Submit manuscript...
Journal of
eISSN: 2572-8466

Applied Biotechnology & Bioengineering

Research Article Volume 9 Issue 2

Analysis of the risk of exposure to methyl-mercury due to non intentional consumption of shark meat in males of Mexico city’s metropolitan area

Laura Elizalde Ramirez,1 Patricia Ramirez Romero,1 J Guadalupe Reyes Victoria,2 Edson Missael Flores Garcia2

1Departamento de Hidrobiolog a Unidad Iztapalapa, Universidad Autonoma Metropolitana Iztapalapa, Mexico
2Departamento de Matematicas, Universidad Autonoma Metropolitana, Mexico

Correspondence: Guadalupe Reyes-Victoria, Departamento de Matematicas, Universidad Autonoma Metropolitana, Unidad Iztapalapa, CP 09340, Cd. de Mexico, Mexico, Tel 52 5554138195

Received: March 25, 2022 | Published: April 5, 2022

Citation: Ramirez LE, Romero PR, Victoria JGR, et al. Analysis of the risk of exposure to methyl-mercury due to non intentional consumption of shark meat in males of Mexico city’s metropolitan area. J Appl Biotechnol Bioeng. 2022;9(2):49-55. DOI: 10.15406/jabb.2022.09.00284

Download PDF

Abstract

In this paper we estimate the probability and risk coefficient of methyl mercury exposure due to unintentional consumption of shark meat for the male inhabitants of Mexico City's metropolitan area. Using statistical and numerical methods, we built a risk function in terms of the concentration and life stage variables. Using mathematical results from the singularity theory, dynamical systems and differential geometry, we obtained that both, the risk average (2.96) and the risk probability (85%) are high. We also obtained the critical ages or risk which are 5.1 years for boys and 87 years for senior men, but this will be relevant only to those men who reach this age. All this, means that in the analysed sample, there is a high probability of developing deleterious health effects. So, if men want to consume fish products, they must buy whole fish to avoid the replacement.

Keywords: Methyl mercury, Risk coefficient, Risk smooth stable function, Risk surface, Critical ages of risk.

Introduction

In the work1–18 carried out by Silbernagel et al., the authors the authors alert physicians the danger of consuming fish, shell fish, and seafood in general, because all of them contain certain amounts of methyl mercury. In particular, they mention that at the top of the the food chain animals such as sharks contain the highest amounts of this element. Furthermore, the authors mention that the Environmental Protection Agency (EPA) and the Food and Drug Administration (FDA) of the United States issued a food advisory for women of different ages in regards to fish consumption and MeHg.

In another study, Elizalde et al.,15 carried out a study of the risk of MeHg exposure due to the unintentional consumption of shark meat for Mexico City's metropolitan area females. They obtained the critical ages of risk and children exhibited the highest risk (5.37 yr.), followed by senior women (74.4 yr.) and adult women in reproductive age (32.64 yr.).

Here, we continue the study begun by Elizalde et al. of characterizing the risk of exposure to methyl-mercury due to non intentional consumption of shark meet in Mexico City's metropolitan area inhabitants, but now for males. To avoid some originality problem of the work, we mentioned that we will use the same methodology as in the mentioned previous work to obtain the important results.

In Mexico, concentrations of methylmercury in shark meat have been re-ported in concentrations ranging from 0.27 to 3.33 ppm.14 Because fish products are sold without any morphological characteristics that could help the consumer to differentiate between fish or shark this becomes a problem. The largest distribution center in Mexico City (CDMX) is the Central de Abasto de Pescados y Mariscos where you can obtain fish meat in various presentations (chunks, fellets, smoked, ground, minced or nuggets). In the work carried out by Elizalde,4 53 samples of fish offered from this site were obtained and were analyzed using the Polymerase Chain Reaction (PCR) technique with universal shark oligonu-cleotides. The results indicated that 60.37 % of the samples turned out to be some shark species. The reference dose used was the one the USEPA suggested based on the Faroe Islands case.20 Based on a previous study for girls and women, the objective of this study was to calculate the health risk for men in the Metropolitan Area of Mexico City due to uninten-tional exposure to methylmercury through the consumption of shark. A less biased approach to risk assessment uses uncertainty analysis to assess the

degree of confidence that can be given to the risk estimate. A mathematical analysis of numerical and analytical methods was also carried out to give a quantitative indication of the quality of this estimate.15

Methods

Data acquiring: The analyzed samples were collected from Mexico City's Central de Abasto. The sampled products included \ fish " meat to make ceviche, meat to make fish broth, meat to make fish quesadillas, smoked fellet, inexpensive steak (sea bass, Nile fish white fellet, cat fish, etc.) and breaded fellet.

Positive control shark samples (Carcharhinus. limbatus, Carcharhinusleu-cas, Carcharhinusfalciformis, Galeocerdocuvie, Isurusoxyrinchus) were do-nated by the UNAM Genetics Laboratory. Negative control samples were sh from di erent species: red snapper (Lutjanuscampechanus), marlin (Is-tiophoridaesp), cat fish (Siluriformes), Nile sh (Oreochromismossambicus), sea bass (Centropomusundecimalis) and salmon (Oncorhynchussp).

Survey design: A non-probabilistic sampling was done, also called discretionary sampling,13 in order to identify the population characteristics and consumption habits (quantity and frequency of fish prod-ucts consumption). The surveys were applied in ve municipalities of Mexico City and in two municipalities of the State of Mexico, in the markets where home-makers buy these products, according to what was described in the work.5 The information collected was the frequency of fish consumption, portion size (weight in grams), species and presentation type; age, gender and weight of the respondent and his entire family. A total of 777 surveys were applied.

Modeling the dose: The lifetime average daily dose (LADD) or the chronic daily intake (CDI), is a function of the average concentration of the contaminant and the ingestion rate. Body weight, age, sex, consuming preferences and frequency were obtained from the aforementioned surveys. In addition, the average life expectancy of Mexican male consumers (78 years) was obtained from national statistics available on line.11 The total dose and the average daily dose (ADD) were calculated with following equations:17

 Total dose = ( concentration )( ingestion )( duration )( frequency )   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiaadsfacaWGVbGaamiDaiaadggacaWGSbGaaeiiaiaadsga caWGVbGaam4CaiaadwgacaqGGaGaeyypa0Jaaeiia8aadaqadaqaa8 qacaWGJbGaam4Baiaad6gacaWGJbGaamyzaiaad6gacaWG0bGaamOC aiaadggacaWG0bGaamyAaiaad+gacaWGUbaapaGaayjkaiaawMcaam aabmaabaWdbiaadMgacaWGUbGaam4zaiaadwgacaWGZbGaamiDaiaa dMgacaWGVbGaamOBaaWdaiaawIcacaGLPaaadaqadaqaa8qacaWGKb GaamyDaiaadkhacaWGHbGaamiDaiaadMgacaWGVbGaamOBaaWdaiaa wIcacaGLPaaadaqadaqaa8qacaWGMbGaamOCaiaadwgacaWGXbGaam yDaiaadwgacaWGUbGaam4yaiaadMhaa8aacaGLOaGaayzkaaWdbiaa cckacaGGGcaaaa@7166@   (1)

  Average Daily Dose       =     ( Total dose )/(Body weight  × Life expectancy)                                                                   ( mg/k/  day   )                MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqaeeaaaa qaaabaaaaaaaaapeGaaiiOaaWdaeaapeGaamyqaiaadAhacaWGLbGa amOCaiaadggacaWGNbGaamyzaiaabccacaWGebGaamyyaiaadMgaca WGSbGaamyEaiaabccacaWGebGaam4BaiaadohacaWGLbGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiabg2da9iaacckaca GGGcGaaiiOaiaacckacaGGGcWdamaabmaabaWdbiaadsfacaWGVbGa amiDaiaadggacaWGSbGaaeiiaiaadsgacaWGVbGaam4Caiaadwgaa8 aacaGLOaGaayzkaaWdbiaac+capaGaaiika8qacaWGcbGaam4Baiaa dsgacaWG5bGaaeiiaiaadEhacaWGLbGaamyAaiaadEgacaWGObGaam iDaiaacckacaGGGcGaey41aqRaaiiOaiaadYeacaWGPbGaamOzaiaa dwgacaqGGaGaamyzaiaadIhacaWGWbGaamyzaiaadogacaWG0bGaam yyaiaad6gacaWGJbGaamyEa8aacaGGPaaabaWdbiaacckaa8aabaWd biaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckapaWa aeWaaeaapeGaamyBaiaadEgacaGGVaGaam4Aaiaac+cacaGGGcGaey OeI0IaaiiOaiaacsgacaGGHbGaaiyEaiaacckacaGGGcaapaGaayjk aiaawMcaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckaaaaaaa@EAC2@   (2)

The total dose was calculated for three concentrations of methylmercury (0.27 mg / Kg, 2.43 mg / Kg, 3.33 mg / Kg), obtained from the study by Ramirez-Romero et al.14

Reference dose: The quantitative assessment of the health risk of a non-carcinogenic agent is based on a reference dose. In this study we chose the reference doses suggested by20 in the Faroe Island study of 0.0001 mg / Kg / day for children and older adults, and 0.0003 mg / Kg / day for the adult population.

