

F ij,k + F jk,i + F ki,j =0,            ( 7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aaBaaajuaibaGaamyAaiaadQgacaaISaGaam4AaaqabaqcfaOaey4k aSIaamOramaaBaaajuaibaGaamOAaiaadUgacaaISaGaamyAaaqcfa yabaGaey4kaSIaamOramaaBaaajuaibaGaam4AaiaadMgacaaISaGa amOAaaqabaqcfaOaaGypaiaaicdacaaISaaeaaaaaaaaa8qacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckapaWaaeWaaeaacaaI3aaacaGLOaGaayzkaa aaaa@5A29@

 And

x k ( F ik g )=4π g J i ,               ( 8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITaeaacqGHciITcaWG4bWaaWbaaeqajuaibaGaam4Aaaaa aaqcfa4aaeWaaeaacaWGgbWaaWbaaKqbGeqabaGaamyAaiaadUgaaa qcfa4aaOaaaeaacqGHsislcaWGNbaabeaaaiaawIcacaGLPaaacaaI 9aGaaGinaiabec8aWnaakaaabaGaeyOeI0Iaam4zaaqabaGaamOsam aaCaaajuaibeqaaiaadMgaaaqcfaOaaGilaabaaaaaaaaapeGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWdamaabmaabaGa aGioaaGaayjkaiaawMcaaaaa@5F36@

Where g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4zaa aa@3770@ denotes the determinant of g ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4zam aaBaaajuaibaGaamyAaiaadQgaaeqaaaaa@399C@ , A i =( ϕ(r),0,0,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqam aaBaaajuaibaGaamyAaaqabaqcfaOaaGypamaabmaabaGaeqy1dyMa aGikaiaadkhacaaIPaGaaGilaiaaicdacaaISaGaaGimaiaaiYcaca aIWaaacaGLOaGaayzkaaaaaa@43D9@ is four-potential and

J i =σ u i ,              ( 9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOsam aaCaaajuaibeqaaiaadMgaaaqcfaOaaGypaiabeo8aZjaadwhadaah aaqcfasabeaacaWGPbaaaKqbakaaiYcaqaaaaaaaaaWdbiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcWdamaabmaabaGaaGyoaaGaay jkaiaawMcaaaaa@5198@

Is the four-current vector where σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm haaa@3847@ denotes the charge density.

The only non-vanishing components of F ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aaBaaajuaibaGaamyAaiaadQgaaeqaaaaa@397B@  is F 01 = F 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aaBaaajuaibaGaaGimaiaaigdaaKqbagqaaiaai2dacqGHsislcaWG gbWaaSbaaKqbGeaacaaIXaGaaGimaaqabaaaaa@3DE4@ . Here

F 01 = e ν+λ 2 r 2 0 r 4π r 2 σ e λ/2 dr,            ( 10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aaBaaajuaibaGaaGimaiaaigdaaKqbagqaaiaai2dacqGHsisldaWc aaqaaiaadwgadaahaaqcfasabeaajuaGdaWcaaqcfasaaiabe27aUj abgUcaRiabeU7aSbqaaiaaikdaaaaaaaqcfayaaiaadkhadaahaaqa bKqbGeaacaaIYaaaaaaajuaGdaWdXaqabKqbGeaacaaIWaaabaGaam OCaaqcfaOaey4kIipacaaI0aGaeqiWdaNaamOCamaaCaaabeqcfasa aiaaikdaaaqcfaOaeq4WdmNaamyzamaaCaaabeqcfasaaiabeU7aSj aai+cacaaIYaaaaKqbakaadsgacaWGYbGaaGilaabaaaaaaaaapeGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcWdamaabmaabaGaaGymaiaaicdaaiaa wIcacaGLPaaaaaa@6946@

 And the total charge inside a radius r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCaa aa@377B@ is given by

q(r)=4π 0 r σ r 2 e λ/2 dr.                ( 11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aaiIcacaWGYbGaaGykaiaai2dacaaI0aGaeqiWda3aa8qmaeqajuai baGaaGimaaqaaiaadkhaaKqbakabgUIiYdGaeq4WdmNaamOCamaaCa aajuaibeqaaiaaikdaaaqcfaOaamyzamaaCaaajuaibeqaaiabeU7a Sjaai+cacaaIYaaaaKqbakaadsgacaWGYbGaaGOlaabaaaaaaaaape GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOa8 aadaqadaqaaiaaigdacaaIXaaacaGLOaGaayzkaaaaaa@62E2@

The electric field intensity E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyraa aa@374E@ can be obtained from E 2 = F 01 F 01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaCaaabeqcfasaaiaaikdaaaqcfaOaaGypaiabgkHiTiaadAeadaWg aaqcfasaaiaaicdacaaIXaaajuaGbeaacaWGgbWaaWbaaKqbGeqaba GaaGimaiaaigdaaaaaaa@4049@ , which subsequently reduces to

E= q(r) r 2 .             ( 12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyrai aai2dadaWcaaqaaiaadghacaaIOaGaamOCaiaaiMcaaeaacaWGYbWa aWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaaGOlaabaaaaaaaaapeGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOa8aadaqadaqaaiaaigdacaaIYa aacaGLOaGaayzkaaaaaa@50C3@

The field equations given by (2) are now equivalent to the following set of the non-linear ODE’s

1 e λ r 2 + e λ λ r =8πρ+ E 2 ,             ( 13 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaaIXaGaeyOeI0IaamyzamaaCaaabeqcfasaaiabgkHiTiabeU7a SbaaaKqbagaacaWGYbWaaWbaaeqajuaibaGaaGOmaaaaaaqcfaOaey 4kaSYaaSaaaeaacaWGLbWaaWbaaeqajuaibaGaeyOeI0Iaeq4UdWga aKqbakqbeU7aSzaafaaabaGaamOCaaaacaaI9aGaaGioaiabec8aWj abeg8aYjabgUcaRiaadweadaahaaqcfasabeaacaaIYaaaaKqbakaa iYcaqaaaaaaaaaWdbiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckapaWa aeWaaeaacaaIXaGaaG4maaGaayjkaiaawMcaaaaa@624E@

e λ 1 r 2 + e λ ν r =8π p r E 2 ,             ( 14 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGLbWaaWbaaeqajuaibaGaeyOeI0Iaeq4UdWgaaKqbakabgkHi TiaaigdaaeaacaWGYbWaaWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaey 4kaSYaaSaaaeaacaWGLbWaaWbaaKqbGeqabaGaeyOeI0Iaeq4UdWga aKqbakqbe27aUzaafaaabaGaamOCaaaacaaI9aGaaGioaiabec8aWj aadchadaWgaaqcfasaaiaadkhaaKqbagqaaiabgkHiTiaadweadaah aaqcfasabeaacaaIYaaaaKqbakaaiYcaqaaaaaaaaaWdbiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckapaWaaeWaaeaacaaIXaGaaGinaaGaay jkaiaawMcaaaaa@6367@

e λ ( ν 2 + ν 2 4 ν λ 4 + ν λ 2r )=8π p + E 2 ,             ( 15 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyzam aaCaaajqwba+FabeaacqGHsislcqaH7oaBaaqcfa4aaeWaaeaadaWc aaqaaiqbe27aUzaafyaafaaabaGaaGOmaaaacqGHRaWkdaWcaaqaai qbe27aUzaafaWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagaacaaI0aaa aiabgkHiTmaalaaabaGafqyVd4MbauaacuaH7oaBgaqbaaqaaiaais daaaGaey4kaSYaaSaaaeaacuaH9oGBgaqbaiabgkHiTiqbeU7aSzaa faaabaGaaGOmaiaadkhaaaaacaGLOaGaayzkaaGaaGypaiaaiIdacq aHapaCcaWGWbWaaSbaaKqbGeaacqGHLkIxaeqaaKqbakabgUcaRiaa dweadaahaaqcfasabeaacaaIYaaaaKqbakaaiYcaqaaaaaaaaaWdbi aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckapaWaaeWaaeaacaaIXaGaaG ynaaGaayjkaiaawMcaaaaa@6F02@

Where we have taken

p r =p+ 2S 3 ,             ( 16 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaamOCaaqcfayabaGaaGypaiaadchacqGHRaWkdaWc aaqaaiaaikdacaWGtbaabaWaaOaaaeaacaaIZaaabeaaaaGaaGilaa baaaaaaaaapeGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOa8aadaqada qaaiaaigdacaaI2aaacaGLOaGaayzkaaaaaa@5119@

p =p S 3 .            ( 17 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaeyyPI4fabeaajuaGcaaI9aGaamiCaiabgkHiTmaa laaabaGaam4uaaqaamaakaaabaGaaG4maaqabaaaaiaai6caqaaaaa aaaaWdbiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOa8aadaqadaqaaiaaigdaca aI3aaacaGLOaGaayzkaaaaaa@5001@

8π 3 S= p r p .           ( 18 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGioai abec8aWnaakaaabaGaaG4maaqabaGaam4uaiaai2dacaWGWbWaaSba aKqbGeaacaWGYbaajuaGbeaacqGHsislcaWGWbWaaSbaaKqbGeaacq GHLkIxaKqbagqaaiaai6caqaaaaaaaaaWdbiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc WdamaabmaabaGaaGymaiaaiIdaaiaawIcacaGLPaaaaaa@5321@

Solution of field equations

To solve the above set of equations (13)-(15) we take the mass function of the form

m(r)= b r 3 2(1+a r 2 ) ,          ( 19 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai aaiIcacaWGYbGaaGykaiaai2dadaWcaaqaaiaadkgacaWGYbWaaWba aKqbGeqabaGaaG4maaaaaKqbagaacaaIYaGaaGikaiaaigdacqGHRa WkcaWGHbGaamOCamaaCaaajuaibeqaaiaaikdaaaqcfaOaaGykaaaa caaISaaeaaaaaaaaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcWdamaabmaabaGaaGymaiaa iMdaaiaawIcacaGLPaaaaaa@54AB@

Where ‘a’ and ‘b’ are two positive constants. The mass function given in (19) is known as Matese & Whitman26 mass function that gives a monotonic decreasing matter density which was used by27 to model an anisotropic fluid star,28 to develop a model of dark energy star,29 to model a class of relativistic stars with a linear equation of state and30 to model a charged anisotropic matter with linear equation of state.

