Submit manuscript...
International Journal of
eISSN: 2573-2838

Biosensors & Bioelectronics

Review Article Volume 3 Issue 2

The fibonacci sequence and the jacobian matrix in food web models

Anthony G Shannon

University of New South Wales, Australia

Correspondence: Anthony G Shannon, Warrane College, University of New South Wales, PO Box 123, Kensington NSW 1465, Australia

Received: September 08, 2017 | Published: October 4, 2017

Citation: Shannon AG. The fibonacci sequence and the jacobian matrix in food web models. Int J Biosen Bioelectron. 2017;3(2):261–263. DOI: 10.15406/ijbsbe.2017.03.00061

Download PDF

Abstract

Impacts to a living community resulting from perturbation of a population variable can be predicted from the adjoint of the community (Jacobian) matrix, which is rendered in qualitative terms of complementary feedback cycles sequences which satisfy the Fibonacci sequence or its generalizations. This produces directed graphs in an absolute-feedback matrix that can clarify the sequence.

AMS classification numbers: 92D40, 11B39

Introduction

Biomathematics is at the heart of bioelectronics and the Fibonacci sequence goes back to the start of biomathematics. In the thirteenth century, Fibonacci (Leonardo Pisano) pondered the rate of reproduction in rabbits. Fibonacci’s solution to the rate of reproduction in rabbits also gave birth, so to speak, to the discipline of population dynamics. Fibonacci’s recurrence relation

F t+2 = F t + F t+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb WcdaWgaaqcfayaaKqzadGaamiDaiabgUcaRiaaikdaaKqbagqaaKqz GeGaeyypa0JaamOraKqbaoaaBaaabaqcLbmacaWG0baajuaGbeaaju gibiabgUcaRiaadAealmaaBaaajuaGbaqcLbmacaWG0bGaey4kaSIa aGymaaqcfayabaaaaa@4969@ (1.1)

Where t is generation class, produces a number sequence for an exponentially expanding population-1, 1, 2, 3, 5, 8, 13, … , which projects, through time, mating pairs of rabbits and offspring over t monthly generations. Over time, the ratio between successive generations of Fibonacci’s rabbits ( n t / n t1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaK qzafqaaKqzGeGaamOBaKqbaoaaBaaajugqbeaajugWaiaadshaaKqz afqabaaabaqcLbsacaWGUbWcdaWgaaqcLbuabaqcLbmacaWG0bGaey OeI0IaaGymaaqcLbuabeaaaaaaaa@43DA@ ) converges to the golden ratio F (1.618…). The largest eigenvalue of this matrix equals F exactly, and is the exponentiated growth rate (r) of the population, that is, l1 = er. The next largest eigenvalue equals f (0.618…), where f = 1/F. We are concerned here with limits to growth for an ecological community that can be modelled electronically. The dynamics of n interacting species can also be described by Lotka-Volterra equations1 which can be applied to biosensors, but we focus here on a qualitative analysis with a quantitative outline. The purpose of this paper is to use matrix and graph theory to highlight the presence of the Fibonacci sequence in the adjoint of Jacobian matrices which can arise in simple food web models. We then utilize an application to define terms and show the place of the Fibonacci sequence in the development of the main ideas and more complex models.

Some matrix properties

Fibonacci growth arises quite naturally in matrix representation. We can express the dynamics of Fibonacci growth in Leslie matrix form2 and relate this to other known matrices and second order sequences.

L n×n =[ 0 1 1 ... 1 1 0 0 ... 0 0 1 0 ... 0 ... 0 0 0 ... 0 0 0 0 ... 1 1 0 0 0 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqaaKqzadGaamOBaiabgEna0kaad6gaaSqabaqcLbsacqGH 9aqpjuaGdaWadaGcbaqcLbsafaqabeGbfaaaaaGcbaqcLbsacaaIWa aakeaajugibiaaigdaaOqaaKqzGeGaaGymaaGcbaqcLbsacaGGUaGa aiOlaiaac6caaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIXaaakeaaju gibiaaicdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaGGUaGaaiOlaiaa c6caaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibiaaig daaOqaaKqzGeGaaGimaaGcbaqcLbsacaGGUaGaaiOlaiaac6caaOqa aKqzGeGaaGimaaGcbaaabaaabaaabaqcLbsacaGGUaGaaiOlaiaac6 caaOqaaaqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibiaa icdaaOqaaKqzGeGaaiOlaiaac6cacaGGUaaakeaajugibiaaicdaaO qaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqa aKqzGeGaaiOlaiaac6cacaGGUaaakeaajugibiaaigdaaaGaaGPaVl aaykW7caaMc8EbaeqabyqaaaaakeaajugibiaaykW7caaIXaGaaGPa VdGcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqaaaqaaKqzGeGaaG imaaGcbaqcLbsacaaIXaaaaaGccaGLBbGaayzxaaaaaa@7AAA@   (2.1)