Calculation of risk for unintentional consumption of shark meat: We used the20 formulas to calculate the weekly and monthly consumption of unintentional consumption of shark meat

C R mm = CR lim ×   T ap M S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qai aadkfakmaaBaaaleaajugWaiaad2gacaWGTbaaleqaaKqzGeGaeyyp a0JcqaaaaaaaaaWdbmaalaaabaWdamaaCaaaleqabaqcLbsapeGaam 4qaiaadkfaaaqcLbmacaWGSbGaamyAaiaad2gajugibiaacckacqGH xdaTcaGGGcGcpaWaaWbaaSqabeaajugib8qacaWGubaaaKqzadGaam yyaiaadchaaOqaaKqzGeGaamytaiaabccacaWGtbaaaaaa@5172@   (3)

To determine the maximum consumption allowed for the sensitive population (children under 15 years of age) and of reproductive age from (16 to 50 years), in portions of fish, in kilograms per day, the following equation was used

CR li m = RfD BW C m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaCaaaleqaba qcLbsaqaaaaaaaaaWdbiaadoeacaWGsbaaaKqzadGaamiBaiaadMga caWGTbGcpaWaaWbaaSqabeaajugib8qacqGH9aqpaaGcdaWcaaqaaK qzGeGaamOuaiaadAgacaWGebGaaiiOaiaadkeacaWGxbaakeaapaWa aWbaaSqabeaajugib8qacaWGdbaaaKqzadGaamyBaaaaaaa@493B@   (4)

where,

BW   =    Consumer body weight(Kg)

Cm   =    Concentration of mercury in fish species (mg=Kg)

RfD   =  0:0001 mg=Kg reference dose day:

where the reference dose-day is for the developing foetus and men of child-bearing age.

We remark that the reference dose is 0.0001 mg / Kg according to the toxicological effects of methylmercury (EPA)19

For the calculation of weekly and monthly consumption in Kg / day for the adult population, equations (3) and (4) were used, but with the reference dose of 0.0003 mg / kg / day proposed by the USEPA in 1980, which is based on the methylmercury poisoning in Iraq in 1970, when wheat grain was treated with fungicides with methylmercury, which was ground and turned into our for consumption.

Health risk characterization: For the health risk analysis, the hazard or risk coefficient was calculated with the following relation,7

Risk coefficient = Exposure RfD MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGsbGaamyAaiaadohacaWGRbGaaeiiaiaadogacaWGVbGa amyzaiaadAgacaWGMbGaamyAaiaadogacaWGPbGaamyzaiaad6gaca WG0bGaaeiiaiabg2da9OWaaSaaaeaajugibiaadweacaWG4bGaamiC aiaad+gacaWGZbGaamyDaiaadkhacaWGLbaakeaajugibiaadkfaca WGMbGaamiraaaaaaa@533C@   (5)

which is equal to the risk (R). The exposure (E), is obtained through the equation:1

E = C ×TI× FE PC MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGfbGaaeiiaiabg2da9OWaaSaaaeaajugibiaadoeacaGG GcGaey41aqRaamivaiaadMeacqGHxdaTcaGGGcGaamOraiaadweaaO qaaKqzGeGaamiuaiaadoeaaaaaaa@4789@   (6)

Where

C= Concentration of the contaminant in sh (mg=Kg=day)

TI = Intake rate (mg)

FE = Exposure factor (without units)

PC = Body weight (Kg)

The exposure factor allows us to calculate the dose of contaminant that is ingested. However, it is compared with the administered dose used in experimental animal studies designed to obtain the dose-response relationship. The exposure factor was calculated using equation 7 for the different groups, separated by age of the analyzed population.1 According to Elizalde4 the genetics results showed an average of 60.37 % substitution of fish meat for shark meat which was considered in the analysis.

FE = ( exposure in days=weeks )( 52 weeks=year )( exposure years ) ( years exposure )( 365 days=years ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaBaaaleaaju gibabaaaaaaaaapeGaamOraiaadweaaSWdaeqaaOWaaSbaaSqaaKqz GeWdbiabg2da9aWcpaqabaGcdaWcaaqaamaabmaabaqcLbsapeGaam yzaiaadIhacaWGWbGaam4BaiaadohacaWG1bGaamOCaiaadwgacaqG GaGaamyAaiaad6gacaqGGaGaamizaiaadggacaWG5bGaam4Caiabg2 da9iaadEhacaWGLbGaamyzaiaadUgacaWGZbaak8aacaGLOaGaayzk aaWaaeWaaeaajugib8qacaaI1aGaaGOmaiaabccacaWG3bGaamyzai aadwgacaWGRbGaam4Caiabg2da9iaadMhacaWGLbGaamyyaiaadkha aOWdaiaawIcacaGLPaaadaqadaqaaKqzGeWdbiaadwgacaWG4bGaam iCaiaad+gacaWGZbGaamyDaiaadkhacaWGLbGaaeiiaiaadMhacaWG LbGaamyyaiaadkhacaWGZbaak8aacaGLOaGaayzkaaaabaWaaeWaae aajugib8qacaWG5bGaamyzaiaadggacaWGYbGaam4CaiaabccacaWG LbGaamiEaiaadchacaWGVbGaam4CaiaadwhacaWGYbGaamyzaaGcpa GaayjkaiaawMcaamaabmaabaqcLbsapeGaaG4maiaaiAdacaaI1aGa aeiiaiaadsgacaWGHbGaamyEaiaadohacqGH9aqpcaWG5bGaamyzai aadggacaWGYbGaam4CaaGcpaGaayjkaiaawMcaaKqzGeGaaiykaOWa aSbaaSqaaaqabaaaaaaa@8EB9@

According to Evans et al.,17 the result of the value for the risk coefficient is interpreted as follows:

R< 1 (acceptable risk)

R> 1 (unacceptable risk)

Results

Survey: The total number of people included in the survey was 1976, where men consume fish meat more frequently and in greater quantity: 262.60 g / month, followed by men and seniors:194 g / month and 193 g / month respectively (Table 1).

Surveyed

NPS

AG

ABW

AIR

AFP

Children

421

0 14

34:94

188:17:00

1:03

Men

546

15 59

73:44:00

262:60

2:06

Senior

396

60 90

68:85

193:38:00

2:01

Table 1 Population characteristics and consumption habits

In such that Table, NPS is the number of people surveyed, AG is the age (in years), ABW is the average body weight (in Kg), AIR is the average intake rate (in g) and AFP is the average Fish portions consumed per month.

The consumption habits of the analyzed population showed that the most preferred product is the fish fellet (Table 2), followed by fish nuggets population and smoked fish.