Using the relationship e λ =1 2m r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyzam aaCaaajuaibeqaaiabgkHiTiabeU7aSbaajuaGcaaI9aGaaGymaiab gkHiTmaalaaabaGaaGOmaiaad2gaaeaacaWGYbaaaaaa@4011@  and equation (19) we get,

e λ = 1+a r 2 1+(ab) r 2 .        ( 20 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyzam aaCaaabeqcfasaaiabeU7aSbaajuaGcaaI9aWaaSaaaeaacaaIXaGa ey4kaSIaamyyaiaadkhadaahaaqcfasabeaacaaIYaaaaaqcfayaai aaigdacqGHRaWkcaaIOaGaamyyaiabgkHiTiaadkgacaaIPaGaamOC amaaCaaabeqcfasaaiaaikdaaaaaaKqbakaai6caqaaaaaaaaaWdbi aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWd amaabmaabaGaaGOmaiaaicdaaiaawIcacaGLPaaaaaa@553E@

From equation (13) and (20) we obtain

8πρ= 3b+ab r 2 (1+a r 2 ) 2 E 2 .       ( 21 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGioai abec8aWjabeg8aYjaai2dadaWcaaqaaiaaiodacaWGIbGaey4kaSIa amyyaiaadkgacaWGYbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagaaca aIOaGaaGymaiabgUcaRiaadggacaWGYbWaaWbaaKqbGeqabaGaaGOm aaaajuaGcaaIPaWaaWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaeyOeI0 IaamyramaaCaaabeqcfasaaiaaikdaaaqcfaOaaGOlaabaaaaaaaaa peGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOa8aada qadaqaaiaaikdacaaIXaaacaGLOaGaayzkaaaaaa@59C5@

We choose E 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaCaaabeqcfasaaiaaikdaaaaaaa@385A@ of the form

E 2 = αa r 2 (1+a r 2 ) 2 ,             ( 22 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaCaaajuaibeqaaiaaikdaaaqcfaOaaGypamaalaaabaGaeqySdeMa amyyaiaadkhadaahaaqcfasabeaacaaIYaaaaaqcfayaaiaaiIcaca aIXaGaey4kaSIaamyyaiaadkhadaahaaqabKqbGeaacaaIYaaaaKqb akaaiMcadaahaaqabKqbGeaacaaIYaaaaaaajuaGcaaISaaeaaaaaa aaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWdamaabmaabaGaaG OmaiaaikdaaiaawIcacaGLPaaaaaa@59A2@

Which is regular at the center of the star. Substituting the expression of E 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaCaaabeqcfasaaiaaikdaaaaaaa@385A@ into (21) we get,

8πρ= 3b+a(bα) r 2 (1+a r 2 ) 2 .                ( 23 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGioai abec8aWjabeg8aYjaai2dadaWcaaqaaiaaiodacaWGIbGaey4kaSIa amyyaiaaiIcacaWGIbGaeyOeI0IaeqySdeMaaGykaiaadkhadaahaa qabKqbGeaacaaIYaaaaaqcfayaaiaaiIcacaaIXaGaey4kaSIaamyy aiaadkhadaahaaqabKqbGeaacaaIYaaaaKqbakaaiMcadaahaaqcfa sabeaacaaIYaaaaaaajuaGcaaIUaaeaaaaaaaaa8qacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWdamaabmaabaGa aGOmaiaaiodaaiaawIcacaGLPaaaaaa@64AB@

 To integrate the equation (14) we take radial pressure of the form,

8π p r = b p 0 (1a r 2 ) (1+a r 2 ) 2 ,                ( 24 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGioai abec8aWjaadchadaWgaaqcfasaaiaadkhaaeqaaKqbakaai2dadaWc aaqaaiaadkgacaWGWbWaaSbaaKqbGeaacaaIWaaabeaajuaGcaaIOa GaaGymaiabgkHiTiaadggacaWGYbWaaWbaaeqajuaibaGaaGOmaaaa juaGcaaIPaaabaGaaGikaiaaigdacqGHRaWkcaWGHbGaamOCamaaCa aabeqcfasaaiaaikdaaaqcfaOaaGykamaaCaaajuaibeqaaiaaikda aaaaaKqbakaaiYcaqaaaaaaaaaWdbiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckapaWaaeWaaeaacaaIYaGaaGinaa GaayjkaiaawMcaaaaa@64D5@

Where p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaaGimaaqabaaaaa@3882@ is a positive constant, the choice of p r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaamOCaaqabaaaaa@38BF@ is reasonable due to the fact that it is monotonic decreasing function of ‘r’ and the radial pressure vanishes at r= 1 a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai aai2dadaWcaaqaaiaaigdaaeaadaGcaaqaaiaadggaaeqaaaaaaaa@3A03@ which gives the radius of the star.

From (24) and (14) we get,

ν = (b p 0 +b)ra(b p 0 +αb) r 3 (1+a r 2 )[ 1+(ab) r 2 ] .                         ( 25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqyVd4 MbauaacaaI9aWaaSaaaeaacaaIOaGaamOyaiaadchadaWgaaqcfasa aiaaicdaaKqbagqaaiabgUcaRiaadkgacaaIPaGaamOCaiabgkHiTi aadggacaaIOaGaamOyaiaadchadaWgaaqcfasaaiaaicdaaeqaaKqb akabgUcaRiabeg7aHjabgkHiTiaadkgacaaIPaGaamOCamaaCaaaju aibeqaaiaaiodaaaaajuaGbaGaaGikaiaaigdacqGHRaWkcaWGHbGa amOCamaaCaaajuaibeqaaiaaikdaaaqcfaOaaGykamaadmaabaGaaG ymaiabgUcaRiaaiIcacaWGHbGaeyOeI0IaamOyaiaaiMcacaWGYbWa aWbaaKqbGeqabaGaaGOmaaaaaKqbakaawUfacaGLDbaaaaGaaGOlaa baaaaaaaaapeGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOa8aadaqadaqaaiaaikdacaaI1aaacaGLOaGaay zkaaaaaa@7F70@

Integrating we get,

ν=log{ C ( 1+a r 2 ) ( 2b p 0 +α 2b ) [ ( ba ) r 2 1 ] [ ( b 2 2ab ) p 0 + b 2 αa 2 b 2 2ab ] },                              ( 26 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyVd4 MaaGypaiaadYgacaWGVbGaam4zamaacmaabaWaaSaaaeaacaWGdbWa aeWaaeaacaaIXaGaey4kaSIaamyyaiaadkhadaahaaqcfasabeaaca aIYaaaaaqcfaOaayjkaiaawMcaamaaCaaabeqaamaabmaabaWaaSaa aeaacaaIYaGaamOyaiaadchadaWgaaqcfasaaiaaicdaaKqbagqaai abgUcaRiabeg7aHbqaaiaaikdacaWGIbaaaaGaayjkaiaawMcaaaaa aeaadaWadaqaamaabmaabaGaamOyaiabgkHiTiaadggaaiaawIcaca GLPaaacaWGYbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHsislcaaI XaaacaGLBbGaayzxaaWaaWbaaeqabaWaamWaaeaadaWcaaqaamaabm aabaGaamOyamaaCaaabeqcfasaaiaaikdaaaqcfaOaeyOeI0IaaGOm aiaadggacaWGIbaacaGLOaGaayzkaaGaamiCamaaBaaajuaibaGaaG imaaqabaqcfaOaey4kaSIaamOyamaaCaaabeqcfasaaiaaikdaaaqc faOaeyOeI0IaeqySdeMaamyyaaqaaiaaikdacaWGIbWaaWbaaKqbGe qabaGaaGOmaaaajuaGcqGHsislcaaIYaGaamyyaiaadkgaaaaacaGL BbGaayzxaaaaaaaaaiaawUhacaGL9baacaaISaaeaaaaaaaaa8qaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckapaWaaeWaaeaacaaIYa GaaGOnaaGaayjkaiaawMcaaaaa@99D0@

Where C is constant of integration, and the space time metric in the interior is given by

d s 2 ={ C ( 1+a r 2 ) ( 2b p 0 +α 2b ) [ ( ba ) r 2 1 ] [ ( b 2 2ab ) p 0 + b 2 αa 2 b 2 2ab ] }d t 2 [ 1+a r 2 1+( ab ) r 2 ]d r 2 r 2 ( d θ 2 + sin 2 θd ϕ 2 ).                                     ( 27 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizai aadohadaahaaqabKqbGeaacaaIYaaaaKqbakaai2dadaGadaqaamaa laaabaGaam4qamaabmaabaGaaGymaiabgUcaRiaadggacaWGYbWaaW baaKqbGeqabaGaaGOmaaaaaKqbakaawIcacaGLPaaadaahaaqabeaa daqadaqaamaalaaabaGaaGOmaiaadkgacaWGWbWaaSbaaKqbGeaaca aIWaaabeaajuaGcqGHRaWkcqaHXoqyaeaacaaIYaGaamOyaaaaaiaa wIcacaGLPaaaaaaabaWaamWaaeaadaqadaqaaiaadkgacqGHsislca WGHbaacaGLOaGaayzkaaGaamOCamaaCaaabeqcfasaaiaaikdaaaqc faOaeyOeI0IaaGymaaGaay5waiaaw2faamaaCaaabeqaamaadmaaba WaaSaaaeaadaqadaqaaiaadkgadaahaaqabKqbGeaajugWaiaaikda aaqcfaOaeyOeI0IaaGOmaiaadggacaWGIbaacaGLOaGaayzkaaGaam iCamaaBaaajuaibaGaaGimaaqabaqcfaOaey4kaSIaamOyamaaCaaa juaibeqaaiaaikdaaaqcfaOaeyOeI0IaeqySdeMaamyyaaqaaiaaik dacaWGIbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHsislcaaIYaGa amyyaiaadkgaaaaacaGLBbGaayzxaaaaaaaaaiaawUhacaGL9baaca WGKbGaamiDamaaCaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0YaamWa aeaadaWcaaqaaiaaigdacqGHRaWkcaWGHbGaamOCamaaCaaabeqcfa saaiaaikdaaaaajuaGbaGaaGymaiabgUcaRmaabmaabaGaamyyaiab gkHiTiaadkgaaiaawIcacaGLPaaacaWGYbWaaWbaaeqajuaibaGaaG OmaaaaaaaajuaGcaGLBbGaayzxaaGaamizaiaadkhadaahaaqcfasa beaacaaIYaaaaKqbakabgkHiTiaadkhadaahaaqcfasabeaacaaIYa aaaKqbaoaabmaabaGaamizaiabeI7aXnaaCaaabeqcfasaaiaaikda aaqcfaOaey4kaSYaaubiaeqabeqcfasaaKqzadGaaGOmaaqcfayaai GacohacaGGPbGaaiOBaaaacqaH4oqCcaWGKbGaeqy1dy2aaWbaaKqb GeqabaGaaGOmaaaaaKqbakaawIcacaGLPaaacaaIUaaeaaaaaaaaa8 qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcWdamaabmaabaGaaGOmaiaa iEdaaiaawIcacaGLPaaaaaa@CF38@

