Submit manuscript...
International Journal of
eISSN: 2573-2838

Biosensors & Bioelectronics

Mini Review Volume 4 Issue 5

Adsorption, functionalization and electrostatic multipolar interactions at CNT and graphene surfaces

Lykah VA,1 Syrkin ES2

1National State University, Kharkov Polytechnic Institute, Ukraine
2B.I. Verkin Institute for Low Temperature Physics and Engineering, Ukraine

Correspondence: Lykah VA, Institute of Physics and Engineering, National State University “Kharkov Polytechnic Institute”, 2 Kirpichov str., Kharkov, 61002, Ukraine

Received: February 16, 2018 | Published: September 24, 2018

Citation: Lykah VA, Syrkin ES. Adsorption, functionalization and electrostatic multipolar interactions at CNT and graphene surfaces. Int J Biosen Bioelectron. 2018;4(5):22110.15406/ijbsbe.2018.04.00130

Download PDF

Abstract

The functionalizing molecules (atoms) at a surface are considered for charge transfer between a molecule and substrate (CNT or graphenes). It is shown that at initial and intermediate stage of functionalization the intermolecular interaction can be described as electrostatic dipoles and quadrupoles ones. This model explains a homogeneous (sometimes periodic) distribution of adsorbed particles found in the experiments.

Keywords: adsorption, charge transfer, multi pole electrostatic interaction, graphenes, CNT Pacs 79.60.Dp

Introduction

Carbon nanotubes (CNTs) are 1D nano materials, quantization along axis exists; CNT is considered as quantum wire or quantum dot.1 Functionalization is powerful method for tuning CNTs quantum energy levels and physical properties. Functionalization of 2D graphene and bigraphene layers is also applied widely. The theory was developed2 for energy spectra tuning in the semiconducting nanowires and polarons formation as the result of functionalization by molecular layers with (i) radial degree of freedom, (ii) conformational transition in the molecules and (iii) incommensurate structures. Periodic distribution of metals, metal organic3 and conducting polymers at CNT surface was found by TEM.4 The charge transfer3 leads to electron and hole (pair), spatially separated in neighboring substrate (CNT) and a molecule or atom. The aim of this work is theoretical consideration of initial stages of functionalization with the charge transfer. It is shown that the electron-hole pairs can be presented as the dipole and quadrupole moments with long range interaction. We consider situation of enough small molecules with relatively large distance between ones. At short range distances, compared with the molecules size, the proposed method would be applied with higher error. The charge transfer is example of a general contact interaction of molecules with different electro negativity. Thus, in comparison with CNT and graphene we have electronegative molecules with F, Cl, O, N. P, S atoms and electropositive metals or metal-organic complexes. In further consideration we suppose the molecules (atoms) to be electropositive and the electronic clouds of the transferred charge to be negative, they are shown in Figure 1. A dipole vector5 d = qr is shown as arrow between centers of negative and positive charges in Figure 1. Following to5,6 we write dipole-dipole interaction as:

U dd   =  d 2 R 3  [( ω 1 ω 2 )3( ω 1 n)( ω 2 n)] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGvb qcfa4aaSbaaeaajugibiaadsgacaWGKbaeaaaaaaaaa8qacaGGGcaa juaGpaqabaqcLbsapeGaaiiOaiabg2da9iaacckajuaGdaWcaaqaaK qzGeGaamizaKqbaoaaCaaabeqaaKqzadGaaGOmaaaaaKqbagaajugi biaadkfalmaaCaaajuaGbeqaaKqzadGaaG4maaaaaaqcLbsacaGGGc Gaai4waiaacIcacqaHjpWDlmaaBaaajuaGbaqcLbmacaaIXaaajuaG beaajugibiabeM8a3LqbaoaaBaaabaqcLbmacaaIYaaajuaGbeaaju gibiaacMcacqGHsislcaaIZaGaaiikaiabeM8a3LqbaoaaBaaabaWa aSbaaeaajugWaiaaigdaaKqbagqaaaqabaqcLbsacaGGUbGaaiykai aacIcacqaHjpWDjuaGdaWgaaqaaKqzadGaaGOmaaqcfayabaacbiqc LbsacaWFUbGaaiykaiaac2faaaa@6AD1@ ………(1)