Product

Adult

Sensible population

Fish llet (g)

65%

31%

Fish Meat for ceviche (g)

12%

16%

Fish Meat for sh broth (g)

10%

17%

Smoked sh (g)

8%

18%

Fish nuggets

14%

18%

Table 2 Fish product preferences of people of Mexico City's Metropolitan Area

Dose modeling: The average daily dose calculated for the minimum, average and maximum methyl-mercury concentrations are shown in Table 3 of reproductive age are at a minimum consume a dose that does not exceed the reference dose when the minimum MeHg concentration was considered; however.

 

Average daily dose

 

Reference dose

Age group

[0.27 mg/Kg] HgMe

[2.43mg/Kg] MeHg

[3.33 mg/Kg] MeHg

mg/Kg MeHg

Boys

0:03

0:23

0:32

0:01

Men

0:02

0:15

0:21

0:03

Senior Men

0:01

0:12

0:17

0:01

Table 3 Average and reference of daily methylmercury (MeHg) dose for di erent age groups

Analysis of health risks due to unintentional consumption of shark meat: To obtain the maximum allowed number of portions that can be consumed without causing adverse health effects, equations (3) and (4), described in the method,20 were used. Taking into account the result of the genetic analysis of the different sh presentations, in which a 60.37 % substitution of sh meat for shark was obtained,4 the maximum consumption allowed for all population groups was recalculated, for the minimum, average and maximum concentrations of methylmercury in shark meat.

Risk coefficient: The health risk for men due to unintentional shark meat consumption for the different age groups, was calculated for the three concentrations; for the calculation of the risk Coefficient, equations (5), (6) and (7) were used, the results can be seen in Table 4; for the low methylmer-cury concentration with a 60.37 % substitution for shark meat, the risk Coefficient is less than one, which means, that in general, the unintentional consumption of shark meat does not pose a risk or is an acceptable health risk; however, for children from 0 to 5 years old, the calculated value (0.785) is closer to one, which alerts us to the possible risk that slightly higher may represent. For example with a MeHg of (0.45 mg/kg) the RC exceeds one. The risk coe cient for the medium and high MeHg concentrations was always well above 1, which means that the consumption habits represent a risk for the entire population (Table 5).

 

Risk coefficient

Risk coefficient

Risk coefficient

Age group years

[0.27 mg/Kg] HgMe

[2.43mg/Kg] MeHg

[3.33 mg/Kg] MeHg

Babies (1 6)

0.558333

0.45625

1.0125

Boys (6 12)

0.2375

3:077

0.316667

Men (12 60)

0.141667

0.620833

0.439583

Senior (60 90)

0.269444

0.465278

0.710417

Table 4 Risk coefficient of men's unintentional consumption of shark meat

Concentration

Associated polynomials of degree 4 in the variable t

 

4

3

2

[0.27] Hg

R0:27(t) = 0:0663 t4

+ 0:9283 t34:5447 t2s

+ 8:9347 t 5:252

[2.43] Hg

R2:43(t) = 0:5972 t4

+ 8:3573 t340:913 t2

+ 80:433 t 47:28

[3.33] Hg

R3:33(t) = 0:8185 t

+ 11:455 t56:078 t

 + 110:24 t 64:802

Table 5 Interpolating polynomials

The scalar field of risk

In this section we nd the scalar eld which will give us information of the process.

The escalar eld. Life stages [1; 90] are conveniently reparametrized so that they adapt to an interval [1; 5], this is, if s 2 [1; 90] is the real age, we will use the variable t 2 [1; 5], and the functional relation is given by

s( t ) = { 5t4          if1t2 6t6          if2t3 48t132    if3t4 30t60      if4t5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeqbaeaace qaaaGcbaqcLbsaqaaaaaaaaaWdbiaadohak8aadaqadaqaaKqzGeWd biaadshaaOWdaiaawIcacaGLPaaajugib8qacaqGGaGaeyypa0daaO WdamaaceaajugibqaabeGcbaqcLbsacaaI1aGaamiDaiabgkHiTiaa isdapeGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacMgacaGGMbWdaiaaigdacqGHKjYOcaWG 0bGaeyizImQaaGOmaaGcbaqcLbsacaaI2aGaamiDaiabgkHiTiaaiA dapeGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacMgacaGGMbWdaiaaikdacqGHKjYOcaWG0b GaeyizImQaaG4maaGcbaqcLbsacaaI0aGaaGioaiaadshacqGHsisl caaIXaGaaG4maiaaikdapeGaaiiOaiaacckacaGGGcGaaiiOaiaacM gacaGGMbGaaG4ma8aacqGHKjYOcaWG0bGaeyizImQaaGinaaGcbaqc LbsacaaIZaGaaGimaiaadshacqGHsislcaaI2aGaaGima8qacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGPbGaaiOza8aacaaI 0aGaeyizImQaamiDaiabgsMiJkaaiwdaaaGccaGL7baaaaa@95EB@   (8)

This later is because the sh consumption begins after the rst year of life. Therefore, with such reparametrization (8), the intervals of stage age are applied:

Babies, [1; 6) years, into the interval [1; 2),

Boys, [6; 12) years into the interval [2; 3),

Men, [12; 60) years into the interval [3; 4),

Senior men, [60; 90] years into the interval [4; 5].

Since it is recommended not to give sh meat to infants under one year of age, we associate the zero risk with age t = 1 and using the data from the Table 4 and the Interpolation method,15 we will construct three polynomials of degree 4 in the variable of age for each given concentration of methylmercury (MeHg): 0.3, 2.7, 3.7 mg / Kg respectively, as it is shown in Figures 1– 3.

For the mentioned cases we obtain the following particular polynomials.

In order to construct a global smooth scalar function R(t; c) in the stage and concentration variables (t; c) that estimates the risk in the domain D = [1; 5] [0:2; 3:5], such that for each value of concentration c we have a polynomial relation Rc(t) that depends only on stage t, we propose it with the following type:

     R( t, c ) =  f 4 ( c ) t 4 +  f 3 ( c ) t 3 +  f 2 ( c ) t 2 +  f 1 ( c )t +  f 0 ( c ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaadkfak8aadaqa daqaaKqzGeWdbiaadshacaGGSaGaaeiiaiaadogaaOWdaiaawIcaca GLPaaajugib8qacaqGGaGaeyypa0JaaeiiaiaadAgal8aadaWgaaqa aKqzadWdbiaaisdaaSWdaeqaaOWaaeWaaeaajugib8qacaWGJbaak8 aacaGLOaGaayzkaaqcLbsapeGaamiDaSWdamaaCaaabeqaaKqzadWd biaaisdaaaqcLbsacqGHRaWkcaqGGaGaamOzaSWdamaaBaaabaqcLb mapeGaaG4maaWcpaqabaGcdaqadaqaaKqzGeWdbiaadogaaOWdaiaa wIcacaGLPaaajugib8qacaWG0bGcpaWaaWbaaSqabeaajugWa8qaca aIZaaaaKqzGeGaey4kaSIaaeiiaiaadAgal8aadaWgaaqaaKqzadWd biaaikdaaSWdaeqaaOWaaeWaaeaajugib8qacaWGJbaak8aacaGLOa GaayzkaaqcLbsapeGaamiDaSWdamaaCaaabeqaaKqzadWdbiaaikda aaqcLbsacqGHRaWkcaqGGaGaamOzaOWdamaaBaaaleaajugWa8qaca aIXaaal8aabeaakmaabmaabaqcLbsapeGaam4yaaGcpaGaayjkaiaa wMcaaKqzGeWdbiaadshacaqGGaGaey4kaSIaaeiiaiaadAgak8aada WgaaWcbaqcLbmapeGaaGimaaWcpaqabaGcdaqadaqaaKqzGeWdbiaa dogaaOWdaiaawIcacaGLPaaajugibiaac6caaaa@7DAA@   (9)

Here, the coefficient functions fk(c) are obtained by the linear regression method according to the imposed conditions of the obtained polynomials:

f4(0:27) = 0:0663; f4(2:43) = 0:5972; f4(3:33) = 0:8185;

f3(0:27) = 0:9283; f3(2:43) = 8:3573; f3(3:33) = 11:455;

f2(0:27) = 4:5447; f2(2:43) = 40:913; f2(3:33) = 56:078; etc...

