Submit manuscript...
Open Access Journal of
eISSN: 2641-9335

Mathematical and Theoretical Physics

Short Communication Volume 1 Issue 4

Fermat’s last theorem, a proof based to limit

Serbi L

University of Athens, Greece

Correspondence: Serbi L, Gnosis Mathematical Research Institute, 25, Agiou Antoniou str, 15235 Vrilissia, Greece, Tel 3069 4002 5916

Received: June 26, 2018 | Published: July 16, 2018

Citation: Serbi L. Fermat’s last theorem, a proof based to limit. Open Acc J Math Theor Phy. 2018;1(4):136-137 DOI: 10.15406/oajmtp.2018.01.00021

Download PDF

Abstract

Fermat’s Last Theorem is the most famous mathematical problem of all times. It has never stopped being a challenge for the broader mathematical community, mainly because Wile’s proof1 was based on an extensive mathematical background that was not nearly available in Fermat’s era.

In the present work we assume that the Theorem states a true proposition and we end up in a contradiction, proving the theorem holds for large values of n. The method is based on the general concept of the limit as it was presented in the recent work of A.Mazaris.2

This partial proof, in addition to its mathematical and historical value, has another special feature: it is a very brief proof of a problem that has dealt with the international mathematical community for centuries. The simplicity of this approach leaves room for us to include the possibility that this could be close to the line of thinking Fermat himself used when he stated that has come up with a short proof of his proposal.

Keywords: fermat, fermat’s last theorem, diophantines equations

Introduction

Has Fermat proved his last theorem as he claimed in his writings? This is a question of both historical and mathematical value. In this study, we partially prove Fermat's last theorem, based on the concept of limit that was known in considerable depth back in the 16th century. We provide a short prove that is valid for large values of n, suggesting that it could have been close to Fermat’s unrevealed proof.

The idea of the proof follows (but does not depend on) the broader idea presented in Mazaris.2 The proof itself can be viewed as partial, in the sense that it does not cover the whole possible range of values for n.

A novel and targeted approach

Fermat’s famous Last Theorem states that: if a, b, c is positive integers then there is no natural integer n>2 such that:

a n + b n = c n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGHbWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgUca RiaadkgapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyypa0Jaam 4ya8aadaahaaqcfasabeaapeGaamOBaaaaaaa@4084@    (1)

We will show that for large values of n, Fermat’s theorem holds. We will attempt a proof by contradiction and use of the concept of limit, as applied in sequences of natural numbers. We assume that a, b, c, n are positive integer numbers (n>2) that satisfy the Theorem. Obviously each of an, bn, cn are also positive integers. Dividing equation (1) by cn results:

( a c ) n + ( b c ) n =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeWaaSaaa8aabaWdbiaadggaa8aabaWdbiaa dogaaaaacaGLOaGaayzkaaWdamaaCaaajuaibeqaa8qacaWGUbaaaK qbakabgUcaRmaabmaapaqaa8qadaWcaaWdaeaapeGaamOyaaWdaeaa peGaam4yaaaaaiaawIcacaGLPaaapaWaaWbaaKqbGeqabaWdbiaad6 gaaaqcfaOaeyypa0JaaGymaaaa@44B1@  (2)

If we assume that n takes very large values (n+) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikaa baaaaaaaaapeGaamOBaiabgkziUkabgUcaRiabg6HiL+aacaGGPaaa aa@3D3F@ and employ the concept of limit since + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHRaWkcqGHEisPaaa@38F7@ is accumulation point for positive integer numbers, then equation (2) can be written as:

lim n+ ( a c ) n + lim n+ ( b c ) n =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiGacYgacaGGPbGaaiyBaaWdaeaapeGaamOBaiab gkziUkabgUcaRiabg6HiLcWdaeqaa8qadaqadaWdaeaapeWaaSaaa8 aabaWdbiaadggaa8aabaWdbiaadogaaaaacaGLOaGaayzkaaWdamaa Caaajuaibeqaa8qacaWGUbaaaKqbakabgUcaR8aadaWfqaqaa8qaci GGSbGaaiyAaiaac2gaa8aabaWdbiaad6gacqGHsgIRcqGHRaWkcqGH EisPa8aabeaapeWaaeWaa8aabaWdbmaalaaapaqaa8qacaWGIbaapa qaa8qacaWGJbaaaaGaayjkaiaawMcaa8aadaahaaqcfasabeaapeGa amOBaaaajuaGcqGH9aqpcaaIXaaaaa@55AD@  (3)

We will now prove that each of the two left hand side terms of equation (3) equals 0, leading to a contradiction (0+0=1). Equation (1) automatically implies that c n > a n and c n > b n , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabg6da +iaadggapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaamyyaiaad6 gacaWGKbGaaGPaVlaadogapaWaaWbaaKqbGeqabaWdbiaad6gaaaqc faOaeyOpa4JaamOya8aadaahaaqcfasabeaapeGaamOBaaaajuaGpa Gaaiilaaaa@491D@ thus c>a and c>b.

