Submit manuscript...
International Journal of
eISSN: 2573-2889

Molecular Biology: Open Access

Research Article Volume 3 Issue 3

Positron stopping power in some biological compounds for intermediate energies with generalized oscillator strength model

Hasan Gumus,1 Tuba Namdar,1 Abdelouahab Bentabet2

1Department of Physics, Faculty of Science and Arts, Ondokuz Mayis University, Turkey
2LCVRN, Bordj Bou Arreridj University, Aleria

Correspondence: Hasan Gumus, Department of Physics, Faculty of Science and Arts, Ondokuz Mayis University, 55139 Samsun, Turkey, Tel 90362312/3791741, Fax +90 362 457 6081

Received: January 26, 2018 | Published: May 1, 2018

Citation: Gumus W, Namdar T, Bentabet A. Positron stopping power in some biological compounds for intermediate energies with generalized oscillator strength model. Int J Mol Biol Open Access. 2018;3(3):87-94. DOI: 10.15406/ijmboa.2018.03.00057

Download PDF

Abstract

In this study total inelastic differential cross section and related stopping power expressions for positron were obtained by using generalized oscillator strength model. The stopping powers of low atomic number targets and of some biological compounds for positrons were calculated over the energy range from 50 eV to 10 MeV. Calculations of the stopping powers (SPs) for some low atomic number targets: H2, C, N2, O2, P and for biological compounds: C5H5N5 (adenine), C5H5N5O (guanine), C5H5N3O (cytosine), C5H6N2O2 (thymine), C20H27N7O13P2 (cytosine-guanine), and C19H26N8O13P2 (thymine-adenine), have been evaluated for incident positrons in the 50 eV-10 MeV energy range. A detailed comparison of the calculated results with the other theoretical and experimental data for these target materials were presented. The calculated results of stopping powers for positrons in energy range from 50 eV to 10 MeV were found to be in good agreement to within 5% above 100 eV energies with other theoretical results.

Keywords: positron stopping power, generalized oscillator strength, biological compounds, bragg rule

Introduction

Stopping powers (SPs) of matter for positrons are important in wide variety of applications such as nuclear medicine, radiology, basic paticle physics, health physics, and radiation dosimeters design. Positron stopping powers (PSPs) at energies above 10 keV are theoretically well described and can be found in tables given in Berger & Seltzer1 and the ICRU 37 Report.2 The stopping power formula for positrons obtained by Batra3 had been fitted by a two-parameter approximation and is valid for the energy range from 1 keV to 500 keV. On the other hand, Meiring et al.,4 developed a theory of multiple scattering, exhibiting differences between positrons and electrons in the interaction with matter for the MeV energy range. In recent years there have been many studies on positron stopping power and its applications.5-8

We obtained, in a previous study9 the SP formula for intermediate energy electrons, by using the generalized oscillator strength (GOS) model. Stopping power Calculations for positrons have not been studied as much, though their tracks in matter are frequently assumed to be similar to those of electrons. Positrons are used for imaging purposes (for example, PET), but can also be used for cancer therapy.10 Hence, it is important to obtain SP values, for many applications in the lower energy range (<1 keV). The purpose of this study is actually to obtain a SP formula for incident positrons, valid for the low and intermediate energy region (<10 keV). The PSP formula given in this study is based on the Generalized Oscillator Strength (GOS) model11 and a modification of it using the effective electron number (EEN) and effective mean excitation energies (EMEEs). In this PSP formula, analytical expressions obtained in the previous work12,13 for the EEN and EMEE of target atoms are used. Thus the obtained calculating procedure was applied to evaluate the stppping power (SP) values for incoming positrons on hydrogen, carbon, nirogen, phospore, and liquid water targets. For positrons at low energies the inelastic interaction characteristics, stopping power, can not be obtained directly from Bethe’s PSP theory or from experiments, which gives accurate PSPs at energies larger than 10 keV. At lower energies the theory is, in general, invalid. For low energy positrons a method used way to estimate the mentioned characteristic are dielectric theoretical methods, based on the use of the complex dielectric function ε(q,ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzcaGGOaGaamyCaiaacYcacqaHjpWDcaGGPaaaaa@3CF8@ , q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqWIpe cAcaWGXbaaaa@38A4@ and ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqWIpe cAcqaHjpWDaaa@397B@  being the momentum and energy transfer. To calculate the stopping power, other method is to make use of the inelastic differential cross section suggested by Inokuti11 with Generalized Oscillator Strength (GOS). Actulally, the GOS model has to be calculated from matrix elements that involve numerical integration of atomic wave functions. The aim of this study is to obtain stopping power and total inelastic differential cross section expressions for positron using the GOS model for biological compounds, valid for low and intermediate energies. Applying the GOS model, anlytical expressions for the calculation of stopping Powers (SPs) have been given for biological targets. In this study total inelastic differential cross sections and stopping power expressions for positron were obtained by using Generalized Oscillator Strength (GOS) model. The calculated results of PSPs of the biological compounds, have been compared with the theoretical and semiemprical results. In additon, using the described model in this study, the PSPs for some important biological compounds (C5H5N5 (adenine), C5H5N3O (cytosine), C20H27N7O13P2 (cytosine-guanine), C5H5N5O (guanine), C5H6N2O2 (thymine), and C19H26N8O13P2 (thymine-adenine)) have been calculated (Table 1).

Enerji (eV)