The first coefficient function f4(c) in (9) is given by the linear relation,

f 4 ( c ) =    0:2458c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGMbGcpaWaaSbaaSqaaKqzadWdbiaaisdaaSWdaeqaaOWa aeWaaeaajugib8qacaWGJbaak8aacaGLOaGaayzkaaqcLbsapeGaae iiaiabg2da9iaacckacaGGGcGaaiiOaiaacckacaaIWaGaaiOoaiaa ikdacaaI0aGaaGynaiaaiIdacaWGJbaaaa@4A69@   (10)

The other coefficient functions are also linear and are obtained in a similar way,

f 3 ( c )    =   3.44c  0.0008 f 2 ( c )    =   16.84c+0.0037 f 1 ( c )    =   33.105c 0.0058 f 0 ( c )    =   19.46c+0.0036 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeqbaeaabq qaaaaakeaajugibabaaaaaaaaapeGaamOzaOWdamaaBaaaleaajugW a8qacaaIZaaal8aabeaakmaabmaabaqcLbsapeGaam4yaaGcpaGaay jkaiaawMcaaKqzGeWdbiaacckacaGGGcGaaiiOaiaacckacqGH9aqp caGGGcGaaiiOaiaacckacaaIZaGaaiOlaiaaisdacaaI0aGaam4yai aacckacqGHsislcaGGGcGaaGimaiaac6cacaaIWaGaaGimaiaaicda caaI4aaak8aabaqcLbsapeGaamOzaOWdamaaBaaaleaajugWa8qaca aIYaaal8aabeaakmaabmaabaqcLbsapeGaam4yaaGcpaGaayjkaiaa wMcaaKqzGeWdbiaacckacaGGGcGaaiiOaiaacckacqGH9aqpcaGGGc GaaiiOaiaacckacaaIXaGaaGOnaiaac6cacaaI4aGaaGinaiaadoga cqGHRaWkcaaIWaGaaiOlaiaaicdacaaIWaGaaG4maiaaiEdaaOWdae aajugib8qacaWGMbGcpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aOWaaeWaaeaajugib8qacaWGJbaak8aacaGLOaGaayzkaaqcLbsape GaaiiOaiaacckacaGGGcGaaiiOaiabg2da9iaacckacaGGGcGaaiiO aiaaiodacaaIZaGaaiOlaiaaigdacaaIWaGaaGynaiaadogacqGHsi slcaGGGcGaaGimaiaac6cacaaIWaGaaGimaiaaiwdacaaI4aaak8aa baqcLbsapeGaamOzaSWdamaaBaaabaqcLbmapeGaaGimaaWcpaqaba GcdaqadaqaaKqzGeWdbiaadogaaOWdaiaawIcacaGLPaaajugib8qa caGGGcGaaiiOaiaacckacaGGGcGaeyypa0JaaiiOaiaacckacaGGGc GaaGymaiaaiMdacaGGUaGaaGinaiaaiAdacaWGJbGaey4kaSIaaGim aiaac6cacaaIWaGaaGimaiaaiodacaaI2aaaaaaa@A5AA@   (11)

Therefore, the searched scalar eld (9) that estimates the risk of methyl-mercury in region D becomes,

R(t,c) = 0.2458ct4  + (3.44c - 0.0008)t3 + (- 16.84c + 0.0037)t2 + (33.105c-0.0058)t + (- 19.46c + 0.0036)  (12)

For any fixed given value of the concentration c the corresponding function Rc(t) has a graphic in the plane t, R as it is shown in the interpolation process (Figures 1–3).

Figure 1 Risk Coe cient for men of di erent life stages considering the concentration 0.27.

Figure 2 Risk Coe cient for men of di erent life stages considering the concentration 2.43.

Figure 3 Risk Coe cient for men of di erent life stages considering the concentration 3.43.

When the gradient of the risk function Rc(t) is calculated, we obtain,

R( t,c )=( R t , R c ) = ( 0.0058 + 33.105c + 2( 0.0074 33.68c )t + ( 0.0024 + 10.32c) t 2   0.9832c t 3 , 19:46 + 33:105t 16:84 t 2 + 3:44 t 3   0:2458 t 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaey4bIe TaamOuamaabmaabaGaamiDaiaacYcacaWGJbaacaGLOaGaayzkaaGa eyypa0ZaaeWaaeaadaWcaaqaaiabgkGi2kaadkfaaeaacqGHciITca WG0baaaiaacYcadaWcaaqaaiabgkGi2kaadkfaaeaacqGHciITcaWG JbaaaaGaayjkaiaawMcaaaqaauaabaGaciaaaeaaqaaaaaaaaaWdbi abg2da9iaacckapaGaaiika8qacaGGGcGaaGimaiaac6cacaaIWaGa aGimaiaaiwdacaaI4aaapaqaa8qacqGHRaWkcaqGGaGaaG4maiaaio dacaGGUaGaaGymaiaaicdacaaI1aGaam4yaiaabccacqGHRaWkcaqG GaGaaGOma8aadaqadaqaa8qacaaIWaGaaiOlaiaaicdacaaIWaGaaG 4naiaaisdacaGGGcGaeyOeI0IaaG4maiaaiodacaGGUaGaaGOnaiaa iIdacaWGJbaapaGaayjkaiaawMcaa8qacaWG0baapaqaa8qacqGHRa WkcaGGGcWdaiaacIcacqGHsislpeGaaiiOaiaaicdacaGGUaGaaGim aiaaicdacaaIYaGaaGinaaWdaeaapeGaey4kaSIaaeiiaiaaigdaca aIWaGaaiOlaiaaiodacaaIYaGaam4ya8aacaGGPaWdbiaadshapaWa aWbaaSqabeaapeGaaGOmaaaak8aacqGHsislpeGaaiiOaiaacckaca aIWaGaaiOlaiaaiMdacaaI4aGaaG4maiaaikdacaWGJbGaamiDa8aa daahaaWcbeqaa8qacaaIZaaaaOWdaiaacYcaaaaabaqcLbsacqGHsi slfaqaaiqabaaakeaajugib8qacaaIXaGaaGyoaiaacQdacaaI0aGa aGOnaiaabccacqGHRaWkcaqGGaGaaG4maiaaiodacaGG6aGaaGymai aaicdacaaI1aGaamiDaiaacckacaaIXaGaaGOnaiaacQdacaaI4aGa aGinaiaadshak8aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsacq GHRaWkcaqGGaGaaG4maiaacQdacaaI0aGaaGinaiaadshak8aadaah aaWcbeqaaKqzadWdbiaaiodaaaqcLbsacaGGGcGaaiiOaiaaicdaca GG6aGaaGOmaiaaisdacaaI1aGaaGioaiaadshak8aadaahaaWcbeqa aKqzadWdbiaaisdaaaqcLbsapaGaaiykaaaaaaaa@B1C4@   (13)

In order of finding the critical points of (12), we solve the system of algebraic equations in the variables t; c,