Consider ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGPaVl abew7aLbaa@39B6@ to be an arbitrary small number, such that:

( a c ) n <εand ( b c ) n <ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeWaaSaaa8aabaWdbiaadggaa8aabaWdbiaa dogaaaaacaGLOaGaayzkaaWdamaaCaaajuaibeqaa8qacaWGUbaaaK qbakabgYda8iabew7aLjaaykW7caaMc8Uaamyyaiaad6gacaWGKbGa aGPaVlaaykW7daqadaWdaeaapeWaaSaaa8aabaWdbiaadkgaa8aaba WdbiaadogaaaaacaGLOaGaayzkaaWdamaaCaaajuaibeqaa8qacaWG UbaaaKqbakabgYda8iabew7aLbaa@5051@  

Then ln ( a c ) n <lnεandln ( b c ) n <lnε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaciGGSbGaaiOBamaabmaapaqaa8qadaWcaaWdaeaapeGaamyy aaWdaeaapeGaam4yaaaaaiaawIcacaGLPaaapaWaaWbaaKqbGeqaba Wdbiaad6gaaaqcfaOaeyipaWJaciiBaiaac6gacqaH1oqzcaaMc8Ua aGPaVlaadggacaWGUbGaamizaiaaykW7caaMc8UaciiBaiaac6gada qadaWdaeaapeWaaSaaa8aabaWdbiaadkgaa8aabaWdbiaadogaaaaa caGLOaGaayzkaaWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgY da8iGacYgacaGGUbGaeqyTdugaaa@57E1@

Since c>a and c>b it follows that

ln a c <0andln b c <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaciGGSbGaaiOBamaalaaapaqaa8qacaWGHbaapaqaa8qacaWG JbaaaiabgYda8iaaicdacaaMc8UaaGPaVlaaykW7caWGHbGaamOBai aadsgacaaMc8UaaGPaVlGacYgacaGGUbWaaSaaa8aabaWdbiaadkga a8aabaWdbiaadogaaaGaeyipaWJaaGimaaaa@4C9A@

and consequently

n> lnε ln a c andn> lnε ln a c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGUbGaeyOpa4ZaaSaaa8aabaWdbiGacYgacaGGUbGaeqyT dugapaqaa8qaciGGSbGaaiOBamaalaaapaqaa8qacaWGHbaapaqaa8 qacaWGJbaaaaaacaaMc8UaaGPaVlaadggacaWGUbGaamizaiaaykW7 caWGUbGaeyOpa4ZaaSaaa8aabaWdbiGacYgacaGGUbGaeqyTdugapa qaa8qaciGGSbGaaiOBamaalaaapaqaa8qacaWGHbaapaqaa8qacaWG Jbaaaaaaaaa@51AF@

If k 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbWdamaaBaaajuaibaWdbiaaigdaaKqba+aabeaaaaa@395A@  and k 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbWdamaaBaaajuaibaWdbiaaikdaaKqba+aabeaaaaa@395B@ are the lower-value integers that satisfy

k 1 > lnε ln a c and k 2 > lnε ln b c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbWdamaaBaaajuaibaWdbiaaigdaaKqba+aabeaapeGa eyOpa4ZaaSaaa8aabaWdbiGacYgacaGGUbGaeqyTdugapaqaa8qaci GGSbGaaiOBamaalaaapaqaa8qacaWGHbaapaqaa8qacaWGJbaaaaaa caaMc8Uaamyyaiaad6gacaWGKbGaaGPaVlaadUgapaWaaSbaaKqbGe aapeGaaGOmaaqcfa4daeqaa8qacqGH+aGpdaWcaaWdaeaapeGaciiB aiaac6gacqaH1oqza8aabaWdbiGacYgacaGGUbWaaSaaa8aabaWdbi aadkgaa8aabaWdbiaadogaaaaaaaaa@53CC@

Then for every natural number n> k 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGUbGaeyOpa4Jaam4Aa8aadaWgaaqcfasaa8qacaaIXaaa juaGpaqabaaaaa@3B55@ it is holds

( a c ) n <ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeWaaSaaa8aabaWdbiaadggaa8aabaWdbiaa dogaaaaacaGLOaGaayzkaaWdamaaCaaajuaibeqaa8qacaWGUbaaaK qbakabgYda8iabew7aLbaa@3F03@