1-

2-

3-

4-

5-

6-

7-

Adenine

Cytosine

Guanine

Thymine

cytosine-guanine

thymine-adenine

Liquid water

50

608.44

551.57

544.02

503.54

425.85

429.94

287.54

60

596.07

598.07

577.46

594.73

549.58

553.25

639.45

70

575.44

578.56

559.63

576.07

534.1

537.32

625.72

80

552.43

556.21

538.69

554.32

515.12

517.99

606.35

90

529.39

533.59

517.27

532.13

495.35

497.93

585.1

100

507.34

511.78

496.48

510.64

475.98

478.34

563.74

200

355.27

359.69

350.05

359.71

337.24

338.52

404.08

300

276.5

280.31

273.11

280.55

267.64

268.54

317.09

400

228.49

231.81

225.99

232.12

223.39

224.1

263.22

500

195.92

198.85

193.94

199.17

192.41

192.99

226.36

600

172.21

174.84

170.58

175.16

169.67

170.17

199.38

700

154.1

156.5

152.71

156.81

152.21

152.64

178.71

800

144.37

146.46

142.68

147.21

142.05

142.64

162.29

900

132.89

134.8

131.32

135.56

130.85

131.41

148.91

1000

123.26

125.03

121.8

125.79

121.46

121.99

137.76

2000

76.75

77.88

76.17

78.27

75.96

76.19

86.68

3000

56.64

57.46

56.25

57.73

56.1

56.27

63.77

4000

45.44

46.08

45.13

46.3

45.02

45.15

51.06

5000

38.21

38.74

37.96

38.92

37,94

38,05

42,88

6000

33,12

33.58

32.91

33.74

32,91

33,00

37,15

7000

29,33

29.74

29.15

29.88

29,16

29,24

32,87

8000

26,39

26,75

26,23

26.88

26.24

26.31

29.55

9000

24.04

24.37

23.9

24.48

23.91

23.97

26.9

10000

22.11

22.41

21.99

22.51

21.1

22.05

24.73

20000

12.73

12.9

12.66

12.96

12.68

12.71

14.2

30000

9.25

9.37

9.2

9.41386

9.22

9.24

10.31

40000

7.41

7.5

7.37

7.53742

7.39

7.41

8.25

50000

6.25

6.33

6.22

6.35917

6.24

6.25

6.96

60000

5.46

5.53

5.43

5.55659

5.45

5.46

6.07

70000

4.89

4.95

4.86

4.97273

4.88

4.89

5.44

80000

4.45

4.51

4.43

4.5264

4.44

4.45

4.95

90000

4.1

4.16

4.08

4.18

4.1

4.11

4.56

100000

3.83

3.87

3.81

3.89

3.82

3.83

4.25

200000

2.54

2.57

2.53

2.58

2.54

2.54

2.82

300000

2.12

2.14

2.11

2.15

2.12

2.12

2.35

400000

1.92

1.94

1.91

1.95

1.92

1.92

2.13

500000

1.81

1.83

1.8

1.84

1.8

1.81

2

600000

1.74

1.76

1.73

1.77

1.74

1.74

1.93

700000

1.7

1.72

1.69

1.73

1.7

1.7

1.89

800000

1.67

1.69

1.66

1.7

1.67

1.68

1.89

900000

1.66

1.68

1.65

1.68

1.66

1.66

1.83

1000000

1.65

1.67

1.63

1.67

1.65

1.65

1.82

Table 1 SPs (MeVcm2/g) for 1-C5H5N5 (adenine), 2-C4H5N3O (cytosine), 3-C5H5N5O (guanine), 4-C5H6N2O2 (thymine), 5-C20H27N7O13P2 (cytosine-guanine), 6-C19H26N8O13P2 (thymine-adenine) and 7- H2O (liquid water). Bold figures are the data of lower accuracy.

Theory

In inelastic interactions the target atom is either excited to a suitable higher level than the ground level or it is ionized depending on the energy that the arriving particle imparts to the target atom.

Consider a positron (mass m, charge +e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHRa WkcaWGLbaaaa@3851@ ), moving with velocity v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG2b aaaa@3780@ . IDCS) obtained from the first Born approximation is given by Inokuti11 & Bichsel14 as

d 2 σ dQdW =χ 1 QW df(Q,W) dW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqz GeGaeq4WdmhakeaajugibiaadsgacaWGrbGaamizaiaadEfaaaGaey ypa0Jaeq4Xdmwcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWG rbGaam4vaaaajuaGdaWcaaGcbaqcLbsacaWGKbGaamOzaiaacIcaca WGrbGaaiilaiaadEfacaGGPaaakeaajugibiaadsgacaWGxbaaaaaa @5172@    (1)

where χ=2π e 4 /m c 2 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhp WycqGH9aqpcaaIYaGaeqiWdaNaamyzaKqbaoaaCaaaleqajeaibaqc LbmacaaI0aaaaKqzGeGaai4laiaad2gacaWGJbqcfa4aaWbaaSqabK qaGeaajugWaiaaikdaaaqcLbsacqaHYoGyjuaGdaahaaWcbeqcbasa aKqzadGaaGOmaaaaaaa@4A60@ , W is energy loss and Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb aaaa@375B@  is the recoil energy given as

Q= q 2 /2m=2EW2 E(EW) cosθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb Gaeyypa0JaamyCaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqz GeGaai4laiaaikdacaWGTbGaeyypa0JaaGOmaiaadweacqGHsislca WGxbGaeyOeI0IaaGOmaKqbaoaakaaakeaajugibiaadweacaGGOaGa amyraiabgkHiTiaadEfacaGGPaaaleqaaKqzGeGaci4yaiaac+gaca GGZbGaeqiUdehaaa@5024@    (2)

Q is normally used instead of the momentum transfer q or the angular deflection θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@37AD@ ; E is the kinetic energy of the incident particle. The function df(Q,W)/dW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb GaamOzaiaacIcacaWGrbGaaiilaiaadEfacaGGPaGaai4laiaadsga caWGxbaaaa@3E8C@  is the genralized oscillator strength (GOS), which is described in detail by Inokuti.11 The GOS can be represented as a surface over the plane (Q, W), known as the Bethe surface, is defined as

df(Q,W) dW W Q | Ψ| j=1 Z exp(iq. r j /) | Ψ 0 | 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaiaadAgacaGGOaGaamyuaiaacYcacaWGxbGaaiyk aaGcbaqcLbsacaWGKbGaam4vaaaacqGHHjIUjuaGdaWcaaGcbaqcLb sacaWGxbaakeaajugibiaadgfaaaqcfa4aaqWaaOqaaKqbaoaaamaa keaajugibiabfI6azLqbaoaaemaakeaajuaGdaaeWbGcbaqcLbsaci GGLbGaaiiEaiaacchacaGGOaGaamyAaiaadghacaGGUaGaamOCaKqb aoaaBaaajeaibaqcLbmacaWGQbaaleqaaKqzGeGaai4laiabl+qiOj aacMcaaKqaGeaajugWaiaadQgacqGH9aqpcaaIXaaajeaibaqcLbma caWGAbaajugibiabggHiLdaakiaawEa7caGLiWoajugibiabfI6azL qbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaaGccaGLPmIaayPkJaaa caGLhWUaayjcSdqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaaaa@6F78@ (3)

where Ψ0 and Ψ are the ground state and excited state atomic or molecular wave functions, respectively, and the sum runs over the Z electrons in the target.

The total IDCS can be written as follows.15

σ n = 0 W max dW W n Q Q + dQ d 2 σ dQdW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCjuaGdaahaaWcbeqcbasaaKqzadGaamOBaaaajugibiabg2da9Kqb aoaapehakeaajugibiaadsgacaWGxbGaam4vaKqbaoaaCaaaleqaje aibaqcLbmacaWGUbaaaKqbaoaapehakeaajugibiaadsgacaWGrbqc fa4aaSaaaOqaaKqzGeGaamizaKqbaoaaCaaaleqajeaibaqcLbmaca aIYaaaaKqzGeGaeq4WdmhakeaajugibiaadsgacaWGrbGaamizaiaa dEfaaaaaleaajugibiaadgfajuaGdaWgaaqccasaaKqzadGaeyOeI0 cameqaaaWcbaqcLbsacaWGrbqcfa4aaSbaaKGaGeaajugWaiabgUca RaadbeaajuaGdaahaaadbeqaaaaaaKqzGeGaey4kIipaaSqaaKqzGe GaaGimaaWcbaqcLbsacaWGxbqcfa4aaSbaaKGaGeaajugWaiGac2ga caGGHbGaaiiEaaadbeaaaKqzGeGaey4kIipaaaa@68FA@  (4)

