Submit manuscript...
MOJ
eISSN: 2577-8374

Solar and Photoenergy Systems

Research Article Volume 1 Issue 1

Evaluation of some global solar radiation models in selected locations in Northwest, Nigeria

Olomiyesan BM,1 Oyedum OD,2 Ugwuoke PE,3 Abolarin MS4

1Examination Development Department, National Examinations Council (NECO), Nigeria
2Department of Physics, Federal University of Technology, Nigeria
3National Centre for Energy Research and Development, University of Nigeria, Nigeria
4Mechanical Engineering Department, Federal University of Technology, Nigeria

Correspondence: Olomiyesan BM, Examination Development Department, National Examinations Council (NECO),P.M.B. 159, Minna, Niger State, Nigeria, Tel 234-806-625-8921

Received: April 11, 2016 | Published: May 3, 2017

Citation: Olomiyesan BM, Oyedum OD, Ugwuoke PE, Abolarin MS (2017) Evaluation of some global solar radiation models in selected locations in Northwest, Nigeria. Open Acc J Photoen 1(1): 00001. DOI: 10.15406/mojsp.2017.01.00001

Download PDF

Abstract

This study assesses the performance of four global solar radiation models in three selected locations (Gusua, Yelwa and Katsina) in North-western, Nigeria. A new model for estimating global solar radiation which is developed by Olomiyesan and Oyedum is also presented. This model alongside three existing models has been tested and validated for the selected locations using twenty-two years’ (1984–2005) meteorological data collected from the Nigerian Meteorological Agency (NIMET). Global solar radiation estimated from the newly developed model was compared with the values obtained from Garcia, Hargreaves-Samani and Angstrom-Prescott models. The accuracy of the models was determined by using mean bias error (MBE), mean percentage error (MPE), root mean square error (RMSE) and coefficient of determination (R2). Based on the statistical error indices obtained, Olomiyesan and Oyedum model was found to perform best in terms of accuracy, with the least RMSE values in the three locations, and highest coefficient of determination, R2 values in two of the three locations. Thus, the newly developed model is suitable for estimating global solar radiation in the North-Western region of Nigeria and other locations with similar meteorological and climatic conditions.

Keywords: solar radiation, empirical model, statistical error, meteorological data

Introduction

Availability of accurate solar radiation data is essential for the design of reliable and efficient solar energy devices in any location of interest. Using inaccurate solar radiation data for the design of solar energy application can affect the performance of such device, while paucity of solar data can hinder the implementation of solar energy application at any required site. Despite the importance of solar radiation data and the promotion of solar energy applications for generation of environmentally friendly energy, solar radiation data are still relatively scarce in many locations, especially in the developing countries.

This may be attributed to the lacks of measuring instruments and/or relevant techniques, as well as poor maintenance culture, especially in developing countries.1 For instance, in Nigeria, solar radiation data are mainly measured by Nigerian Metrological Agency (NIMET), mostly at the airports across the country.

The limited coverage of this measurement indicates that solar radiation data are not readily available for most locations in the country; hence the need to employ empirical methods for estimating solar radiation at any required location.2

Many articles for estimating monthly average daily global solar radiation have been published and tested based on different models.3 Some of these models have regression constant(s) that are acclaimed to be universally applicable, while others contain regression coefficients that are site-dependent. However, there is always the need to calibrate empirical coefficients against a set of local data before they are used in locations other than base region.2 Empirical models for estimation of global solar radiation can be classified based on the number of input parameters used. Thus, the models can be classified as single-parameter models and multiple-parameter models.

Single-parameter models

These are regression models in which only one meteorological parameter is used as the main input data for the estimation of global solar radiation. The commonly used parameters in this category are sunshine duration, air temperature and cloud cover. Examples of such model include: Angstrӧm,4 Black,5 Hargreaves and Samani,6 Bristow and Campbell,7 Badescu8 and El-Metwally.9

Multiple-parameter models

These are regression models which require two or more types of input data for the estimation of global solar radiation. The required input data for these models are usually a combination of various available meteorological parameters such as: sunshine duration, dew point temperature, soil temperature, relative humidity, cloud cover, precipitation, evaporation, pressure, and wind speed, minimum and maximum temperatures. Examples of correlation with two or more input parameters are Swartman and Ogunlade,10 Chen et al.,11 Ojosu and Komolafe12 and Okonkwo and Nwokoye.13

Although many models have been developed for estimating global solar radiation, research is still on-going to develop new models and to improve the accuracy of the existing ones. Also, there is need to test the suitability of both new and existing models in given locations. Olomiyesan and Oyedum14 developed a new model for estimating global solar radiation in Nigeria. The model has been tested and found to perform better than some existing models in three locations in the North-western region of Nigeria. The purpose of this study is therefore to compare the performance of the new model with that of three other existing models in other locations in north-west region of Nigeria.