From (14), (15) and (18), we have

8π 3 S= r 2 [ A 1 + A 2 r 2 + A 3 r 4 ] [ 4+ B 1 r 2 + B 2 r 4 + B 3 r 6 + B 4 r 8 ] ,                       ( 28 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGioai abec8aWnaakaaabaGaaG4maaqabaGaam4uaiaai2dadaWcaaqaaiaa dkhadaahaaqcfasabeaacaaIYaaaaKqbaoaadmaabaGaamyqamaaBa aajuaibaGaaGymaaqabaqcfaOaey4kaSIaamyqamaaBaaajuaibaGa aGOmaaqcfayabaGaamOCamaaCaaabeqcfasaaiaaikdaaaqcfaOaey 4kaSIaamyqamaaBaaajuaibaGaaG4maaqcfayabaGaamOCamaaCaaa juaibeqaaiaaisdaaaaajuaGcaGLBbGaayzxaaaabaWaamWaaeaacq GHsislcaaI0aGaey4kaSIaamOqamaaBaaajuaibaGaaGymaaqabaqc faOaamOCamaaCaaabeqcfasaaiaaikdaaaqcfaOaey4kaSIaamOqam aaBaaajuaibaGaaGOmaaqcfayabaGaamOCamaaCaaabeqcfasaaiaa isdaaaqcfaOaey4kaSIaamOqamaaBaaajuaibaGaaG4maaqcfayaba GaamOCamaaCaaajuaibeqaaiaaiAdaaaqcfaOaey4kaSIaamOqamaa BaaajuaibaGaaGinaaqcfayabaGaamOCamaaCaaajuaibeqaaiaaiI daaaaajuaGcaGLBbGaayzxaaaaaiaaiYcaqaaaaaaaaaWdbiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWdamaabmaabaGaaG OmaiaaiIdaaiaawIcacaGLPaaaaaa@8726@

Where, A 1 = b 2 p 0 2 +14 b 2 p 0 12ab p 0 +3 b 2 12αa MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqam aaBaaajuaibaGaaGymaaqcfayabaGaaGypaiaadkgadaahaaqcfasa beaacaaIYaaaaKqbakaadchadaqhaaqcfasaaiaaicdaaeaacaaIYa aaaKqbakabgUcaRiaaigdacaaI0aGaamOyamaaCaaajuaibeqaaiaa ikdaaaqcfaOaamiCamaaBaaajuaibaGaaGimaaqabaqcfaOaeyOeI0 IaaGymaiaaikdacaWGHbGaamOyaiaadchadaWgaaqcfasaaiaaicda aKqbagqaaiabgUcaRiaaiodacaWGIbWaaWbaaKqbGeqabaGaaGOmaa aajuaGcqGHsislcaaIXaGaaGOmaiabeg7aHjaadggaaaa@56A1@ ,

A 2 =2a b 2 p 0 2 +8a b 2 p 0 8 a 2 b p 0 2αab p 0 +2a b 2 +8αab16α a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqam aaBaaajuaibaGaaGOmaaqcfayabaGaaGypaiabgkHiTiaaikdacaWG HbGaamOyamaaCaaajuaibeqaaiaaikdaaaqcfaOaamiCamaaDaaaju aibaGaaGimaaqaaiaaikdaaaqcfaOaey4kaSIaaGioaiaadggacaWG IbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGWbWaaSbaaKqbGeaaca aIWaaabeaajuaGcqGHsislcaaI4aGaamyyamaaCaaajuaibeqaaiaa ikdaaaqcfaOaamOyaiaadchalmaaBaaajuaibaqcLbmacaaIWaaaju aibeaajuaGcqGHsislcaaIYaGaeqySdeMaamyyaiaadkgacaWGWbWa aSbaaKqbGeaacaaIWaaabeaajuaGcqGHRaWkcaaIYaGaamyyaiaadk gadaahaaqcfasabeaacaaIYaaaaKqbakabgUcaRiaaiIdacqaHXoqy caWGHbGaamOyaiabgkHiTiaaigdacaaI2aGaeqySdeMaamyyamaaCa aajuaibeqaaiaaikdaaaaaaa@6A52@ , A 3 = a 2 b 2 p 0 2 4 a 2 b 2 p 0 +4 a 3 b p 0 +2α a 2 b p 0 a 2 b 2 +4α a 2 b4α a 3 + α 2 a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqam aaBaaajqwba+FaaKqzadGaaG4maaqcfayabaGaaGypaiaadggadaah aaqabKqbGeaacaaIYaaaaKqbakaadkgadaahaaqcfasabeaacaaIYa aaaKqbakaadchadaqhaaqcfasaaiaaicdaaeaacaaIYaaaaKqbakab gkHiTiaaisdacaWGHbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGIb WaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGWbWaaSbaaKqbGeaacaaI WaaabeaajuaGcqGHRaWkcaaI0aGaamyyamaaCaaajuaibeqaaiaaio daaaqcfaOaamOyaiaadchadaWgaaqcfasaaiaaicdaaeqaaKqbakab gUcaRiaaikdacqaHXoqycaWGHbWaaWbaaKqbGeqabaGaaGOmaaaaju aGcaWGIbGaamiCamaaBaaajuaibaGaaGimaaqabaqcfaOaeyOeI0Ia amyyamaaCaaajuaibeqaaiaaikdaaaqcfaOaamOyamaaCaaajuaibe qaaiaaikdaaaqcfaOaey4kaSIaaGinaiabeg7aHjaadggadaahaaqc fasabeaacaaIYaaaaKqbakaadkgacqGHsislcaaI0aGaeqySdeMaam yyamaaCaaajuaibeqaaiaaiodaaaqcfaOaey4kaSIaeqySde2aaWba aKqbGeqabaGaaGOmaaaajuaGcaWGHbWaaWbaaKqbGeqabaGaaGOmaa aaaaa@774E@ ,

B 1 =4b16a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqam aaBaaajuaibaGaaGymaaqabaqcfaOaaGypaiaaisdacaWGIbGaeyOe I0IaaGymaiaaiAdacaWGHbaaaa@3E9D@ , B 2 =12ab24 a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqam aaBaaajuaibaGaaGOmaaqcfayabaGaaGypaiaaigdacaaIYaGaamyy aiaadkgacqGHsislcaaIYaGaaGinaiaadggadaahaaqcfasabeaaca aIYaaaaaaa@4148@ , B 3 =12 a 2 b16 a 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqam aaBaaajuaibaGaaG4maaqcfayabaGaaGypaiaaigdacaaIYaGaamyy amaaCaaajuaibeqaaiaaikdaaaqcfaOaamOyaiabgkHiTiaaigdaca aI2aGaamyyamaaCaaajuaibeqaaiaaiodaaaaaaa@42E5@ and B 4 =4 a 3 b4 a 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqam aaBaaajuaibaGaaGinaaqcfayabaGaaGypaiaaisdacaWGHbWaaWba aKqbGeqabaGaaG4maaaajuaGcaWGIbGaeyOeI0IaaGinaiaadggada ahaaqcfasabeaacaaI0aaaaaaa@4172@ .

 From (18) we obtain,

8π p = [ 4b p 0 + C 1 r 2 + C 2 r 4 + C 3 r 6 ] [ 4 B 1 r 2 B 2 r 4 B 3 r 6 B 4 r 8 ] ,                      ( 29 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGioai abec8aWjaadchalmaaBaaajuaibaqcLbmacqGHLkIxaKqbagqaaiaa i2dadaWcaaqaamaadmaabaGaaGinaiaadkgacaWGWbWaaSbaaKqbGe aacaaIWaaajuaGbeaacqGHRaWkcaWGdbWaaSbaaKqbGeaacaaIXaaa beaajuaGcaWGYbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkca WGdbWaaSbaaKqbGeaacaaIYaaabeaajuaGcaWGYbWaaWbaaKqbGeqa baGaaGinaaaajuaGcqGHRaWkcaWGdbWaaSbaaKqbGeaacaaIZaaabe aajuaGcaWGYbWaaWbaaKqbGeqabaGaaGOnaaaaaKqbakaawUfacaGL DbaaaeaadaWadaqaaiaaisdacqGHsislcaWGcbWaaSbaaKqbGeaaca aIXaaabeaajuaGcaWGYbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGH sislcaWGcbWaaSbaaKqbGeaacaaIYaaabeaajuaGcaWGYbWaaWbaaK qbGeqabaGaaGinaaaajuaGcqGHsislcaWGcbWaaSbaaKqbGeaacaaI ZaaabeaajuaGcaWGYbWaaWbaaKqbGeqabaGaaGOnaaaajuaGcqGHsi slcaWGcbWaaSbaaKqbGeaacaaI0aaabeaajuaGcaWGYbWaaWbaaKqb GeqabaGaaGioaaaaaKqbakaawUfacaGLDbaaaaGaaGilaabaaaaaaa aapeGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOa8aadaqadaqa a8qacaaIYaGaaGyoaaWdaiaawIcacaGLPaaaaaa@8D95@

Where, C 1 = b 2 p 0 2 8ab p 0 +3 b 2 12αa MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qam aaBaaajuaibaGaaGymaaqabaqcfaOaaGypaiaadkgadaahaaqcfasa beaacaaIYaaaaKqbakaadchadaqhaaqcfasaaiaaicdaaeaacaaIYa aaaKqbakabgkHiTiaaiIdacaWGHbGaamOyaiaadchadaWgaaqcfasa aiaaicdaaKqbagqaaiabgUcaRiaaiodacaWGIbWaaWbaaKqbGeqaba GaaGOmaaaajuaGcqGHsislcaaIXaGaaGOmaiabeg7aHjaadggaaaa@4E86@ ,

C 2 =2a b 2 p 0 2 +8a b 2 p 0 12 a 2 b p 0 2αab p 0 +2a b 2 +8αab16α a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qam aaBaaajuaibaGaaGOmaaqabaqcfaOaaGypaiabgkHiTiaaikdacaWG HbGaamOyamaaCaaajuaibeqaaiaaikdaaaqcfaOaamiCamaaDaaaju aibaGaaGimaaqaaiaaikdaaaqcfaOaey4kaSIaaGioaiaadggacaWG IbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGWbWaaSbaaKqbGeaaca aIWaaajuaGbeaacqGHsislcaaIXaGaaGOmaiaadggadaahaaqcfasa beaacaaIYaaaaKqbakaadkgacaWGWbWaaSbaaKqbGeaacaaIWaaabe aajuaGcqGHsislcaaIYaGaeqySdeMaamyyaiaadkgacaWGWbWaaSba aKqbGeaacaaIWaaabeaajuaGcqGHRaWkcaaIYaGaamyyaiaadkgada ahaaqcfasabeaacaaIYaaaaKqbakabgUcaRiaaiIdacqaHXoqycaWG HbGaamOyaiabgkHiTiaaigdacaaI2aGaeqySdeMaamyyamaaCaaaju aibeqaaiaaikdaaaaaaa@69A2@ ,

C 3 = a 2 b 2 p 0 2 +2α a 2 b p 0 a 2 b 2 +4α a 2 b4α a 3 + α 2 a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qam aaBaaajuaibaGaaG4maaqabaqcfaOaaGypaiaadggadaahaaqcfasa beaacaaIYaaaaKqbakaadkgadaahaaqcfasabeaacaaIYaaaaKqbak aadchadaqhaaqcfasaaiaaicdaaeaacaaIYaaaaKqbakabgUcaRiaa ikdacqaHXoqycaWGHbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGIb GaamiCamaaBaaajuaibaGaaGimaaqabaqcfaOaeyOeI0Iaamyyamaa CaaajuaibeqaaiaaikdaaaqcfaOaamOyamaaCaaajuaibeqaaiaaik daaaqcfaOaey4kaSIaaGinaiabeg7aHjaadggadaahaaqcfasabeaa caaIYaaaaKqbakaadkgacqGHsislcaaI0aGaeqySdeMaamyyamaaCa aabeqcfasaaiaaiodaaaqcfaOaey4kaSIaeqySde2aaWbaaKqbGeqa baGaaGOmaaaajuaGcaWGHbWaaWbaaKqbGeqabaGaaGOmaaaaaaa@6393@ .

