Submit manuscript...
Journal of
eISSN: 2373-437X

Microbiology & Experimentation

Editorial Volume 6 Issue 6

Microbiomes of freshwater lake ecosystems 

Neelam Yadav,1 Divjot Kour,2 Ajar Nath Yadav2

1Gopi Nath P.G. College, Veer Bahadur Singh Purvanchal University, India
2Department of Biotechnology, Akal College of Agriculture, Eternal University, India

Correspondence: Ajar Nath Yadav, Department of Biotechnology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, India, Tel 91-9882545085

Received: November 25, 2018 | Published: December 5, 2018

Citation: Yadav N, Kour D, Yadav AN. Microbiomes of freshwater lake ecosystems. J Microbiol Exp. 2018;6(6):245-248. DOI: 10.15406/jmen.2018.06.00223

Download PDF

Editorial

Water ecosystems in form lakes in diverse regions provide indispensable water resources for humans. The microbiomes in lake ecosystems are a suitable bioresources for agriculture, industry and allied sector. The microbiomes from lake ecosystems may be isolated using different nutrient combination and specific media for different groups of bacteria. There are many reports on microbial community of lake ecosystem and it was found microbes has been identified from different phylum including Actinobacteria, Cyanobacteria, Acidobacteria, Caldeserica, Calditrichaeota, Verrucomicrobia, Chlorobi, Planctomycetes, Nitrospirae, Chloroflexi, Bacteriodetes, Firmicutes and Proteobacteria. Microbes are ubiquitous in nature, inhabiting almost every habitat including soil, water, air and associated with plants. The microbes are present in extreme environmental conditions like hot springs,1‒4 saline environments,5,6 cold environments,7‒10 acidic/alkaline soil,11,12 drought13‒15 and plant associated.16‒20 Microbes play central roles in regulating elemental cycles like carbon, nitrogen, and sulfur. Lake is an area which is filled with water and surrounded by land. It is localized in a basin, apart from any river or other outlet that serves to feed or drain the lake. Microbiome varies among lakes with different environmental variables.

The microbiome in the freshwater lake ecosystems have been investigated worldwide e.g. Toolik Lake, Alaska, USA,21 Adirondack lake, New York,22Lake Loosdrecht, The Netherlands,23 Crystal Bog Lake and Sparkling Lake, USA,24 Lake Cadagno, Switzerland,25 Lake Fuchskuhle, Germany,26 Crater Lake, USA,27 Lake Soyang, South Korea,28 Lake Biwa, Japan,29 Lake Washington,30 Lake Kasumigaura, Japan,31 Lake Tanganyika, Africa,32 Lake Taihu, China,33 Lake Puma Yumco,34 Roopkund Lake, India,35 Vembanad Lake, India,36 Dianchi Lake, China,37 Lake Erie, USA,38 Laurentian Great Lakes,39 Chandra Tal Lake, India,9 Dashair Lake, India,9 Lake Baikal, Russia,40 Claytor Lake, USA,41 and Lake Baikal, Russia.42

The microbes are ubiquitous in nature and also have been reported as niches or host-specific from all habitat study e.g. from cold habitats,7,43‒45 from thermal springs,1-3 from saline habitats,5,46 from drought,47‒49 from soil12,15,18 and as plant microbiomes.13,16,19,20,50‒53 The niche-specific microbes from freshwater lakes have been reported e.g. Zoogloea from Toolik Lake, Alaska, USA; Legionella and Prevotella from Adirondack lake, New York; Planktothrix from Lake Loosdrecht, The Netherlands; Amoebobacter, Desulfocapsa, and Lamprocystis from Lake Cadagno, Switzerland; Haliscomenobacter and Spirosoma from Lake Gossenkollesee, Austria; Bdellovibrio, Eikenella, Polaromonas, and Rathayibacter from Crater Lake, USA; Caenibacterium, Hymenobacter, Methylocystis, Novosphingobium, Paucimonas and Propionivibrio from Lake Kasumigaura, Japan; Aminnobacter, Gelidibacter, Kaistella, Mesorhizobium, Methylocapsa, Niastella, Rhizobium and Tetrasphaera from Lake Taihu, China; Plantibacter from Chandra Tal Lake, India; Massilia and Nitrosomonas from Dianchi Lake, China; Brevibacillus, Hafinia, and Klebsiella from Manasbal Lake, India; Sanguibacter from Roopkund Lake, India on review of 27 freshwater lake ecosystems present in worldwide.