Studied Models

Angstrom–prescott model

Angstrom-Prescott model is a modified version of Angstrom model.15 It is a single-parameter model (sunshine-based model) that has been widely used for estimating monthly average daily global solar radiation. In Nigeria it was used for the estimation of monthly average daily global solar radiation in Yola, Maiduguri and Minna by Medugu and Yakubu;16 Musa, Zangina and Aminu17 and Olomiyesan et al.18 respectively. The Angstrom-Prescott model is given as:

H   H O =a+b S S O MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamisaaWdaeaapeGaaiiOaiaadIeapaWa aSbaaeaajugWa8qacaWGpbaajuaGpaqabaaaa8qacqGH9aqpcaWGHb Gaey4kaSIaamOyamaalaaapaqaa8qacaWGtbaapaqaa8qacaWGtbWd amaaBaaabaqcLbmapeGaam4taaqcfa4daeqaaaaaaaa@4532@  (1)

Where:

H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisaa aa@3751@ = monthly average daily global radiation on a horizontal surface (MJm-2day-1);
H o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisaS WaaSbaaKqbagaajugWaiaad+gaaKqbagqaaaaa@3ABB@ = monthly average daily extraterrestrial radiation on a horizontal surface (MJm-2day-1);
S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uaa aa@375C@ = monthly average daily number of hours of bright sunshine;
S o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uaS WaaSbaaKqbagaajugWaiaad+gaaKqbagqaaaaa@3AC6@ = monthly average daily maximum number of hours of possible sunshine;
a, b = regression constants.

Hargreaves and samani model

Hargreaves and Samani6 were the first to propose a procedure to estimate the global solar radiation by using the difference between monthly average of daily maximum and daily minimum air temperature and extraterrestrial irradiation. It is a single-parameter model and can be expressed in the form:

H   H O =a ( ΔT ) 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamisaaWdaeaapeGaaiiOaiaadIeapaWa aSbaaeaajugWa8qacaWGpbaajuaGpaqabaaaa8qacqGH9aqpcaWGHb WaaeWaa8aabaWdbiabfs5aejaadsfaaiaawIcacaGLPaaapaWaaWba aeqabaqcLbmapeGaaGimaiaac6cacaaI1aaaaaaa@460C@  (2)

Where ∆T is the difference between the monthly average of daily maximum and minimum air temperature (Tmax - Tmin). The coefficient α is regression constant. Later, Hargreaves19 recommended using α = 0.16 for interior regions and α = 0.19 for coastal regions. Hassan and Onimisi20 employed this model to assess the global solar energy potential at Nigerian Defence Academy (NDA) Permanent Site, Afaka Kaduna, Nigeria.

Garcia model

Garcia proposed a single-parameter model for estimating global solar radiation in 1994. Garcia model is an adaptation of Angstrom-Prescott model with a slight modification that makes it temperature-based type expressed in the form:21

H   H O =a+b ΔT S O MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamisaaWdaeaapeGaaiiOaiaadIeapaWa aSbaaeaajugWa8qacaWGpbaajuaGpaqabaaaa8qacqGH9aqpcaWGHb Gaey4kaSIaamOyamaalaaapaqaa8qacqqHuoarcaWGubaapaqaa8qa caWGtbWdamaaBaaabaqcLbmapeGaam4taaqcfa4daeqaaaaaaaa@4699@     (3)

Where 𝑎, 𝑏 are regression constants to be determined and Δ𝑇 is the difference between maximum and minimum temperature values. Abdulsalam et al.21 used this model to estimate the global solar radiation in some selected locations in North-western, Nigeria.

Olomiyesan and oyedum model

A multiple-parameter regression model was developed for the estimation of global solar radiation in 2016. Garcia model was incorporated into Angstrom-Prescott model to obtain a new model with three regression constants. The model has been tested and found suitable for estimating global solar radiation in three locations in Northwest region of Nigeria.14 The proposed model is of the form:

H   H O =a+b S S 0 +c ΔT S O MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamisaaWdaeaapeGaaiiOaiaadIeapaWa aSbaaeaajugWa8qacaWGpbaajuaGpaqabaaaa8qacqGH9aqpcaWGHb Gaey4kaSIaamOyamaalaaapaqaa8qacaWGtbaapaqaa8qacaWGtbWd amaaBaaabaqcLbmapeGaaGimaaqcfa4daeqaaaaapeGaey4kaSIaam 4yamaalaaapaqaa8qacqqHuoarcaWGubaapaqaa8qacaWGtbWdamaa BaaabaqcLbmapeGaam4taaqcfa4daeqaaaaaaaa@4D36@      (4)

Where 𝑎, 𝑏, and 𝑐 are the regression constants to be determined for a given location. Other symbols are as earlier defined.