The recoil energies lie in the interval Q <Q< Q + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb qcfa4aaSbaaKqaGeaajugWaiabgkHiTaWcbeaajugibiabgYda8iaa dgfacqGH8aapcaWGrbqcfa4aaSbaaKqaGeaajugWaiabgUcaRaWcbe aaaaa@4191@  and Q , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb qcfa4aaSbaaKqaGeaajugWaiabgkHiTaWcbeaajugibiaacYcaaaa@3B99@ is given by Fano16 as mentioned by Inokuti17 as follows:

Q (E,W)= (m c 2 ) 2 + W 2 β 2 m c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb qcfa4aaSbaaKqaGeaajugWaiabgkHiTaWcbeaajugibiaacIcacaWG fbGaaiilaiaadEfacaGGPaGaeyypa0tcfa4aaOaaaOqaaKqzGeGaai ikaiaad2gacaWGJbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqc LbsacaGGPaqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacq GHRaWkjuaGdaWcaaGcbaqcLbsacaWGxbqcfa4aaWbaaSqabKqaGeaa jugWaiaaikdaaaaakeaajugibiabek7aILqbaoaaCaaaleqajeaiba qcLbmacaaIYaaaaaaaaSqabaqcLbsacqGHsislcaWGTbGaam4yaKqb aoaaCaaaleqajeaibaqcLbmacaaIYaaaaaaa@5BC1@  (5)

The stopping power is given as follows:

S=N σ (1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb Gaeyypa0JaamOtaiabeo8aZLqbaoaaCaaaleqajeaibaqcLbmacaGG OaGaaGymaiaacMcaaaaaaa@3F20@ (6)

Heree σ (1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaW baaSqabeaacaGGOaGaaGymaiaacMcaaaaaaa@39FB@  is the stopping cross section. The function df(Q,W)/dW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb GaamOzaiaacIcacaWGrbGaaiilaiaadEfacaGGPaGaai4laiaadsga caWGxbaaaa@3E8C@ is the GOS. This GOS satisfies the Bethe sum rule:11

1 Z 0 df(Q,W) dW dW=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaaGymaaGcbaqcLbsacaWGAbaaaKqbaoaapehakeaajuaG daWcaaGcbaqcLbsacaWGKbGaamOzaiaacIcacaWGrbGaaiilaiaadE facaGGPaaakeaajugibiaadsgacaWGxbaaaaqcbasaaKqzadGaaGim aaqcbasaaKqzadGaeyOhIukajugibiabgUIiYdGaamizaiaadEfacq GH9aqpcaaIXaaaaa@4E5D@     or i=1 M f i =Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabCaO qaaKqzGeGaamOzaKqbaoaaBaaajeaibaqcLbmacaWGPbaaleqaaaqc basaaKqzadGaamyAaiabg2da9iaaigdaaKqaGeaajugWaiaad2eaaK qzGeGaeyyeIuoacqGH9aqpcaWGAbaaaa@45D7@  (7)

Here Z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaaaa@36D6@ is the number of electrons per atom or molecule. The GOS is given by Liljequist18 as

df(Q,W) dW i=1 M f i F( W i ;Q,W) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaiaadAgacaGGOaGaamyuaiaacYcacaWGxbGaaiyk aaGcbaqcLbsacaWGKbGaam4vaaaacqGHHjIUjuaGdaaeWbGcbaqcLb sacaWGMbqcfa4aaSbaaKqaGeaajugWaiaadMgaaSqabaaajeaibaqc LbmacaWGPbGaeyypa0JaaGymaaqcbasaaKqzadGaamytaaqcLbsacq GHris5aiaadAeacaGGOaGaam4vaKqbaoaaBaaajeaibaqcLbmacaWG PbaaleqaaKqzGeGaai4oaiaadgfacaGGSaGaam4vaiaacMcaaaa@588F@  (8)

where M, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb Gaaiilaaaa@3807@ f i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaSbaaKqaGeaajugWaiaadMgaaSqabaaaaa@3A70@  and W i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb qcfa4aaSbaaKqaGeaajugWaiaadMgaaSqabaaaaa@3A61@  are the number of shells, oscillator strengths for the i th shell of the target atom and i th shell resonance energies, respectively. Oscillators may be considered as the total spectrum of excitations of electrons belonging to a shell. The excitation spectrum, F( W i ;Q,W) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb GaaiikaiaadEfajuaGdaWgaaqcbasaaKqzadGaamyAaaWcbeaajugi biaacUdacaWGrbGaaiilaiaadEfacaGGPaaaaa@4035@  has been suggested by Liljequist18 to be written as

F( W i ;Q,W)=δ(W W i )θ( W i Q)+δ(WQ)θ(Q W i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb GaaiikaiaadEfajuaGdaWgaaqcbasaaKqzadGaamyAaaWcbeaajugi biaacUdacaWGrbGaaiilaiaadEfacaGGPaGaeyypa0JaeqiTdqMaai ikaiaadEfacqGHsislcaWGxbqcfa4aaSbaaKqaGeaajugWaiaadMga aSqabaqcLbsacaGGPaGaeqiUdeNaaiikaiaadEfajuaGdaWgaaqcba saaKqzadGaamyAaaWcbeaajugibiabgkHiTiaadgfacaGGPaGaey4k aSIaeqiTdqMaaiikaiaadEfacqGHsislcaWGrbGaaiykaiabeI7aXj aacIcacaWGrbGaeyOeI0Iaam4vaKqbaoaaBaaajeaibaqcLbmacaWG PbaaleqaaKqzGeGaaiykaaaa@6366@  (9)

where δ(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH0o azcaGGOaGaamiEaiaacMcaaaa@3A80@  is the Dirac delta function and θ(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCcaGGOaGaamiEaiaacMcaaaa@3A91@  is a step function ( θ(x)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCcaGGOaGaamiEaiaacMcacqGH9aqpcaaIWaaaaa@3C51@  if x<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b GaeyipaWJaaGimaaaa@3940@  and θ(x)=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCcaGGOaGaamiEaiaacMcacqGH9aqpcaaIXaaaaa@3C52@  if x0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b GaeyyzImRaaGimaaaa@3A02@ ).

According to Bohr19 and as mentioned by Liljequist,18 the inelastic excitations may be separated into two parts because of resonance-like interactions with bound electrons (inner shell) and other interactions with large momentum transfer where the atomic electrons may be considered as free. The resonance-like interactions correspond to excitations with low momentum transfer ( QW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb GaeyykJeUaam4vaaaa@39F0@ ) and with energy transfers of the order of the binding energy ( W= W i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb Gaeyypa0Jaam4vaKqbaoaaBaaajeaibaqcLbmacaWGPbaaleqaaaaa @3C43@ ). Interactions with large momentum transfer are defined as WQ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb GaeyyrIaKaamyuaaaa@396A@ ; in this region the atomic electrons are considered as rest and free.