First row elements represent births of two offspring to each mating pair in generation t, and sub diagonal elements represent survival of each year class (here 100%). The final diagonal element confers immortality to the population. When this element is zero, L becomes the more familiar Q matrix.3 The Leslie matrix is also related to generalizations of the continued fraction algorithm.4 If we consider

L n×n r =[ l i,j (r) ]c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaqhaaqcfayaaKqzadGaamOBaiabgEna0kaad6gaaKqbagaajugW aiaadkhaaaqcLbsacqGH9aqpjuaGdaWadaqaaKqzGeGaamiBaSWaa0 baaKqbagaajugWaiaadMgacaGGSaGaamOAaaqcfayaaKqzadGaaiik aiaadkhacaGGPaaaaaqcfaOaay5waiaaw2faaKqzGeGaam4yaaaa@500B@

Then it can be readily established that for n > 2,

i=1 n l i,j (r) ={ F r+1 j=1, F r+2 j>1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabCaO qaaKqzGeGaamiBaSWaa0baaeaajugWaiaadMgacaGGSaGaamOAaaWc baqcLbmacaGGOaGaamOCaiaacMcaaaqcLbsacqGH9aqpjuaGdaGaba GcbaqcLbsafaqabeGacaaakeaajuaGcaWGgbWaaSbaaSqaaKqzadGa amOCaiabgUcaRiaaigdaaSqabaaakeaajugibiaadQgacqGH9aqpca aIXaGaaiilaaGcbaqcfaOaamOramaaBaaaleaajugWaiaadkhacqGH RaWkcaaIYaaaleqaaaGcbaqcLbsacaWGQbGaeyOpa4JaaGymaiaacY caaaaakiaawUhaaaWcbaqcLbmacaWGPbGaeyypa0JaaGymaaWcbaqc LbmacaWGUbaajugibiabggHiLdaaaa@5EE9@  (2.2.)

and

j=1 n l i,j (r) ={ U r+1,r+1 , i=1, U r+1,r , i=2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabCaO qaaKqzGeGaamiBaSWaa0baaeaajugWaiaadMgacaGGSaGaamOAaaWc baqcLbmacaGGOaGaamOCaiaacMcaaaqcLbsacqGH9aqpjuaGdaGaba GcbaqcLbsafaqabeGacaaakeaajugibiaadwfajuaGdaWgaaWcbaqc LbmacaWGYbGaey4kaSIaaGymaiaacYcacaWGYbGaey4kaSIaaGymaa WcbeaajugibiaacYcaaOqaaKqzGeGaamyAaiabg2da9iaaigdacaGG SaaakeaajugibiaadwfajuaGdaWgaaWcbaqcLbmacaWGYbGaey4kaS IaaGymaiaacYcacaWGYbaaleqaaKqzGeGaaiilaaGcbaqcLbsacaWG PbGaeyypa0JaaGOmaiaacYcaaaaakiaawUhaaaWcbaqcLbmacaWGQb Gaeyypa0JaaGymaaWcbaqcLbmacaWGUbaajugibiabggHiLdaaaa@678B@  (2.3.)

In which { U r,m } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WGvbWaaSbaaSqaaiaadkhacaGGSaGaamyBaaqabaaakiaawUhacaGL 9baaaaa@3BD0@ is an integer sequence which satisfies the second order linear homogeneous recurrence relation (1.1) in the form

U r.m = U r,m1 + U r,m2 ,m>2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGvb WcdaWgaaqaaKqzadGaamOCaiaac6cacaWGTbaaleqaaKqzGeGaeyyp a0JaamyvaSWaaSbaaeaajugWaiaadkhacaGGSaGaamyBaiabgkHiTi aaigdaaSqabaqcLbsacqGHRaWkcaWGvbWcdaWgaaqaaKqzadGaamOC aiaacYcacaWGTbGaeyOeI0IaaGOmaaWcbeaajugibiaacYcacaaMc8 UaamyBaiabg6da+iaaikdacaGGSaaaaa@5196@  (2.4)

With initial conditions U r,1 =1, U r,2 =n1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGvb WcdaWgaaqaaKqzadGaamOCaiaacYcacaaIXaaaleqaaKqzGeGaeyyp a0JaaGymaiaacYcacaaMc8UaamyvaKqbaoaaBaaaleaajugWaiaadk hacaGGSaGaaGOmaaWcbeaajugibiabg2da9iaad6gacqGHsislcaaI XaGaaiOlaaaa@49C3@  When n = 2, we get the Fibonacci sequence.5 The first few examples of this sequence are displayed in Table 1.10 As a further illustration, we can see that for r = 4, and n = 5,