Ho can be calculated using the equation given by22 as:

H o = 24×3600 π × I SC [ 1.0+0.033cos( 360dn 365 ) ]×[ coscosδsin ω S + π 180 ω S sinδsin ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeajuaGpaWaaSbaaeaajugWa8qacaWGVbaajuaGpaqa baqcLbsapeGaeyypa0tcfa4aaSaaa8aabaqcLbsapeGaaGOmaiaais dacqGHxdaTcaaIZaGaaGOnaiaaicdacaaIWaaajuaGpaqaaKqzGeWd biabec8aWbaacqGHxdaTcaWGjbqcfa4damaaBaaabaqcLbmapeGaam 4uaiaadoeaaKqba+aabeaapeWaamWaa8aabaqcLbsapeGaaGymaiaa c6cacaaIWaGaey4kaSIaaGimaiaac6cacaaIWaGaaG4maiaaiodaca WGJbGaam4BaiaadohajuaGdaqadaWdaeaapeWaaSaaa8aabaqcLbsa peGaaG4maiaaiAdacaaIWaGaamizaiaad6gaaKqba+aabaqcLbsape GaaG4maiaaiAdacaaI1aaaaaqcfaOaayjkaiaawMcaaaGaay5waiaa w2faaKqzGeGaey41aqBcfa4aamWaa8aabaqcLbsapeGaam4yaiaad+ gacaWGZbGaeyybIySaam4yaiaad+gacaWGZbGaeqiTdqMaam4Caiaa dMgacaWGUbGaeqyYdCxcfa4damaaBaaabaqcLbsapeGaam4uaaqcfa 4daeqaaKqzGeWdbiabgUcaRKqbaoaalaaapaqaaKqzGeWdbiabec8a Wbqcfa4daeaajugib8qacaaIXaGaaGioaiaaicdaaaGaeqyYdCxcfa 4damaaBaaabaqcLbsapeGaam4uaaqcfa4daeqaaKqzGeWdbiaadoha caWGPbGaamOBaiabes7aKjaadohacaWGPbGaamOBaiabgwGigdqcfa Oaay5waiaaw2faaaaa@926E@      (5)

where:

ω s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDl8aadaWgaaqcfayaaKqzadWdbiaadohaaKqba+aa beaaaaa@3C0D@  = Sunset hour angle in degree defined as: 𝜔s = cos−1(− tan MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgwGigdaa@381E@ tan 𝛿);      (6)

S O =  2 15   ω S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaa3=juaGqa aaaaaaaaWdbiaadofapaWaaSbaaeaajugWa8qacaWGpbaajuaGpaqa baWdbiabg2da9iaacckadaWcaaWdaeaapeGaaGOmaaWdaeaapeGaaG ymaiaaiwdaaaGaaiiOaiabeM8a39aadaWgaaqaaKqzadWdbiaadofa aKqba+aabeaaaaa@4660@    (7)

δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabes7aKbaa@384A@ = declination angle given as: 𝛿 = 23.45 sin [360(284 + 𝑛)/365];      (8)

MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgwGigdaa@381F@  = the latitude of the location;
dn MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsgacaWGUbaaaa@3882@  = day number of the year starting from the first of January as dn=1;
I SC MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGjbWdamaaBaaabaqcLbmapeGaam4uaiaadoeaaKqba+aa beaaaaa@3B1D@  = Solar constant given as 1367 (Wm-2);

Study area

Three locations from the North-Western region of Nigeria selected for this study are Katsina (12.15oN, 7.30oE), Gusau (12.10 oN, 6.15 oE) and Yelwa (11.80 oN, 4.34oE). The climatic condition in this region is typical of the northern part of Nigeria with two major seasons: a long dry season and a short wet season. The dry season extends from October to April, while the wet season covers a relatively shorter period, from May to September. The dry season includes the harmattan, a dry chilly spell that commences in December and lasts till February, and is associated with lower temperatures, a dusty and hazy atmosphere brought about by the north-easterly winds blowing from the Sahara desert.

Methodology

Data collection

The twenty-two years’ (1984–2005) meteorological data consisting of monthly mean daily sunshine duration, minimum and maximum temperatures, and global solar radiation used for this study were collected from the Nigerian Meteorological Agency (NIMET), Oshodi, Lagos. The global solar radiation data were measured in millimetre using Gunn-Bellani radiometer. The Gunn-Bellani solar radiation data were converted to MJm-2day-1 using a conversion factor (1mm = 1.216 MJm-2day-1) proposed by.23              

Data analysis techniques

Microsoft Excel software package was used for the collation of the monthly mean values of the data collected from NIMET and in carrying out other statistical analysis and computation.

The regression constants for the models used (Angstrom-Prescott, Garcia and Olomiyesan-Oyedum models) were obtained using SPSS software. Linear regressions were carried out between the observed monthly clearness index and other meteorological parameters using 15 years data (1984-1998).

Estimated values of global solar radiation for the three sites were compared with the ground measured data to determine their level of accuracy using statistical indicators which include mean bias error (MBE), mean percentage error (MPE), root mean square error (RMSE), coefficient of correlation (𝑅), and coefficient of determination (𝑅2).