A huge number of novel bacteria belonging to various classes and families have been reported from freshwater lake ecosystem worldwide e.g. Ferribacterium limneticum, CdA-1 Coeur d’Alene Lake,54 Hymenobacter aquatilis, HMF3095T Artificial lake,55 Sphingobium fontiphilum, Chen16-4T Chengcing Lake,56 Limnobacter thiooxidans, CS-K1 Chiemsee Lake,57 Desulfovibrio idahonensis, CY1T Coeur d'Alene,58 Thiobaca trueperi, Eutrophic lake,59 Listeria marthii, FSL S4-120T Finger Lakes60 Sphingomonas hengshuiensis, WHSC-8T Hengshui Lake,61 Kinneretia asaccharophila, KIN192T Kinneret Lake,62 Algoriphagus aquatilis A8-7T Longhu Lake,63 Limnohabitans curvus, MWH-C5T Mondsee Lake,64 Cloacibacterium rupense, R2A-16T Rupa Lake,65 Undibacterium seohonense, SHS5-24T Seoho lake,66 Polynucleobacter difficilis, AM-8B5T Sevan Lake,67 Flavobacterium chuncheonense Soyang Lake,68 Flavobacterium soyangense, IMCC26223T Soyang Lake,69 Flavobacterium luteum IMCC26026T, Soyang Lake,68 Mucilaginibacter soyangensis, HME6664T Soyang Lake,70 Flavobacterium lacicola, IMCC25901T Soyang lake,71 Flavobacterium saliperosum, S13T, Taihu Lake,72 Roseomonas lacus TH-G33T Taihu Lake,73 Rhodoluna lacicola, MWH-Ta8T Taihu Lake,74 Nocardioides taihuensis, X17T Taihu Lake,75 Lysobacter oligotrophicus, 107-E2T Tanago Ike,76 and Nocardioides ungokensis, UKS-03T Ungok Lake.77

Conclusion

Microbial community play a central role in global environmental processes and earth biogeochemistry, with bacteria being the most important component of microbial community responsible, in aquatic ecosystems, for the organic matter mineralization and nutrient recycling processes. Microbiome represents the richest gamut of molecular and chemical diversity in nature, as they comprise the simplest yet dynamic forms of life. Future studies might focus on analysing the more bacterial community from diverse lakes ecosystem in different environmental conditions of salinity, pH, temperatures, osmotic potential and pressure in order to decipher the potential role in nutrients cycling of the microbial community present which is largely unexplored reservoir of resources for innovative applications useful to mankind.

Acknowledgements

The authors are grateful to Prof. Harcharan Singh Dhaliwal, Vice Chancellor, Eternal University, Baru Sahib, Himachal Pradesh, India for providing infra-structural facilities and constant encouragement.

Conflict of interest

All authors declare that they have no conflicts of interest to this work.