[ 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 ] 4 =[ 2 3 3 3 3 1 2 2 2 2 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeqbaeqabuqbaaaaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaI XaaakeaajugibiaaigdaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIWa aakeaajugibiaaigdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaa keaajugibiaaicdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaake aajugibiaaigdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaa jugibiaaicdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaaju gibiaaigdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugi biaaicdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibi aaigdaaOqaaKqzGeGaaGymaaaaaOGaay5waiaaw2faaKqbaoaaCaaa leqabaqcLbmacaaI0aaaaKqzGeGaeyypa0tcfa4aamWaaOqaaKqzGe qbaeqabuqbaaaaaOqaaKqzGeGaaGOmaaGcbaqcLbsacaaIZaaakeaa jugibiaaiodaaOqaaKqzGeGaaG4maaGcbaqcLbsacaaIZaaakeaaju gibiaaigdaaOqaaKqzGeGaaGOmaaGcbaqcLbsacaaIYaaakeaajugi biaaikdaaOqaaKqzGeGaaGOmaaGcbaqcLbsacaaIXaaakeaajugibi aaigdaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIXaaakeaajugibiaa igdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIXaaakeaajugibiaaig daaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIXaaakeaajugibiaaigda aOqaaKqzGeGaaGymaaGcbaqcLbsacaaIXaaakeaajugibiaaigdaaO qaaKqzGeGaaGymaaaaaOGaay5waiaaw2faaaaa@8331@

So that, in turn,

i=1 5 l i,1 (4) =5= F 5 , i=1 5 l i,2 (4) =8= F 6 , j=1 5 l 1,j (4) =14= U 5,5 , j=1 5 l 2,j (4) =9= U 5,4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda aeWbGcbaqcLbsacaWGSbqcfa4aa0baaSqaaKqzadGaamyAaiaacYca caaIXaaaleaajugWaiaacIcacaaI0aGaaiykaaaajugibiabg2da9i aaiwdacqGH9aqpcaWGgbqcfa4aaSbaaSqaaKqzadGaaGynaaWcbeaa aeaajugWaiaadMgacqGH9aqpcaaIXaaaleaajugWaiaaiwdaaKqzGe GaeyyeIuoacaGGSaaakeaajuaGdaaeWbGcbaqcLbsacaWGSbWcdaqh aaqaaKqzadGaamyAaiaacYcacaaIYaaaleaajugWaiaacIcacaaI0a Gaaiykaaaajugibiabg2da9iaaiIdacqGH9aqpcaWGgbWcdaWgaaqa aKqzadGaaGOnaaWcbeaaaeaajugWaiaadMgacqGH9aqpcaaIXaaale aajugWaiaaiwdaaKqzGeGaeyyeIuoacaGGSaaakeaajuaGdaaeWbGc baqcLbsacaWGSbWcdaqhaaqaaKqzadGaaGymaiaacYcacaWGQbaale aajugWaiaacIcacaaI0aGaaiykaaaajugibiabg2da9iaaigdacaaI 0aGaeyypa0JaamyvaSWaaSbaaeaajugWaiaaiwdacaGGSaGaaGynaa WcbeaaaeaajugWaiaadQgacqGH9aqpcaaIXaaaleaajugWaiaaiwda aKqzGeGaeyyeIuoacaGGSaaakeaajuaGdaaeWbGcbaqcLbsacaWGSb WcdaqhaaqaaKqzadGaaGOmaiaacYcacaWGQbaaleaajugWaiaacIca caaI0aGaaiykaaaajugibiabg2da9iaaiMdacqGH9aqpcaWGvbqcfa 4aaSbaaSqaaKqzadGaaGynaiaacYcacaaI0aaaleqaaaqaaKqzadGa amOAaiabg2da9iaaigdaaSqaaKqzadGaaGynaaqcLbsacqGHris5ai aac6caaaaa@9E18@