The expressions for the MBE (MJm-2day-1), MPE (%) and RMSE (MJm-2day-1) as given by24 are:

MBE=  [ ( H iest H imeas ) ] n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGnbGaamOqaiaadweacqGH9aqpcaGGGcWaaSaaa8aabaWd bmaadmaapaqaamaavacabeqabeaacaaMb8oabaWdbiabggHiLdaaca GGOaGaamisaSWdamaaBaaajuaGbaqcLbmapeGaamyAaiaadwgacaWG ZbGaamiDaaqcfa4daeqaa8qacqGHsislcaWGibWcpaWaaSbaaKqbag aajugWa8qacaWGPbGaamyBaiaadwgacaWGHbGaam4Caaqcfa4daeqa a8qacaGGPaaacaGLBbGaayzxaaaapaqaa8qacaWGUbaaaaaa@53A9@ (9)

MPE=  [ Σ( H imeas H iest H imeas  ×100 ) ] n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGnbGaamiuaiaadweacqGH9aqpcaGGGcWaaSaaa8aabaWd bmaadmaapaqaa8qacqqHJoWudaqadaWdaeaapeWaaSaaa8aabaWdbi aadIeapaWaaSbaaeaajugWa8qacaWGPbGaamyBaiaadwgacaWGHbGa am4Caaqcfa4daeqaa8qacqGHsislcaWGibWdamaaBaaabaqcLbmape GaamyAaiaadwgacaWGZbGaamiDaaqcfa4daeqaaaqaa8qacaWGibWd amaaBaaabaqcLbmapeGaamyAaiaad2gacaWGLbGaamyyaiaadohaaK qba+aabeaaaaWdbiaacckacqGHxdaTcaaIXaGaaGimaiaaicdaaiaa wIcacaGLPaaaaiaawUfacaGLDbaaa8aabaWdbiaad6gaaaaaaa@5E15@    (10)

RMSE=  [ ( H iest H imeas ) 2 n ] 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbGaamytaiaadofacaWGfbGaeyypa0JaaiiOamaadmaa paqaa8qadaWcaaWdaeaadaqfGaqabeqabaGaaGzaVdqaa8qacqGHri s5aaGaaiikaiaadIeal8aadaWgaaqcfayaaKqzadWdbiaadMgacaWG LbGaam4CaiaadshaaKqba+aabeaapeGaeyOeI0IaamisaSWdamaaBa aajuaGbaqcLbmapeGaamyAaiaad2gacaWGLbGaamyyaiaadohaaKqb a+aabeaapeGaaiyka8aadaahaaqabeaapeGaaGOmaaaaa8aabaWdbi aad6gaaaaacaGLBbGaayzxaaWdamaaCaaabeqaaSWdbmaaliaajuaG paqaaKqzadWdbiaaigdaaKqba+aabaqcLbmapeGaaGOmaaaaaaaaaa@5B19@  (11)

R=  [ ( H iest H ¯ iest )( H imeas H ¯ imeas ) ] ( H iest H ¯ iest ) 2 ( H imeas H ¯ imeas ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbGaeyypa0JaaiiOamaalaaapaqaa8qadaWadaWdaeaa daqfGaqabeqabaGaaGzaVdqaa8qacqGHris5aaWaaeWaa8aabaWdbi aadIeapaWaaSbaaeaajugWa8qacaWGPbGaamyzaiaadohacaWG0baa juaGpaqabaWdbiabgkHiT8aadaWfGaqaa8qaceWGibGbaebaa8aabe qaaaaadaWgaaqaaKqzadWdbiaadMgacaWGLbGaam4CaiaadshaaKqb a+aabeaaa8qacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadIeapaWaaS baaeaajugWa8qacaWGPbGaamyBaiaadwgacaWGHbGaam4Caaqcfa4d aeqaa8qacqGHsislpaWaaCbiaeaapeGabmisayaaraaapaqabeaaaa WaaSbaaeaajugWa8qacaWGPbGaamyBaiaadwgacaWGHbGaam4Caaqc fa4daeqaaaWdbiaawIcacaGLPaaaaiaawUfacaGLDbaaa8aabaWdbm aakaaapaqaamaavacabeqabeaacaaMb8oabaWdbiabggHiLdaadaqa daWdaeaapeGaamisa8aadaWgaaqaa8qacaWGPbGaamyzaiaadohaca WG0baapaqabaWdbiabgkHiT8aadaWfGaqaa8qaceWGibGbaebaa8aa beqaaaaadaWgaaqaaKqzadWdbiaadMgacaWGLbGaam4CaiaadshaaK qba+aabeaaa8qacaGLOaGaayzkaaWdamaaCaaabeqaaKqzadWdbiaa ikdaaaqcfa4damaavacabeqabeaacaaMb8oabaWdbiabggHiLdaada qadaWdaeaapeGaamisa8aadaWgaaqaaKqzadWdbiaadMgacaWGTbGa amyzaiaadggacaWGZbaajuaGpaqabaWdbiabgkHiT8aadaWfGaqaa8 qaceWGibGbaebaa8aabeqaaaaadaWgaaqaaKqzadWdbiaadMgacaWG TbGaamyzaiaadggacaWGZbaajuaGpaqabaaapeGaayjkaiaawMcaa8 aadaahaaqabeaajugWa8qacaaIYaaaaaqcfayabaaaaaaa@8F79@   (12)

Where Hiest, Himeas,  and  are the ith estimated, measured, mean estimated and mean measured values respectively, of global solar radiation, n is the total number of observations.

A low RMSE value is desirable while R and R2 should approach unity as closely as possible. A positive value of MBE or MPE indicates overestimation, while a negative value indicates underestimation in the calculated values.