where R is the radius-vector between centers of the dipoles 1 and 2, R= |R| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb Gaeyypa0deaaaaaaaaa8qacaGGGcGaaiiFaiaackfacaGG8baaaa@3C7C@ the unit vectors ω 1  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacaaIXaaeaaaaaaaaa8qacaGGGcaal8aabeaa aaa@3BC5@ , ω 2  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacaaIYaaeaaaaaaaaa8qacaGGGcaal8aabeaa aaa@3BC6@ and n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb aaaa@3778@  are directed along d 1  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb WcdaWgaaqaaKqzadGaaGymaabaaaaaaaaapeGaaiiOaaWcpaqabaaa aa@3AE1@ d 2  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb WcdaWgaaqaaKqzadGaaGOmaabaaaaaaaaapeGaaiiOaaWcpaqabaaa aa@3AE2@ and R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb aaaa@375C@ Force between two particles for (1) is

F ij   =   d U ij (R) dR  =   1 dR  [ A R K ] =  K R   U ij (R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaSbaaSqaaKqzGeGaamyAaKqzadGaamOAaKqzGeaeaaaaaaaa a8qacaGGGcaal8aabeaajugib8qacaGGGcGaeyypa0JaaiiOaiabgk HiTiaacckajuaGdaWcaaGcbaqcLbsacaWGKbGaamyvaKqbaoaaBaaa leaajugibiaadMgajugWaiaadQgaaSqabaqcLbsacaGGOaGaaiOuai aacMcaaOqaaKqzGeGaamizaiaadkfaaaGaaiiOaiabg2da9iaaccka cqGHsislcaGGGcqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsaca WGKbGaamOuaaaacaGGGcGaai4waKqbaoaalaaakeaajugibiaadgea aOqaaKqzGeGaamOuaKqbaoaaCaaaleqabaqcLbsacaWGlbaaaaaaca GGDbGaaiiOaiabg2da9iaacckajuaGdaWcaaGcbaqcLbsacaWGlbaa keaajugibiaadkfaaaGaaiiOaiaadwfalmaaBaaabaqcLbmacaWGPb GaamOAaaWcbeaajugibiaacIcacaGGsbGaaiykaaaa@70D7@ …..(2)

where factor A is function of all parameters except distance R. In (1) power k = 3 and Uij = Udd. In next formulae k = 4; 5 and Uij = UQd;UQQ. Positive F means repulsion. The dipoles configuration in Figure 1 gives according (1, 2) F12 > 0 and F13 < 0 because of ( ω 1 n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacqaHjpWDlmaaBaaajuaGbaqcLbmacaaIXaaajuaG beaajugibiaac6gacaGGPaaaaa@3E7D@ =0 and ( ω 1 ω 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacqaHjpWDlmaaBaaabaqcLbmacaaIXaaaleqaaKqz GeGaeqyYdC3cdaWgaaqaaKqzadGaaGOmaaWcbeaajugibiaacMcaaa a@40F7@ > 0 but ( ω 1 ω 3 )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacqaHjpWDlmaaBaaabaqcLbmacaaIXaaaleqaaKqz GeGaeqyYdC3cdaWgaaqaaKqzadGaaG4maaWcbeaajugibiaacMcaca GGGcaaaa@421C@ < 0Increasing of the functionalizing molecules concentration leads to formation of different clusters3,4 which can't be described in the present model. Only the small clusters with the multiple numbers N of the molecules can be described by (1) applying dN = Nd1. A renormalization of the charge transfer can arise depending on the cluster size (multiple numbers N). The nanobelts, nano spheres, nanocrystals are formed at CNT or nanowire surface3,4 at higher concentration of the functionalizing molecules. These structures are periodic or almost periodic. The nanobelts are schematically depicted in Figure 2. We propose to describe the nanobelts with charge transfer as electric quadrupole. Definition of tensor of electric quadrupole moment is Q ab = Q a x a x b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaubeaO qabSqaaKqzadGaamyyaiaadkgaaSqab0qaaKqzGeGaamyuaaaacqGH 9aqpjuaGdaaeabqaaKqzGeGaamyuaKqbaoaaBaaabaqcLbmacaWGHb aajuaGbeaaaeqabeqcLbsacqGHris5aiaadIhajuaGdaWgaaWcbaqc LbmacaWGHbaaleqaaKqzGeGaamiEaKqbaoaaBaaaleaajugWaiaadk gaaSqabaaaaa@4C50@ (5). In the main axes and after normalization SpQaa = 0 the quadrupole moment in axe-symmetric case is described by only one parameter Q.5,6 In Figure 2 external arrangement of the positive ions gives Q > 0. Dipole-quadruple UQd and quadruple-quadruple UQQ interactions are:6