Note further, that if we treat (2.4) as a partial difference equation, then

U r+1.m U r,m1 = F m1 ,m>2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGvb WcdaWgaaqaaKqzadGaamOCaiabgUcaRiaaigdacaGGUaGaamyBaaWc beaajugibiabgkHiTiaadwfalmaaBaaabaqcLbmacaWGYbGaaiilai aad2gacqGHsislcaaIXaaaleqaaKqzGeGaeyypa0JaamOraSWaaSba aeaajugWaiaad2gacqGHsislcaaIXaaaleqaaKqzGeGaaiilaiaayk W7caWGTbGaeyOpa4JaaGOmaiaacYcaaaa@5187@  (2.5)

and, furthermore,

   { U 3.m }={ F m+1 }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacckacaGGGcGaaiiOaKqba+aadaGadaGcbaqcLbsacaWG vbqcfa4aaSbaaSqaaKqzadGaaG4maiaac6cacaWGTbaaleqaaaGcca GL7bGaayzFaaqcLbsacqGH9aqpjuaGdaGadaGcbaqcLbsacaWGgbqc fa4aaSbaaSqaaKqzadGaamyBaiabgUcaRiaaigdaaSqabaaakiaawU hacaGL9baajugibiaacYcaaaa@4E33@
{ U 4.m }={ L m }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaaO qaaKqzGeGaamyvaSWaaSbaaeaajugWaiaaisdacaGGUaGaamyBaaWc beaaaOGaay5Eaiaaw2haaKqzGeGaeyypa0tcfa4aaiWaaOqaaKqzGe GaamitaKqbaoaaBaaaleaajugWaiaad2gaaSqabaaakiaawUhacaGL 9baajugibiaacYcaaaa@47E5@
{ U 5.m }={ T m }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaaO qaaKqzGeGaamyvaSWaaSbaaeaajugWaiaaiwdacaGGUaGaamyBaaWc beaaaOGaay5Eaiaaw2haaKqzGeGaeyypa0tcfa4aaiWaaOqaaKqzGe GaamivaKqbaoaaBaaaleaajugWaiaad2gaaSqabaaakiaawUhacaGL 9baajugibiaacYcaaaa@47EE@

{ L m } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aajugibiaadYeajuaGdaWgaaqaaKqzadGaamyBaaqcfayabaaacaGL 7bGaayzFaaaaaa@3D72@ is the well-known sequence of Lucas numbers, and { T m } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaaO qaaKqzGeGaamivaSWaaSbaaeaajugWaiaad2gaaSqabaaakiaawUha caGL9baaaaa@3C88@ is a sequence first investigated by Brother Alfred Brousseau.6

m

1

2

3

4

5

6

7

{ U 3,m } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aajugibiaadwfajuaGdaWgaaqaaKqzadGaaG4maiaacYcacaWGTbaa juaGbeaaaiaawUhacaGL9baaaaa@3EE8@

1

2

3

5

8

13

21

{ U 4,m } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aajugibiaadwfajuaGdaWgaaqaaKqzadGaaGinaiaacYcacaWGTbaa juaGbeaaaiaawUhacaGL9baaaaa@3EE9@

1

2

3

5

8

13

21

{ U 5,m } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aajugibiaadwfajuaGdaWgaaqaaKqzadGaaGynaiaacYcacaWGTbaa juaGbeaaaiaawUhacaGL9baaaaa@3EEA@

1

4

5

9

14

23

37

{ U 6,m } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aajugibiaadwfajuaGdaWgaaqaaKqzadGaaGOnaiaacYcacaWGTbaa juaGbeaaaiaawUhacaGL9baaaaa@3EEB@

1

5

6

11

17

28

45

Table 1 { U r,m } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aajugibiaadwfajuaGdaWgaaqaaKqzadGaaiOCaiaacYcacaWGTbaa juaGbeaaaiaawUhacaGL9baaaaa@3F21@ , r =3,4,5,6; m=1,2,…,7

Signed digraphs and qualitative analysis

Signed digraphs portray relationships detailed in the community matrix by connecting system variables (or vertices) with links (or edges) ending in arrows (®), where there is a positive direct effect of one variable upon another, and filled circles (─·), where the direct effect is negative. Thus, all possible (non neutral) pair-wise relationships can be described as predator prey or parasitism (·®), mutualism («), commensalism (®), interference competition (·─·), and amensalism (─·). Self-effects are shown by links originating and ending in the same variable and are typically negative (), as in self-regulated variables or those with density dependence, but can also be positive (P) where variables are self-enhancing. Since it is difficult, or more often impossible, to actually measure all elements of the community matrix, a qualitative specification of a system’s linkages may be the best that ecologists can do. Even so, simply knowing the signs of the interactions can provide important insights into the dynamics of complex systems. Counterintuitive behavior of a system often results from complex interactions, which can be revealed and understood through qualitative analyses.7 For example, consider a model of the dynamics of snowshoe hare (H) (boreal forest relative of Fibonacci’s rabbits) interactions with vegetation (V), and a guild of predators (P) including lynx and great horned owls,8 specified in both symbolic and qualitative form