Results and Discussion

Determination of regression constants

The values of regression constants obtained from the linear regression analysis using SPSS were used in equations 1, 2 and 4. The modified equations of Angstrom-Prescott model, Garcia model and Olomiyesan-Oyedum model respectively obtained for each of the locations are presented below.

Modified models equations for Katsina:

H H o =0.227+1.228( S S o ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaa3=juaGqa aaaaaaaaWdbmaalaaapaqaa8qacaWGibaapaqaa8qacaWGibWdamaa BaaabaqcLbmapeGaam4Baaqcfa4daeqaaaaapeGaeyypa0JaeyOeI0 IaaGimaiaac6cacaaIYaGaaGOmaiaaiEdacqGHRaWkcaaIXaGaaiOl aiaaikdacaaIYaGaaGioamaabmaapaqaa8qadaWcaaWdaeaapeGaam 4uaaWdaeaapeGaam4ua8aadaWgaaqaaKqzadWdbiaad+gaaKqba+aa beaaaaaapeGaayjkaiaawMcaaaaa@4DE4@  (13)

   H H o =0.082+0.429( ΔT S o ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaa3=juaGqa aaaaaaaaWdbiaacckacaGGGcWaaSaaa8aabaWdbiaadIeaa8aabaWd biaadIeapaWaaSbaaeaajugWa8qacaWGVbaajuaGpaqabaaaa8qacq GH9aqpcaaIWaGaaiOlaiaaicdacaaI4aGaaGOmaiabgUcaRiaaicda caGGUaGaaGinaiaaikdacaaI5aWaaeWaa8aabaWdbmaalaaapaqaa8 qacqqHuoarcaWGubaapaqaa8qacaWGtbWdamaaBaaabaqcLbmapeGa am4Baaqcfa4daeqaaaaaa8qacaGLOaGaayzkaaaaaa@50A6@  (14)

H H o =0.046+0.069( S S o )+0.420( ΛT S o ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaa3=juaGqa aaaaaaaaWdbmaalaaapaqaa8qacaWGibaapaqaa8qacaWGibWdamaa BaaabaqcLbmapeGaam4Baaqcfa4daeqaaaaapeGaeyypa0JaaGimai aac6cacaaIWaGaaGinaiaaiAdacqGHRaWkcaaIWaGaaiOlaiaaicda caaI2aGaaGyoamaabmaapaqaa8qadaWcaaWdaeaapeGaam4uaaWdae aapeGaam4ua8aadaWgaaqaaKqzadWdbiaad+gaaKqba+aabeaaaaaa peGaayjkaiaawMcaaiabgUcaRiaaicdacaGGUaGaaGinaiaaikdaca aIWaWaaeWaa8aabaWdbmaalaaapaqaa8qacqqHBoatcaWGubaapaqa a8qacaWGtbWdamaaBaaabaqcLbmapeGaam4Baaqcfa4daeqaaaaaa8 qacaGLOaGaayzkaaaaaa@59A4@      (15)

Modified models equations for Gusau:

H H o =0.023+0.830( S S o ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaa3=juaGqa aaaaaaaaWdbmaalaaapaqaa8qacaWGibaapaqaa8qacaWGibWdamaa BaaabaqcLbmapeGaam4Baaqcfa4daeqaaaaapeGaeyypa0JaaGimai aac6cacaaIWaGaaGOmaiaaiodacqGHRaWkcaaIWaGaaiOlaiaaiIda caaIZaGaaGimamaabmaapaqaa8qadaWcaaWdaeaapeGaam4uaaWdae aapeGaam4ua8aadaWgaaqaaKqzadWdbiaad+gaaKqba+aabeaaaaaa peGaayjkaiaawMcaaaaa@4CEF@         (16)

H H o =0.311+0.226( ΛT S o ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaa3=juaGqa aaaaaaaaWdbmaalaaapaqaa8qacaWGibaapaqaa8qacaWGibWdamaa BaaabaqcLbmapeGaam4Baaqcfa4daeqaaaaapeGaeyypa0JaaGimai aac6cacaaIZaGaaGymaiaaigdacqGHRaWkcaaIWaGaaiOlaiaaikda caaIYaGaaGOnamaabmaapaqaa8qadaWcaaWdaeaapeGaeu4MdWKaam ivaaWdaeaapeGaam4ua8aadaWgaaqaaKqzadWdbiaad+gaaKqba+aa beaaaaaapeGaayjkaiaawMcaaaaa@4E64@    (17)

H H o =0.215+0.234( S S o )+0.175( ΛT S o ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaa3=juaGqa aaaaaaaaWdbmaalaaapaqaa8qacaWGibaapaqaa8qacaWGibWdamaa BaaabaqcLbmapeGaam4Baaqcfa4daeqaaaaapeGaeyypa0JaaGimai aac6cacaaIYaGaaGymaiaaiwdacqGHRaWkcaaIWaGaaiOlaiaaikda caaIZaGaaGinamaabmaapaqaa8qadaWcaaWdaeaapeGaam4uaaWdae aapeGaam4ua8aadaWgaaqaaKqzadWdbiaad+gaaKqba+aabeaaaaaa peGaayjkaiaawMcaaiabgUcaRiaaicdacaGGUaGaaGymaiaaiEdaca aI1aWaaeWaa8aabaWdbmaalaaapaqaa8qacqqHBoatcaWGubaapaqa a8qacaWGtbWdamaaBaaabaqcLbmapeGaam4Baaqcfa4daeqaaaaaa8 qacaGLOaGaayzkaaaaaa@59A4@  (18)

