Submit manuscript...
International Journal of
eISSN: 2573-2838

Biosensors & Bioelectronics

Short Communication Volume 6 Issue 2

Singular oscillators’ amplitude-period aproximation

Andres Garcia, Andrés Roteta Lannes

Universidad Tecnologica Nacional, Argentina

Correspondence: Andres Garcia, Grupo de Investigacion en Mecanica Aplicada (GIMAP), Universidad Tecnologica Nacional. 11 de Abril 461, Bahia Blanca, Argentina

Received: October 30, 2019 | Published: March 2, 2020

Citation: García A, Lannes AR. Singular oscillators’ amplitude-period aproximation. Int J Biosen Bioelectron. 2020;6(1):25-26. DOI: 10.15406/ijbsbe.2020.06.00183

Download PDF

Abstract

Second order singular oscillators are considered and approximated. The amplitude-period relationship is determined and compared with the formulas in (10) and (11). The approximations show a great exactness and open a wide range of applications based upon singular nonlinear oscillators.

Keywords: optimal control, nonlinear oscillator, amplitude-period formula

Introduction

Many mechanical systems are modeled as nonlinear oscillators.1 Among the many important properties that can be studied for a nonlinear oscillator, the amplitude-period relationship is a very salient one.2‒5 As pointed out in,6 the singular harmonic oscillator became a classic study object from quantum physics. Accordingly, this kind of oscillators was traditionally approximated with several methods: power series, algebraic methods or even integrating its trajectories. However, more recently, other methods were explored to study singular oscillators: Fourier transform, or even Laplace transform.7 Besides the variety of available methods to study singular oscillators, the exact determination of their amplitude-period relationship is rather involved and for some cases even powerful approximation techniques could fail to obtain an accurate result.8,9 In this paper, the approximation formula derived in10 and11 is used to obtain and approximate the amplitude-period relationship of two nonlinear and singular oscillators: {x..(t)=1x(t),x..(t)=1x(t)3}

Singular oscillators: x ¨ = 1 x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWH4bWdayaadaWdbiabg2da9iabgkHiTmaalaaapaqaa8qa caaIXaaapaqaa8qacaWH4baaaaaa@3BCC@ and x ¨ = 1 x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWH4bWdayaadaWdbiabg2da9iabgkHiTmaalaaapaqaa8qa caaIXaaapaqaa8qacaWH4bWdamaaCaaabeqaa8qacaaIZaaaaaaaaa a@3CCA@

The case of x ¨ = 1 x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWH4bWdayaadaWdbiabg2da9iabgkHiTmaalaaapaqaa8qa caaIXaaapaqaa8qacaWH4baaaaaa@3BCC@

Let’s assume a nonlinear second order oscillator given by:

x..(t)=1x(t), x(T)=x(0)=A, x.(0)=0      (1)

Where A is the oscillation’s amplitude with period T. The exact amplitude-period formula is known:2

T exact =2. 2.π .A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGubWcpaWaaSbaaKqbagaajugWa8qacaqGLbGaaeiEaiaa bggacaqGJbGaaeiDaaqcfa4daeqaa8qacqGH9aqpcaaIYaGaaiOlam aakaaapaqaa8qacaaIYaGaaiOlaiaabc8aaeqaaiaac6cacaqGbbaa aa@45A1@      (2)

On the other hand, applying the formula in (10) and (11):