A=[ a 1,1 a 1,2 0 a 2,1 0 a 2,3 a 3,1 a 3,2 a 3,3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb Gaeyypa0tcfa4aamWaaOqaaKqzGeqbaeqabmWaaaGcbaqcLbsacqGH sislcaWGHbqcfa4aaSbaaSqaaKqzadGaaGymaiaacYcacaaIXaaale qaaaGcbaqcLbsacqGHsislcaWGHbWcdaWgaaqaaKqzadGaaGymaiaa cYcacaaIYaaaleqaaaGcbaqcLbsacaaIWaaakeaajugibiaadggaju aGdaWgaaWcbaqcLbmacaaIYaGaaiilaiaaigdaaSqabaaakeaajugi biaaicdaaOqaaKqzGeGaeyOeI0IaamyyaKqbaoaaBaaaleaajugWai aaikdacaGGSaGaaG4maaWcbeaaaOqaaKqzGeGaamyyaKqbaoaaBaaa leaajugWaiaaiodacaGGSaGaaGymaaWcbeaaaOqaaKqzGeGaamyyaK qbaoaaBaaaleaajugWaiaaiodacaGGSaGaaGOmaaWcbeaaaOqaaKqz GeGaeyOeI0IaamyyaSWaaSbaaeaajugWaiaaiodacaGGSaGaaG4maa WcbeaaaaaakiaawUfacaGLDbaaaaa@67FF@    A =[ 1 1 0 1 0 1 1 1 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaahbaqabe aajugWaiablIHiVbaajugibiaadgeacqGH9aqpjuaGdaWadaGcbaqc LbsafaqaeeWadaaakeaajugibiabgkHiTiaaigdaaOqaaKqzGeGaey OeI0IaaGymaaGcbaqcLbsacaaIWaaakeaajugibiaaigdaaOqaaKqz GeGaaGimaaGcbaqcLbsacqGHsislcaaIXaaakeaajugibiaaigdaaO qaaKqzGeGaaGymaaGcbaqcLbsacqGHsislcaaIXaaaaaGccaGLBbGa ayzxaaaaaa@4DCA@  (3.1)

With associated adjoint matrices

adj (A)=[ a 2,3 a 3,2 a 1,2 a 3,3 a 1,2 a 2,3 a 2,1 a 3,3 a 2,3 a 3,1 a 1,1 a 3,3 a 1,1 a 2,3 a 2,1 a 3,2 a 1,1 a 3,2 a 1,2 a 3,1 a 2,1 a 1,2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFHbGaa8hzaiaa=PgacaWFGaGaa8hiaiaa=HcacqGHsislcaWGbbGa aiykaiabg2da9KqbaoaadmaakeaajugibuaabeqadmaaaOqaaKqzGe GaamyyaSWaaSbaaeaajugWaiaaikdacaGGSaGaaG4maaWcbeaajugi biaadggalmaaBaaabaqcLbmacaaIZaGaaiilaiaaikdaaSqabaaake aajugibiabgkHiTiaadggalmaaBaaabaqcLbmacaaIXaGaaiilaiaa ikdaaSqabaqcLbsacaWGHbWcdaWgaaqaaKqzadGaaG4maiaacYcaca aIZaaaleqaaaGcbaqcLbsacaWGHbWcdaWgaaqaaKqzadGaaGymaiaa cYcacaaIYaaaleqaaKqzGeGaamyyaSWaaSbaaeaajugWaiaaikdaca GGSaGaaG4maaWcbeaaaOqaaKqzGeGaamyyaSWaaSbaaeaajugWaiaa ikdacaGGSaGaaGymaaWcbeaajugibiaadggajuaGdaWgaaWcbaqcLb macaaIZaGaaiilaiaaiodaaSqabaqcLbsacqGHsislcaWGHbqcfa4a aSbaaSqaaKqzadGaaGOmaiaacYcacaaIZaaaleqaaKqzGeGaamyyaK qbaoaaBaaaleaajugWaiaaiodacaGGSaGaaGymaaWcbeaaaOqaaKqz GeGaamyyaSWaaSbaaeaajugWaiaaigdacaGGSaGaaGymaaWcbeaaju gibiaadggalmaaBaaabaqcLbmacaaIZaGaaiilaiaaiodaaSqabaaa keaajugibiabgkHiTiaadggajuaGdaWgaaWcbaqcLbmacaaIXaGaai ilaiaaigdaaSqabaqcLbsacaWGHbWcdaWgaaqaaKqzadGaaGOmaiaa cYcacaaIZaaaleqaaaGcbaqcLbsacaWGHbqcfa4aaSbaaSqaaKqzad GaaGOmaiaacYcacaaIXaaaleqaaKqzGeGaamyyaSWaaSbaaeaajugW aiaaiodacaGGSaGaaGOmaaWcbeaaaOqaaKqzGeGaamyyaSWaaSbaae aajugWaiaaigdacaGGSaGaaGymaaWcbeaajugibiaadggajuaGdaWg aaWcbaqcLbmacaaIZaGaaiilaiaaikdaaSqabaqcLbsacqGHsislca WGHbWcdaWgaaqaaKqzadGaaGymaiaacYcacaaIYaaaleqaaKqzGeGa amyyaKqbaoaaBaaaleaajugWaiaaiodacaGGSaGaaGymaaWcbeaaaO qaaKqzGeGaamyyaSWaaSbaaeaajugWaiaaikdacaGGSaGaaGymaaWc beaajugibiaadggalmaaBaaabaqcLbmacaaIXaGaaiilaiaaikdaaS qabaaaaaGccaGLBbGaayzxaaaaaa@B7E7@ adj ( A )=[ 1 1 1 0 1 1 1 0 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFHbGaa8hzaiaa=PgacaWFGaGaa8hkaiabgkHiTSWaaWraaeqabaqc LbmacqWIyiYBaaqcLbsacaWGbbGaaiykaiabg2da9Kqbaoaadmaake aajugibuaabqqadmaaaOqaaKqzGeGaaGymaaGcbaqcLbsacqGHsisl caaIXaaakeaajugibiaaigdaaOqaaKqzGeGaaGimaaGcbaqcLbsaca aIXaaakeaajugibiabgkHiTiaaigdaaOqaaKqzGeGaaGymaaGcbaqc LbsacaaIWaaakeaajugibiaaigdaaaaakiaawUfacaGLDbaaaaa@521E@ (3.2)