0   = ( 0.0058 + 33.105c + 2( 0.0074 33.68c )t  + (  0.0024 + 10.32c ) t 2   0.9832c t 3 , 0   =  19.46 + 33.105t 16.84 t 2 + 3.44 t 3   0.2458 t 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaqa aaaaaaaaWdbiaaicdacaGGGcGaaiiOaiaacckacqGH9aqpcaGGGcWd aiaacIcacqGHsislpeGaaiiOaiaaicdacaGGUaGaaGimaiaaicdaca aI1aGaaGioaiaabccacqGHRaWkcaqGGaGaaG4maiaaiodacaGGUaGa aGymaiaaicdacaaI1aGaam4yaiaabccacqGHRaWkcaqGGaGaaGOmaO WdamaabmaabaqcLbsapeGaaGimaiaac6cacaaIWaGaaGimaiaaiEda caaI0aGaaiiOaiabgkHiTiaaiodacaaIZaGaaiOlaiaaiAdacaaI4a Gaam4yaaGcpaGaayjkaiaawMcaaKqzGeWdbiaadshacaGGGcaakeaa jugibiabgUcaRiaacckak8aadaqadaqaaKqzGeWdbiaacckacqGHsi slcaaIWaGaaiOlaiaaicdacaaIWaGaaGOmaiaaisdacaqGGaGaey4k aSIaaeiiaiaaigdacaaIWaGaaiOlaiaaiodacaaIYaGaam4yaaGcpa GaayjkaiaawMcaaKqzGeWdbiaadshal8aadaahaaqabeaajugWa8qa caaIYaaaaKqzGeWdaiabgkHiT8qacaGGGcGaaiiOaiaaicdacaGGUa GaaGyoaiaaiIdacaaIZaGaaGOmaiaadogacaWG0bWcpaWaaWbaaeqa baqcLbmapeGaaG4maaaajugibiaacYcaaOqaaKqzGeGaaGimaiaacc kacaGGGcGaaiiOaiabg2da9iaacckacaGGGcGaeyOeI0IaaGymaiaa iMdacaGGUaGaaGinaiaaiAdacaqGGaGaey4kaSIaaeiiaiaaiodaca aIZaGaaiOlaiaaigdacaaIWaGaaGynaiaadshacqGHsislcaGGGcGa aGymaiaaiAdacaGGUaGaaGioaiaaisdacaWG0bGcpaWaaWbaaSqabe aajugWa8qacaaIYaaaaKqzGeGaey4kaSIaaeiiaiaaiodacaGGUaGa aGinaiaaisdacaWG0bGcpaWaaWbaaSqabeaajugWa8qacaaIZaaaaK qzGeGaaiiOaiabgkHiTiaacckacaaIWaGaaiOlaiaaikdacaaI0aGa aGynaiaaiIdacaWG0bGcpaWaaWbaaSqabeaajugWa8qacaaI0aaaaa aaaa@B407@   (14)

which, as can be seen easily, has not solutions into the domain D.

We recall that a stable real valued function f defined in the compact set D is such that every nearby real valued function g defined in D is identical to f.18

Also, a Morse function is such that one with non degenerate critical points with different critical values (Golubitsky-Guillemin.8

Since the risk function R(t; c) has not critical points it follows the following result.

Theorem 1. The risk field R(t; c) is a stable Morse function in the simply connected compact set D

Proof. The whole set D is a regular set for R(t; c) , which proves the Morse property. The stability follows from the Mather-Malgrange Theory (see Proposition 2.2 in8)

Therefore, under small smooth deformations of the risk function R(t; c) in D, the deformed function obtained has the same qualitative behaviour. In other words, any small error in obtaining the data would lead to a new risk relationship with the same characteristics.

The Critical Risk Region inside the domain D is the subset

R( D ) = { ( t, c ) / R( t, c )1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGsbGcpaWaaeWaaeaajugib8qacaWGebaak8aacaGLOaGa ayzkaaqcLbsapeGaaeiiaiabg2da9iaabccakmaacmaabaWdamaabm aabaqcLbsapeGaamiDaiaacYcacaqGGaGaam4yaaGcpaGaayjkaiaa wMcaaKqzGeWdbiaabccacaGGVaGaaeiiaiaadkfak8aadaqadaqaaK qzGeWdbiaadshacaGGSaGaaeiiaiaadogaaOWdaiaawIcacaGLPaaa jugibiabgwMiZkaaigdaaOWdbiaawUhacaGL9baaaaa@5288@   (15)

and it is represented as a coloured contour in Figure 4, which shows a high risk region, as expected from the data in Table 4.

Figure 4 Critical risk region R(D).

The following result shows the risk probability for the whole process.

Proposition 1. The probability of risk of exposure of methylmercury P for the considered stages and concentrations is high of 85%.

Proof. We calculate the ratio between the corresponding areas of D and R(D), obtaining the aforementioned probability of risk,

P = Area( R( D ) ) Area( D ) = 1 Area( D ) R(D) dcdt =   11.32 13.2    = 0:85 = 85% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsafa qaaiqacaaakeaajugibabaaaaaaaaapeGaamiuaiaacckacqGH9aqp aOWdaeaadaWcaaqaaKqzGeWdbiaadgeacaWGYbGaamyzaiaadggak8 aadaqadaqaaKqzGeWdbiaadkfak8aadaqadaqaaKqzGeWdbiaadsea aOWdaiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaajugib8qacaWGbb GaamOCaiaadwgacaWGHbGcpaWaaeWaaeaajugib8qacaWGebaak8aa caGLOaGaayzkaaaaaaaaaeaajugibiabg2da9OWaaSaaaeaajugibi aaigdaaOqaaKqzGeWdbiaadgeacaWGYbGaamyzaiaadggak8aadaqa daqaaKqzGeWdbiaadseaaOWdaiaawIcacaGLPaaaaaqcLbsacqGHRi I8cqGHRiI8lmaaBaaabaqcLbmacaWGsbGaaiikaiaadseacaGGPaaa leqaaKqzGeGaamizaiaadogacaWGKbGaamiDaaGcbaqcLbsapeGaey ypa0JaaiiOaiaacckakmaalaaabaqcLbsacaaIXaGaaGymaiaac6ca caaIZaGaaGOmaaGcbaqcLbsacaaIXaGaaG4maiaac6cacaaIYaaaai aacckacaGGGcGaaiiOaiabg2da9iaabccacaaIWaGaaiOoaiaaiIda caaI1aGaaeiiaiabg2da9iaabccacaaI4aGaaGynaiaacwcaaaaa@7CA4@   (16)

In other words, at least 4 out of 5 individuals have the probability of risk of consumption.

We show the contour lines or level curves of the scalar risk field which are displayed in domain D in Figure 5. In such that Figure, the darker region indicates less risk, while the lighter region indicates greater risk.

Figure 5 Level curves due to unintentional shark consumption for men.

We obtain also the following crucial and important result.

Theorem 2. The average value R = 2:96 of R(t; c) in the whole set D represents a high risk for the population.

Proof. The average value R of the risk in domain D is calculated by apply-ing the formula,17