The corresponding the OOS reduces to

Q0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb GaeyOKH4QaaGimaaaa@3A02@ df(Q=0,W) dW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaiaadAgacaGGOaGaamyuaiabg2da9iaaicdacaGG SaGaam4vaiaacMcaaOqaaKqzGeGaamizaiaadEfaaaaaaa@40DA@ = df(W) dW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaiaadAgacaGGOaGaam4vaiaacMcaaOqaaKqzGeGa amizaiaadEfaaaaaaa@3D94@ (10)

Preparation of the OOS for inner shell ionization (generally K shell) and for energy losses above MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyisISlaaa@37A8@ 100 eV, has been obtained either from optical data11 or by data in the X-ray region related to inner shell ionization. In this situation, the OOS is calculated by means of the relation.15,20

df(W) dW = mc 2 π 2 e 2 σ ph MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaiaadAgacaGGOaGaam4vaiaacMcaaOqaaKqzGeGa amizaiaadEfaaaGaeyypa0tcfa4aaSaaaOqaaKqzGeGaamyBaiaado gaaOqaaKqzGeGaaGOmaiabec8aWLqbaoaaCaaaleqajeaibaqcLbma caaIYaaaaKqzGeGaeS4dHGMaamyzaKqbaoaaCaaaleqajeaibaqcLb macaaIYaaaaaaajugibiabeo8aZLqbaoaaBaaajeaibaqcLbmacaWG WbGaamiAaaWcbeaaaaa@5343@  or f k = 1 109.8 B k σ ph (E)dE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaSbaaKqaGeaajugWaiaadUgaaSqabaqcLbsacqGH9aqpjuaG daWcaaGcbaqcLbsacaaIXaaakeaajugibiaaigdacaaIWaGaaGyoai aac6cacaaI4aaaaKqbaoaapehakeaajugibiabeo8aZLqbaoaaBaaa jeaibaqcLbmacaWGWbGaamiAaaWcbeaajugibiaacIcacaWGfbGaai ykaiaadsgacaWGfbaaleaajugibiaadkeajuaGdaWgaaqccasaaKqz adGaam4AaaadbeaaaKqaGeaajugWaiabg6HiLcqcLbsacqGHRiI8aa aa@578F@   (11)

where σ ph MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCjuaGdaWgaaqcbasaaKqzadGaamiCaiaadIgaaSqabaaaaa@3C3C@ =(E) is the photoelectric cross section (in barns) at a given energy E (in MeV). The photoelectric cross section, σ ph , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCjuaGdaWgaaqcbasaaKqzadGaamiCaiaadIgaaSqabaqcLbsacaGG Saaaaa@3D7B@  can be obtained from experimentally based tables21 or by using theoretical photoelectric cross section formulae. Other than this is a Local Plasma Approximation (LPA) of the OOS.22 For several molecules, the K shell oscillator strength, f k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGRbaabeaaaaa@37FE@  was calculated by means of a numerical integration (trapezoidal rule) of Eq. (11) using photoelectric cross sections given by Henke et al.,21 at binding energies from 50 eV to 1 keV and for other energies (1 keV to 1 MeV) using the XCOM program produced Berger et al.,23 by Akar & Gumus.,9 In this paper, with the aim of checking of OOSs, we used the values of a, fk and Wv callculated b Akar & Gumus9 and culcated he alues of f and for biological targets. I for positrons. The mean ionisation energy of biological compounds were calculated from Bragg’s addition rule.24

Theoretical calculation of positron stopping powers

Excitations with QW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb GaeyykJeUaam4vaaaa@39F0@ which have resonance-like character can be defined as distant collisions and excitations with Q=W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb Gaeyypa0Jaam4vaaaa@393D@ which correspond to free collisions may be referred to as close collisions.24 The DCS for inelastic collisions obtained from GOS model can be split into contributions from distant longitudinal, distant transverse and close ineraction,

d 2 σ in dQdW = d 2 σ d,l dQdW + d 2 σ d,t dQdW + d 2 σ c dQdW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqz GeGaeq4Wdmxcfa4aaSbaaKqaGeaajugWaiaadMgacaWGUbaaleqaaa GcbaqcLbsacaWGKbGaamyuaiaadsgacaWGxbaaaiabg2da9Kqbaoaa laaakeaajugibiaadsgajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaa aajugibiabeo8aZLqbaoaaBaaajeaibaqcLbmacaWGKbGaaiilaiaa dYgaaSqabaaakeaajugibiaadsgacaWGrbGaamizaiaadEfaaaGaey 4kaSscfa4aaSaaaOqaaKqzGeGaamizaKqbaoaaCaaaleqajeaibaqc LbmacaaIYaaaaKqzGeGaeq4Wdmxcfa4aaSbaaKqaGeaajugWaiaads gacaGGSaGaamiDaaWcbeaaaOqaaKqzGeGaamizaiaadgfacaWGKbGa am4vaaaacqGHRaWkjuaGdaWcaaGcbaqcLbsacaWGKbqcfa4aaWbaaS qabKqaGeaajugWaiaaikdaaaqcLbsacqaHdpWCjuaGdaWgaaqcbasa aKqzadGaam4yaaWcbeaaaOqaaKqzGeGaamizaiaadgfacaWGKbGaam 4vaaaaaaa@7665@     (12)

For the case distant interactions, the CSs of electrons and positrons are the same. But positrons in matter are unstable particle that annihilate with s giving photons. Electron-positron pairs can be created if enough electromagnetic energy (>2mc2) is available (either from real or virtual photons). A positron does not interact with matter as a usual stable positively charged particle, since the competing process of annihilation followed by re-creation can cause the same transitions as “direct” scattering.25,26 The DCS for binary collisions of positrons with free electrons at rest, obtained from the first Born approximation including the “annihilation or creation” mechanism, is given by the Bhabha27 formula,

d 2 σ B dQdW =χ 1 W 2 [ 1 b 1 W E + b 2 ( W E ) 2 b 3 ( W E ) 3 + b 4 ( W E ) 4 ]δ(WQ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqz GeGaeq4Wdmxcfa4aaSbaaKqaGeaajugWaiaadkeaaSqabaaakeaaju gibiaadsgacaWGrbGaamizaiaadEfaaaGaeyypa0Jaeq4Xdmwcfa4a aSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWGxbqcfa4aaWbaaSqabK qaGeaajugWaiaaikdaaaaaaKqbaoaadmaakeaajugibiaaigdacqGH sislcaWGIbqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcfa4aaS aaaOqaaKqzGeGaam4vaaGcbaqcLbsacaWGfbaaaiabgUcaRiaadkga juaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajuaGdaqadaGcbaqcfa 4aaSaaaOqaaKqzGeGaam4vaaGcbaqcLbsacaWGfbaaaaGccaGLOaGa ayzkaaqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacqGHsi slcaWGIbqcfa4aaSbaaKqaGeaajugWaiaaiodaaSqabaqcfa4aaeWa aOqaaKqbaoaalaaakeaajugibiaadEfaaOqaaKqzGeGaamyraaaaaO GaayjkaiaawMcaaKqbaoaaCaaaleqajeaibaqcLbmacaaIZaaaaKqz GeGaey4kaSIaamOyaKqbaoaaBaaajeaibaqcLbmacaaI0aaaleqaaK qbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacaWGxbaakeaajugibiaa dweaaaaakiaawIcacaGLPaaajuaGdaahaaWcbeqcbasaaKqzadGaaG inaaaaaOGaay5waiaaw2faaKqzGeGaeqiTdqMaaiikaiaadEfacqGH sislcaWGrbGaaiykaaaa@8785@   (13)

