Submit manuscript...
eISSN: 2577-8307

Forestry Research and Engineering: International Journal

Research Article Volume 2 Issue 3

Using Bayesian methodology to incorporate personal knowledge when estimating average tons per acre of loblolly pine plantations

VanderSchaaf CL

School of Agricultural Sciences and Forestry, Louisiana Tech University, USA

Correspondence: VanderSchaaf CL, Assistant Professor, School of Agricultural Sciences and Forestry, Louisiana Tech University, Ruston, LA 71272, USA, Tel (318) 257-2168

Received: April 13, 2018 | Published: May 8, 2018

Citation: VanderSchaaf CL. Using Bayesian methodology to incorporate personal knowledge when estimating average tons per acre of loblolly pine plantations. Forest Res Eng Int J. 2018;2(3):139-146 DOI: 10.15406/freij.2018.02.00039

Download PDF

Abstract

Foresters often don’t fully utilize available information when estimating average stand tons ac–1. Previous experience, and if available historic inventory data, of the same tract or similar tracts can be used as prior information in a Bayesian context to reduce uncertainty associated with average ton estimates. Bayesian methods produce a posterior distribution dependent both on the current forest inventory sample and prior information about the probabilities associated with any one average tons ac–1 actually being the true average tons. A more complete description and background of using Bayesian methods to incorporate personal knowledge, when estimating average tons, is provided. Additionally, a practical example using data obtained from an actual forest inventory conducted in a loblolly pine (Pinus taeda L.) plantation is presented. Using conventional variable plot sampling techniques, average tons was estimated at 52.9 tons ac–1. However, when determining a posterior distribution using a Beta distribution to quantify prior personal knowledge of similar sites, the estimate of average tons changed to 51.6 tons ac–1. When using a Uniform distribution to quantify prior knowledge the estimated average tons did not change. For this example, ton estimates were not substantially changed when using a Bayesian approach; however, the inferential statements that can be made about the true average tons are different than when using a frequentist inference approach.

Keywords: bayesian inference, frequentist inference, posterior distributions, uncertainty.

Introduction

Foresters often don’t fully utilize available information when conducting forest inventories estimating average tons per acre, further referred to as average tons. For instance, beyond estimating a required sample size to obtain a certain level of precision, many foresters assume the only information available to them is the current sample estimate. However, when using Bayesian inference to account for uncertainty associated with an average ton estimate, foresters can incorporate personal knowledge about the true average tons into their estimate.

Traditionally, frequentist inference has been used to quantify uncertainty when estimating average tons. When using this approach, one assumes a parametric sampling distribution for a statistic based on an estimated mean and standard error of the mean obtained from a sample–in our case average tons estimated from a timber cruise.1 For clarification, a sampling distribution is all possible values of a statistic for a given sample size and sampling protocol. A sampling distribution arises because we are estimating a parameter (e.g. true average tons) based on a sample and there is uncertainty associated with that estimate. In terms of average tons for a particular tract, when using 20 variable radius plots and a particular sampling scheme (e.g. random starting point followed by a systematic location of points), there is almost an infinite number of possible ways within the tract where the 20 points could be established. Each different positioning pattern of the 20 points would produce an estimate of average tons. A sampling distribution is the distribution of the estimates of all the different positioning patterns.

Probabilities associated with the uncertainty of an estimate are based on the theoretical concept of establishing repeated random samples of the same sample size using the same field methodology (e.g. systematically locating variable radius points). Each of the samples generates confidence intervals, so many are assumed to include the true average tons (or the parameter). Hence, when using a confidence coefficient of 95%, it is assumed that 95% of the confidence intervals will encompass the true average tons.2,3 Notice the probability is on the confidence intervals, not the true average tons. The true average tons are a parameter and hence constant, it doesn’t change across repeated random sampling.4 However, what changes are the observational units (e.g. plots or points) contained in a particular sample and hence the generated confidence intervals.

Many applications of confidence intervals are interpreted incorrectly. Stating there is a 95% chance that the true average tons is contained within a single sample generated confidence interval the probability is incorrectly placed on the parameter, a fixed value that has no probability. However, Bayesian inference credible intervals do quantify the probability that the true average tons is contained within an interval.2,3 If not always, then certainly often, this is what foresters are interested in McCarthy MA et al.3 They are not interested in determining the likelihood of confidence intervals generated from repeated random samples containing the true average tons. Bayesian inference combines ‘prior’ information about the likelihood of a particular average tons being the correct value and an estimate of average tons based on a sample to produce a posterior distribution.2–4 The posterior distribution can be viewed as an updated set of probabilities about the average tons. It represents our state of knowledge about average tons in light of the data.

Additionally, Bayesian inference also addresses other issues with using frequentist inference to quantify uncertainty. As foresters, we know the assumption of a normally distributed (or t–distributed in practice) sampling distribution for estimates of average tons is often unrealistic. For example, in a stand consisting of at least one tree meeting limiting requirements, average tons cannot be negative or zero. However, confidence intervals developed based on frequentist inference can include negative or zero volume estimates.