Exterior space time and matching condition

We match our interior space time (27) to the exterior Reissner-Nordström space time at the boundary r= r b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai aai2dacaWGYbWaaSbaaKqbGeaacaWGIbaajuaGbeaaaaa@3AFD@  (where r b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCam aaBaaajuaibaGaamOyaaqcfayabaaaaa@393F@ is the radius of the star.). The exterior space time is given by the line element

d s 2 =( 1 2M r + q 2 r 2 )d t 2 ( 1 2M r + q 2 r 2 ) 1 d r 2 r 2 ( d θ 2 + sin 2 θd ϕ 2 ).               ( 30 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizai aadohadaahaaqcfasabeaacaaIYaaaaKqbakaai2dadaqadaqaaiaa igdacqGHsisldaWcaaqaaiaaikdacaWGnbaabaGaamOCaaaacqGHRa WkdaWcaaqaaiaadghalmaaCaaajqwba+FabeaajugWaiaaikdaaaaa juaGbaGaamOCamaaCaaabeqcfasaaiaaikdaaaaaaaqcfaOaayjkai aawMcaaiaadsgacaWG0bWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGH sisldaqadaqaaiaaigdacqGHsisldaWcaaqaaiaaikdacaWGnbaaba GaamOCaaaacqGHRaWkdaWcaaqaaiaadghadaahaaqabKqbGeaajugW aiaaikdaaaaajuaGbaGaamOCamaaCaaajuaibeqaaiaaikdaaaaaaa qcfaOaayjkaiaawMcaamaaCaaajuaibeqaaiabgkHiTiaaigdaaaqc faOaamizaiaadkhadaahaaqabKqbGeaacaaIYaaaaKqbakabgkHiTi aadkhadaahaaqcfasabeaacaaIYaaaaKqbaoaabmaabaGaamizaiab eI7aXnaaCaaabeqcfasaaiaaikdaaaqcfaOaey4kaSYaaubiaeqabe qcfasaaiaaikdaaKqbagaaciGGZbGaaiyAaiaac6gaaaGaeqiUdeNa amizaiabew9aMnaaCaaabeqcfasaaiaaikdaaaaajuaGcaGLOaGaay zkaaGaaGOlaabaaaaaaaaapeGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcWdamaabmaabaWdbiaaiodacaaIWaaapaGaayjk aiaawMcaaaaa@8ADE@

By using the continuity of the metric potential g rr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4zam aaBaaajuaibaGaamOCaiaadkhaaKqbagqaaaaa@3A3B@ and g tt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4zam aaBaaajuaibaGaamiDaiaadshaaeqaaaaa@39B1@ at the boundary r= r b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai aai2dacaWGYbWaaSbaaKqbGeaacaWGIbaajuaGbeaaaaa@3AFD@ we get,

e ν( r b ) =1 2M r b + q 2 r 2 ,             ( 31 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyzam aaCaaabeqcfasaaiabe27aUjaaiIcacaWGYbqcfa4aaSbaaKqbGeaa caWGIbaabeaacaaIPaaaaKqbakaai2dacaaIXaGaeyOeI0YaaSaaae aacaaIYaGaamytaaqaaiaadkhadaWgaaqcfasaaiaadkgaaKqbagqa aaaacqGHRaWkdaWcaaqaaiaadghadaahaaqcfasabeaacaaIYaaaaa qcfayaaiaadkhadaahaaqabKqbGeaacaaIYaaaaaaajuaGcaaISaae aaaaaaaaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWdamaabmaa baWdbiaaiodacaaIXaaapaGaayjkaiaawMcaaaaa@5DD8@

e λ( r b ) = ( 1 2M r b + q 2 r 2 ) 1 .            ( 32 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyzam aaCaaabeqcfasaaiabeU7aSjaaiIcacaWGYbqcfa4aaSbaaKqbGeaa caWGIbaabeaacaaIPaaaaKqbakaai2dadaqadaqaaiaaigdacqGHsi sldaWcaaqaaiaaikdacaWGnbaabaGaamOCamaaBaaajuaibaGaamOy aaqcfayabaaaaiabgUcaRmaalaaabaGaamyCamaaCaaajuaibeqaai aaikdaaaaajuaGbaGaamOCamaaCaaabeqcfasaaiaaikdaaaaaaaqc faOaayjkaiaawMcaamaaCaaajuaibeqaaiabgkHiTiaaigdaaaqcfa OaaGOlaabaaaaaaaaapeGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWdamaabm aabaWdbiaaiodacaaIYaaapaGaayjkaiaawMcaaaaa@60C2@

The radial pressure should vanish at the boundary of the star, hence from equation (24) we obtain

a= 1 r b 2 .          ( 33 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aai2dadaWcaaqaaiaaigdaaeaacaWGYbWaa0baaKqbGeaacaWGIbaa baGaaGOmaaaaaaqcfaOaaGOlaabaaaaaaaaapeGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOa8aa daqadaqaa8qacaaIZaGaaG4maaWdaiaawIcacaGLPaaaaaa@4BE5@

Using (33) & (19) we obtain

b= 4m r b 3 .             ( 34 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOyai aai2dadaWcaaqaaiaaisdacaWGTbaabaGaamOCamaaDaaajuaibaGa amOyaaqaaiaaiodaaaaaaKqbakaai6caqaaaaaaaaaWdbiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckapaWaaeWaaeaapeGaaG4maiaaisdaa8 aacaGLOaGaayzkaaaaaa@5049@

We compute the values of ‘a’ and ‘b’ for different compact stars which is given in Table 1.

Compact star

 

 

M( M ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytai aaiIcacaWGnbWaaSbaaKqbGeaarqqr1ngBPrgifHhDYfgaiuaacqWF zkszaKqbagqaaiaaiMcaaaa@40AB@

Mass(km)

Radius(km)

a( k m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aai aad2galmaaCaaajuaibeqaaKqzadGaeyOeI0IaaGOmaaaaaaa@3B98@ )

b( k m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aai aad2galmaaCaaajuaibeqaaKqzadGaeyOeI0IaaGOmaaaaaaa@3B98@ )

u

z s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOEam aaBaaajuaibaGaam4Caaqabaaaaa@38CA@

U 1820-30

 

 

1.58

2.33050

9.1

0.012076

0.012370

0.256099

0.431786

PSR J1903+327

 

 

1.667

2.45882

9.438

0.011226

0.011699

0.260524

0.444954

U 1608-52

 

 

1.74

2.56650

9.31

0.011537

0.012722

0.275671

0.492941

Vela X-1

 

 

1.77

2.61075

9.56

0.010942

0.011952

0.273091

0.484428

PSR J1614-2230

 

 

1.97

2.90575

9.69

0.01065

0.012775

0.299871

0.580629

Cen X-3

 

 

1.49

2.19775

9.178

0.011871

0.011371

0.239458

0.385309

Table 1 The values of ‘a’ and ‘b’ obtained from the equation (33) and (34)

Physical analysis

To be a physically acceptable model matter density (ρ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai abeg8aYjaaiMcaaaa@39A9@ , radial pressure ( p r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaamOCaaqabaaaaa@38BF@ ), transverse pressure ( p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaeyyPI4fajuaGbeaaaaa@3A07@ ) all should be non-negative inside the stellar interior. It is clear from equations (22) and (24) it is clear thatis positive throughout the distribution. The profile of ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@ and p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaeyyPI4fajuaGbeaaaaa@3A07@ are shown in Figures 1 & 2 respectively. From the figure it is clear that all are positive inside the stellar interior. 

Figure 1 The matter density is plotted against r for the star PSR J1614-2230.

Figure 2 The transverse pressure p t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqldjuaGca WGWbWaaSbaaKqbGeaacaWG0baabeaaaaa@3984@ is plotted against r for the star PSR J1614-2230.

The profile of c and d p dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGKbGaamiCamaaBaaajuaibaGaeyyPI4fajuaGbeaaaeaacaWG KbGaamOCaaaaaaa@3CE0@ are shown in Figure 3, it is clearly indicates that ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@ , p r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaamOCaaqabaaaaa@38BF@ and p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaeyyPI4fajuaGbeaaaaa@3A07@ are decreasing in radially outward direction. According to31 for an anisotropic fluid spheres the trace of the energy tensor should be positive. To check this condition for our model we plot ρ p r 2 p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi NaeyOeI0IaamiCamaaBaaajuaibaGaamOCaaqcfayabaGaeyOeI0Ia aGOmaiaadchadaWgaaqcfasaaiabgwQiEbqcfayabaaaaa@4126@  against r in Figure 4. From the figure it is clear that our proposed model of compact star satisfies Bondi’s conditions.

Figure 3 dρ dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGKbGaeqyWdihabaGaamizaiaadkhaaaaaaa@3B1D@ , d p r dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGKbGaamiCamaaBaaajqwba+FaaKqzadGaamOCaaqcfayabaaa baGaamizaiaadkhaaaaaaa@3F17@ and d p dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGKbGaamiCaSWaaSbaaKazfa4=baqcLbmacqGHLkIxaKazfa4= beaaaKqbagaacaWGKbGaamOCaaaaaaa@41CD@ are plotted against r for the star PSR J1614-2230.