U Qd   =   3Qd 2 R 4  [( ω 1 n)+2( ω 1 ω 2 ) ( ω 2 n)5( ω 1 n) ( ω 2 n) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGvb qcfa4aaSbaaeaajugibiaadgfacaWGKbaeaaaaaaaaa8qacaGGGcaa juaGpaqabaqcLbsapeGaaiiOaiabg2da9iaacckacqGHsislcaGGGc qcfa4aaSaaaeaajugibiaaiodacaWGrbGaamizaaqcfayaaKqzGeGa aGOmaiaadkfalmaaCaaajuaGbeqaaKqzadGaaGinaaaaaaqcLbsaca GGGcGaai4waiaacIcacqaHjpWDlmaaBaaajuaGbaqcLbmacaaIXaaa juaGbeaajugibiaac6gacaGGPaGaey4kaSIaaGOmaiaacIcacqaHjp WDlmaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaajugibiabeM8a3TWa aSbaaKqbagaajugWaiaaikdaaKqbagqaaKqzGeGaaiykaiaacckaca GGOaGaeqyYdC3cdaWgaaqcfayaaKqzadGaaGOmaaqcfayabaqcLbsa caGGUbGaaiykaiabgkHiTiaaiwdacaGGOaGaeqyYdC3cdaWgaaqcfa yaaKqzadGaaGymaaqcfayabaqcLbsacaGGUbGaaiykaiaacIcacqaH jpWDlmaaBaaajuaGbaqcLbmacaaIYaaajuaGbeaajugibiaac6gaca GGPaWcdaahaaqcfayabeaajugWaiaaikdaaaqcLbsacaGGDbaaaa@8226@ …….(3)

U QQ   =   3 Q 2 4 R 0 5  [15 ( ω 1 n) 2 5 ( ω 2 n) 2 +2 ( ω 1 ω 2 ) 2 +35 ( ω 1 n) 2 ( ω 2 n) 2 20( ω 1 n)( ω 2 n)( ω 1 ω 2 )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGvb qcfa4aaSbaaeaajugWaiaadgfacaWGrbqcLbsaqaaaaaaaaaWdbiaa cckaaKqba+aabeaajugib8qacaGGGcGaeyypa0JaaiiOaiabgkHiTi aacckajuaGdaWcaaqaaKqzGeGaaG4maiaadgfajuaGdaahaaqabeaa jugWaiaaikdaaaaajuaGbaqcLbsacaaI0aGaamOuaKqbaoaaBaaaba qcLbmacaaIWaaajuaGbeaadaahaaqabeaajugWaiaaiwdaaaaaaKqz GeGaaiiOaiaacUfacaaIXaGaeyOeI0IaaGynaiaacIcacqaHjpWDlm aaBaaajuaGbaqcLbmacaaIXaaajuaGbeaajugibiaac6gacaGGPaWc daahaaqcfayabeaajugWaiaaikdaaaqcLbsacqGHsislcaaI1aGaai ikaiabeM8a3LqbaoaaBaaabaqcLbmacaaIYaaajuaGbeaajugibiaa c6gacaGGPaqcfa4aaWbaaeqakeaajugWaiaaikdaaaqcLbsacqGHRa WkcaaIYaGaaiikaiabeM8a3LqbaoaaBaaabaqcLbmacaaIXaaajuaG beaajugibiabeM8a3LqbaoaaBaaabaqcLbmacaaIYaaajuaGbeaaju gibiaacMcajuaGdaahaaqabeaajugWaiaaikdaaaqcLbsacqGHRaWk caaIZaGaaGynaiaacIcacqaHjpWDlmaaBaaajuaGbaqcLbmacaaIXa aajuaGbeaajugibiaac6gacaGGPaWcdaahaaqcfayabeaajugWaiaa ikdaaaqcLbsacaGGOaGaeqyYdCxcfa4aaSbaaeaajugWaiaaikdaaK qbagqaaKqzGeGaaiOBaiaacMcajuaGdaahaaqabeaajugWaiaaikda aaqcLbsacqGHsislcaaIYaGaaGimaiaacIcacqaHjpWDjuaGdaWgaa qaaKqzadGaaGymaaqcfayabaqcLbsacaGGUbGaaiykaiaacIcacqaH jpWDjuaGdaWgaaqaaKqzadGaaGOmaaqcfayabaqcLbsacaGGUbGaai ykaiaacIcacqaHjpWDlmaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaa jugibiabeM8a3LqbaoaaBaaabaqcLbmacaaIYaaajuaGbeaajugibi aacMcacaGGDbaaaa@B616@ …..(4)