where
b 1 = ( γ1 γ ) 2 2 ( γ+1 ) 2 1 γ 2 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb qcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacqGH9aqpjuaG daqadaGcbaqcfa4aaSaaaOqaaKqzGeGaeq4SdCMaeyOeI0IaaGymaa GcbaqcLbsacqaHZoWzaaaakiaawIcacaGLPaaajuaGdaahaaWcbeqc basaaKqzadGaaGOmaaaajuaGdaWcaaGcbaqcLbsacaaIYaqcfa4aae WaaOqaaKqzGeGaeq4SdCMaey4kaSIaaGymaaGccaGLOaGaayzkaaqc fa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacqGHsislcaaIXa aakeaajugibiabeo7aNLqbaoaaCaaaleqajeaibaqcLbmacaaIYaaa aKqzGeGaeyOeI0IaaGymaaaaaaa@5BCB@ b 2 = ( γ1 γ ) 2 3 ( γ+1 ) 2 +1 ( γ 2 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb qcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqcLbsacqGH9aqpjuaG daqadaGcbaqcfa4aaSaaaOqaaKqzGeGaeq4SdCMaeyOeI0IaaGymaa GcbaqcLbsacqaHZoWzaaaakiaawIcacaGLPaaajuaGdaahaaWcbeqc basaaKqzadGaaGOmaaaajuaGdaWcaaGcbaqcLbsacaaIZaqcfa4aae WaaOqaaKqzGeGaeq4SdCMaey4kaSIaaGymaaGccaGLOaGaayzkaaqc fa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcaaIXa aakeaajuaGdaqadaGcbaqcLbsacqaHZoWzjuaGdaahaaWcbeqcbasa aKqzadGaaGOmaaaajugibiabgkHiTiaaigdaaOGaayjkaiaawMcaaK qbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaaaaaa@60BC@         b 3 = ( γ1 γ ) 2 2γ( γ1 ) ( γ 2 +1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb qcfa4aaSbaaKqaGeaajugWaiaaiodaaSqabaqcLbsacqGH9aqpjuaG daqadaGcbaqcfa4aaSaaaOqaaKqzGeGaeq4SdCMaeyOeI0IaaGymaa GcbaqcLbsacqaHZoWzaaaakiaawIcacaGLPaaajuaGdaahaaWcbeqc basaaKqzadGaaGOmaaaajuaGdaWcaaGcbaqcLbsacaaIYaGaeq4SdC wcfa4aaeWaaOqaaKqzGeGaeq4SdCMaeyOeI0IaaGymaaGccaGLOaGa ayzkaaaabaqcfa4aaeWaaOqaaKqzGeGaeq4SdCwcfa4aaWbaaSqabK qaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcaaIXaaakiaawIcacaGL PaaajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaaaaaa@5D5E@                                                                  b 2 = ( γ1 γ ) 2 ( γ1 ) 2 ( γ+1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaaIYaaabeaakiabg2da9maabmaabaWaaSaaaeaacqaHZoWz cqGHsislcaaIXaaabaGaeq4SdCgaaaGaayjkaiaawMcaamaaCaaale qabaGaaGOmaaaakmaalaaabaWaaeWaaeaacqaHZoWzcqGHsislcaaI XaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGcbaWaaeWaae aacqaHZoWzcqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaa caaIYaaaaaaaaaa@4BE9@ (14)

The DCSs for distant interactions is the sum of contributions from transverse and longitudinal interactions:

d σ d dW =χ k f k { 1 W 2 m e c 2 Q(Q+2 m e c 2 ) + 1 W [ ln( 1 1 β 2 ) β 2 δ F ] }δ(E W k )θ( W k Q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaiabeo8aZLqbaoaaBaaajeaibaqcLbmacaWGKbaa leqaaaGcbaqcLbsacaWGKbGaam4vaaaacqGH9aqpcqaHhpWyjuaGda aeqbGcbaqcLbsacaWGMbqcfa4aaSbaaSqaaKqzGeGaam4AaaWcbeaa aKqaGeaajugWaiaadUgaaSqabKqzGeGaeyyeIuoajuaGdaGadaGcba qcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWGxbaaaKqbaoaa laaakeaajugibiaaikdacaWGTbqcfa4aaSbaaKqaGeaajugWaiaadw gaaSqabaqcLbsacaWGJbqcfa4aaWbaaSqabKqaGeaajugWaiaaikda aaaakeaajugibiaadgfacaGGOaGaamyuaiabgUcaRiaaikdacaWGTb qcfa4aaSbaaKqaGeaajugWaiaadwgaaSqabaqcLbsacaWGJbqcfa4a aWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacaGGPaaaaiabgUcaRK qbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaam4vaaaajuaGdaWa daGcbaqcLbsaciGGSbGaaiOBaKqbaoaabmaakeaajuaGdaWcaaGcba qcLbsacaaIXaaakeaajugibiaaigdacqGHsislcqaHYoGyjuaGdaah aaWcbeqcbasaaKqzadGaaGOmaaaaaaaakiaawIcacaGLPaaajugibi abgkHiTiabek7aILqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqz GeGaeyOeI0IaeqiTdqwcfa4aaSbaaKqaGeaajugWaiaadAeaaSqaba aakiaawUfacaGLDbaaaiaawUhacaGL9baajugibiabes7aKjaacIca caWGfbGaeyOeI0Iaam4vaKqbaoaaBaaajeaibaqcLbmacaWGRbaale qaaKqzGeGaaiykaiabeI7aXjaacIcacaWGxbqcfa4aaSbaaKqaGeaa jugWaiaadUgaaSqabaqcLbsacqGHsislcaWGrbGaaiykaaaa@9C80@ (15)

Using Eq. (13) and Eq. (14), total inelastic differential cross section are given with following expression:

