Submit manuscript...
MOJ
eISSN: 2574-9773

Polymer Science

Research Article Volume 1 Issue 3

Chemical reaction kinetics through dynamic mechanical analysis data

Mendoza Puente CI,1 Avalos Belmontes F,1 Ramos deValle LF,2 Ortiz Cisneros JC1

1Faculty of Chemical Sciences, Universidad Autonoma de Coahuila, Mexico
2 Centro de Investigacion en Quimica Aplicada (CIQA), Mexico

Correspondence: Avalos Belmontes F, Faculty of Chemical Sciences, Universidad Autonoma de Coahuila, Blvd V. Carranza y Cardenas-Valdes, CP 25100 Saltillo, Coahuila, Mexico, Tel 52 (844) 4389830

Received: May 03, 2017 | Published: July 5, 2017

Citation: Puente MCI, Belmontes AF, Valle RLF, et al. Chemical reaction kinetics through dynamic mechanical analysis data. MOJ Poly Sci. 2017;1(3):109-111. DOI: 10.15406/mojps.2017.01.00015

Download PDF

Summary

The in situ study of chemical reactions kinetics has always been a great challenge. Here a modeling based on dynamic mechanical analysis (DMA) data of the natural rubber (NR) crosslinking reaction is presented and the order of reaction and reaction rate constant are determined.

Keywords: dynamic mechanical analysis, dicumyl peroxide, rheological, torque, correlation, viscosity, viscosimetric, polymerization, crosslinking

Abbreviations

DMA, dynamic mechanical analysis; NR, natural rubber; EPR, ethylene propylene rubber; MFI, melt flow index; PE, polyethylene; EPDM, ethylene propylene diene monomer

Introduction

The in situ determination of the chemical reaction kinetics in crosslinking or functionalization of polymer systems has been the subject of many recent studies. The decomposition of dicumyl peroxide during the crosslinking of NR was studied by Beyer.1 The effect of temperature and processing on the chemical kinetics of the functionalization of EPR (Ethylene Propylene Rubber) was studied by Greco et al.2

The incorporation of rheological studies to follow the advancement of a chemical reaction was carried out by Ryan,3 who implemented a Viscosimetric technique that implied a correlation between chemical changes and rheological changes. Modeling of the PE (polyethylene) crosslinking reaction kinetics based on data obtained via torque and capillary rheometry was studied by Ortiz-Cisneros4 in order to obtain the order of reaction and the reaction rate constant.

Understanding of the interactions between the reaction kinetics5 and the rheological characteristics is very important, especially, for example, if it is a polymerization or a crosslinking reaction, in which case could result in great viscosity and/or temperature increases. Thus, the setup of the rheometric data and its correlation and presentation in the form of simple reaction kinetics is of the utmost importance for the purpose of mathematical modeling.

Experimental

In any polymer system to undergo a crosslinking reaction, as the crosslinking density increases, the material moves from the rubbery to the glassy state. Therefore, the advancement of the chemical crosslinking reaction can be monitored through the continuous determination of the complex modulus G * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcga4aaWbaaKazga4=beqaaiaacQcaaaaaaa@3CB3@ or its components, the elastic G ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GcdaahaaWcbeqcKzaG=haacaGGNaaaaaaa@3C36@ and viscous G " MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcga4aaWbaaKazga4=beqaaiaackcaaaaaaa@3CAB@ moduli, in an oscillatory rotational rheometer.

G * = G ' + G " MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qddaahaaqcKzaG=hqabaGaaiOkaaaajugibiabg2da9iaadEeajyaG daahaaqcKzaG=hqabaGaai4jaaaajugibiabgUcaRiaadEeajyaGda ahaaqcKzaG=hqabaGaaiOiaaaaaaa@4766@  (1)

From the rubber elasticity theory, the complex modulus, determined at very low deformations, can be related to the average number of crosslinks “ x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqGajugibi aadIhaaaa@399C@ ”, as observed in equation (4). Additionally, if the rate of crosslinks formation dx dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqGanmaala aajyaGbaqcLbsacaWGKbGaamiEaaqcgayaaKqzGeGaamizaiaadsha aaaaaa@3E31@ , is proportional to the number of crosslinks to be formed x x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqGajugibi aadIhajyaGdaWgaaqcKzaG=haacqGHEisPaKGbagqaaiabgkHiTKqz GeGaamiEaaaa@40B7@ ; where x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqGajugibi aadIhajyaGdaWgaaqcKzaG=haacqGHEisPaKGbagqaaaaa@3E3E@  represents the total number of crosslinks at the end of the reaction and x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b aaaa@3993@  represents the number of crosslinks at time t; and assuming that the kinetics of reaction follows the model of Kamal et al.5 it would result:

dx dt =( k 1 + k 2 x m ) ( x x ) n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqGanmaala aajyaGbaqcLbsacaWGKbGaamiEaaqcgayaaKqzGeGaamizaiaadsha aaqcgaOaeyypa0ZaaeWaaeaajugibiaadUgajyaGdaWgaaqcKzaG=h aacaaIXaaajyaGbeaacqGHRaWkjugibiaadUgajyaGdaWgaaqcKzaG =haacaaIYaaajyaGbeaajugibiaadIhajyaGdaahaaqabKazga4=ba GaamyBaaaaaKGbakaawIcacaGLPaaadaqadaqaaKqzGeGaamiEaKGb aoaaBaaajqMba+Faaiabg6HiLcqcgayabaGaeyOeI0scLbsacaWG4b aajyaGcaGLOaGaayzkaaWaaWbaaeqajqMba+Faaiaad6gaaaaaaa@607E@    (2)

m and n are material constants to be determined by experimental data, k 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRb qcga4aaSbaaKazga4=baGaaGymaaqcgayabaaaaa@3D72@  and k 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRb qcga4aaSbaaKazga4=baGaaGOmaaqcgayabaaaaa@3D73@ should be directly related to the rate constant of the crosslinking reactions. It has been determined that there exists a relation between the exponents m and n such that m+n=3 C Scalan etal.6 and it has also been proposed Francois Chambon et al.7 that for some systems k 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRb GcdaWgaaqcKzaG=haacaaIXaaaleqaaKqzGeGaeyyrIaKaaGimaaaa @3EE5@  After integration and solving for x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqGajugibi aadIhaaaa@399C@ , it results:

x 1m ( x x ) 2+m ( x+( m2 ) x ) k 2 ( m2 )( m1 ) x 2 =t+c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqGajyaGcq GHsisldaWcaaqaaKqzGeGaamiEaKGbaoaaCaaabeqcKzaG=haacaaI XaGaeyOeI0IaamyBaaaajyaGdaqadaqaaKqzGeGaamiEaKGbaoaaBa aajqMba+Faaiabg6HiLcqcgayabaGaeyOeI0scLbsacaWG4baajyaG caGLOaGaayzkaaWaaWbaaeqajqMba+FaaiabgkHiTiaaikdacqGHRa WkcaWGTbaaaKGbaoaabmaabaqcLbsacaWG4bqcgaOaey4kaSsddaqa daqcgayaaKqzGeGaamyBaiabgkHiTiaaikdaaKGbakaawIcacaGLPa aajugibiaadIhajyaGdaWgaaqcKzaG=haacqGHEisPaKGbagqaaaGa ayjkaiaawMcaaaqaaKqzGeGaam4AaKGbaoaaBaaajqMba+Faaiaaik daaKGbagqaa0WaaeWaaKGbagaajugibiaad2gacqGHsislcaaIYaaa jyaGcaGLOaGaayzkaaWaaeWaaeaajugibiaad2gacqGHsislcaaIXa aajyaGcaGLOaGaayzkaaqcLbsacaWG4bqcga4aa0baaKazga4=baGa eyOhIukabaGaaGOmaaaaaaqcgaOaeyypa0tcLbsacaWG0bGaey4kaS Iaam4yaaaa@7E33@         (3)

If the reaction is treated as isothermic, then, the following equations apply:

| G * |=RTx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqGajyaGda abdaqaaKqzGeGaam4raKGbaoaaCaaajqMba+FabeaacaGGQaaaaaqc gaOaay5bSlaawIa7aiabg2da9KqzGeGaamOuaiaadsfacaWG4baaaa@453E@  (4)
G * =RT x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqGajugibi aadEeajyaGdaqhaaqcKzaG=haacqGHEisPaeaacaGGQaaaaKGbakab g2da9KqzGeGaamOuaiaadsfacaWG4bqddaWgaaqcKzaG=haacqGHEi sPa4qabaaaaa@469D@  (5)

Where G * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcga4aaWbaaKazga4=beqaaiaacQcaaaaaaa@3CB3@ and G * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcga4aa0baaKazga4=baGaeyOhIukabaGaaiOkaaaaaaa@3E24@ represent the complex modulus at a given reaction time and at the end of the crosslinking reaction. These two equations can be directly related to the crosslinking reaction kinetics.