Figure 4 ρ p r 2 p t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi NaeyOeI0IaamiCamaaBaaajuaibaGaamOCaaqabaqcfaOaeyOeI0Ia aGOmaiaadchadaWgaaqcfasaaiaadshaaeqaaaaa@3FE0@ is plotted against r for the star PSR J1614-2230.

For a physically acceptable model of anisotropic fluid sphere the radial and transverse velocity of sound should be less than 1 which is known as causality conditions.

Where the radial velocity ( v sr 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadAhadaqhaaqcfasaaiaadohacaWGYbaabaGaaGOmaaaajuaGcaaI Paaaaa@3C6D@ and transverse velocity ( v st 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadAhadaqhaaqcfasaaiaadohacaWG0baabaGaaGOmaaaajuaGcaaI Paaaaa@3C6F@  of sound can be obtained as

d p r dρ = b p 0 (3a r 2 ) 5b+α+a(bα) r 2 .               ( 35 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGKbGaamiCamaaBaaajuaibaGaamOCaaqabaaajuaGbaGaamiz aiabeg8aYbaacaaI9aWaaSaaaeaacaWGIbGaamiCamaaBaaajuaiba GaaGimaaqcfayabaGaaGikaiaaiodacqGHsislcaWGHbGaamOCamaa CaaajuaibeqaaiaaikdaaaqcfaOaaGykaaqaaiaaiwdacaWGIbGaey 4kaSIaeqySdeMaey4kaSIaamyyaiaaiIcacaWGIbGaeyOeI0IaeqyS deMaaGykaiaadkhadaahaaqcfasabeaacaaIYaaaaaaajuaGcaaIUa aeaaaaaaaaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckapaWaaeWaaeaapeGaaG4maiaaiwdaa8aacaGLOaGaayzkaaaa aa@6A3E@

d p dρ = (1+a r 2 ) 3 [ D 1 + D 2 r 2 + D 3 r 4 + D 4 r 6 + D 5 r 8 ] [ 10ab2aα2 a 2 (bα) r 2 ][ 2+ E 1 r 2 + E 2 r 4 + E 3 r 6 + E 4 r 8 + E 5 r 10 + E 6 r 12 ] .              ( 36 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGKbGaamiCamaaBaaajuaibaGaeyyPI4fajuaGbeaaaeaacaWG KbGaeqyWdihaaiaai2dadaWcaaqaaiaaiIcacaaIXaGaey4kaSIaam yyaiaadkhadaahaaqcfasabeaacaaIYaaaaKqbakaaiMcadaahaaqa bKqbGeaacaaIZaaaaKqbaoaadmaabaGaamiramaaBaaajuaibaGaaG ymaaqabaqcfaOaey4kaSIaamiramaaBaaajuaibaGaaGOmaaqcfaya baGaamOCamaaCaaabeqcfasaaiaaikdaaaqcfaOaey4kaSIaamiram aaBaaajuaibaGaaG4maaqabaqcfaOaamOCamaaCaaajuaibeqaaiaa isdaaaqcfaOaey4kaSIaamiramaaBaaajuaibaGaaGinaaqcfayaba GaamOCamaaCaaajuaibeqaaiaaiAdaaaqcfaOaey4kaSIaamiramaa BaaajuaibaGaaGynaaqabaqcfaOaamOCamaaCaaajuaibeqaaiaaiI daaaaajuaGcaGLBbGaayzxaaaabaWaamWaaeaacqGHsislcaaIXaGa aGimaiaadggacaWGIbGaeyOeI0IaaGOmaiaadggacqaHXoqycqGHsi slcaaIYaGaamyyamaaCaaajuaibeqaaiaaikdaaaqcfaOaaGikaiaa dkgacqGHsislcqaHXoqycaaIPaGaamOCamaaCaaajuaibeqaaiaaik daaaaajuaGcaGLBbGaayzxaaWaamWaaeaacaaIYaGaey4kaSIaamyr amaaBaaajuaibaGaaGymaaqabaqcfaOaamOCamaaCaaabeqcfasaai aaikdaaaqcfaOaey4kaSIaamyramaaBaaajuaibaGaaGOmaaqabaqc faOaamOCamaaCaaajuaibeqaaiaaisdaaaqcfaOaey4kaSIaamyram aaBaaajuaibaGaaG4maaqabaqcfaOaamOCamaaCaaajuaibeqaaiaa iAdaaaqcfaOaey4kaSIaamyramaaBaaajuaibaGaaGinaaqcfayaba GaamOCamaaCaaabeqcfasaaiaaiIdaaaqcfaOaey4kaSIaamyramaa BaaajuaibaGaaGynaaqabaqcfaOaamOCamaaCaaajuaibeqaaiaaig dacaaIWaaaaKqbakabgUcaRiaadweadaWgaaqcfasaaiaaiAdaaKqb agqaaiaadkhadaahaaqabKqbGeaacaaIXaGaaGOmaaaaaKqbakaawU facaGLDbaaaaGaaGOlaabaaaaaaaaapeGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckapaWaaeWaaeaapeGaaG4maiaaiAdaa8aacaGL OaGaayzkaaaaaa@B36D@

 Where,

D 1 = b 2 p 0 2 +4 b 2 p 0 24ab p 0 +3 b 2 12αa, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiraS WaaSbaaKazfa4=baqcLbmacaaIXaaajqwba+FabaqcfaOaaGypaiaa dkgadaahaaqcfasabeaacaaIYaaaaKqbakaadchadaqhaaqcfasaai aaicdaaeaacaaIYaaaaKqbakabgUcaRiaaisdacaWGIbWaaWbaaKqb GeqabaGaaGOmaaaajuaGcaWGWbWaaSbaaKqbGeaacaaIWaaajuaGbe aacqGHsislcaaIYaGaaGinaiaadggacaWGIbGaamiCamaaBaaajuai baGaaGimaaqabaqcfaOaey4kaSIaaG4maiaadkgalmaaCaaajuaibe qaaKqzadGaaGOmaaaajuaGcqGHsislcaaIXaGaaGOmaiabeg7aHjaa dggacaGGSaaaaa@5CC2@

D 2 =6a b 2 p 0 2 +32a b 2 p 0 24 a 2 b p 0 4αab p 0 2a b 2 +16αab8α a 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiram aaBaaajuaibaqcLbmacaaIYaaajuaGbeaacaaI9aGaeyOeI0IaaGOn aiaadggacaWGIbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGWbWaa0 baaKqbGeaacaaIWaaabaGaaGOmaaaajuaGcqGHRaWkcaaIZaGaaGOm aiaadggacaWGIbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGWbWaaS baaKqbGeaacaaIWaaajuaGbeaacqGHsislcaaIYaGaaGinaiaadgga daahaaqcfasabeaacaaIYaaaaKqbakaadkgacaWGWbWaaSbaaKqbGe aacaaIWaaabeaajuaGcqGHsislcaaI0aGaeqySdeMaamyyaiaadkga caWGWbWaaSbaaKqbGeaacaaIWaaabeaajuaGcqGHsislcaaIYaGaam yyaiaadkgadaahaaqcfasabeaacaaIYaaaaKqbakabgUcaRiaaigda caaI2aGaeqySdeMaamyyaiaadkgacqGHsislcaaI4aGaeqySdeMaam yyamaaCaaajqwba+FabeaacaaIYaaaaKqbakaacYcaaaa@6E9D@

D 3 =5a b 3 p 0 2 8a b 3 p 0 +2αa b 2 p 0 12 a 2 b 2 p 0 +24 a 3 b p 0 +6α a 2 b p 0 +7a b 3 12 a 2 b 2 8αa b 2 8α a 2 b+24α a 3 +3 α 2 a 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiraS WaaSbaaKazfa4=baqcLbmacaaIZaaajqwba+FabaqcfaOaaGypaiaa iwdacaWGHbGaamOyamaaCaaajuaibeqaaiaaiodaaaqcfaOaamiCam aaDaaajuaibaGaaGimaaqaaiaaikdaaaqcfaOaeyOeI0IaaGioaiaa dggacaWGIbWaaWbaaKqbGeqabaGaaG4maaaajuaGcaWGWbWaaSbaaK qbGeaacaaIWaaabeaajuaGcqGHRaWkcaaIYaGaeqySdeMaamyyaiaa dkgadaahaaqcfasabeaacaaIYaaaaKqbakaadchadaWgaaqcfasaai aaicdaaKqbagqaaiabgkHiTiaaigdacaaIYaGaamyyamaaCaaajuai beqaaiaaikdaaaqcfaOaamOyamaaCaaajuaibeqaaiaaikdaaaqcfa OaamiCamaaBaaajuaibaGaaGimaaqcfayabaGaey4kaSIaaGOmaiaa isdacaWGHbWaaWbaaKqbGeqabaGaaG4maaaajuaGcaWGIbGaamiCam aaBaaajuaibaGaaGimaaqabaqcfaOaey4kaSIaaGOnaiabeg7aHjaa dggadaahaaqcfasabeaacaaIYaaaaKqbakaadkgacaWGWbWaaSbaaK qbGeaacaaIWaaajuaGbeaacqGHRaWkcaaI3aGaamyyaiaadkgadaah aaqabKqbGeaacaaIZaaaaKqbakabgkHiTiaaigdacaaIYaGaamyyam aaCaaabeqcfasaaiaaikdaaaqcfaOaamOyamaaCaaajuaibeqaaiaa ikdaaaqcfaOaeyOeI0IaaGioaiabeg7aHjaadggacaWGIbWaaWbaae qajuaibaGaaGOmaaaajuaGcqGHsislcaaI4aGaeqySdeMaamyyamaa CaaajuaibeqaaiaaikdaaaqcfaOaamOyaiabgUcaRiaaikdacaaI0a GaeqySdeMaamyyamaaCaaajuaibeqaaiaaiodaaaqcfaOaey4kaSIa aG4maiabeg7aHnaaCaaajuaibeqaaiaaikdaaaqcfaOaamyyamaaCa aajuaibeqaaiaaikdaaaqcfaOaaiilaaaa@9AB1@