σ in (1) =χ k f k { ln( W k Q +2 m e c 2 Q W k +2 m e c 2 )+ln( 1 1 β 2 ) β 2 δ F + 1 W [ 1 b 1 W E + b 2 ( W E ) 2 b 3 ( W E ) 3 + b 4 ( W E ) 4 ] } Θ( W mak W k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi abeo8aZLqbaoaaDaaajeaibaqcLbmacaWGPbGaamOBaaqcbasaaKqz adGaaiikaiaaigdacaGGPaaaaKqzGeGaeyypa0Jaeq4Xdmgakeaaju aGdaaeqbGcbaqcLbsacaWGMbqcfa4aaSbaaKqaGeaajugWaiaadUga aSqabaaajeaibaqcLbmacaWGRbaaleqajugibiabggHiLdqcfa4aai WaaOqaaKqzGeGaciiBaiaac6gajuaGdaqadaGcbaqcfa4aaSaaaOqa aKqzGeGaam4vaKqbaoaaBaaajeaibaqcLbmacaWGRbaaleqaaKqzGe GaamyuaKqbaoaaBaaajeaybaqcLbmacqGHsislaSqabaqcLbsacqGH RaWkcaaIYaGaamyBaKqbaoaaBaaajeaibaqcLbmacaWGLbaaleqaaK qzGeGaam4yaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaGcbaqc LbsacaWGrbqcfa4aaSbaaKqaGeaajugWaiabgkHiTaWcbeaajugibi aadEfajuaGdaWgaaqcbasaaKqzadGaam4AaaWcbeaajugibiabgUca RiaaikdacaWGTbqcfa4aaSbaaKqaGeaajugWaiaadwgaaSqabaqcLb sacaWGJbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaaaaGccaGL OaGaayzkaaqcLbsacqGHRaWkciGGSbGaaiOBaKqbaoaabmaakeaaju aGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaaigdacqGHsislcqaH YoGyjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaaaakiaawIcaca GLPaaajugibiabgkHiTiabek7aILqbaoaaCaaaleqajeaibaqcLbma caaIYaaaaKqzGeGaeyOeI0IaeqiTdqwcfa4aaSbaaKqaGeaajugWai aadAeaaSqabaqcLbsacqGHRaWkjuaGdaWcaaGcbaqcLbsacaaIXaaa keaajugibiaadEfaaaqcfa4aamWaaOqaaKqzGeGaaGymaiabgkHiTi aadkgajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajuaGdaWcaaGc baqcLbsacaWGxbaakeaajugibiaadweaaaGaey4kaSIaamOyaKqbao aaBaaajeaibaqcLbmacaaIYaaaleqaaKqbaoaabmaakeaajuaGdaWc aaGcbaqcLbsacaWGxbaakeaajugibiaadweaaaaakiaawIcacaGLPa aajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiabgkHiTiaa dkgajuaGdaWgaaqcbasaaKqzadGaaG4maaWcbeaajuaGdaqadaGcba qcfa4aaSaaaOqaaKqzGeGaam4vaaGcbaqcLbsacaWGfbaaaaGccaGL OaGaayzkaaqcfa4aaWbaaSqabKqaGeaajugWaiaaiodaaaqcLbsacq GHRaWkcaWGIbqcfa4aaSbaaKqaGeaajugWaiaaisdaaSqabaqcfa4a aeWaaOqaaKqbaoaalaaakeaajugibiaadEfaaOqaaKqzGeGaamyraa aaaOGaayjkaiaawMcaaKqbaoaaCaaaleqajeaibaqcLbmacaaI0aaa aaGccaGLBbGaayzxaaaacaGL7bGaayzFaaqcLbsacaqGGaGaeuiMde vcfa4aaeWaaOqaaKqzGeGaam4vaKqbaoaaBaaajeaibaqcLbmacaWG TbGaamyyaiaadUgaaSqabaqcLbsacqGHsislcaWGxbqcfa4aaSbaaK qaGeaajugWaiaadUgaaSqabaaakiaawIcacaGLPaaaaaaa@DF49@ (16)

By using Eq. (6) and Eq. (16), and taking W max =E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb qcfa4aaSbaaKqaGeaajugWaiGac2gacaGGHbGaaiiEaaWcbeaajugi biabg2da9iaadweaaaa@3EA6@ , SP for positrons can be written as follow,
S(E)=Nχ k f k { ln( W k Q +2 m e c 2 Q W k +2 m e c 2 )+ln( 1 1 β 2 ) β 2 δ F + 1 W [ 1 b 1 W E + b 2 ( W E ) 2 b 3 ( W E ) 3 + b 4 ( W E ) 4 ] } Θ( W mak W , ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadofacaGGOaGaamyraiaacMcacqGH9aqpcaWGobGaeq4Xdmgakeaa juaGdaaeqbGcbaqcLbsacaWGMbqcfa4aaSbaaKqaGeaajugWaiaadU gaaSqabaaajeaibaqcLbmacaWGRbaaleqajugibiabggHiLdqcfa4a aiWaaOqaaKqzGeGaciiBaiaac6gajuaGdaqadaGcbaqcfa4aaSaaaO qaaKqzGeGaam4vaKqbaoaaBaaajeaibaqcLbmacaWGRbaaleqaaKqz GeGaamyuaKqbaoaaBaaajeaibaqcLbmacqGHsislaSqabaqcLbsacq GHRaWkcaaIYaGaamyBaKqbaoaaBaaajeaibaqcLbmacaWGLbaaleqa aKqzGeGaam4yaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaGcba qcLbsacaWGrbqcfa4aaSbaaKqaGeaajugWaiabgkHiTaWcbeaajugi biaadEfajuaGdaWgaaWcbaqcLbsacaWGRbaaleqaaKqzGeGaey4kaS IaaGOmaiaad2gajuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaajugi biaadogajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaaaakiaawI cacaGLPaaajugibiabgUcaRiGacYgacaGGUbqcfa4aaeWaaOqaaKqb aoaalaaakeaajugibiaaigdaaOqaaKqzGeGaaGymaiabgkHiTiabek 7aILqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaaaaOGaayjkaiaa wMcaaKqzGeGaeyOeI0IaeqOSdiwcfa4aaWbaaSqabKqaGeaajugWai aaikdaaaqcLbsacqGHsislcqaH0oazjuaGdaWgaaqcbasaaKqzadGa amOraaWcbeaajugibiabgUcaRKqbaoaalaaakeaajugibiaaigdaaO qaaKqzGeGaam4vaaaajuaGdaWadaGcbaqcLbsacaaIXaGaeyOeI0Ia amOyaKqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqbaoaalaaake aajugibiaadEfaaOqaaKqzGeGaamyraaaacqGHRaWkcaWGIbqcfa4a aSbaaKqaafaajug4aiaaikdaaSqabaqcfa4aaeWaaOqaaKqbaoaala aakeaajugibiaadEfaaOqaaKqzGeGaamyraaaaaOGaayjkaiaawMca aKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaeyOeI0Iaam OyaKqbaoaaBaaajeaibaqcLbmacaaIZaaaleqaaKqbaoaabmaakeaa juaGdaWcaaGcbaqcLbsacaWGxbaakeaajugibiaadweaaaaakiaawI cacaGLPaaajuaGdaahaaWcbeqcbasaaKqzadGaaG4maaaajugibiab gUcaRiaadkgajuaGdaWgaaqcbasaaKqzadGaaGinaaWcbeaajuaGda qadaGcbaqcfa4aaSaaaOqaaKqzGeGaam4vaaGcbaqcLbsacaWGfbaa aaGccaGLOaGaayzkaaqcfa4aaWbaaSqabKqaGeaajugWaiaaisdaaa aakiaawUfacaGLDbaaaiaawUhacaGL9baajugibiaabccacqqHyoqu juaGdaqadaGcbaqcLbsacaWGxbqcfa4aaSbaaKqaGeaajugWaiaad2 gacaWGHbGaam4AaaWcbeaajugibiabgkHiTiaadEfajuaGdaWgaaqc basaaKqzadGaaiilaaWcbeaaaOGaayjkaiaawMcaaaaaaa@D872@       (17)
For positrons the SP of compounds were calculated from Bragg’s addition rule24 as follows:
S(E) ρ (compound)= i w i [ S(E) ρ ] i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaae4uaiaabIcacaqGfbGaaeykaaGcbaqcLbsacqaHbpGC aaGaaiikaiaabogacaqGVbGaaeyBaiaabchacaqGVbGaaeyDaiaab6 gacaqGKbGaaiykaiabg2da9KqbaoaaqafakeaajugibiaadEhajuaG daWgaaqcbasaaKqzadGaamyAaaWcbeaajuaGdaWadaGcbaqcfa4aaS aaaOqaaKqzGeGaam4uaiaacIcacaWGfbGaaiykaaGcbaqcLbsacqaH bpGCaaaakiaawUfacaGLDbaajuaGdaWgaaqcbasaaKqzadGaamyAaa WcbeaaaKqaGeaajugWaiaadMgaaSqabKqzGeGaeyyeIuoaaaa@5C84@    (18)
where w i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGPbaabeaaaaa@380D@ are the atomic fractions in molecule.