Modified models equations for Yelwa:

H H o =0.315+0.450( S S o ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaa3=juaGqa aaaaaaaaWdbmaalaaapaqaa8qacaWGibaapaqaa8qacaWGibWdamaa BaaabaqcLbmapeGaam4Baaqcfa4daeqaaaaapeGaeyypa0JaaGimai aac6cacaaIZaGaaGymaiaaiwdacqGHRaWkcaaIWaGaaiOlaiaaisda caaI1aGaaGimamaabmaapaqaa8qadaWcaaWdaeaapeGaam4uaaWdae aapeGaam4ua8aadaWgaaqaaKqzadWdbiaad+gaaKqba+aabeaaaaaa peGaayjkaiaawMcaaaaa@4CF1@    (19)

H H o =0.393+0.152( ΛT S o ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaa3=juaGqa aaaaaaaaWdbmaalaaapaqaa8qacaWGibaapaqaa8qacaWGibWdamaa BaaabaqcLbmapeGaam4Baaqcfa4daeqaaaaapeGaeyypa0JaaGimai aac6cacaaIZaGaaGyoaiaaiodacqGHRaWkcaaIWaGaaiOlaiaaigda caaI1aGaaGOmamaabmaapaqaa8qadaWcaaWdaeaapeGaeu4MdWKaam ivaaWdaeaapeGaam4ua8aadaWgaaqaaKqzadWdbiaad+gaaKqba+aa beaaaaaapeGaayjkaiaawMcaaaaa@4E6C@  (20)

H H o =0.384+0.027( S S o )+0.146( ΛT S o ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamisaaWdaeaapeGaamisa8aadaWgaaqa aKqzadWdbiaad+gaaKqba+aabeaaaaWdbiabg2da9iaaicdacaGGUa GaaG4maiaaiIdacaaI0aGaey4kaSIaaGimaiaac6cacaaIWaGaaGOm aiaaiEdadaqadaWdaeaapeWaaSaaa8aabaWdbiaadofaa8aabaWdbi aadofapaWaaSbaaeaajugWa8qacaWGVbaajuaGpaqabaaaaaWdbiaa wIcacaGLPaaacqGHRaWkcaaIWaGaaiOlaiaaigdacaaI0aGaaGOnam aabmaapaqaa8qadaWcaaWdaeaapeGaeu4MdWKaamivaaWdaeaapeGa am4ua8aadaWgaaqaaKqzadWdbiaad+gaaKqba+aabeaaaaaapeGaay jkaiaawMcaaaaa@5837@       (21)

The global solar radiation for each of the selected locations was estimated using the modified equations of the three models as presented in equations 13-21 and Hargreaves-Samani model (equation 3). The input parameters used in this analysis are presented in Table 1.

MONTH

Gusau

Yelwa

Katsina

Ho (MJm-2day-1)

S/So

T/So

Ho (MJm-2day-1)

S/So

T/So

Ho (MJm-2day-1)

S/So

T/So

Jan

30.83

0.729

1.415

30.98

0.708

1.646

30.81

0.696

1.496

Feb

33.63

0.767

1.4

33.74

0.753

1.572

33.61

0.711

1.431

Mar

36.45

0.653

1.332

36.51

0.736

1.261

36.44

0.615

1.371

Apr

38.01

0.623

1.202

38

0.712

1.033

38.01

0.62

1.232

May

38

0.654

1.017

37.94

0.668

0.9

38.01

0.666

1.055

Jun

37.57

0.634

0.871

37.48

0.525

0.77

37.58

0.685

0.931

Jul

37.61

0.587

0.741

37.53

0.394

0.693

37.62

0.607

0.808

Aug

37.78

0.532

0.706

37.74

0.327

0.697

37.78

0.58

0.785

Sep

36.88

0.65

0.874

36.91

0.389

0.803

36.87

0.677

0.924

Oct

34.38

0.747

1.243

34.47

0.462

1.092

34.36

0.734

1.241

Nov

31.39

0.77

1.685

31.52

0.653

1.514

31.36

0.757

1.555

Dec

29.9

0.719

1.491

30.05

0.63

1.576

29.87

0.735

1.513

Table 1 input parameters of the models for Gusau, Yelwa and Katsina

A comparison of the monthly mean values of the estimated global solar radiation from the four models with ground-measured data for Yelwa, Katsina and Gusau are respectively shown in Figures 13. Hmeas represents ground measured data, while Hest1, Hest2, Hest3 and Hest4 respectively represent estimated global solar radiation from Angstrom-Prescott model, Garcia model, the Olomiyesan and Oyedum model and Hargreaves-Samani model.