R = 1 Area( D ) D R(t,c)dcdt = 1 Area( D ) t=1 t=5 c=0.2 c=3.5 [ 0:2458 c t 4 + ( 3:44 c 0:0008 )  t 3 + (  16:84 c + 0:0037 )  t 2 + ( 33:105 c 0:0058 ) t + (  19:46c + 0:0036 )] dc dt =     39.17 13.2   = 2:96 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WGsbWcdaahaaqabeaajugWaiabgEHiQaaajugibiabg2da9OWaaSaa aeaajugibiaaigdaaOqaaKqzGeaeaaaaaaaaa8qacaWGbbGaamOCai aadwgacaWGHbGcpaWaaeWaaeaajugib8qacaWGebaak8aacaGLOaGa ayzkaaaaaKqzGeGaey4kIiVaey4kIiVcdaWgaaWcbaqcLbsacaWGeb aaleqaaKqzGeGaamOuaiaacIcacaWG0bGaaiilaiaacogacaGGPaGa amizaiaadogacaWGKbGaamiDaaGcbaqcLbsacqGH9aqpkmaalaaaba qcLbsacaaIXaaakeaajugib8qacaWGbbGaamOCaiaadwgacaWGHbGc paWaaeWaaeaajugib8qacaWGebaak8aacaGLOaGaayzkaaaaaKqzGe Gaey4kIi=cdaqhaaqaaKqzadGaamiDaiabg2da9iaaigdaaSqaaKqz adGaamiDaiabg2da9iaaiwdaaaqcLbsacqGHRiI8lmaaDaaabaqcLb macaWGJbGaeyypa0JaaGimaiaac6cacaaIYaaaleaajugWaiaadoga cqGH9aqpcaaIZaGaaiOlaiaaiwdaaaqcLbsacaGGBbWdbiaacckaca aIWaGaaiOoaiaaikdacaaI0aGaaGynaiaaiIdacaqGGaGaam4yaiaa dshak8aadaahaaWcbeqaaKqzadWdbiaaisdaaaqcLbsacqGHRaWkca qGGaGcpaWaaeWaaeaajugib8qacaaIZaGaaiOoaiaaisdacaaI0aGa aeiiaiaadogacaGGGcGaaGimaiaacQdacaaIWaGaaGimaiaaicdaca aI4aaak8aacaGLOaGaayzkaaqcLbsapeGaaeiiaiaadshal8aadaah aaqabeaajugWa8qacaaIZaaaaaGcpaqaaKqzGeqbaeaaceGaaaGcba qcLbsapeGaey4kaScak8aabaWaaeWaaeaajugib8qacaGGGcGaaGym aiaaiAdacaGG6aGaaGioaiaaisdacaqGGaGaam4yaiaabccacqGHRa WkcaqGGaGaaGimaiaacQdacaaIWaGaaGimaiaaiodacaaI3aaak8aa caGLOaGaayzkaaqcLbsapeGaaeiiaiaadshal8aadaahaaqabeaaju gWa8qacaaIYaaaaKqzGeGaey4kaSIaaeiiaOWdamaabmaabaqcLbsa peGaaG4maiaaiodacaGG6aGaaGymaiaaicdacaaI1aGaaeiiaiaado gacaGGGcGaaGimaiaacQdacaaIWaGaaGimaiaaiwdacaaI4aaak8aa caGLOaGaayzkaaqcLbsapeGaaeiiaiaadshacaqGGaGaey4kaSIaae iiaOWdamaabmaabaqcLbsapeGaaiiOaiaaigdacaaI5aGaaiOoaiaa isdacaaI2aGaam4yaiaabccacqGHRaWkcaqGGaGaaGimaiaacQdaca aIWaGaaGimaiaaiodacaaI2aaak8aacaGLOaGaayzkaaqcLbsacaGG DbWdbiaabccacaWGKbGaam4yaiaabccacaWGKbGaamiDaaaaaOWdae aajugib8qacqGH9aqpcaGGGcGaaiiOaiaacckacaGGGcGcdaWcaaqa aKqzGeGaaG4maiaaiMdacaGGUaGaaGymaiaaiEdaaOqaaKqzGeGaaG ymaiaaiodacaGGUaGaaGOmaaaacaGGGcGaaiiOaiabg2da9iaabcca caaIYaGaaiOoaiaaiMdacaaI2aaaaaa@E92E@   (17)

Such that number represents a high risk in the whole set D.

4.2. The risk vector field. Because there are not critical point for the risk function, we study the risk gradient vector field (13) for understanding the behaviour of the risk function. The flow of such risk vector field shows how the process is changing along the solutions of the associated system of differential equations,\

dt dT =( 0.0058+ 33.105c + 2( 0.0074 33.68c )t+( 0.0024+ 10.32c) t 2   0.9832c t 3 , dc dT =19.46 + 33.105t 16.84 t 2 + 3.44 t 3   0.2458 t 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aajugibiaadsgacaWG0baakeaajugibiaadsgacaWGubaaaiabg2da 9iaacIcaqaaaaaaaaaWdbiaacckacqGHsislcaaIWaGaaiOlaiaaic dacaaIWaGaaGynaiaaiIdacqGHRaWkcaqGGaGaaG4maiaaiodacaGG UaGaaGymaiaaicdacaaI1aGaam4yaiaabccacqGHRaWkcaqGGaGaaG OmaOWdamaabmaabaqcLbsapeGaaGimaiaac6cacaaIWaGaaGimaiaa iEdacaaI0aGaaiiOaiaaiodacaaIZaGaaiOlaiaaiAdacaaI4aGaam 4yaaGcpaGaayjkaiaawMcaaKqzGeWdbiaadshacqGHRaWkpaGaaiik a8qacaGGGcGaeyOeI0IaaGimaiaac6cacaaIWaGaaGimaiaaikdaca aI0aGaey4kaSIaaeiiaiaaigdacaaIWaGaaiOlaiaaiodacaaIYaGa am4ya8aacaGGPaWdbiaadshal8aadaahaaqabeaajugWa8qacaaIYa aaaKqzGeGaaiiOaiaacckacqGHsislcaaIWaGaaiOlaiaaiMdacaaI 4aGaaG4maiaaikdacaWGJbGaamiDaOWdamaaCaaaleqabaqcLbmape GaaG4maaaajugib8aacaGGSaaakeaadaWcaaqaaKqzGeGaamizaiaa dogaaOqaaKqzGeGaamizaiaadsfaaaGaeyypa0JaeyOeI0Ydbiaaig dacaaI5aGaaiOlaiaaisdacaaI2aGaaeiiaiabgUcaRiaabccacaaI ZaGaaG4maiaac6cacaaIXaGaaGimaiaaiwdacaWG0bGaeyOeI0Iaai iOaiaaigdacaaI2aGaaiOlaiaaiIdacaaI0aGaamiDaOWdamaaCaaa leqabaqcLbmapeGaaGOmaaaajugibiabgUcaRiaabccacaaIZaGaai OlaiaaisdacaaI0aGaamiDaOWdamaaCaaaleqabaqcLbmapeGaaG4m aaaajugib8aacqGHsislpeGaaiiOaiaacckacaaIWaGaaiOlaiaaik dacaaI0aGaaGynaiaaiIdacaWG0bWcpaWaaWbaaeqabaqcLbmapeGa aGinaaaaaaaa@AA61@   (18)

where is the dynamic time (Figure 6).

Lemma 1. The dynamical system (18) does not have neither equilibrium points, nor closed orbits in the compact simply connected region D (Figure 6).

Figure 6 Vector eld of risk rR(t; c) for unintentional consumption of shark for men.

Proof. Since the risk function does not have critical points in the considered domain, it follows that there are not equilibrium points in D for such system. From the Poincare-Bendixon Theorem follows that there are not periodic orbits, since in other case, if there is one periodic orbit inside D, the simply connected region bounded by this orbit must contain one equilibrium point.

Figure 6 shows vertical lines as separatrixes in the flow of the vectorfi eld of risk and are understood as the ages where there is a signiffcant risk. These ages will be calculated later using geometric methods.

The risk surface: The so-called associated risk surface S is the graphic of the risk function (12), and it is a two dimensional surface em-bedded in the three dimensional Euclidean space R3, shown in Figure 7.

Figure 7 Risk surface for men due to unintentional expo-sure to MeHg.

We use the Gaussian curvature function K(t; c)3 of the Risk Surface to determine the critical ages of the global risk function. We recall that one Hadamard surface has non positive Gaussian curvature in all its points. We have the following important result.

Theorem 3. The associated risk Surface S is one Hadamard surface em-bedded in the three dimensional Euclidean space R3

Proof. If we parametrize the surface S on the domain D in the canonical way,

φ( t, c ) = ( t, c, R( t, c ) ),      ( t, c )  D, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHgpGAk8aadaqadaqaaKqzGeWdbiaadshacaGGSaGaaeii aiaadogaaOWdaiaawIcacaGLPaaajugib8qacaqGGaGaeyypa0Jaae iiaOWdamaabmaabaqcLbsapeGaamiDaiaacYcacaqGGaGaam4yaiaa cYcacaqGGaGaamOuaOWdamaabmaabaqcLbsapeGaamiDaiaacYcaca qGGaGaam4yaaGcpaGaayjkaiaawMcaaaGaayjkaiaawMcaaKqzGeWd biaacYcacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckak8aada qadaqaaKqzGeWdbiaadshacaGGSaGaaeiiaiaadogaaOWdaiaawIca caGLPaaajugib8qacaqGGaGaeyicI4SaaeiiaiaadseacaGGSaaaaa@61B7@    (19)

