In this brief paper, take a brief look at how Topology might apply to the Astrotheology Math. Much more work in this area remains to be done.

**Keywords: **topology, Alexander’s Knot, parametric equation, astrotheolgy

In this brief paper, we examine the Universal Parametric Equation as an Alexander Know. We see that the there is a topological invariant of “1” which of course, is equal to the Energy and time in Astrotheology (Figure 1).

**Figure 1** The universal parametric equation.

The Universal Parametric Equation:

$\left(x,y\right)=\mathrm{sin}\left(t\right)+1/3\mathrm{cos}\left[17t+\pi /3\right]\text{\hspace{0.17em}},\text{\hspace{0.17em}}\mathrm{sin}\left[17t+\pi /3\right]$

Let
$t=1$

$={1.158}^{2}+{\left(-7193\right)}^{2}=1.858$

$=1+sin\text{}{59}^{0}$

$\approx Moment.$

$R=\sqrt{Mom}.=\sqrt{1.858}=1.363$

But R=2

So
$R=\sqrt{Mom}/2=68.15=2\sigma $

**Alexander’s polynomials**

**Reef or granny know**

${x}^{2}-2x+3-2/x+1/x$

Let
$x=t=1$

$={1}^{2}-2(1)+3-2/1+1/1$

$=1$

In fact, all of Alexander’s Knots result in a the same answer =1, including the unknot.

The unknown is a circle. So the universal parametric equation is a knot.

**Euler’s formula for polyhedra**

$F-E+V=2={R}^{2}={x}^{2}+{y}^{2}$

For a circle Face
$F=2$
,
$Edges=0$
,
$Vertices=0$

$2-0+0=2\text{}True!$

$R=\sqrt{2}$

This is the
${45}^{0}$
Triangle where
$E=t=1$

${R}^{2}={x}^{2}+{y}^{2}={a}^{2}+{b}^{2}$
(Pythagoras)

$\sqrt{2}+\sqrt{2}=2\sqrt{2}=4=\left|D\right|$

${a}^{2}+{b}^{2}={c}^{2}$
$\Rightarrow {1}^{2}+{1}^{2}={c}^{2}$

$c=2=dM/dt$

We see that once again Occam’s razor applies this time to Topology and astrotheology.^{1-5}

Author declares that there is no conflicts of interest.