Figure 1 Estimated and ground measured global solar radiation for Yelwa.
Figure 2 Estimated and ground measured global solar radiation for Katsina.
Figure 3 Estimated and ground measured global solar radiation for Gusau.

Figures 1–3 show that Hest2 and Hest3 have better agreement with the measured data than Hest1 and Hest4 in the three locations. However, the estimated global solar radiation from the Olomiyesan-Oyedum model (Hest3) displays the best agreement with the measured data in Yelwa. Angstrom-Prescott model (Hest1) shows the highest level of overestimation and underestimation among the four models used. This indicates that Angstrom-Prescott model is not suitable for predicting the monthly mean global solar radiation in the selected locations. This is in agreement with the result obtained for Sokoto, Kaduna and Kano.14

Statistical error indicators of the studied models

The accuracy of the models was evaluated using five statistical indicators (MBE, MPE, RMSE, R and R2). The calculated values of the error indices of the studied models for the three locations are summarised in Table 2. Angstrom-Prescott model, Garcia model, Olomiyesan-Oyedum model and Hargreaves-Samani model are respectively denoted as Model 1, Model 2, Model 3 and Model 4 in Table 2.

State

Model

MBE (MJm-2day-1)

MPE (%)

RMSE (MJm-2day-1)

R

R2

Gusau

Model 1

0.479

-2.976

1.647

0.559

0.313

Model 2

0.222

-1.501

1.252

0.752

0.566

Model 3

0.285

-1.833

1.24

0.763

0.582

Model 4

0.828

-4.49

1.473

0.772

0.596

Yelwa

Model 1

0.156

-0.567

1.484

0.837

0.7

Model 2

-0.3

1.358

0.686

0.886

0.785

Model 3

-0.303

1.4

0.659

0.891

0.793

Model 4

0.172

-0.828

1.009

0.781

0.61

Katsina

Model 1

0.418

-3.486

2.965

0

0

Model 2

0.094

-0.268

1.018

0.941

0.886

Model 3

0.083

-0.216

0.997

0.943

0.889

Model 4

0.442

-0.313

2.087

0.552

0.305

Table 2 Statistical error indicators of the studied models

MBE and MPE give an indication of the long-term performance of the models. From Table 2, the MBE and MPE values for the four models vary between slight overestimation and slight underestimation of the estimated global solar radiation.

Root mean square error (RMSE) test: A lower RMSE value indicates a good performance of the model. Olomiyesan and Oyedum model (Model 3) gives the lowest RMSE values in all the locations (1.240 for Gusau, 0.659 for Yelwa and 0.997 for Katsina), while the highest RMSE values were produced by Angstrom-Prescott model in the three selected locations. Garcia model gives the second best RMSE values in all the sites. Since a low RMSE is desirable, the performance of the models can be ranked based on their RMSE values in Table 2 as follows: Model 3 has the highest level of accuracy, Model 2 ranks second, Model 4 ranks third while Model 1 ranks fourth.

Coefficient of determination (R2) test: Table 2 shows that Model 2, Model 3 and Model 4 have higher values of coefficient determination (R2) compared to Model 1. However, Model 3 produced the highest R2 values in Katsina (0.889), Yelwa (0.793) and the second highest in Gusau (0.582). The R2 value of 0.889 shows that 88.9% of the clearness index for Katsina is accounted for by model 3. However, the R2 = 0 obtained for Angstrom-Prescott model in Katsina shows that the estimated regression line for the model is perfectly horizontal with a slope of zero. This indicates that the relationship between the clearness index and sunshine ratio is not linear. Since, the best estimation has the highest value of R2, the statistical results reveal that Model 3 is the best fitting global solar radiation method among the four models under study. Model 2 ranks second, while Model 4 and Model 1 rank respectively third and fourth.

From the result of the above statistical error analysis, it can be deduced that Model 3 (Olomiyesan- Oyedum model) performed better than Model 2 (Garcia model) and Model 4 (Hargreaves and Samani model), while Model 1 (Angstrom-Prescott model) is not suitable for estimating global solar radiation in the study locations. This result is in agreement with the result obtained for Sokoto, Kaduna and Kano,14 and also a prove of the stability of Model 3. Moreover, the statistical result shows a close relationship in the values of the statistical error values for model 2 and 3. This indicates that both models are suitable for the estimation of global solar radiation in the study sites. However, it is also noteworthy that the inclusion of air temperature to Angstrom-Prescott model (equation 1) in the proposed model (equation 4) improved the accuracy of the sunshine-based model. Thus, the inclusion of air temperature as input parameter improves the performance of global solar radiation model in areas with high-temperature difference as also observed by.25

Conclusion

A multiple-parameter model for estimating global solar radiation developed by Olomiyesan and Oyedum has been validated and tested for three selected locations (Gusua, Yelwa and Katsina) in Northwest, Nigeria. The model has been proved to outperform three other existing models (Hargreaves and Samani model, Garcia model and Angstrom-Prescott model) in terms of the statistical error analysis result in the study area. Based on the statistical error indices, the proposed model was found to have the overall best accuracy with the least RMSE values in all the studied sites as well as highest coefficient of determination, R2 values. Thus, Olomiyesan-Oyedum model is recommended for estimating the monthly mean daily global solar radiation on the horizontal surface in North-western region of Nigeria and in other locations with similar meteorological climate.