Calculated results and discussion

In this study, to obtain the inelastic SPs for positrons of biological materials the OS of the inner and valence shell PMIPs,  and , calculated by Akar & Gumus9 were used in Eq. (17). The calculated PSPs for H2, C, N2, O2, P, C5H5N5 (adenine), C4H5N3O (cytosine), C20H27N7O13P2 (cytosine-guanine), C5H5N5O (guanine), C5H6N2O2 (thymine), C19H26N8O13P2 (thymine-adenine) and liquis warer are given in the Figs. 1-12 .

Figure 1 shows the mass stopping power (mSP) for incident positrons from 50 eV to 10 MeV energy range in hydrogen. The results obtained from this study are compared with the PENELOPE program26 and results for positrons by using Gumus calculation methods.12,28 The calculated PSPs values obtained by using Eqs. (17, 18) are good agreement with PENELOPE program26 results to within 1% expect at energies below 100 eV. 

Figure 1 Mass stopping power S(E)/ for incident positron energies, in H. —, present study; …, theoretical data from Gumus12; and ----, from Gumus29 model; ∆, results calculated by PENELOPE Program.27

Figure 2 shows the mSP for incident positrons from 50 eV to 10 MeV energy range in carbon. The results obtained from this study are compared with the PENELOPE program,26 values of ICRU 37 report and results for positrons by using Gumus calculation methods.12,28 The calculated PSPs values obtained by using Eqs. (21, 22) are good agreement with PENELOPE program26 results to within 1%. expect at energies below 300 eV. 

Figure 2 S(E)/ for incident positron energies, in carbon. —, present study; …, theoretical data from Gumus12; and ----, from Gumus29 model; ∆, results calculated by PENELOPE Program;27 ▲, data from ICRU 37 report (1984).

Figure 3 shows the mSP for incident positrons from 50 eV to 10 MeV energy range in nitrogen. The results obtained from this study are compared with the PENELOPE program.26 and results for positrons by using Gümüş calculation methods.12,28 The calculated PSPs values obtained by using Eqs. (21, 22) are good agreement with PENELOPE program 26 results to within 3%. 

Figure 3 S(E)/ for incident positron energies, in nitrogen; —, present study; …, theoretical data from Gumus12; and ----, from Gumus29 model; ∆, results calculated by PENELOPE Program.27

Figure 4 shows the mSP for incident positrons from 50 eV to 10 MeV energy range in oxygen. The results obtained from this study are compared with the PENELOPE program and results for positrons by using Gumus calculation methods.12,28 The calculated PSPs values obtained by using Eqs. (17,18) are good agreement with PENELOPE program 26 results to within 3%. 

Figure 5 shows the mSP for incident positrons from 50 eV to 10 MeV energy range in phosphorus. The results obtained from this study are compared with the PENELOPE program 26 and results for positrons by using Gümüş calculation methods.8,29 The calculated PSPs values obtained by using Eqs. (17, 18) are good agreement with PENELOPE program22 results to within 2%. expect at energies below 300 eV. 

Figure 4 S(E)/ for incident positron energies, in oxygen. —, present study; ∆, results calculated by PENELOPE Program;27 …. theoretical data of Gumus12; and ---- theoretical data of Gumus.29

Figure 6 shows the mSP for incident positrons from 50 eV to 10 MeV energy range in adenin. The results obtained from this study are compared with the PENELOPE program.26 The calculated PSPs values obtained by using Eqs. (17,18) are good agreement with PENELOPE program26 results to within 2%. 

Figure 5 S(E)/ for incident positron energies, in phosphorus. —, present study; ∆, results calculated by PENELOPE Program;27 …. theoretical data of Gumus8; and ---- theoretical data of Gumus.29
Figure 6 S(E)/ for incident positron energies, in adenine. —, present study; ∆, results calculated by PENELOPE Program.27

Figure 7 shows the mSP for incident positrons from 50 eV to 10 MeV energy range in cytosine. The results obtained from this study are compared with the PENELOPE program.26 The calculated PSPs values obtained by using Eqs. (17,18) are good agreement with PENELOPE program results to within 3%.

Figure 7 S(E)/ for incident positron energies, in cytosine. —, present study; and ∆, PENELOPE Program results.

Figure 8 shows the mSP for incident positrons from 50 eV to 10 MeV energy range in guanine. The results obtained from this study are compared with the PENELOPE program.26 The calculated PSPs values obtained by using Eqs. (17,18) are good agreement with PENELOPE program results to within 4%. 

Figure 8 S(E)/ for incident positron energies, in guanine. —, present study; and ∆, PENELOPE Program27 results.

Figure 9 shows the mSP for incident positrons from 50 eV to 10 MeV energy range in thymine. The results obtained from this study are compared with the PENELOPE program.22 The calculated PSPs values obtained by using Eqs. (17,18) are good agreement with PENELOPE program results to within 5%.

Figure 9 S(E)/ for incident positron energies, in thymine. —, present study; and ∆, PENELOPE Program27 results.

Figure 10 shows the mSP for incident positrons from 50 eV to 10 MeV energy range in cytosine-guanine. The results obtained from this study are compared with the PENELOPE program.26 The calculated PSPs values obtained by using Eqs. (17,18) are good agreement with PENELOPE program results to within 5%.

Figure 10 S(E)/ for incident positron energies, in cytosine-guanine. —, present study; and ∆, PENELOPE Program27 results.