T approx. =2.π A N+2 ( N+2 ). 0 A x N . 1 x .dx = 2.π.A N N+2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabsfal8aadaWgaaqcfayaaKqzadWdbiaabggacaqGWbGa aeiCaiaabkhacaqGVbGaaeiEaiaac6caaKqba+aabeaajugib8qacq GH9aqpcaaIYaGaaiOlaiaabc8ajuaGdaGcaaWdaeaapeWaaSaaa8aa baqcLbsapeGaaeyqaKqba+aadaahaaqabeaajugWa8qacaqGobGaey 4kaSIaaGOmaaaaaKqba+aabaWdbmaabmaapaqaaKqzGeWdbiaab6ea cqGHRaWkcaaIYaaajuaGcaGLOaGaayzkaaqcLbsacaGGUaqcfa4aau bmaeqapaqaaKqzadWdbiaaicdaaKqba+aabaqcLbmapeGaaeyqaaqc fa4daeaajugib8qacqGHRiI8aaGaaeiEaKqba+aadaahaaqabeaaju gWa8qacaqGobaaaKqzGeGaaiOlaKqbaoaalaaapaqaaKqzGeWdbiaa igdaaKqba+aabaqcLbsapeGaaeiEaaaacaGGUaGaaeizaiaabIhaaa aajuaGbeaajugibiabg2da9iaabckacaaIYaGaaiOlaiaabc8acaGG UaGaaeyqaKqbaoaakaaapaqaa8qadaWcaaWdaeaajugib8qacaqGob aajuaGpaqaaKqzGeWdbiaab6eacqGHRaWkcaaIYaaaaaqcfayabaaa aa@74FE@      (3)

To measure the accuracy of the approximation, the quotient between (2) and (3) can be evaluated:

Exactitude( % )= 2. 2.π .A 2.π.A N N+2 = π.N 2.( N+2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabweacaqG4bGaaeyyaiaabogacaqG0bGaaeyAaiaabsha caqG1bGaaeizaiaabwgajuaGdaqadaWdaeaajugib8qacaqGLaaaju aGcaGLOaGaayzkaaqcLbsacqGH9aqpjuaGdaWcaaWdaeaajugib8qa caaIYaGaaiOlaKqbaoaakaaapaqaaKqzGeWdbiaaikdacaGGUaGaae iWdaqcfayabaqcLbsacaGGUaGaaeyqaaqcfa4daeaajugib8qacaaI YaGaaiOlaiaabc8acaGGUaGaaeyqaKqbaoaakaaapaqaa8qadaWcaa Wdaeaajugib8qacaqGobaajuaGpaqaaKqzGeWdbiaab6eacqGHRaWk caaIYaaaaaqcfayabaaaaKqzGeGaeyypa0tcfa4aaOaaa8aabaWdbm aalaaapaqaaKqzGeWdbiaabc8acaGGUaGaaeOtaaqcfa4daeaajugi b8qacaaIYaGaaiOlaKqbaoaabmaapaqaaKqzGeWdbiaab6eacqGHRa WkcaaIYaaajuaGcaGLOaGaayzkaaaaaaqabaaaaa@68E1@

Utilizing the suggested value N=3 in (10):

Exactitude( % )= π.3 10 =97.08% MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGfbGaaeiEaiaabggacaqGJbGaaeiDaiaabMgacaqG0bGa aeyDaiaabsgacaqGLbWaaeWaa8aabaWdbiaabwcaaiaawIcacaGLPa aacqGH9aqpdaGcaaWdaeaapeWaaSaaa8aabaWdbiaabc8acaGGUaGa aG4maaWdaeaapeGaaGymaiaaicdaaaaabeaacqGH9aqpcaaI5aGaaG 4naiaac6cacaaIWaGaaGioaiaabwcaaaa@4D30@

The case of x ¨ = 1 x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWH4bWdayaadaWdbiabg2da9iabgkHiTmaalaaapaqaa8qa caaIXaaapaqaa8qacaWH4bWdamaaCaaabeqaa8qacaaIZaaaaaaaaa a@3CCA@

This singular oscillator occurs for instance modeling mechanical systems with central forces:12,13

x.(t)=1x(t)3, x(T)=x(0)=A, x.(0)=0      (4)

Then, the mechanical’s energy conservation leads the exact amplitude-period:2,12

x.(t)21x(t)2=constant

Integrating between 0 and A, with the initial conditions in (4):

x.(t)21x(t)2=1A2x.(t)=(1A2+1x(t)2)Texact=4.A2

The approximation using (10) and (11) yields:

T approx. =2.π. A 2 N2 N+2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGubWcpaWaaSbaaKqbagaajugWa8qacaqGHbGaaeiCaiaa bchacaqGYbGaae4BaiaabIhacaGGUaaajuaGpaqabaWdbiabg2da9i aaikdacaGGUaGaaeiWdiaac6cacaqGbbWcpaWaaWbaaKqbagqabaqc LbmapeGaaGOmaaaajuaGdaGcaaWdaeaapeWaaSaaa8aabaWdbiaab6 eacqGHsislcaaIYaaapaqaa8qacaqGobGaey4kaSIaaGOmaaaaaeqa aaaa@4E76@

It is useful to plot the exactitude vs N:

According to Figure 1, the optimal value will be N=5, with the very precise approximation of 97.25%.

Figure 1 Approximation’s exactitude.

Conclusion

In this paper, two singular oscillators were considered using the approximating formulas presented in10 and [11]. Even with several methodologies available for nonlinear oscillators, singular oscillators are less considered in the literature. The case of singular oscillators restrict the applicability of some methods or become imprecise others, this motivates the application and analysis of simple method able to predict the amplitude-period relationship accurately. The first nonlinear oscillator considered was precisely approximated (97% of accuracy with respect the true amplitude-period formula) applying the formula in 10 with the integer parameter needed N=3, whereas for the second inverse cubic oscillator, the same formula predicts the amplitude-period better with the natural number N=5 (97.25% of accuracy). As a future work, research involving a generalization of the number N to the real set will be conducted. As it can be depicted from this paper, singular oscillators’ approximations using amplitude-period formulas are a very interesting applied research area.

Acknowledgments

The authors would like to acknowledge Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca under the project PID 5122 TC.

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

  1. Cveticanin L. Strongly Nonlinear Oscillators: Analytical Solutions. Springer; 2014.
  2. Belendez A, Gimeno E, Fernandez E, et al. Accurate approximate solution to nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable. Physica Scripta. 2008:77.
  3. Mickens ER. Harmonic balance and iteration calculations of periodic solutions to y ¨ + y 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWG5bWdayaadaWdbiabgUcaRiaadMhal8aadaahaaqcfaya beaajugWa8qacqGHsislcaaIXaaaaKqbakabg2da9iaaicdaaaa@3FAA@ . Journal of Sound and Vibration. 2007;306(3-57):968‒972.
  4. He JH. An imporved amplitude-frequency formulation for nonlinear oscillators. International Journal of Nonliner Sciences and Numerical Simulations. 2008;9(2):9‒22.
  5. Tao ZL, Chen GH, Xian Bai K. Approximate frequency–amplitude relationship for a singular oscillator. Journal of Low Frequency Noise, Vibration and Active Control. 2019:1‒5.
  6. Pimentel RM, de Castro A.S. The singular harmonic oscillator revisited. Revista Brasileira de. Ensino de Física. 2013;35(3):33031‒33038.
  7. Gin-yih Tsaur, Jyhpyng Wang. A universal Laplace-transform approach to solving Schrödinger equations for all known solvable models. 2013;35(1):1‒17.
  8. Mickens ER. Trully Nonlinear Oscillators. World Scientific; 2010.
  9. Mickens R. R. Investigation of the properties of the period for the nonlinear oscillator x¨+(1+x˙2)x=0. Journal of Sound and Vibration. 2006;292(3-5):1031‒1035.
  10. García A. An amplitude-period formula for a second order nonlinear oscillator. Nonlinear Science Letters A. 2017;8(4):340‒347.
  11. Suárez Antola R. Remarks on an approximate formula for the period of conservative oscillations in nonlinear second order differential equations. Nonlinear Science Letters A. 2017;8(4):348‒351.
  12. Arnold VI. Mathematical Methods of Classical Mechanics. Springer-Verlag; 1989.
  13. Nayfeh A, Mook D. Nonlinear Oscillations. Wiley. 1995.
Creative Commons Attribution License

©2020 García, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.