Where complementary feedback cycles in a response are opposite in sign, as in adj (–A2,1) in (3.2), then qualitative predictions are ambiguous and their sign determination depends upon knowledge of the relative strength of aij interaction terms. With increasing system size and connectivity the number of complementary feedback cycles involved in response predictions grows not just exponentially, but factorially, and symbolic arguments can involve too many terms, perhaps hundreds, to interpret reasonably. We can account for the absolute number of terms in the adjoint matrix through use of the matrix permanent, denoted as , in minors (min) of a community matrix specified only by the absolute value of its links; that is, by 1’s or 0’s only. This is an adjacency matrix that includes self-loops; denoted here as •A), which, when transposed, gives the ‘absolute-feedback matrix’ T, where

Tij = min •A T (3.3)

Completing the snowshoe-hare example, the absolute-feedback matrix then becomes

T=[ 1 1 1 2 1 1 1 2 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub Gaeyypa0tcfa4aamWaaOqaaKqzGeqbaeabbmWaaaGcbaqcLbsacaaI XaaakeaajugibiaaigdaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIYa aakeaajugibiaaigdaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIXaaa keaajugibiaaikdaaOqaaKqzGeGaaGymaaaaaOGaay5waiaaw2faaa aa@4797@  (3.4)

Taking the ratio of each element of the adjoint to the absolute-feedback matrix, we obtain a ‘weighted-predictions matrix’ W that scales the potential for sign determinacy in qualitative predictions of perturbation response. Adjoint matrix predictions with Wij values near one are highly reliable, while those near zero have a low potential for sign determinacy. The weighted predictions metric is essentially a signal-to-noise ratio with practical ecological applications; though not discussed further here, we refer the interested reader to.5

The fibonacci sequence

We can now see the special properties of the adjoint and absolute-feedback matrices and find complementary feedback cycles following the Fibonacci sequence. To clearly reveal its occurrence in matrix form, we consider a system much larger than the snowshoe-hare example. From a 10-variable straight-chain system, we can obtain the following adjoint matrix

 