Figure 11 shows the mSP for incident positrons from 50 eV to 10 MeV energy range in thymine-adenine. The results obtained from this study are compared with the PENELOPE program .26 The calculated PSPs values obtained by using Eqs. (17,18) are good agreement with PENELOPE program results to within 5%.

Figure 11 S(E)/ for incident positron energies, in thymine-adenine. —, present study; and ∆, PENELOPE Program27 results.

Figure 12 shows the mSP values for incident positrons from 50 eV to 10 MeV energy range in liquid water. The results obtained in this study are in good agreement with the recommendations of ICRU 37 (1984) for the stopping power of liquid water. The results obtained from this study are compared with the PENELOPE program 26 and results for positrons by using Gümüş calculation methods.12,28 The calculated PSPs values obtained by using Eqs. (17,18) are good agreement with PENELOPE program results to within 3% above 300 eV energies. The mass stopping powers obtained by using the formalism described in this paper are in good agreement to within data of predictions of Pimblott30 above 500 eV energies,

Figure 12 S(E)/ for incident positron energies, in liquid water. —, present study; and ∆, PENELOPE Program23 results. …. theoretical data of Gumus12; ---- theoretical data of Gumus29; results of Pimblott30 and ▲, results of ICRU 37 report.2

Concluding remarks

In this study, the SP values for positrons in biological naterials have been calculated with the GOS model. K shell oscillator strengths, the semiempirical adjustment factor K and valence shell PMIP values and MIE values of elements have been calculated. In addition, the stopping power for the biological compounds, C5H5N5(adenine), C5H5N3O(guanine), C4H5N3O(cytosine), C20H27N7O13P2(cytosine-guanine), C5H6N2O2(thymine) and C19H26N8O13P2 (thymine-adenine)) have been analysed for incident positrons in the 50 eV-1 MeV energy range. The calculated results of stopping power for positrons in molecules including H2, C, N2, O2, C5H5N5O in biological targets are found to be in good agreement with semiempirical results and theoretical results. The present inelastic SPs calculations for positrons with the GOS model depends on K and valence shell strengths, K and valence shell PMIPs. The presented positron SP calculations should be useful for biological target such as C5H5N5 (adenine), C5H5N3O (cytosine), C5H5N5O (guanine), C5H6N2O2 (thymine), C20H27N7O13P2 (cytosine-guanine) and C19H26N8O13P2 (thymine-adenine). In additon, the straggling formula given in this study should be use for biological compounds.

Acknowledgements

We thank to OECD NEA Computer Program Service (www.nea.fr) for PENELOPE program 2005 and 2008.

Conflict of interest

The author declares no conflict of interest.

References

  1. Berger MJ, Seltzer SM. Stopping powers and ranges of electrons and positrons. National Bureau of Standarts. 1982;82(2550):1‒170.
  2. ICRU, Stopping powers for electrons and positrons. International Commission on Radiation Units and Measurements. 1984;37:271.
  3. Batra RK. Nucl Instrum Methods. 1987;28:195.
  4. Meiring WJ, Van Klinken J, Wichers VA. Rapid Communications. Physical Review A. 1991;44(5):2960.
  5. Tanir G, Bölükdemir MH, Keleş S. Chinese Journal of Physics. 2012;50(3):425‒433.
  6. Blanco F, Munoz A, Almeida D, et al. Modelling low energy electron and positron tracks in biologically relevant media. Eur Phys J. 2013;67(199):1‒18.  
  7. Gümüş H, Kabadayi Ö, Tufan MC. Calculation of the Stopping Power for Intermediate Energy Positrons. Chinese Journal of Physics. 2006;44(4):290‒296.
  8. Handrack J, Tessonnier T, Chen W, et al. Sensitivity of post treatment positron emission tomography/computed tomography to detect inter-fractional range variations in scanned ion beam therapy. Acta Oncol. 2017;56(11):1451‒1458.
  9. Akar A, Gümüş H. Electron stopping power in biological compounds for low and intermediate energies with the generalized oscillator strength (GOS) model. Radiat Phys Chem. 2005;73(4):196‒203.
  10. Malik E, Juweid MD, Bruce D, et al. Positron-Emission tomography and assessment of cancer therapy. N Engl J Med. 2006;354(5):496‒507.
  11. Inokuti M. Inelastic Collisions of Fast Charged Particles with Atoms and Molecules—The Bethe Theory Revisited. Rev Mod Phys. 1971;43(3):297.
  12. Gümüş H. simple stopping power formula for low and intermediate energy electrons. Radiation Physics and Chemistry. 2005;72(1):7‒12.
  13. Gümüş H, Kabadayi O, Tufan MC. Calculation of the Stopping Power for Intermediate Energy Positrons. Chnise Journal of Physics. 2006;44(4):290.
  14. Bichsel H. Scanning Microsc. Suppl. 1990;4:147.
  15. Fernández Varea JM. Rad Phys and Chem. 1998;53:235.
  16. Fano U, Ann. Penetration of Protons, Alpha Particles, and Mesons. Rev Nucl Sci. 1963;13:1‒16.
  17. Inokuti M. Addenda: Inelastic collisions of fast charged particles with atoms and molecules—The Bethe theory revisited. Rev Mod Phys. 1978;50(1):23.
  18. Liljequist D. Simple generalized oscillator strength density model applied to the simulation of keV electron‐energy‐loss distributions. J Appl Phys. 1985;57(3):657.
  19. Bohr N, Mat Fyz. Medd Dan. Vidensk Selsk. 1948;18(8):1.
  20. Cengiz A. Approximate inelastic scattering cross sections of electrons. Radiation Physics and Chemistry. 2002;65(1):33‒44.
  21. Henke BL, Gullikson EM, Davis JC. X-Ray interactions: photo absorption, scattering, Transmission and reflection at E= 50-30,000 eV, Z=1-92. Atomic Data and Nuclear Data Tables. 1993;54(2):181‒342.
  22. Johnson RE, Inokuti M. At Mol Phys. 1983;1419.
  23. Berger MJ, Hubbell JH, Seltzer SM, et al. XCOM: Photon Cross Sections Data Base.NIST;1987.
  24. Bragg WH, Kleeman R. On the α particles of radium, and their loss of range in passing through various atoms and molecules. Philos Mag.1905;10(57):318‒340.
  25. Sakurai JJ, Advanced Quantum Mechanics. UK: Addison-Wesley; 1967.
  26. Salvat F, Ferandez Varea JM, Sempau. PENELOPE, A Code Systems for monte carlo simulation of electron and photon transport, France: NEA Databank; 2005.
  27. Bhabha H. Proc Roy Soc. 1936;154:195.
  28. Gümüş H. New stopping power formula for intermideate energy electrons. Applied Radiation and Isotopes. 2008;66(12):1861‒1869.
  29. Salvat F, Fernández Varea JM. Semiempirical cross sections for the simulation of the energy loss of electrons and positrons in matter. Nucl Instr And Meth. 1992;63(3):255‒269.
  30. Pimblott SM, Siebbeles LDA, Nucl Insstr Meth B. 2002;194:237.
Creative Commons Attribution License

©2018 Gumus, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.