The integration constant C can be evaluated by considering that at t=0,

| G * |=| G * | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqGajyaGda abdaqaaKqzGeGaam4raKGbaoaaCaaabeqcKzaG=haacaGGQaaaaaqc gaOaay5bSlaawIa7aiabg2da9maaemaabaqcLbsacaWGhbqcga4aa0 baaKazga4=baGaeyOhIukabaGaaiOkaaaaaKGbakaawEa7caGLiWoa aaa@4BD0@ .

This would give:

( G 0 * ) 1m ( G * G 0 * ) 2+m ( G 0 * +( m2 ) G * )=C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqGajugibi abgkHiTKGbaoaabmaabaqcLbsacaWGhbqcga4aa0baaKazga4=baGa aGimaaqaaiaacQcaaaaajyaGcaGLOaGaayzkaaWaaWbaaeqajqMba+ FaaiaaigdacqGHsislcaWGTbaaaKGbaoaabmaabaqcLbsacaWGhbqc ga4aa0baaKazga4=baGaeyOhIukabaGaaiOkaaaajugibiabgkHiTi aadEeajyaGdaqhaaqcKzaG=haacaaIWaaabaGaaiOkaaaaaKGbakaa wIcacaGLPaaadaahaaqabKazga4=baGaeyOeI0IaaGOmaiabgUcaRi aad2gaaaqcga4aaeWaaeaajugibiaadEeajyaGdaqhaaqcKzaG=haa caaIWaaabaGaaiOkaaaajugibiabgUcaR0WaaeWaaKGbagaajugibi aad2gacqGHsislcaaIYaaajyaGcaGLOaGaayzkaaqcLbsacaWGhbqc ga4aa0baaKazga4=baGaeyOhIukabaGaaiOkaaaaaKGbakaawIcaca GLPaaajugibiabg2da9iaadoeaaaa@72C5@  (6)

In the case of the material used for this work, a gel point value of 1.60556 * 103 Pa (150°C) was obtained, according to the technique mentioned by Tung and Dynes (Tung, C.-YM, Dynes, PJJ Appl Polym Sci 1982, 27, 569-574). When carrying out the experiment at 165°C, it is certain that it is above the gelation point of the material used. So that above the point of gelation

G ' G " MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcga4aaWbaaeqajqMba+FaaiaacEcaaaqcLbsacqWIRjYpcaWGhbqc ga4aaWbaaeqajqMba+Faaiaackcaaaaaaa@42B1@ ,

thus, it can be considered that

| G * || G ' | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqGajyaGda abdaqaaKqzGeGaam4raKGbaoaaCaaajqMba+FabeaacaGGQaaaaaqc gaOaay5bSlaawIa7aKqzGeGaeyisISBcga4aaqWaaeaajugibiaadE eajyaGdaahaaqcKzaG=hqabaGaai4jaaaaaKGbakaawEa7caGLiWoa aaa@4C25@ ,

 therefore:

( G * ( t ) ) 1m ( G * G * ( t ) ) 2+m ( G * ( t )+( m2 ) G * )= k 2 ( m2 )( m1 ) ( G * RT ) 2 t ( G 0 * ) 1m ( G * G 0 * ) 2+m ( G 0 * +( m2 ) G * ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiqabeaaeiqaaK qzGeGaeyOeI0scga4aaeWaaeaajugibiaadEeajyaGdaahaaqcKzaG =hqabaGaaiOkaaaanmaabmaajyaGbaqcLbsacaWG0baajyaGcaGLOa GaayzkaaaacaGLOaGaayzkaaWaaWbaaeqajqMba+FaaiaaigdacqGH sislcaWGTbaaaKGbaoaabmaabaqcLbsacaWGhbqcga4aa0baaKazga 4=baGaeyOhIukabaGaaiOkaaaajugibiabgkHiTiaadEeajyaGdaah aaqcKzaG=hqabaGaaiOkaaaanmaabmaajyaGbaqcLbsacaWG0baajy aGcaGLOaGaayzkaaaacaGLOaGaayzkaaWaaWbaaeqajqMba+Faaiab gkHiTiaaikdacqGHRaWkcaWGTbaaaKGbaoaabmaabaqcLbsacaWGhb qcga4aaWbaaeqajqMba+FaaiaacQcaaaqddaqadaqcgayaaKqzGeGa amiDaaqcgaOaayjkaiaawMcaaKqzGeGaey4kaSsddaqadaqcgayaaK qzGeGaamyBaiabgkHiTiaaikdaaKGbakaawIcacaGLPaaajugibiaa dEeajyaGdaqhaaqcKzaG=haacqGHEisPaeaacaGGQaaaaaqcgaOaay jkaiaawMcaaiabg2da9aGcbaqcLbsacaWGRbqcga4aaSbaaKazga4= baGaaGOmaaqabaqddaqadaqcgayaaKqzGeGaamyBaiabgkHiTiaaik daaKGbakaawIcacaGLPaaanmaabmaajyaGbaqcLbsacaWGTbGaeyOe I0IaaGymaaqcgaOaayjkaiaawMcaamaabmaabaWaaSaaaeaajugibi aadEeajyaGdaqhaaqcKzaG=haacqGHEisPaeaacaGGQaaaaaqcgaya aKqzGeGaamOuaiaadsfaaaaajyaGcaGLOaGaayzkaaWaaWbaaeqajq Mba+FaaiaaikdaaaqcLbsacaWG0bGaeyOeI0scga4aaeWaaeaajugi biaadEeajyaGdaqhaaqcKzaG=haacaaIWaaabaGaaiOkaaaaaKGbak aawIcacaGLPaaadaahaaqabKazga4=baGaaGymaiabgkHiTiaad2ga aaqcga4aaeWaaeaajugibiaadEeajyaGdaqhaaqcKzaG=haacqGHEi sPaeaacaGGQaaaaKqzGeGaeyOeI0Iaam4raKGbaoaaDaaajqMba+Fa aiaaicdaaeaacaGGQaaaaaqcgaOaayjkaiaawMcaamaaCaaabeqcKz aG=haacqGHsislcaaIYaGaey4kaSIaamyBaaaajyaGdaqadaqaaKqz GeGaam4raKGbaoaaDaaajqMba+FaaiaaicdaaeaacaGGQaaaaKqzGe Gaey4kaSscga4aaeWaaeaajugibiaad2gacqGHsislcaaIYaaajyaG caGLOaGaayzkaaqcLbsacaWGhbqcga4aa0baaKazga4=baGaeyOhIu kabaGaaiOkaaaaaKGbakaawIcacaGLPaaaaaaa@D2A6@  (7)

It is important to mention that given the complexity of the equation, the nonlinear regression is performed as

t=f ( G ) ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqGajugibi aadshacqGH9aqpcaWGMbqddaqadaqcgayaaKqzGeGaam4raaqcgaOa ayjkaiaawMcaamaaCaaajqMba+FabeaacaGGNaaaaaaa@4257@

Materials

The polymers used were: a metallocene isotactic polypropylene, MR 2001, (mPP) from Atofina, USA, with a molecular weight Mw of 185,000 and a MFI (Melt Flow Index) of 25 g/10min (230°C and 2.16 kg); and a IP-4640 EPDM (Ethylene Propylene Diene Monomer) (EPDM-55), with ca. 5 wt% of ethylidene norbornene as the diene monomer, with an ethylene content of 55 wt% and a Mooney Viscosity ML(1+4) at 125°C of 40, from DuPont-Dow Elastomers, USA.

* P stands for being in pellets forms

Results and discussion

We validated this model by monitoring the dynamic mechanical properties of the EPDM-55 formulation. We used an Anton Paar Physica rheometer with a cone and plate configuration at 165°C, within the linear viscoelastic region (Figure 1).

Figure 1 Shows the variation of G’ as the vulcanization (crosslinking reaction) of the sample proceeds, plus a nonlinear regression curve for the sample.

Data obtained from the nonlinear regression:
Coefficients (with 95% confidence bounds):
k=8.899e+04 (8.686e+04, 9.113e+04)
m=2.084 (2.066, 2.102)

The results of the linear regression can be corroborated by performing a dimensional analysis of equation (7), where the units of the kinetic constant are L2 mol-2 s-1, which corresponds to a third-order reaction, according to the proposal that m+n=3. The reaction is of third order since more than one reagent is involved in which the initial reactants maintain different concentrations. The model proposed here conforms to the experimental data with a high level of precision. This is in agreement with the experimental data of vulcanization.

Conclusion

The kinetic data of a crosslinking reaction can be obtained by dynamic mechanical analysis. This can be extrapolated to monitor many other polymeric reactions in which there is a change in the complex modulus coupled with the progress of the chemical reaction.

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

References

Creative Commons Attribution License

©2017 Puente, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.