D 4 =6 a 3 b b p 0 2 6 a 2 b 3 p 0 2 +16 a 2 b 3 p 0 40 a 3 b 2 p 0 8α a 2 b 2 p 0 +24 a 4 b p 0 +8α a 3 b p 0 +6 a 2 b 3 +8α a 2 b 2 6 a 3 b 2 32α a 3 b2 α 2 a 2 b+24α a 4 +2 α 2 a 3 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiram aaBaaajuaibaGaaGinaaqcfayabaGaaGypaiaaiAdacaWGHbWaaWba aeqajuaibaGaaG4maaaajuaGcaWGIbWaaWbaaeqajuaibaGaamOyaa aajuaGcaWGWbWaa0baaKqbGeaacaaIWaaabaGaaGOmaaaajuaGcqGH sislcaaI2aGaamyyamaaCaaajuaibeqaaiaaikdaaaqcfaOaamOyam aaCaaajuaibeqaaiaaiodaaaqcfaOaamiCamaaDaaajuaibaGaaGim aaqaaiaaikdaaaqcfaOaey4kaSIaaGymaiaaiAdacaWGHbWaaWbaaK qbGeqabaGaaGOmaaaajuaGcaWGIbWaaWbaaKqbGeqabaGaaG4maaaa juaGcaWGWbWaaSbaaKqbGeaacaaIWaaabeaajuaGcqGHsislcaaI0a GaaGimaiaadggadaahaaqabKqbGeaacaaIZaaaaKqbakaadkgadaah aaqcfasabeaacaaIYaaaaKqbakaadchadaWgaaqcfasaaiaaicdaae qaaKqbakabgkHiTiaaiIdacqaHXoqycaWGHbWaaWbaaKqbGeqabaGa aGOmaaaajuaGcaWGIbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGWb WaaSbaaKqbGeaacaaIWaaajuaGbeaacqGHRaWkcaaIYaGaaGinaiaa dggadaahaaqcfasabeaacaaI0aaaaKqbakaadkgacaWGWbWaaSbaaK qbGeaacaaIWaaajuaGbeaacqGHRaWkcaaI4aGaeqySdeMaamyyamaa CaaajuaibeqaaiaaiodaaaqcfaOaamOyaiaadchalmaaBaaajuaiba qcLbmacaaIWaaajuaibeaajuaGcqGHRaWkcaaI2aGaamyyamaaCaaa juaibeqaaiaaikdaaaqcfaOaamOyamaaCaaajuaibeqaaiaaiodaaa qcfaOaey4kaSIaaGioaiabeg7aHjaadggadaahaaqcfasabeaacaaI YaaaaKqbakaadkgadaahaaqcfasabeaacaaIYaaaaKqbakabgkHiTi aaiAdacaWGHbWaaWbaaKqbGeqabaGaaG4maaaajuaGcaWGIbWaaWba aKqbGeqabaGaaGOmaaaajuaGcqGHsislcaaIZaGaaGOmaiabeg7aHj aadggadaahaaqcfasabeaacaaIZaaaaKqbakaadkgacqGHsislcaaI YaGaeqySde2aaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGHbWaaWbaaK qbGeqabaGaaGOmaaaajuaGcaWGIbGaey4kaSIaaGOmaiaaisdacqaH XoqycaWGHbWaaWbaaKqbGeqabaGaaGinaaaajuaGcqGHRaWkcaaIYa GaeqySde2aaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGHbWaaWbaaKqb GeqabaGaaG4maaaajuaGcaGGSaaaaa@B257@

D 5 = a 3 b 3 p 0 2 a 4 b 2 p 0 2 +2α a 3 b 2 p 0 2α a 4 b p 0 a 3 b 3 + a 4 b 2 +4α a 3 b 2 + α 2 a 3 b8α a 4 b+4α a 5 α 2 a 4 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiram aaBaaajuaibaGaaGynaaqabaqcfaOaaGypaiaadggadaahaaqcfasa beaacaaIZaaaaKqbakaadkgadaahaaqcfasabeaacaaIZaaaaKqbak aadchadaqhaaqcfasaaiaaicdaaeaacaaIYaaaaKqbakabgkHiTiaa dggadaahaaqcfasabeaacaaI0aaaaKqbakaadkgadaahaaqcfasabe aacaaIYaaaaKqbakaadchadaqhaaqcfasaaiaaicdaaeaacaaIYaaa aKqbakabgUcaRiaaikdacqaHXoqycaWGHbWaaWbaaKqbGeqabaGaaG 4maaaajuaGcaWGIbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGWbWa aSbaaKqbGeaacaaIWaaajuaGbeaacqGHsislcaaIYaGaeqySdeMaam yyamaaCaaajuaibeqaaiaaisdaaaqcfaOaamOyaiaadchadaWgaaqc fasaaiaaicdaaeqaaKqbakabgkHiTiaadggadaahaaqcfasabeaaca aIZaaaaKqbakaadkgadaahaaqcfasabeaacaaIZaaaaKqbakabgUca RiaadggadaahaaqcfasabeaacaaI0aaaaKqbakaadkgadaahaaqcfa sabeaacaaIYaaaaKqbakabgUcaRiaaisdacqaHXoqycaWGHbWaaWba aKqbGeqabaGaaG4maaaajuaGcaWGIbWaaWbaaKqbGeqabaGaaGOmaa aajuaGcqGHRaWkcqaHXoqydaahaaqcfasabeaacaaIYaaaaKqbakaa dggadaahaaqcfasabeaacaaIZaaaaKqbakaadkgacqGHsislcaaI4a GaeqySdeMaamyyamaaCaaajuaibeqaaiaaisdaaaqcfaOaamOyaiab gUcaRiaaisdacqaHXoqycaWGHbWaaWbaaKqbGeqabaGaaGynaaaaju aGcqGHsislcqaHXoqydaahaaqabKqbGeaacaaIYaaaaKqbakaadgga daahaaqcfasabeaacaaI0aaaaKqbakaacYcaaaa@8EA7@

E 1 =12a4b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaBaaajuaibaGaaGymaaqabaqcfaOaaGypaiaaigdacaaIYaGaamyy aiabgkHiTiaaisdacaWGIbaaaa@3E9C@ , E 2 =2 b 2 20ab+30 a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaBaaajuaibaGaaGOmaaqabaqcfaOaaGypaiaaikdacaWGIbWaaWba aKqbGeqabaGaaGOmaaaajuaGcqGHsislcaaIYaGaaGimaiaadggaca WGIbGaey4kaSIaaG4maiaaicdacaWGHbWaaWbaaKqbGeqabaGaaGOm aaaaaaa@4566@ , E 3 =8a b 2 40 a 2 b+40 a 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaBaaajuaibaGaaG4maaqcfayabaGaaGypaiaaiIdacaWGHbGaamOy amaaCaaabeqcfasaaiaaikdaaaqcfaOaeyOeI0IaaGinaiaaicdaca WGHbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGIbGaey4kaSIaaGin aiaaicdacaWGHbWaaWbaaKqbGeqabaGaaG4maaaaaaa@47F1@ , E 4 =12 a 2 b 2 40 a 3 b+30 a 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaBaaajuaibaGaaGinaaqcfayabaGaaGypaiaaigdacaaIYaGaamyy amaaCaaajuaibeqaaiaaikdaaaqcfaOaamOyamaaCaaabeqcfasaai aaikdaaaqcfaOaeyOeI0IaaGinaiaaicdacaWGHbWaaWbaaKqbGeqa baGaaG4maaaajuaGcaWGIbGaey4kaSIaaG4maiaaicdacaWGHbWaaW baaKqbGeqabaGaaGinaaaaaaa@4A42@ ,

E 5 =8 a 3 b 2 20 a 4 b+12 a 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaBaaajuaibaGaaGynaaqabaqcfaOaaGypaiaaiIdacaWGHbWaaWba aKqbGeqabaGaaG4maaaajuaGcaWGIbWaaWbaaeqajuaibaGaaGOmaa aajuaGcqGHsislcaaIYaGaaGimaiaadggadaahaaqcfasabeaacaaI 0aaaaKqbakaadkgacqGHRaWkcaaIXaGaaGOmaiaadggadaahaaqcfa sabeaacaaI1aaaaaaa@498F@  and E 6 =2 a 4 b 2 4 a 5 b+2 a 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaBaaajuaibaGaaGOnaaqabaqcfaOaaGypaiaaikdacaWGHbWaaWba aeqajuaibaGaaGinaaaajuaGcaWGIbWaaWbaaKqbGeqabaGaaGOmaa aajuaGcqGHsislcaaI0aGaamyyamaaCaaajuaibeqaaiaaiwdaaaqc faOaamOyaiabgUcaRiaaikdacaWGHbWaaWbaaeqajuaibaGaaGOnaa aaaaa@481A@ .

Due to the complexity of the expression of 1 3 < p 0 <0.3944 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaaIXaaabaGaaG4maaaacaaI8aGaamiCamaaBaaajqwba+FaaKqz adGaaGimaaqcfayabaGaaGipaiaaicdacaaIUaGaaG4maiaaiMdaca aI0aGaaGinaaaa@4383@  we prove the causality conditions with the help of graphical representation. The graphs of ( v sr 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadAhadaqhaaqcfasaaiaadohacaWGYbaabaGaaGOmaaaajuaGcaaI Paaaaa@3C6D@  and ( v st 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadAhadaqhaaqcfasaaiaadohacaWG0baabaGaaGOmaaaajuaGcaaI Paaaaa@3C6F@  have been plotted in Figures 5 & 6 respectively. From the figure it is clear that 0< v sr 2 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGimai aaiYdacaWG2bWaa0baaKqbGeaacaWGZbGaamOCaaqaaiaaikdaaaqc faOaeyizImQaaGymaaaa@3EF8@ and 0< v st 2 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGimai aaiYdacaWG2bWaa0baaKqbGeaacaWGZbGaamiDaaqaaiaaikdaaaqc faOaeyizImQaaGymaaaa@3EFA@ everywhere within the stellar configuration. Moreover d p t dρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGKbGaamiCamaaBaaajuaibaGaamiDaaqcfayabaaabaGaamiz aiabeg8aYbaaaaa@3CF1@ and d p r dρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGKbGaamiCamaaBaaajuaibaGaamOCaaqcfayabaaabaGaamiz aiabeg8aYbaaaaa@3CEF@ are monotonic decreasing function of radius ‘r’ for 0r r b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGimai abgsMiJkaadkhacqGHKjYOcaWGYbWaaSbaaKqbGeaacaWGIbaabeaa aaa@3DCC@ which implies that the velocity of sound is increasing with the increase of density.

Figure 5 v sr 2 = d p r dρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamODam aaDaaajuaibaGaam4CaiaadkhaaeaacaaIYaaaaKqbakaai2dadaWc aaqaaiaadsgacaWGWbWaaSbaaKqbGeaacaWGYbaajuaGbeaaaeaaca WGKbGaeqyWdihaaaaa@423A@ is plotted against r for the star PSR J1614-2230.

Figure 6 v st 2 = d p dρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamODam aaDaaajuaibaGaam4CaiaadshaaeaacaaIYaaaaKqbakaai2dadaWc aaqaaiaadsgacaWGWbWaaSbaaKqbGeaacqGHLkIxaKqbagqaaaqaai aadsgacqaHbpGCaaaaaa@42F6@ is plotted against r for the star PSR J1614-2230.