adj  ( A )=[ 55 34 21 13 8 5 3 2 1 1 34 34 21 13 8 5 3 2 1 1 21 21 42 26 16 10 6 4 2 2 13 13 26 39 24 15 9 6 3 3 8 8 16 24 40 25 15 10 5 5 5 5 10 15 25 40 24 16 8 8 3 3 6 9 15 24 39 26 13 13 2 2 4 6 10 16 26 42 21 21 1 1 2 3 5 8 13 21 34 34 1 1 2 3 5 8 13 21 34 55 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGHb GaaeizaiaabQgacaqGGaGaaeiiaiaabIcacqGHsisllmaaCeaabeqa aKqzadGaeSigI8gaaKqzGeGaamyqaiaabMcacqGH9aqpjuaGdaWada GcbaqcLbsafaqaeeGckaaaaaaaaOqaaKqzGeGaaGynaiaaiwdaaOqa aKqzGeGaaG4maiaaisdaaOqaaKqzGeGaaGOmaiaaigdaaOqaaKqzGe GaaGymaiaaiodaaOqaaKqzGeGaaGioaaGcbaqcLbsacaaI1aaakeaa jugibiaaiodaaOqaaKqzGeGaaGOmaaGcbaqcLbsacaaIXaaakeaaju gibiaaigdaaOqaaKqzGeGaeyOeI0IaaG4maiaaisdaaOqaaKqzGeGa aG4maiaaisdaaOqaaKqzGeGaaGOmaiaaigdaaOqaaKqzGeGaaGymai aaiodaaOqaaKqzGeGaaGioaaGcbaqcLbsacaaI1aaakeaajugibiaa iodaaOqaaKqzGeGaaGOmaaGcbaqcLbsacaaIXaaakeaajugibiaaig daaOqaaKqzGeGaaGOmaiaaigdaaOqaaKqzGeGaeyOeI0IaaGOmaiaa igdaaOqaaKqzGeGaaGinaiaaikdaaOqaaKqzGeGaaGOmaiaaiAdaaO qaaKqzGeGaaGymaiaaiAdaaOqaaKqzGeGaaGymaiaaicdaaOqaaKqz GeGaaGOnaaGcbaqcLbsacaaI0aaakeaajugibiaaikdaaOqaaKqzGe GaaGOmaaGcbaqcLbsacqGHsislcaaIXaGaaG4maaGcbaqcLbsacaaI XaGaaG4maaGcbaqcLbsacqGHsislcaaIYaGaaGOnaaGcbaqcLbsaca aIZaGaaGyoaaGcbaqcLbsacaaIYaGaaGinaaGcbaqcLbsacaaIXaGa aGynaaGcbaqcLbsacaaI5aaakeaajugibiaaiAdaaOqaaKqzGeGaaG 4maaGcbaqcLbsacaaIZaaakeaajugibiaaiIdaaOqaaKqzGeGaeyOe I0IaaGioaaGcbaqcLbsacaaIXaGaaGOnaaGcbaqcLbsacqGHsislca aIYaGaaGinaaGcbaqcLbsacaaI0aGaaGimaaGcbaqcLbsacaaIYaGa aGynaaGcbaqcLbsacaaIXaGaaGynaaGcbaqcLbsacaaIXaGaaGimaa GcbaqcLbsacaaI1aaakeaajugibiaaiwdaaOqaaKqzGeGaeyOeI0Ia aGynaaGcbaqcLbsacaaI1aaakeaajugibiabgkHiTiaaigdacaaIWa aakeaajugibiaaigdacaaI1aaakeaajugibiabgkHiTiaaikdacaaI 1aaakeaajugibiaaisdacaaIWaaakeaajugibiaaikdacaaI0aaake aajugibiaaigdacaaI2aaakeaajugibiaaiIdaaOqaaKqzGeGaaGio aaGcbaqcLbsacaaIZaaakeaajugibiabgkHiTiaaiodaaOqaaKqzGe GaaGOnaaGcbaqcLbsacqGHsislcaaI5aaakeaajugibiaaigdacaaI 1aaakeaajugibiabgkHiTiaaikdacaaI0aaakeaajugibiaaiodaca aI5aaakeaajugibiaaikdacaaI2aaakeaajugibiaaigdacaaIZaaa keaajugibiaaigdacaaIZaaakeaajugibiabgkHiTiaaikdaaOqaaK qzGeGaaGOmaaGcbaqcLbsacqGHsislcaaI0aaakeaajugibiaaiAda aOqaaKqzGeGaeyOeI0IaaGymaiaaicdaaOqaaKqzGeGaaGymaiaaiA daaOqaaKqzGeGaeyOeI0IaaGOmaiaaiAdaaOqaaKqzGeGaaGinaiaa ikdaaOqaaKqzGeGaaGOmaiaaigdaaOqaaKqzGeGaaGOmaiaaigdaaO qaaKqzGeGaaGymaaGcbaqcLbsacqGHsislcaaIXaaakeaajugibiaa ikdaaOqaaKqzGeGaeyOeI0IaaG4maaGcbaqcLbsacaaI1aaakeaaju gibiabgkHiTiaaiIdaaOqaaKqzGeGaaGymaiaaiodaaOqaaKqzGeGa eyOeI0IaaGOmaiaaigdaaOqaaKqzGeGaaG4maiaaisdaaOqaaKqzGe GaaG4maiaaisdaaOqaaKqzGeGaeyOeI0IaaGymaaGcbaqcLbsacaaI XaaakeaajugibiabgkHiTiaaikdaaOqaaKqzGeGaaG4maaGcbaqcLb sacqGHsislcaaI1aaakeaajugibiaaiIdaaOqaaKqzGeGaeyOeI0Ia aGymaiaaiodaaOqaaKqzGeGaaGOmaiaaigdaaOqaaKqzGeGaeyOeI0 IaaG4maiaaisdaaOqaaKqzGeGaaGynaiaaiwdaaaaakiaawUfacaGL Dbaaaaa@08A1@  (4.1)