References

  1. Kumar M, Yadav AN, Tiwari R, et al. Evaluating the diversity of culturable thermotolerant bacteria from four hot springs of India. J Biodivers Biopros Dev. 2014;1(27):1‒9.
  2. Sahay H, Yadav AN, Singh AK, et al. Hot springs of Indian Himalayas: Potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech. 2017;7(2):1‒11.
  3. Saxena AK, Yadav AN, Rajawat M, et al. Microbial diversity of extreme regions: An unseen heritage and wealth. Indian J Plant Genet Resour. 2016;29(3):246‒248.
  4. Suman A, Verma P, Yadav AN, et al. Bioprospecting for extracellular hydrolytic enzymes from culturable thermotolerant bacteria isolated from Manikaran thermal springs. Res J Biotechnol. 2015;10:33‒42.
  5. Gaba S, Singh RN, Abrol S, et al. Draft genome sequence of Halolamina pelagica CDK2 isolated from natural salterns from Rann of Kutch, Gujarat, India. Genome Announc. 2017;5(6):1‒2.
  6. Yadav AN, Sharma D, Gulati S, et al. Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep. 2015;5(12293).
  7. Singh RN, Gaba S, Yadav AN, et al. First, High quality draft genome sequence of a plant growth promoting and Cold Active Enzymes producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci. 2016;11(1):54.
  8. Yadav AN. Bacterial diversity of cold deserts and mining of genes for low temperature tolerance. Ph.D. Thesis, IARI, New Delhi/BIT, Ranchi; 2015. 234 p.
  9. Yadav AN, Sachan SG, Verma P, et al. Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng. 2015;119(6):683‒693.
  10. Yadav AN, Sachan SG, Verma P, et al. Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol. 2015;31(1):95‒108.
  11. Verma P, Yadav AN, Kazy SK, et al. Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. Natl J Life Sci. 2013;10(2):219‒227.
  12. Biswas S, Kundu D, Mazumdar S, et al. Study on the activity and diversity of bacteria in a New Gangetic alluvial soil (Eutrocrept) under rice-wheat-jute cropping system. J Environ Biol. 2018;39(3):379‒386.
  13. Verma P, Yadav AN, Kazy SK, et al. Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci. 2014;3(5):432‒447.
  14. Verma P, Yadav AN, Kumar V, et al. Beneficial Plant-Microbes Interactions: Biodiversity of Microbes from Diverse Extreme Environments and its Impact for Crops Improvement. In: Singh DP, Singh HB, Prabha R, eds. Plant-Microbe Interactions in Agro-Ecological Perspectives. Singapore: Springer Nature; 2017. 543‒580 p.
  15. Verma P, Yadav AN, Khannam KS, et al. Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci; 2016.
  16. Verma P, Yadav AN, Shukla L, et al. Alleviation of cold stress in wheat seedlings by Bacillus amyloliquefaciens IARI-HHS2-30, an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci. 2015;12(2):105‒110.
  17. Verma P, Yadav AN, Shukla L, et al. Hydrolytic enzymes production by thermotolerant Bacillus altitudinis IARI-MB-9 and Gulbenkiania mobilis IARI-MB-18 isolated from Manikaran hot springs. Int J Adv Res. 2015;3(9):1241‒1250.
  18. Verma P, Yadav AN, Khannam KS, et al. Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol. 2016;56(1):44‒58.
  19. Verma P, Yadav AN, Khannam KS, et al. Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol. 2015;65:1885‒1899.
  20. Yadav N, Yadav A. Biodiversity and biotechnological applications of novel plant growth promoting methylotrophs. J Appl Biotechnol Bioeng. 2018;5(6):342‒344.
  21. Bahr M, Hobbie J, Sogin M. Bacterial diversity in an arctic lake: a freshwater SAR11 cluster. Aquat Microb Ecol. 1996;11(3):271‒277.
  22. Hiorns WD, Methé BA, Nierzwicki-Bauer SA, et al. Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences. Appl Environ Microbiol. 1997;63(7):2957‒2960.
  23. Zwart G, Hiorns WD, Methé BA, et al. Nearly identical 16S rRNA sequences recovered from lakes in North America and Europe indicate the existence of clades of globally distributed freshwater bacteria. Syst Appl Microbiol. 1998;21(4):546‒556.
  24. Fisher MM, Triplett EW. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol. 1999;65(10):4630‒4636.
  25. Bosshard PP, Santini Y, Grüter D, et al. Bacterial diversity and community composition in the chemocline of the meromictic alpine Lake Cadagno as revealed by 16S rDNA analysis. FEMS Microbiol Ecol. 2000;31(2):173‒182.
  26. Glöckner FO, Zaichikov E, Belkova N, et al. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol. 2000;66(11):5053‒5065.
  27. Urbach E, Vergin KL, Young L, et al. Unusual bacterioplankton community structure in ultra‐oligotrophic Crater Lake. Limnol Oceanog.2001;46(3):557‒572.
  28. Zwart G, Crump BC, Kamst-van Agterveld MP, et al. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol. 2002;28(2):141‒155.