And for every natural number n> k 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGUbGaeyOpa4Jaam4AamaaBaaajuaibaGaaGOmaaqcfaya baaaaa@3B28@ it is holds

( b c ) n <ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeWaaSaaa8aabaWdbiaadkgaa8aabaWdbiaa dogaaaaacaGLOaGaayzkaaWdamaaCaaajuaibeqaa8qacaWGUbaaaK qbakabgYda8iabew7aLbaa@3F04@

Therefore, both sequences ( a c ) n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeWaaSaaa8aabaWdbiaadggaa8aabaWdbiaa dogaaaaacaGLOaGaayzkaaWdamaaCaaajuaibeqaa8qacaWGUbaaaa aa@3BCA@ and ( b c ) n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeWaaSaaa8aabaWdbiaadkgaa8aabaWdbiaa dogaaaaacaGLOaGaayzkaaWdamaaCaaajuaibeqaa8qacaWGUbaaaa aa@3BCB@ converge to 0, or

lim n+ ( a c ) n = lim n+ ( b c ) n =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiGacYgacaGGPbGaaiyBaaWdaeaapeGaamOBaiab gkziUkabgUcaRiabg6HiLcWdaeqaa8qadaqadaWdaeaapeWaaSaaa8 aabaWdbiaadggaa8aabaWdbiaadogaaaaacaGLOaGaayzkaaWdamaa Caaajuaibeqaa8qacaWGUbaaaKqbakabg2da98aadaWfqaqaa8qaci GGSbGaaiyAaiaac2gaa8aabaWdbiaad6gacqGHsgIRcqGHRaWkcqGH EisPa8aabeaapeWaaeWaa8aabaWdbmaalaaapaqaa8qacaWGIbaapa qaa8qacaWGJbaaaaGaayjkaiaawMcaa8aadaahaaqcfasabeaapeGa amOBaaaajuaGcqGH9aqpcaaIWaaaaa@55D0@

And thus equation (3) leads to a contradiction (0+0=1). As a result, equation (1) cannot be satisfied, and so Fermat’s Theorem is proved for large values of n. n is a very large (though large) positive integer such that n>max{ k 1 , k 2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGUbGaeyOpa4JaamyBaiaadggacaWG4bWaaiWaa8aabaWd biaabUgapaWaaSbaaKqbGeaapeGaaGymaaWdaeqaaKqba+qacaGGSa Gaae4Aa8aadaWgaaqcfasaa8qacaaIYaaajuaGpaqabaaapeGaay5E aiaaw2haaaaa@43FB@ were k 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGRbWdamaaBaaajuaibaWdbiaaigdaa8aabeaaaaa@38CA@ and k 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGRbWdamaaBaaajuaibaWdbiaaikdaaKqba+aabeaaaaa@3959@ are the lower – value integers that satisfy k 1 > lnε ln a c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGRbWdamaaBaaajuaibaWdbiaaigdaa8aabeaajuaGpeGa eyOpa4ZaaSaaa8aabaWdbiaabYgacaqGUbGaeqyTdugapaqaa8qaca qGSbGaaeOBamaalaaapaqaa8qacaqGHbaapaqaa8qacaqGJbaaaaaa aaa@423D@ and k 2 > lnε ln b c . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbWaaSbaaKqbGeaacaaIYaaajuaGbeaacqGH+aGpdaWc aaWdaeaapeGaaeiBaiaab6gacqaH1oqza8aabaWdbiaabYgacaqGUb WaaSaaa8aabaWdbiaabkgaa8aabaWdbiaabogaaaaaaiaac6caaaa@42B5@

The theorem therefore proves for every positive integer number n>max{ k 1 , k 2 }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGUbGaeyOpa4JaamyBaiaadggacaWG4bWaaiWaa8aabaWd biaadUgapaWaaSbaaKqbGeaapeGaaGymaaWdaeqaaKqba+qacaGGSa Gaam4Aa8aadaWgaaqcfasaa8qacaaIYaaajuaGpaqabaaapeGaay5E aiaaw2haaiaac6caaaa@44B3@

Discussion and conclusion

Combining the fundamental concept of the limit with a classical proofing method, as proof by contradiction is, we proved Fermat’s last theorem for large values of n. This line of thinking is based on methods and tools that were available to Fermat. This study does not provide a complete proof of the theorem, as it concerns only a range of values for n, but it retains its mathematical value, putting forward a rather simplistic line of logically connected arguments that lead to a solid conclusion.

Acknowledgements

None.

Conflict of interest

The author declares that there is no conflict of interest.

References

Creative Commons Attribution License

©2018 Serbi. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.