Differences between bayesian inference and frequentist inference

Both Bayesian and frequentist inference attempt to quantify uncertainty about an estimate due to sampling error, but differ in their approach. McCarthy MA et al.3 for a more complete discussion about the differences between the two approaches.

Frequentist inference quantifies uncertainty based on conducting an infinite number of random samples from a population. For instance, a confidence coefficient is used to determine the probability that over repeated random sampling a percentage of the confidence intervals will encompass the true mean. In practice only one random sample is conducted but based on the Central Limit Theorem we can assume the sampling distribution of a mean is normally distributed. It should be made clear that the parameter, in our case true average tons, is not random across repeated random sampling–rather the confidence intervals are random.

Unlike frequentist inference, Bayesian inference allows for the parameter to be random and thus this approach can be used to determine the probability that the true mean is within some interval, referred to as credible intervals.2,3 This is one of the major differences between these two approaches in regard to quantifying uncertainty. It should be clarified that Bayesian inference still assumes the parameter is fixed, or that there is a single, true average tons.3 However, it provides a means to assign probabilities to what the true average tons may equal.

Credible intervals are based on prior information updated using one sample while confidence intervals are based on expected behavior across repeated random sampling using results from one sample. Hence, Bayesian inference provides probabilities for parameters, given the data, in contrast to the logic of frequentist inference, which provides probabilities for datasets, given the parameter.4 A second major difference is that two–sided confidence intervals based on the Central Limit Theorem, by definition, are symmetric about the estimated average tons while credible intervals are not absolutely symmetrical.

A third major difference between the two approaches is that Bayesian inference allows a forester’s prior knowledge, or prior information, to be incorporated when quantifying uncertainty. Bayesian inference through the use of prior information alters the estimated sampling distribution (estimated based on the Central Limit Theorem) of an average ton estimate obtained from a current forest inventory. As an example of prior information about an estimate of average tons, consider a forester who has been told by a private landowner that a particular stand of timber is an unthinned, undamaged, 25–year old loblolly pine (Pinus taeda L.) stand planted at a density of 450 seedlings ac–1. Based on previous experience, that forester will have a good idea of the average tons prior to visiting the stand. With additional information such as site preparation, herbicide and fertilization treatments, and site index, the forester is likely to have an even better idea of the average tons. Surely, the true average tons cannot be 0, nor is it likely to be 10 tons ac–1, or even 30 tons ac–1, and thus these average tons should not be considered to occur within the sampling distribution.

As a second example of prior information, assume a forester conducted a forest inventory 5 years ago on a tract to be reinventoried for management purposes. Based on experience and previous inventory data, that forester can estimate a reasonable range of the current average tons and the most probable average tons prior to sampling the tract. In both cases, the forester’s ‘prior’ information can be used to alter the estimated sampling distribution of average tons that would otherwise be exclusively based on the current sample. This altering of the sampling distribution does not require any additional field work, only experience and/or previous data. When incorporating prior information about the estimated average tons, we have reduced the uncertainty associated with that estimate prior to conducting the forest inventory.

Bayesian inference raises the question, since we never really know the true average tons, and a sample is conducted only once for a particular inventory of a tract, what is to say the sample estimate is exclusively representative of the true average tons. For instance,1 state in some cases the confidence interval constructed under a frequentist inference approach will not include the true average tons. In these cases, Bayesian methods can be particularly helpful to ensure that a reasonable estimate of the true average tons is obtained. Although there is considerable debate about which inference approach is correct, some statisticians recognize the utility of both approaches.2

Incorporating prior information

Incorporating prior information is accomplished by using a distribution quantifying probabilities associated with average tons actually being the true average tons prior to sampling,. Two commonly used distributions in other natural resource Bayesian applications are the Uniform and Beta.5–7 When using the Uniform distribution to describe prior information, a range of values is assumed to be equally likely. Thus, the forester only has an idea of the range of likely tons. As for the Beta distribution, a forester not only has an idea of the range of likely tons but is confident that within the range, certain tons are more likely to be the true average tons. Thus, when using a uniformly distributed prior, a forester needs to quantify the expected minimum and maximum average tons prior to sampling. In addition, and if confident, a forester can specify the most probable average tons allowing for the use of a Beta distributed prior. Though a normal distribution can also be used to quantify prior probabilities, a Beta distribution, in my opinion and for our use, is preferable to the Normal distribution as a prior because the Beta has true minimum and maximum limits and can assume a variety of shapes.

In Bayesian analyses, the prior distribution is used along with the sample estimated sampling distribution (Likelihood) to obtain a posterior distribution. The posterior distribution is equivalent to describing the uncertainty associated with an estimate of average tons conditional on the current sample and the prior information. Generally, the estimated average tons based on Bayesian methods will be different from the forest inventory sample estimate due to the impacts of the priors.

Bayesian methods have been used in many natural resource applications.6–8 However, there is limited published literature that addresses the use of Bayesian methods when conducting a forest inventory to estimate average tons within a given stand of timber. Therefore, the objectives of this paper are to (i) explain some of the differences between frequentist and Bayesian inference when estimating average tons, (ii) describe the process behind using Bayesian methodology to estimate average tons, and (iii) provide an example from an actual forest inventory to estimate average tons.