 A relativistic star will be stable if the relativistic adiabatic index Γ> 4 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC KaaGOpamaalaaabaGaaGinaaqaaiaaiodaaaaaaa@3A3F@ . Where Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC eaaa@37EC@ is given by

Γ= ρ+ p r p r d p r dρ                ( 37 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC KaaGypamaalaaabaGaeqyWdiNaey4kaSIaamiCamaaBaaajuaibaGa amOCaaqabaaajuaGbaGaamiCamaaBaaajuaibaGaamOCaaqabaaaaK qbaoaalaaabaGaamizaiaadchadaWgaaqcfasaaiaadkhaaeqaaaqc fayaaiaadsgacqaHbpGCaaaeaaaaaaaaa8qacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckapaWaaeWaaeaapeGaaG4maiaaiE daa8aacaGLOaGaayzkaaaaaa@5BD3@

To see the variation of the relativistic index we plot  for our present of compact star which is plotted in Figure 7. The figure ensures that our model is stable.

Figure 7 The adiabatic index Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC eaaa@37EC@ is plotted against r for the star PSR J1614-2230.

For an anisotropic fluid sphere all the energy conditions namely Weak Energy Condition (WEC), Null Energy Condition (NEC), Strong Energy Condition (SEC) and Dominant Energy Condition (DEC) are satisfied if and only if the following inequalities hold simultaneously in every point inside the fluid sphere.

(i)NEC:ρ+ p r 0               ( 38 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadMgacaaIPaGaamOtaiaadweacaWGdbGaaGOoaiabeg8aYjabgUca RiaadchadaWgaaqcfasaaiaadkhaaeqaaKqbakabgwMiZkaaicdaqa aaaaaaaaWdbiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOa8aadaqadaqaa8qacaaIZaGaaGioaaWdaiaawIcacaGLPaaaaaa@585D@

(ii)WEC: p r +ρ0, ρ>0               ( 39 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadMgacaWGPbGaaGykaiaadEfacaWGfbGaam4qaiaaiQdacaWGWbWa aSbaaKqbGeaacaWGYbaabeaajuaGcqGHRaWkcqaHbpGCcqGHLjYSca aIWaGaaGilaiaaiccacaaIGaGaaGiiaiabeg8aYjaai6dacaaIWaae aaaaaaaaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckapaWaaeWaaeaapeGaaG4maiaaiMdaa8aacaGLOaGaayzkaaaaaa@5F4B@

(iii)SEC:ρ+ p r 0 ρ+ p r +2 p 0              ( 40 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadMgacaWGPbGaamyAaiaaiMcacaWGtbGaamyraiaadoeacaaI6aGa eqyWdiNaey4kaSIaamiCamaaBaaajuaibaGaamOCaaqcfayabaGaey yzImRaaGimaiaaiccacaaIGaGaaGiiaiaaiccacqaHbpGCcqGHRaWk caWGWbWaaSbaaKqbGeaacaWGYbaabeaajuaGcqGHRaWkcaaIYaGaam iCamaaBaaajuaibaGaeyyPI4fajuaGbeaacqGHLjYScaaIWaaeaaaa aaaaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOa8aadaqa daqaa8qacaaI0aGaaGimaaWdaiaawIcacaGLPaaaaaa@68C7@

(iv)DEC:ρ>| p r | ,ρ>| p |              ( 41 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadMgacaWG2bGaaGykaiaadseacaWGfbGaam4qaiaaiQdacqaHbpGC caaI+aWaaqWaaeaacaWGWbWaaSbaaKqbGeaacaWGYbaajuaGbeaaai aawEa7caGLiWoacaaIGaGaaGiiaiaaiccacaaISaGaeqyWdiNaaGOp amaaemaabaGaamiCamaaBaaajuaibaGaeyyPI4fajuaGbeaaaiaawE a7caGLiWoaqaaaaaaaaaWdbiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcWdamaabmaabaWdbiaaisdacaaIXaaapaGaayjkaiaawMca aaaa@648D@

 Due to the complexity of the expression of p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaeyyPI4fajuaGbeaaaaa@3A07@ we will prove the inequality (38)-(41) with the help of graphical representation. The profiles of the L.H.S of the above inequalities are depicted in Figure 8 for the compact star PSR J1614-2230. The figure shows that all the energy conditions are satisfied by our model of compact star (Figures 9 & 10).

Figure 8 The left and middle figures show the dominant energy conditions where as the right figure shows the weak null and strong energy conditions are satisfied by our model for the star PSR J1614-2230.

Figure 9 Variation of anisotropy is shown against r for the star PSR J1614-2230.

Figure 10 The variation of electric field is shown against r for the star PSR J1614-2230.

The ratio of mass to the radius of a compact star cannot be arbitrarily large.32 showed that for a (3+1)-dimensional fluid sphere 2M r b < 8 9 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaaIYaGaamytaaqaaiaadkhadaWgaaqcfasaaiaadkgaaeqaaaaa juaGcaaI8aWaaSaaaeaacaaI4aaabaGaaGyoaaaaaaa@3D38@ . To see the maximum ratio of mass to the radius for our model we calculate the compactness of the star given by

u(r)= m(r) r = b r 2 2(1+a r 2 ) ,                              ( 42 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDai aaiIcacaWGYbGaaGykaiaai2dadaWcaaqaaiaad2gacaaIOaGaamOC aiaaiMcaaeaacaWGYbaaaiaai2dadaWcaaqaaiaadkgacaWGYbWaaW baaKqbGeqabaGaaGOmaaaaaKqbagaacaaIYaGaaGikaiaaigdacqGH RaWkcaWGHbGaamOCamaaCaaabeqcfasaaiaaikdaaaqcfaOaaGykaa aacaaISaaeaaaaaaaaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckapaWaaeWaaeaapeGaaGinaiaaikdaa8aacaGLOaGaayzkaaaa aa@70B9@

and the corresponding surface redshift z s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOEam aaBaaajuaibaGaam4Caaqcfayabaaaaa@3958@ is obtained by,

1+ z s ( r b )= [ 12u( r b ) ] 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymai abgUcaRiaadQhadaWgaaqcfasaaiaadohaaKqbagqaaiaaiIcacaWG YbWaaSbaaKqbGeaacaWGIbaajuaGbeaacaaIPaGaaGypamaadmaaba GaaGymaiabgkHiTiaaikdacaWG1bGaaGikaiaadkhadaWgaaqcfasa aiaadkgaaeqaaKqbakaaiMcaaiaawUfacaGLDbaadaahaaqcfasabe aacqGHsislcaaIXaGaaG4laiaaikdaaaaaaa@4CB9@

Therefore z s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOEam aaBaaajuaibaGaam4Caaqcfayabaaaaa@3958@ can be obtained as,

z s ( r b )= [ 1+(ab) r b 2 1+a r b 2 ] 1 2 1.                              ( 43 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOEam aaBaaajuaibaGaam4CaaqabaqcfaOaaGikaiaadkhadaWgaaqcfasa aiaadkgaaeqaaKqbakaaiMcacaaI9aWaamWaaeaadaWcaaqaaiaaig dacqGHRaWkcaaIOaGaamyyaiabgkHiTiaadkgacaaIPaGaamOCaSWa a0baaKqbGeaajugWaiaadkgaaKqbGeaajugWaiaaikdaaaaajuaGba GaaGymaiabgUcaRiaadggacaWGYbWaa0baaKqbGeaacaWGIbaabaGa aGOmaaaaaaaajuaGcaGLBbGaayzxaaWaaWbaaeqajqwba+FaaKqzad GaeyOeI0YcdaWcaaqcKvaG=haajugWaiaaigdaaKazfa4=baqcLbma caaIYaaaaaaajuaGcqGHsislcaaIXaGaaGOlaabaaaaaaaaapeGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcWdamaabmaabaWdbiaais dacaaIZaaapaGaayjkaiaawMcaaaaa@867B@

 The surface redshift of different compact stars is given in Table 2.

Compact star

 

 

Central
Density ( ρ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai abeg8aYnaaBaaajuaibaGaaGimaaqcfayabaGaaGykaaaa@3B40@

Surface
Density

 Surface
density

Central
Pressure ( p 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadchalmaaBaaajuaibaqcLbmacaaIWaaajuaibeaajuaGcaaIPaaa aa@3BDC@

d p r dρ |r=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGKbGaamiCamaaBaaajuaibaGaamOCaaqcfayabaaabaGaamiz aiabeg8aYbaadaWgaaqaaiaaiYhajuaicaWGYbGaaGypaiaaicdaaK qbagqaaaaa@414A@

 

 

 

gm.c m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGiiai aadEgacaWGTbGaaGOlaiaadogacaWGTbWaaWbaaKqbGeqabaGaeyOe I0IaaG4maaaaaaa@3D98@

(uncharged)

(charged)

dyne.c m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGiiai aadsgacaWG5bGaamOBaiaadwgacaaIUaGaam4yaiaad2gadaahaaqc fasabeaacqGHsislcaaIYaaaaaaa@3F7D@

(charged)

U 1820-30

 

 

1.994× 10 15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaaiOlaiaaiMdacaaI5aGaaGina8aacqGHxdaTcaaI XaGaaGimamaaCaaajuaibeqaaiaaigdacaaI1aaaaaaa@3FBA@

6.648× 10 14 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI2aGaaiOlaiaaiAdacaaI0aGaaGioa8aacqGHxdaTcaaI XaGaaGimaSWaaWbaaKqbGeqabaqcLbmacaaIXaGaaGinaaaaaaa@40F3@

6.514× 10 14 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI2aGaaiOlaiaaiwdacaaIXaGaaGina8aacqGHxdaTcaaI XaGaaGimaSWaaWbaaKqbGeqabaqcLbmacaaIXaGaaGinaaaaaaa@40EB@

2.989× 10 35 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIYaGaaiOlaiaaiMdacaaI4aGaaGyoa8aacqGHxdaTcaaI XaGaaGimaSWaaWbaaKqbGeqabaqcLbmacaaIZaGaaGynaaaaaaa@40FA@

0.295227

PSR J1903+327

 

 

1.886× 10 15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaaiOlaiaaiIdacaaI4aGaaGOna8aacqGHxdaTcaaI XaGaaGimamaaCaaajuaibeqaaiaaigdacaaI1aaaaaaa@3FBA@

6.287× 10 14 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI2aGaaiOlaiaaikdacaaI4aGaaG4na8aacqGHxdaTcaaI XaGaaGimaSWaaWbaaKqbGeqabaqcLbmacaaIXaGaaGinaaaaaaa@40F2@

6.153× 10 14 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI2aGaaiOlaiaaigdacaaI1aGaaG4ma8aacqGHxdaTcaaI XaGaaGimaSWaaWbaaKqbGeqabaqcLbmacaaIXaGaaGinaaaaaaa@40EA@