  29. Kojima H, Teske A, Fukui M. Morphological and phylogenetic characterizations of freshwater Thioploca species from Lake Biwa, Japan, and Lake Constance, Germany. Appl Environ Microbiol. 2003;69(1):390‒398.
  30. Nercessian O, Noyes E, Kalyuzhnaya MG, et al. Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl Environ Microbiol. 2005;71(11):6885‒6899.
  31. Tamaki H, Sekiguchi Y, Hanada S, et al. Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl Environ Microbiol. 2005;71(4):2162‒2169.
  32. De Wever A, Muylaert K, Van der Gucht K, et al. Bacterial community composition in Lake Tanganyika: vertical and horizontal heterogeneity. Appl Environ Microbiol. 2005;71(9):5029‒5037.
  33. Wu X, Xi W, Ye W, et al. Bacterial community composition of a shallow hypertrophic freshwater lake in China, revealed by 16S rRNA gene sequences. FEMS Microbiol Ecol. 2007;61(1):85‒96.
  34. Liu Y, Yao T, Zhu L, et al. Bacterial diversity of freshwater alpine lake Puma Yumco on the Tibetan Plateau. Geomicrobiol J. 2009;26(2):131‒145.
  35. Pradhan S, Srinivas T, Pindi PK, et al. Bacterial biodiversity from Roopkund glacier, Himalayan mountain ranges, India. Extremophiles. 2010;14(4):377‒395.
  36. Chandran A, Varghese S, Kandeler E, et al. An assessment of potential public health risk associated with the extended survival of indicator and pathogenic bacteria in freshwater lake sediments. Int J Hyg Environ Health. 2011;214(3):258‒264.
  37. Bai Y, Shi Q, Wen D, et al. Bacterial communities in the sediments of Dianchi Lake, a partitioned eutrophic waterbody in China. PloS One. 2012;7(5):e37796‒e37796.
  38. Bouzat JL, Hoostal MJ, Looft T. Spatial patterns of bacterial community composition within Lake Erie sediments. J Great Lakes Res. 2013;39(2):344‒351.
  39. Winters AD, Marsh TL, Brenden TO, et al. Molecular characterization of bacterial communities associated with sediments in the Laurentian Great Lakes. J Great Lakes Res. 2014;40(3):640‒645.
  40. Kurilkina MI, Zakharova YR, Galachyants YP, et al. Bacterial community composition in the water column of the deepest freshwater Lake Baikal as determined by next-generation sequencing. FEMS Microbiol Ecol. 2016;92(7):fiw094.
  41. Pietsch RB, Vinatzer BA, Schmale III DG. Diversity and abundance of ice nucleating strains of Pseudomonas syringae in a freshwater lake in Virginia, USA. Front Microbiol. 2017;8:318 .
  42. Zakharova YR, Petrova DP, Galachyants YP, et al. Bacterial and Archaeal Community Structure in the Surface Diatom Sediments of Deep Freshwater Lake Baikal (Eastern Siberia). Geomicrobiol J. 2018;35(8):1‒13.
  43. Yadav AN, Sachan SG, Verma P, et al. Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol. 2016;54(2):142‒150.
  44. Yadav AN, Verma P, Kumar V, et al. Biodiversity of the Genus Penicillium in Different Habitats. In: Gupta VK, Rodriguez-Couto S, eds. New and Future Developments in Microbial Biotechnology and Bioengineering, Penicillium System Properties and Applications. Amsterdam: Elsevier; 2018. 3‒18 p.
  45. Yadav AN, Verma P, Sachan S, et al. Diversity of Culturable Psychrotrophic Bacteria from Leh Ladakh and Bioprospecting for Cold-Active extracellular enzymes. Proceeding of National seminar on “Biotechnological Interventions for the Benefit of Mankind” 2012.
  46. Yadav AN, Saxena AK. Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. J Appl Biol Biotechnol. 2018;6(1):1‒8.
  47. Yadav AN, Yadav N. Stress-Adaptive Microbes for Plant Growth Promotion and Alleviation of Drought Stress in Plants. Acta Sci Agric. 2018;2(6):85‒88.
  48. Kour D, Rana KL, Verma P, et al. Biofertilizers: Eco-friendly Technologies and Bioresources for Sustainable Agriculture. Proceeding of International Conference on Innovative Research in Engineering Science and Technology; 2017.
  49. Kour D, Rana KL, Verma P, et al. Drought tolerant phosphorus solubilizing microbes: Diversity and biotechnological applications for crops growing under rainfed conditions. Proceeding of National Conference on Advances in Food Science and Technology; 2017.
  50. Yadav AN. Studies of Methylotrophic Community from the Phyllosphere and Rhizosphere of Tropical Crop Plants. M.Sc. Thesis, Bundelkhand University; 2009. 66 p.
  51. Rana KL, Kour D, Yadav AN, et al. Biotechnological applications of endophytic microbes associated with barley (Hordeumvulgare L.) growing in Indian Himalayan regions. Proceeding of 86th Annual Session of NASI & Symposium on “Science, Technology and Entrepreneurship for Human Welfare in The Himalayan Region”; 2016.
  52. Rana KL, Kour D, Yadav AN, et al. Endophytic microbes from wheat: Diversity and biotechnological applications for sustainable agriculture. Proceeding of 57th Association of Microbiologist of India & International symposium on “Microbes and Biosphere: What’s New What’s Next”; 2016.