the Gaussian curvature is calculated with the equality.3

K( t; c ) = ( 2 R t 2 )( 2 R c 2 ) ( 2 R tc ) 2 ( 1+ ( R t ) 2 + ( R c ) 2 ) 2 = ( 33.105 33.68t + 10.32 t 2   0.9832 t 3 2 ) ( 1+ ( R t ) 2 + ( R c ) 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGlbWdamaabmaabaWdbiaadshacaGG7aGaaeiiaiaadoga a8aacaGLOaGaayzkaaWdbiaacckacqGH9aqpdaWcaaqaamaabmaaba WaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWGsbaabaGa eyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPa aadaqadaqaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGa amOuaaqaaiabgkGi2kaadogadaahaaWcbeqaaiaaikdaaaaaaaGcca GLOaGaayzkaaGaeyOeI0YaaeWaaeaadaWcaaqaaiabgkGi2oaaCaaa leqabaGaaGOmaaaakiaadkfaaeaacqGHciITcaWG0bGaeyOaIyRaam 4yaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakeaadaqa daqaaiaaigdacqGHRaWkdaqadaqaamaalaaabaGaeyOaIyRaamOuaa qaaiabgkGi2kaadshaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaI YaaaaOGaey4kaSYaaeWaaeaadaWcaaqaaiabgkGi2kaadkfaaeaacq GHciITcaWGJbWaaWbaaSqabeaaaaaaaaGccaGLOaGaayzkaaWaaWba aSqabeaacaaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYa aaaaaaaOqaaiabg2da9maalaaabaWaaeWaaeaacaaIZaGaaG4maiaa c6cacaaIXaGaaGimaiaaiwdacaGGGcGaaG4maiaaiodacaGGUaGaaG OnaiaaiIdacaWG0bGaaeiiaiabgUcaRiaabccacaaIXaGaaGimaiaa c6cacaaIZaGaaGOmaiaadshapaWaaWbaaSqabeaapeGaaGOmaaaaki aacckacaGGGcGaaGimaiaac6cacaaI5aGaaGioaiaaiodacaaIYaGa amiDa8aadaahaaWcbeqaa8qacaaIZaGaaeiiaiaaikdaaaGcpaWaaS baaSqaaaqabaaak8qacaGLOaGaayzkaaaabaWaaeWaaeaacaaIXaGa ey4kaSYaaeWaaeaadaWcaaqaaiabgkGi2kaadkfaaeaacqGHciITca WG0baaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUca RmaabmaabaWaaSaaaeaacqGHciITcaWGsbaabaGaeyOaIyRaam4yam aaCaaaleqabaaaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOm aaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaaaaa@A0AB@   (20)

Because

( 2 R c 2 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaaeaadaWcaaqaaKqzGeGaeyOaIy7cdaahaaqabeaajugWaiaa ikdaaaqcLbsacaWGsbaakeaajugibiabgkGi2kaadogakmaaCaaale qabaWaaWbaaWqabeaacaaIYaaaaaaaaaaakiaawIcacaGLPaaajugi biabg2da9iaaicdaaaa@449A@

and

( 2 R tc )= 33:105 33:68t + 10:32 t 2 0:9832 t 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaaeaadaWcaaqaaKqzGeGaeyOaIyRcdaahaaWcbeqaaKqzadGa aGOmaaaajugibiaadkfaaOqaaKqzGeGaeyOaIyRaamiDaiabgkGi2k aadogaaaaakiaawIcacaGLPaaajugibiabg2da9iaabccacaaIZaGa aG4maiaacQdacaaIXaGaaGimaiaaiwdacaqGGaGaaG4maiaaiodaca GG6aGaaGOnaiaaiIdacaWG0bGaaeiiaiabgUcaRiaabccacaaIXaGa aGimaiaacQdacaaIZaGaaGOmaiaadshal8aadaahaaqabeaajugWa8 qacaaIYaaaaKqzGeGaaGimaiaacQdacaaI5aGaaGioaiaaiodacaaI YaGaamiDaSWdamaaCaaabeqaaKqzadWdbiaaiodaaaaaaa@60C5@

in the whole set D.

Therefore, S has a non positive curvature and consequently it is one Hadamard surface. It is also embedded in the three dimensional space because it is the graphic of the smooth risk function. This ends the proof.

A consequence of this result is the important following result for the process.

Corollary 1. The critical ages for the process are, in the biological time s,

s = 5.4 ( years ),   s = 45.6 ( years ),  s = 87 ( years ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4CaiaabccacqGH9aqpcaqGGaGaaGynaiaac6cacaaI0aGaaeii a8aadaqadaqaa8qacaWG5bGaamyzaiaadggacaWGYbGaam4CaaWdai aawIcacaGLPaaapeGaaiilaiaacckacaGGGcGaaiiOaiaadohacaqG GaGaeyypa0JaaeiiaiaaisdacaaI1aGaaiOlaiaaiAdacaqGGaWdam aabmaabaWdbiaadMhacaWGLbGaamyyaiaadkhacaWGZbaapaGaayjk aiaawMcaa8qacaGGSaGaaiiOaiaacckacaWGZbGaaeiiaiabg2da9i aabccacaaI4aGaaG4naiaabccapaWaaeWaaeaapeGaamyEaiaadwga caWGHbGaamOCaiaadohaa8aacaGLOaGaayzkaaaaaa@6414@   (21)

Proof. The expression of the Gaussian curvature K(t; c) in (20) shows that the sign of such a curvature function is completely determined on the whole domain D by the reduced smooth function

k( t, c ) =  ( 33.105 33.68t + 10.32 t 2   0.9832 t 3 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGRbGcpaWaaeWaaeaajugib8qacaWG0bGaaiilaiaabcca caWGJbaak8aacaGLOaGaayzkaaqcLbsapeGaaeiiaiabg2da9iaacc kak8aadaqadaqaaKqzGeWdbiaaiodacaaIZaGaaiOlaiaaigdacaaI WaGaaGynaiaacckacaaIZaGaaG4maiaac6cacaaI2aGaaGioaiaads hacaqGGaGaey4kaSIaaeiiaiaaigdacaaIWaGaaiOlaiaaiodacaaI YaGaamiDaSWdamaaCaaabeqaaKqzadWdbiaaikdaaaqcLbsapaGaey OeI0YdbiaacckacaGGGcGaaGimaiaac6cacaaI5aGaaGioaiaaioda caaIYaGaamiDaOWdamaaCaaaleqabaqcLbmapeGaaG4maaaaaOWdai aawIcacaGLPaaalmaaCaaabeqaaKqzadWdbiaaikdaaaaaaa@64D1@   (22)

The graphic of k(c,t) is shown in Figure 8.

Figure 8 Curvature of the risk surface for men.

The points where the Gaussian curvature (20) is zero determine the critical ages of the risk function and are obtained by solving equation 14:

 0 = 33.105 33.68t + 10:32 t 2   0.9832 t 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGGGcGaaGimaiaabccacqGH9aqpcaqGGaGaaG4maiaaioda caGGUaGaaGymaiaaicdacaaI1aGaeyOeI0IaaiiOaiaaiodacaaIZa GaaiOlaiaaiAdacaaI4aGaamiDaiaabccacqGHRaWkcaqGGaGaaGym aiaaicdacaGG6aGaaG4maiaaikdacaWG0bGcpaWaaWbaaSqabeaaju gWa8qacaaIYaaaaKqzGeWdaiabgkHiT8qacaGGGcGaaiiOaiaaicda caGGUaGaaGyoaiaaiIdacaaIZaGaaGOmaiaadshal8aadaahaaqabe aajugWa8qacaaIZaaaaaaa@5B89@   (23)

The solutions of (23) are all real numbers,

t=1.83 ( 5.1 years ),  t=3.7 ( 45.6 years ),    t=4.9 ( 87 years ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabg2da9iaaigdacaGGUaGaaGioaiaaiodacaqGGaWdamaa bmaabaWdbiaaiwdacaGGUaGaaGymaiaabccacaWG5bGaamyzaiaadg gacaWGYbGaam4CaaWdaiaawIcacaGLPaaapeGaaiilaiaacckacaGG GcGaamiDaiabg2da9iaaiodacaGGUaGaaG4naiaabccapaWaaeWaae aapeGaaGinaiaaiwdacaGGUaGaaGOnaiaabccacaWG5bGaamyzaiaa dggacaWGYbGaam4CaaWdaiaawIcacaGLPaaapeGaaiilaiaacckaca GGGcGaaiiOaiaacckacaWG0bGaeyypa0JaaGinaiaac6cacaaI5aGa aeiia8aadaqadaqaa8qacaaI4aGaaG4naiaabccacaWG5bGaamyzai aadggacaWGYbGaam4CaaWdaiaawIcacaGLPaaaaaa@6A9E@   (24)

and they correspond to the vertical lines, separatrix of the risk vector field.