Acknowledgements

The authors gratefully acknowledge the assistance of the Nigerian Meteorological Agency (NIMET) for providing the data used in this work.

Conflicts of interest

The authors declare that there is no conflict of interests about the publication of this paper.

References

  1. Agbo GA, Baba A, Obiekezie TN. Empirical models for correlation of monthly average global solar radiation with sunshine hours at Minna, Niger State, Nigeria. J of Bas Physical Res. 2010;1(1):41–47.
  2. Olomiyesan BM, Oyedum OD, Oyedum Ugwuoke PE, et al. Solar energy for power generation: a review of solar radiation measurement processes and global solar radiation modelling techniques. Nigerian Journal of Solar Energy 26; 2015.
  3. Besharat F, Dehghan AA, Faghih AR. Empirical models for estimating global solar radiation: a review and case study. Renewable and Sustainable Energy Reviews. 2013;21:798–821.
  4. Angstrom A. Solar and terrestrial radiation. Quarterly Journal of Royal Meteorological Society. 1924;50:121–126.
  5. Black JN. The distribution of solar radiation over the earth’s surface. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B A Meteorologie und Geophysik. 1956;7(2):165–189.
  6. Hargreaves GH, Samani ZA. Estimating potential evapo transpiration. Journal of the Irrigation and Drainage Division. 1982;108(3):223–230.
  7. Bristow KL, Campbell GS. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agricultural and Forest Meteorology. 1984;31:159–166.
  8. Badescu V. Correlations to estimate monthly mean daily solar global irradiation. Appl to Rom Ener. 1999;24(10):883–893.
  9. El-Metwally M. Sunshine and global solar radiation estimation at different sites in Egypt. Journal of Atmospheric and Solar-Terrestrial Physics. 2005;67(14):1331–1342.
  10. Swartman RK, Ogunlade O. Solar radiation estimates from common parameters. Solar Energy. 1967;11(3–4):170–172.
  11. Chen R, Ersi K, Yang J, et al. Validation of five global radiation models with measured daily data in China. Energy Conversion and Management. 2004;45(11–12):1759–1769.
  12. Ojosu JO, Komolafe LK. Models for estimating solar radiation availability in South Western Nigeria. Nigerian Journal of Solar Energy. 1987;6:69–77.
  13. Okonkwo GN, Nwokoye AOC. Estimating global solar radiation from temperature data in Minna location. European Scientific Journal. 2014;10(15):254–264.
  14. Olomiyesan BM, Oyedum OD. Comparative study of ground measured, satellite-derived and estimated global solar radiation data in Nigeria. Journal of Solar Energy. 2016(2016):81973897.
  15. Prescott JA. Evaporation from water surface in relation to solar radiation. Transactions of the Royal Society of Australia. 1940;64:114–118.
  16. Medugu DW, Yakubu D. Estimation of Mean Monthly Global Solar Radiation in Yola, Nigeria using Angstrom Model. Advances in Applied Science Research. 2011;2(2):414–421.
  17. Musa B, Zangina U, Aminu M. Estimation of Global Solar Radiation in Maiduguri, Nigeria Using Angstrom Model. ARPN Journal of Engineering and Applied Sciences. 2012;7(12):1623–1627.
  18. Olomiyesan BM, Oyedum OD, Ugwuoke PE, et al. Estimation of Mean Monthly Global Solar Radiation for Minna Using Sunshine Hours. Journal of Science, Technology, Mathematics and Education. 2014;10(3):15–22.
  19. Hargreaves GH. Simplified coefficients for estimating monthly solar radiation in North America and Europe. Departmental Paper, Departmental of Biological and Irrigation Engineering, Logan: Utah State University; 1994.
  20. Hassan I, Onimisi MY. Assessment of the global solar energy potential at Nigerian Defence Academy (NDA) permanent site Afaka Kaduna, Nigeria. American Chemical Science Journal. 2014;3(3):232–246.
  21. Abdusalam D, Mbamali I, Usman M, et al. Insolation levels using temperature model for sustainable application of photovoltaic technology in some selected locations of Nigeria. J of Ener Tech and Pol. 2014;4(1):19–28.
  22. Duffie JA, Beckman WA. Solar engineering of thermal processes. 2nd ed. New York, USA: John Willey; 1991.
  23. Ododo JC. New Models for the prediction of solar radiation in Nigeria. Paper presented at the 2nd OAU? STRC Conference on New, Renewable and Solar Energies at Bamako mali; 1994;16–20.
  24. El-Sebaii AA, Trabea AA. Estimation of global solar radiation on horizontal surfaces over Egypt. Egypt J Solids. 2005;28(1):163–175.
  25. Okundamiya MS, Emagbetere JO, Ogujor EA. Evaluation of various global solar radiation models for Nigeria. International Journal of Green Energy. 2015;13(5):505–512.
Creative Commons Attribution License

©2017 Olomiyesan, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.