  53. Rana KL, Kour D, Verma P, et al. Diversity and biotechnological applications of endophytic microbes associated with maize (Zea mays L.) growing in Indian Himalayan regions. Proceeding of national conference on advances in food science and technology; 2017.
  54. Cummings DE, Caccavo Jr F, Spring S, et al. Ferribacterium limneticum, gen. nov., sp. nov., an Fe (III)-reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch Microbiol. 1999;171(3):183‒188.
  55. Kang H, Cha I, Kim H, et al. Hymenobacter aquatilis sp. nov., isolated from a mesotrophic artificial lake. Int J Syst Evol Microbiol. 2018;68(6):2036‒2041.
  56. Sheu SY, Shiau YW, Wei YT, et al. Sphingobium fontiphilum sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol. 2013;63(5):1906‒1911.
  57. Spring S, Kämpfer P, Schleifer KH. Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulfate-oxidizing bacterium isolated from freshwater lake sediment. Int J Syst Evol Microbiol. 2001;51(4):1463‒1470.
  58. Sass H, Ramamoorthy S, Yarwood C, et al. Desulfovibrio idahonensis sp. nov., sulfate-reducing bacteria isolated from a metal(loid)-contaminated freshwater sediment. Int J Syst Evol Microbiol. 2009;59(9):2208‒2214.
  59. Rees GN, Harfoot CG, Janssen PH, et al. Thiobaca trueperi gen. nov., sp. nov., a phototrophic purple sulfur bacterium isolated from freshwater lake sediment. Int J Syst Evol Microbiol. 2002;52(2):671‒678.
  60. Graves LM, Helsel LO, Steigerwalt AG, et al. Listeria marthii sp. nov., isolated from the natural environment, Finger Lakes National Forest. Int J Syst Evol Microbiol. 2010;60(6):1280‒1288.
  61. Wei S, Wang T, Liu H, et al. Sphingomonas hengshuiensis sp. nov., isolated from lake wetland. Int J Syst Evol Microbiol. 2015;65(12):4644‒4649.
  62. Gomila M, Pinhassi J, Falsen E, et al. Kinneretia asaccharophila gen. nov., sp. nov., isolated from a freshwater lake, a member of the Rubrivivax branch of the family Comamonadaceae. Int J Syst Evol Microbiol. 2010;60(4):809‒814.
  63. Liu Y, Li H, Jiang JT, et al. Algoriphagus aquatilis sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol. 2009;59(7):1759‒1763.
  64. Hahn MW, Kasalický V, Jezbera J, et al. Limnohabitans curvus gen. nov., sp. nov., a planktonic bacterium isolated from a freshwater lake. Int J Syst Evol Microbiol. 2010;60(6):1358‒1365.
  65. Cao SJ, Deng CP, Li BZ, et al. Cloacibacterium rupense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol. 2010;60(9):2023‒2026.
  66. Kim SJ, Moon JY, Weon HY, et al. Undibacterium jejuense sp. nov. and Undibacterium seohonense sp. nov., isolated from soil and freshwater, respectively. Int J Syst Evol Microbiol. 2014;64(1):236‒241.
  67. Hahn MW, Minasyan A, Lang E, et al. Polynucleobacter difficilis sp. nov., a planktonic freshwater bacterium affiliated with subcluster B1 of the genus Polynucleobacter. Int J Syst Evol Microbiol. 2012;62(2):376‒383.
  68. Park M, Nam GG, Kim S, et al. Flavobacterium chuncheonense sp. nov. and Flavobacterium luteum sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol. 2017;67(11):4409‒4415.
  69. Nam GG, Joung Y, Park M, et al. Flavobacterium soyangense sp. nov., a psychrotolerant bacterium, isolated from an oligotrophic freshwater lake. Int J Syst Evol Microbiol. 2017;67(7):2440‒2445.
  70. Joung Y, Kim H, Kang H, et al. Mucilaginibacter soyangensis sp. nov., isolated from a lake. Int J Syst Evol Microbiol. 2014;64(2):413‒419.
  71. Park M, Song J, Nam GG, et al. Flavobacterium lacicola sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol. 2018;68(5):1565‒1570.
  72. Wang ZW, Liu YH, Dai X, et al. Flavobacterium saliperosum sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol. 2006;56(Pt 2):439‒442.
  73. Jiang CY, Dai X, Wang BJ, et al. Roseomonas lacus sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol. 2006;56(Pt 1):25‒28.
  74. Hahn MW, Schmidt J, Taipale SJ, et al. Rhodoluna lacicola gen. nov., sp. nov., a planktonic freshwater bacterium with stream-lined genome. Int J Syst Evol Microbiol. 2014;64(Pt 9):3254‒3263.
  75. Qu JH, Li XD, Li HF. Nocardioides taihuensis sp. nov., isolated from fresh water lake sediment. Int J Syst Evol Microbiol. 2017;67(9):3535‒3539.
  76. Fukuda W, Kimura T, Araki S, et al. Lysobacter oligotrophicus sp. nov., isolated from an Antarctic freshwater lake in Antarctica. Int J Syst Evol Microbiol. 2013;63(Pt 9):3313‒3318.
  77. Zhao Y, Liu Q, Kang MS, et al. Nocardioides ungokensis sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol. 2015;65(12):4857‒4862.
Creative Commons Attribution License

©2018 Yadav, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.