2.827× 10 35 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIYaGaaiOlaiaaiIdacaaIYaGaaG4na8aacqGHxdaTcaaI XaGaaGimaSWaaWbaaKqbGeqabaqcLbmacaaIZaGaaGynaaaaaaa@40F1@

0.294958

U 1608-52

 

 

2.051× 10 15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIYaGaaiOlaiaaicdacaaI1aGaaGyma8aacqGHxdaTcaaI XaGaaGimamaaCaaajuaibeqaaiaaigdacaaI1aaaaaaa@3FAB@

6.837× 10 14 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI2aGaaiOlaiaaiIdacaaIZaGaaG4na8aacqGHxdaTcaaI XaGaaGimaSWaaWbaaKqbGeqabaqcLbmacaaIXaGaaGinaaaaaaa@40F3@

6.703× 10 14 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI2aGaaiOlaiaaiEdacaaIWaGaaG4ma8aacqGHxdaTcaaI XaGaaGimaSWaaWbaaKqbGeqabaqcLbmacaaIXaGaaGinaaaaaaa@40EB@

3.074× 10 35 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIZaGaaiOlaiaaicdacaaI3aGaaGina8aacqGHxdaTcaaI XaGaaGimaSWaaWbaaKqbGeqabaqcLbmacaaIZaGaaGynaaaaaaa@40EC@

0.295357

Vela X-1

 

 

1.927× 10 15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaaiOlaiaaiMdacaaIYaGaaG4na8aacqGHxdaTcaaI XaGaaGimamaaCaaajuaibeqaaiaaigdacaaI1aaaaaaa@3FB6@

6.423× 10 14 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI2aGaaiOlaiaaisdacaaIYaGaaG4ma8aacqGHxdaTcaaI XaGaaGimaSWaaWbaaKqbGeqabaqcLbmacaaIXaGaaGinaaaaaaa@40EA@

6.289× 10 14 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI2aGaaiOlaiaaikdacaaI4aGaaGyoa8aacqGHxdaTcaaI XaGaaGimaSWaaWbaaKqbGeqabaqcLbmacaaIXaGaaGinaaaaaaa@40F4@

2.888× 10 35 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIYaGaaiOlaiaaiIdacaaI4aGaaGioa8aacqGHxdaTcaaI XaGaaGimaSWaaWbaaKqbGeqabaqcLbmacaaIZaGaaGynaaaaaaa@40F8@

0.295063

PSR J1614-2230

 

 

2.059× 10 15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIYaGaaiOlaiaaicdacaaI1aGaaGyoa8aacqGHxdaTcaaI XaGaaGimamaaCaaajuaibeqaaiaaigdacaaI1aaaaaaa@3FB3@

6.865× 10 14 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI2aGaaiOlaiaaiIdacaaI2aGaaGyna8aacqGHxdaTcaaI XaGaaGimaSWaaWbaaKqbGeqabaqcLbmacaaIXaGaaGinaaaaaaa@40F4@

6.731× 10 14 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI2aGaaiOlaiaaiEdacaaIZaGaaGyma8aacqGHxdaTcaaI XaGaaGimaSWaaWbaaKqbGeqabaqcLbmacaaIXaGaaGinaaaaaaa@40EC@

3.087× 10 35 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIZaGaaiOlaiaaicdacaaI4aGaaG4na8aacqGHxdaTcaaI XaGaaGimaSWaaWbaaKqbGeqabaqcLbmacaaIZaGaaGynaaaaaaa@40F0@

0.295376

Cen X-3

 

 

1.833× 10 15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaaiOlaiaaiIdacaaIZaGaaG4ma8aacqGHxdaTcaaI XaGaaGimamaaCaaajuaibeqaaiaaigdacaaI1aaaaaaa@3FB2@

6.111× 10 14 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI2aGaaiOlaiaaigdacaaIXaGaaGyma8aacqGHxdaTcaaI XaGaaGimaSWaaWbaaKqbGeqabaqcLbmacaaIXaGaaGinaaaaaaa@40E4@

5.977× 10 14 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI1aGaaiOlaiaaiMdacaaI3aGaaG4na8aacqGHxdaTcaaI XaGaaGimaSWaaWbaaKqbGeqabaqcLbmacaaIXaGaaGinaaaaaaa@40F7@

2.748× 10 35 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIYaGaaiOlaiaaiEdacaaI0aGaaGioa8aacqGHxdaTcaaI XaGaaGimaSWaaWbaaKqbGeqabaqcLbmacaaIZaGaaGynaaaaaaa@40F3@

0.294815

Table 2 The values of central density, surface density, central pressure and radial velocity of the sound at the origin for different compact stars are obtained

Conclusion

We have obtained a new class of solution for charged compact stars having26 mass function. The electric field intensity is increasing in radially outward direction and the adiabatic index Γ> 4 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC KaaGOpamaalaaabaGaaGinaaqaaiaaiodaaaaaaa@3A3F@ . The physical requirements are checked for the star PSR J1614-2230 and model satisfies all the physical conditions. Some salient features of the model are

  1. In present model if α=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde MaaGypaiaaicdaaaa@39A4@ , the model corresponds to23 model.
  2. In present model if α=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde MaaGypaiaaicdaaaa@39A4@ , a=b= 1 R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aai2dacaWGIbGaaGypamaalaaabaGaaGymaaqaaiaadkfadaahaaqc fasabeaacaaIYaaaaaaaaaa@3C8D@ , where R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuaa aa@375B@ is geometric parameter then the model corresponds to17 model, which is stable for 1 3 < p 0 <0.3944 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaaIXaaabaGaaG4maaaacaaI8aGaamiCamaaBaaajqwba+FaaKqz adGaaGimaaqcfayabaGaaGipaiaaicdacaaIUaGaaG4maiaaiMdaca aI0aGaaGinaaaa@4383@ .

Acknowledgments

BSR is thankful to IUCAA, Pune, for providing the facilities and hospitality where the part of this work was done.

Conflicts of interest

Authors declare there is no conflict of interest.

References

  1. Stephani H, Kramer D, MacCallum M, et al. Exact Solutions of Einstein’s Field Equations, 2nd ed. Cambridge Monographs on Mathematical Physics. Cambridge University Press, New York, USA, 2003. p. 1–25.
  2. Delgaty MSR, Lake K. Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein's equations. Computer Physics Communications. 1998;115(2–3):395–415.
  3. Stettner R. On the stability of homogeneous, spherically symmetric, charged fluids in relativity. Annals of Physics. 1973;80(1):212–227.
  4. Krasinski A. Inhomogeneous cosmological models. 1st ed. Cambridge University Press, USA. 1997.
  5. Thirukkanesh S, Maharaj SD. Charged anisotropic matter with a linear equation of state. Classical and Quantum Gravity. 2008;25(23).
  6. Joshi PS. Global aspects in gravitation and cosmology. Oxford Science Publications, UK. 1993.
  7. Ivanov BV. Static charged perfect fluid spheres in general relativity. Physical Review D. 1992;65(10):104001–1.
  8. Takisa MP, Maharaj SD. Compact models with regular charge distributions.Astrophysics and Space Science. 2013;343(2):569–577.
  9. Varela V, Rahaman F, Ray S, et al. Charged anisotropic matter with linear or nonlinear equation of state. Physical Review D. 2010;82.
  10. Feroze T, Siddiqui AA. Charged anisotropic matter with quadratic equation of state. General Relativity and Gravitation. 2011;43(4):1025–1035.
  11. Ruderman R. Pulsars: Structure and Dynamics. Annual Review of Astronomy and Astrophysics. 1972;10:427–476.
  12. Kippenhahn R, Weigert A. Steller Structure and Evolution. Springer, Berlin, Germany. 1990.
  13. Sokolov AI. Phase transitions in a superfluid neutron liquid. Journal of Experimental and Theoretical Physics. 1980;79(4):1137–1138.
  14. Sawyer RF. Condensed π−Phase in Neutron-Star Matter. Physical Review Letters. 1972;29(6).
  15. Herrera L, Santos NO. Local anisotropy in self-gravitating systems. Physics Reports. 1972;286(2):53–130.
  16. Dev K, Gleiser M. Anisotropic Stars: Exact Solutions. General Relativity and Gravitation. 2002;34(11):1793–1818.
  17. Sharma R, Ratanpal BS. Relativistic stellar model admitting a quadratic equation of state. International Journal of Modern Physics D. 2013;22(13).
  18. Pandya DM, Thomas VO, Sharma R. Modified Finch and Skea stellar model compatible with observational data. Astrophysics and Space Science. 2015;356(2):285–292.
  19. Bhar P. Vaidya–Tikekar type superdense star admitting conformal motion in presence of quintessence field. European Physical Journal C. 2015;75:123.
  20. Vaidya PC, Tikekar R. Exact relativistic model for a superdense star. Journal of Astrophysics & Astronomy. 1982;3(3):325–334.
  21. Bhar P, Murad MH, Pant N. Relativistic anisotropic stellar models with Tolman VII spacetime. Astrophysics and Space Science. 2015;359:13.
  22. Ratanpal BS, Sharma J. Charged anisotropic star on paraboloidal space-time. Pramana J Phys. 2016;86(3):527–535.
  23. Ratanpal BS, Thomas VO, Pandya DM. Anisotropic star on pseudo-spheroidal spacetime. Astrophysics and Space Science. 2016;361:65.
  24. Ratanpal BS, Thomas VO, Pandya DM. A new class of solutions of anisotropic charged distributions on pseudo-spheroidal spacetime. Astrophysics and Space Science. 2015;360:53.
  25. Bhar P, Ratanpal BS. A new anisotropic compact star model having Matese & Whitman mass function. Astrophysics and Space Science. 2016;361:217.
  26. Matese JJ, Whitman PG. New method for extracting static equilibrium configurations in general relativity. Physical Review D. 1980;22:1270.
  27. Mak MK, Harko T. Anisotropic stars in general relativity. Proceedings of the Royal Society of London A. 2003;459:393–408.
  28. Lobo FSN. Stable dark energy stars. Classical and Quantum Gravity. 2003;23(5).
  29. Sharma R, Maharaj SD. A class of relativistic stars with a linear equation of state. Monthly Notices of the Royal Astronomical Society. 2007;375(4):1265–1268.
  30. Thirukkanesh S, Maharaj SD. Charged anisotropic matter with a linear equation of state. Classical and Quantum Gravity. 2008;25(23).
  31. Bondi H. The gravitational red shift from static spherical bodies. Monthly Notices of the Royal Astronomical Society. 1990;302(2):337–340.
  32. Buchdahl HA. General Relativistic Fluid Spheres. Physical Review journal Achieve. 1959;116(4).
Creative Commons Attribution License

©2017 Ratanpal, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.