This ends the proof.

Discussion

In this paper, for the risk estimation calculated for men, using EPAs MeHg reference dose (RfD), and the critical region of risk (Figure 4), we obtained in Theorem 2 an average value of 2.96, which is interpreted as an unacceptable health risk (since this result exceeds one). Also, Proposition 1 shows that there's a high probability (of 85%) that some toxic or adverse health effect will develop.

Corollary 1 shows that the age of maximum risk in boys is 5.1 years, then the risk decreases until 45.6 years, and begins to increase again until reaching the maximum risk in senior men at 87 years. This will be relevant only to those men who exceed this age, since Mexican men life expectancy is only 72 years according to official data.11

As shown in Figure 8, risk curvatures indicate that the highest risk is for boys and men in reproductive age (life stages 1 and 3); in addition, the critical region of risk is only for the aforementioned stage and to a lesser extent for senior men, although in this last group the risk curve is lower than for boys. The study by Llop and collaborators,12 recommends, infants and those under 3 years old avoid shark consumption; The study by Clarkson and Magos2 mentions that the susceptibility to neurotoxicity due to MeHg is related to gender, but has not been widely studied and the results available are inconclusive, but in the poisoning that occurred in Iraq as a consequence of the consumption of grain contaminated with a mercurial fungicide, young men were affected more than men exposed in adulthood. The results obtained in the work of Raimann et al.,16 coincide with the risk curves of this study where the exposure interval is higher in men mainly in reproductive age and infancy; therefore, these results are expected to coincide with studies in other countries where shark is consumed on purpose or unknowingly. Considering this, special care should be taken since children are more vulnerable to exposure to methylmercury because their nervous system is the main target organ where it bio accumulates; as a pre-cautionary measure the USEPA19 established an acceptable level of 0.5 mg / kg of methylmercury for fish products.

It is important to mention that risk depends on the consumption habits (frequency of consumption and food preparation), age of the consumer, size of the portion and the product itself. However, the magnitude of bioaccu-mulation of heavy metals in fish tissues is in uenced by biotic and abiotic factors, such as fish habitat, chemical form of the metal, water temperature, pH, concentration of dissolved oxygen, water transparency, fish age, sex, body mass, and physiological conditions.10 Therefore, a more precise risk assessment will need to considere all these factors.

Conclusion

The estimation of the health risk from consumption of fish substituted by shark meat, based on the results of the risk coeffcient, of which an unacceptable risk was obtained for the average and maximum MeHgconcen-trations for all the population age groups, and an acceptable risk in the low MeHg-concentration for all age groups except for babies, for whom the risk is intermediate (0.804), all this, means that in the analyzed sample, there is a high probability of developing deleterious health effects; so, if men want to consume fish products, they must buy whole fish to avoid the replacement.

The greatest uncertainty of the risk estimation in the present work, is the lack of -direct MeHg quanti cation in the same fish samples that were genetically analized. However, this is an acceptable approximation for decision making in the prevention of health risks because the data used are from samplings done during a period of three years in 10 of the most important fishing ports in Mexico, which provided a good estimate of MeHg in fish muscle sold in Mexico City's Metropolitan Area.19,20

To analyze the uncertainties and obtain the risk function of the results obtained in the present study, a mathematical analysis was carried out using the classical interpolation method,15 which showed that the aforementioned risk function is stable;8 so any error obtaining the data (uncertainties), will lead us to a risk correlation with the same characteristics (similar results), and in this way we can conclude that the results of the risk coeffcient have a high degree of reliability.

This study analysed the consumption habits of a sample of the population of Mexico City's Metropolitan Area, which showed that with the substitution of 60.3 % of sh meat for shark meat, the overall risk was 1.43 for men, this exceeds one and it could be inferred that men are chronically exposed despite the fact that the population does not frequently consume fish; even more, it implies a health risk for the consumer, so it is suggested to restrict the consumption of fish products to smaller rations, in lower frequency, and more importantly to buy complete fish to facilitate identification of the product and to avoid consuming shark meat with high methylmercury concentrations.

Acknowledgments

None.

Conflicts of interest

The authors state that there is no conflict of interest.

Funding

None.

References

  1. Agency for Toxic Substances and Disease Registry (ATDSR) Agency Toxicology Sus–tance and Diesease. Assessment of health risks due to exposure to hazardous waste. Metepec, Puebla; 1995.
  2. Clarkson TW, Magos L. The toxicology of mercury and its chemicalcompounds. Crit Rev Toxicol. 2006;36:609–62.
  3. Dubrovin B, Novikov S, Fomenko A. Modern Geometry Methods and Applications: Part I: The Geometry of Surfaces, Transformation Groups, and Fields (Graduate Texts in Mathematics) (Pt. 1), Springer–Verlag, USA; 1984.
  4. Elizalde Ramirez LG. Genetic identification of sharks marketed in Mexico City as fish meat and evaluation of the health risk of their consumption. Metropolitan Autonomous University–Iztapalapa (UAMI). 2018. 149 p.
  5. Elizalde–Ramirez L, Flores–Garcia E, Ramirez–Romero P, et al. Risk characterization of exposure to methyl–mercury due to non intentional consumption of shark meet in females of Mexico City's metropolitan area, to appear. Revista de Salud Ambiental., 2020;1697–2791.
  6. Espinosa Perez H, JL Castro Aguirre, L Huidrobo–Campos. Systematic catalog of sharks (Elasmobranchii: Selachimorpha). Institute of Biology, UNAM. Faunal lists of Mexico IX. 2004. 133 p.
  7. Evans JF. Introduction to environmental risk analysis. Mexico: INE–SEMARNAT. 2003.
  8. Golubitsky M, Guillemin V. Stable Mappings and Their Singularities. Grad–uate Texts in Mathematics 14, Springer–Verlag, USA; 1974.
  9. Guckenheimer J, Holmes PJ. Nonlinear Oscillations, Dynamical Systems, and Bi–furcations of Vector Fieldds. Applied Mathematical Sciences. Springer–Verlag, USA; 1983;42.
  10. Has–Schon E, Bogut I, Strelec I. Heavy metal pro le in ve sh species included in human diet, domiciled in the end ow of River Neretva (Croatia). Arch Environ Contam Toxicol. 2006;50: 545–551.
  11. INEGI. Cuentame. Obtenido de Esperanza de vida.
  12. Llop, Sabrina, Jesus Ibarluceab, Jordi Sunyerb, et al. Current status of dietary exposure to mercury during pregnancy and childhood, and public health recommendations. Sanitary Gazette. 2013;27(3):273–278.
  13. Mendez AI. Research Methodologies and Techniques applied to Communication. Venezuela: University of Zulia; 2007.
  14. Ramez Romero P, Ramez Islas ME, MT. Ortu~no Arzate. Evaluation of health risk due to exposure to mercury due to the consumption of marine fish in fishing communities., DF: UAMI/SEMARNAT. 2012.
  15. Reyes Victoria JG. Differential Calculus for Natural Sciences (in Spanish), Trillas, Mexico; 1996.
  16. Raimann XL. Mercury in fish and its importance in health. Physician from Chile. 2014; 1174–1180.
  17. Rudin W. Principles of Mathematical Analysis, McGraw–Hill Education, USA; 1976.
  18. Silbernagel S, Carpenter D, Gilbert S, et al. Recognizing and Preventing Overexposure toMethylmercury from Fish and Seafood Consumption: Information for Physicians. J Toxicol. 2011;2011:983072.
  19. USEPA. United States Environmental Protection Agency. Methylmercury (MeHg). 2010.
  20. USEPA. Guide for the evaluation of chemical contaminants used for the verification of Fisheries, USA; 2008.
Creative Commons Attribution License

©2022 Ramirez, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.