Here Q is the nanobelts quadrupolar moment, R is the distance between centers of a quadrupole and a dipole or between two quadrupoles, n, ω 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3TWaaSbaaKqbagaajugWaiaaigdaaKqbagqaaaaa @3BA3@ , ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3TWaaSbaaKqbagaajugWaiaaikdaaKqbagqaaaaa @3BA4@ are unit vectors. R. In (3) ω 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3TWaaSbaaKqbagaajugWaiaaigdaaKqbagqaaaaa @3BA3@ ǁ d 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsgal8aadaWgaaqaaKqzadWdbiaaigdaaSWdaeqaaaaa @39DC@ In (4) ω 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3TWaaSbaaKqbagaajugWaiaaigdaaKqbagqaaaaa @3BA3@ , ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3TWaaSbaaKqbagaajugWaiaaikdaaKqbagqaaaaa @3BA4@ direction is along the quadrupole axes. For the dipole and quadrupole in Figure 2 ω 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3TWaaSbaaKqbagaajugWaiaaigdaaKqbagqaaaaa @3BA3@ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHLkIxaaa@3855@ ω 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3LqbaoaaBaaabaqcLbmacaaIZaaajuaGbeaaaaa@3B9A@ A Qd  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb qcfa4aaSbaaeaajugWaiaadgfacaWGKbqcLbsaqaaaaaaaaaWdbiaa cckaaKqba+aabeaaaaa@3D57@ +12Qd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbmaqaaaaa aaaaWdbiabloKi7iabgUcaRiaaigdacaaIYaGaamyuaiaadsgaaaa@3C8D@ ( ω 3 n 31 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacqaHjpWDjuaGdaWgaaqaaKqzadGaaG4maaqcfaya baqcLbsacaGGUbqcfa4aaSbaaeaajugWaiaaiodacaaIXaaajuaGbe aajugibiaacMcaaaa@42E6@ and< 0,at large distances . According to (3,2) an indifferent equilibrium of the dipole between the nanobelts and weak attraction at short distances exist. Two nanobelts repulsion in Figure 2 is due to A QQ  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqam aaBaaabaqcLbmacaWGrbGaamyuaKqbacbaaaaaaaaapeGaaiiOaaWd aeqaaaaa@3C26@ =6Q2 >0 or F12 > 0 in (4,2). Another case of quadrupoles formation is intercalation into bigraphene or graphite, see Figure 3. Adsorption, functionalization and electrostatic multipolar interactions at CNT and graphene surfaces 3. It seems, to provide the charge transfer into two planes it be better to have higher valence of intercalating atoms. Values ( ω 1 n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacqaHjpWDlmaaBaaajuaGbaqcLbmacaaIXaaajuaG beaajugibiaac6gacaGGPaaaaa@3E7D@ = 0

and AQQ =(3=4)Q2 in (4,2) means repulsing.

Figure 1 The adsorbed molecules or atoms (yellow spheres) at substrate (CNT, graphene) with transferred electrons (blue ellipses) gives repulsion of dipoles d1ǁǁd2. Opposite dipoles d1; d3 are attracted at semiconducting CNT or bi graphene.

Figure 2 The quadrupoles Q1, Q2 formed by nanobelts of the adsorbed atoms at CNT sur-face are repulsed according (4). The intermediate dipole is unstable due to nanobelts attraction.

Figure 3 The quadrupoles formed by the inter-collated molecules are repulsed into bi graphene.

Acknowledgements

None.

Conflict of interest

The authors have no conflicts of interests in this work.

References

Creative Commons Attribution License

©2018 Lykah, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.