In this matrix, ignoring the signs, one observes the Fibonacci sequence along the first and last columns and rows. The left and right off-diagonal elements of the other columns are multiples of the first or last column, respectively, and the multipliers themselves are of the Fibonacci sequence.9 Considering the signs, where positive input propagates down the trophic chain (read down the columns), impacts alternate between positive and negative values, corresponding to a reversed Fibonacci sequence; that is, n t2 = n t n t1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaKqbao aaBaaaleaajugqbiaadshacqGHsislcaaIYaaaleqaaKqzagGaeyyp a0JaamOBaOWaaSbaaKqzagqaaKqzafGaamiDaaqcLbyabeaacqGHsi slcaWGUbGcdaWgaaqcLbyabaqcLbuacaWG0bGaeyOeI0IaaGymaaqc Lbyabeaaaaa@48D1@ , giving: …, 34, –21, 13, –8, 5, –3, 2, –1, 1, 0, 1, 1). One also observes negative starting values for the reversed sequence (i.e. …, 55, –34, 21, –13, 8, –5, 3, –2, 1, –1, 0, –1, –1). As positive input propagates up the trophic chain, impacts are uniformly positive. The matrix is trans-diagonally symmetrical. Since there is no countervailing feedback in this system, elements of the absolute-feedback matrix are equivalent to the absolute value of the adjoint matrix elements.

Conclusion

In biological terms, impacts from perturbations propagate through ecosystems via complementary feedback cycles that diminish in number away from the source of input according to the Fibonacci sequence. While Fibonacci’s description of reproduction leads to a convergent value of F for a population’s growth rate, so too does a convergent value of F (orf) govern the proportion of complementary feedback cycles passed between adjacent members of an ecological community, and accordingly determines the reciprocal effect of neighbor upon neighbor.10 This can also be seen in simple models of the spread of infectious disease referred to earlier. We have outlined here the role of the Fibonacci sequence in the adjoint of community (Jacobian) matrices arising from simple food web models. Given that complementary feedback cycles can be positive or negative under different conditions and thereby cancel each other, we deduce the absolute-feedback matrix, the elements of which represent the absolute number of cycles in a response. This elucidation makes use of the permanent rather than the determinant of matrix minors.11 Both the determinant and permanent are recursively defined functions, and consequently give rise to the observed Fibonacci sequence even in qualitatively specified systems. These general observations can lead to more formal analysis by graph theorists.12

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

References

  1. Dambacher JM, Rossignol PA. The golden rule of complementary feedback. ACM SIGSAM Bulletin. 2001;35(4):1–9.
  2. Leslie PH. On the Use of Matrices in Certain Population Mathematics. Biometrika. 1945;33:183–212.
  3. Shannon AG, Clarke JH, Hills LJ. Contingency relations for infectious diseases. In: M Witten editors. Mathematical Models in Medicine. 1988;2:823–833.
  4. Shannon AG, Leon Bernstein. The Jacobi-Perron algorithm and the algebra of recursive sequences. Bulletin of the Australian Mathematical Society. 1973;8(2):261–277.
  5. Atanassov Krassimir T, Anthony G Shannon. Combined 3-Fibonacci sequences from a new type. Notes on Number Theory and Discrete Mathematics. 2016;22(3):5–8.
  6. Brousseau, Alfred Br. Exploring recurrent sequences. The Fibonacci Quarterly. 1963;1(2):81–83.
  7. Dubeau François, Shannon AG. A Fibonacci model of infectious disease. The Fibonacci Quarterly. 1996;34(3):257–270.
  8. Tyson Rebecca, Sheena Haines, Karen E Hodges. Modelling the Canada lynx and snowshoe hare population cycle: the role of specialist predators. Theoretical Ecology. 2010;3(2):97–111.
  9. Dambacher JM, Li HW, Rossignol PA. Relevance of community structure in assessing indeterminacy of ecological predictions. Ecology. 2002;83:1372–1385.
  10. Leyendekkers JV, Shannon AG. Some golden ratio generalized fibonacci and lucas sequences. Notes on Number Theory and Discrete Mathematics. 2016;22(1):33–41.
  11. Miles EP. Generalized fibonacci numbers and associated matrices. American Mathematical Monthly. 1960;67(8):745–752.
  12. Dambacher JM, Li HW, Wolff JO, et al. Parsimonious interpretation of the impact of vegetation, food, and predation on snowshoe hare. Oikos. 1999;84(3):530–532.
Creative Commons Attribution License

©2017 Shannon. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.