Materials and methods

Determining posterior probability distributions
Equation (1) expresses how posterior probability distributions are calculated based on the sample data and the priors:9

P{To n i |data}= L{data|To n i }P{To n i } i=1 n [L{data|To n i }P{To n i } ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadcfacaGG7bGaamivaiaad+gacaWGUbWcdaWgaaqcbasa aKqzadGaamyAaaqcbasabaqcLbsacaGG8bGaamizaiaadggacaWG0b Gaamyyaiaac2hacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGmbGaai4E aiaadsgacaWGHbGaamiDaiaadggacaGG8bGaamivaiaad+gacaWGUb WcdaWgaaqcbasaaKqzadGaamyAaaqcbasabaqcLbsacaGG9bGaamiu aiaacUhacaWGubGaam4Baiaad6galmaaBaaajeaibaqcLbmacaWGPb aajeaibeaajugibiaac2haaOqaaKqbaoaaqahakeaajugibiaacUfa caWGmbGaai4EaiaadsgacaWGHbGaamiDaiaadggacaGG8bGaamivai aad+gacaWGUbWcdaWgaaqcbasaaKqzadGaamyAaaqcbasabaqcLbsa caGG9bGaamiuaiaacUhacaWGubGaam4Baiaad6galmaaBaaajeaiba qcLbmacaWGPbaajeaibeaajugibiaac2haaKqaGeaajugWaiaadMga cqGH9aqpcaaIXaaajeaibaqcLbmacaWGUbaajugibiabggHiLdGaai yxaaaaaaa@8149@                                      (1)

Where:
P{To n i |data} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadcfacaGG7bGaamivaiaad+gacaWGUbWcdaWgaaqcbasa aKqzadGaamyAaaqcbasabaqcLbsacaGG8bGaamizaiaadggacaWG0b Gaamyyaiaac2haaaa@46BC@ – is the posterior probability associated with any average ton ( To n i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfacaWGVbGaamOBaSWaaSbaaKqaGeaajugWaiaadMga aKqaGeqaaaaa@3EAA@ ) being the true average tons based on the sample and the prior information (a strict probability between 0 and 1). For those tons outside the range of the prior minimum and maximum average tons, the probability will be 0, L{data|To n i } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadYeacaGG7bGaamizaiaadggacaWG0bGaamyyaiaacYha caWGubGaam4Baiaad6galmaaBaaajeaibaqcLbmacaWGPbaajeaibe aajugibiaac2haaaa@46B8@ –is the probability of observing the sample data given a particular average tons ( To n i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfacaWGVbGaamOBaSWaaSbaaKqaGeaajugWaiaadMga aKqaGeqaaaaa@3EAA@ ) is the true average tons. This is the same probability as the Likelihood of observing the data given a particular ton is the true average tons. In practice, this probability is calculated based on using a t distribution centered about the sample estimated average tons with dispersion based on the estimated standard error of the mean, the traditionally used procedure to quantify uncertainty when conducting a forest inventory, and i=1 n [L{data|To n i }P{To n i } ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaaeWbGcbaqcLbsacaGGBbGaamitaiaacUhacaWGKbGaamyy aiaadshacaWGHbGaaiiFaiaadsfacaWGVbGaamOBaSWaaSbaaKqaGe aajugWaiaadMgaaKqaGeqaaKqzGeGaaiyFaiaadcfacaGG7bGaamiv aiaad+gacaWGUbqcfa4aaSbaaKqaGeaajugWaiaadMgaaSqabaqcLb sacaGG9baajeaibaqcLbmacaWGPbGaeyypa0JaaGymaaqcbasaaKqz adGaamOBaaqcLbsacqGHris5aiaac2faaaa@5B3F@ – is the summation of all joint probabilities of L{data|To n i } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadYeacaGG7bGaamizaiaadggacaWG0bGaamyyaiaacYha caWGubGaam4Baiaad6galmaaBaaajeaibaqcLbmacaWGPbaajeaibe aajugibiaac2haaaa@46B8@ and P{To n i } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadcfacaGG7bGaamivaiaad+gacaWGUbWcdaWgaaqcbasa aKqzadGaamyAaaqcbasabaqcLbsacaGG9baaaa@420E@ . In practice, we do not need to directly calculate the sum. We can obtain this value in a sense by multiplying P{To n i } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadcfacaGG7bGaamivaiaad+gacaWGUbWcdaWgaaqcbasa aKqzadGaamyAaaqcbasabaqcLbsacaGG9baaaa@420E@ and L{data|To n i } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadYeacaGG7bGaamizaiaadggacaWG0bGaamyyaiaacYha caWGubGaam4Baiaad6galmaaBaaajeaibaqcLbmacaWGPbaajeaibe aajugibiaac2haaaa@46B8@  for some step interval of To n i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfacaWGVbGaamOBaSWaaSbaaKqaGeaajugWaiaadMga aKqaGeqaaaaa@3EAA@ , summing up the probabilities associated with all To n i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfacaWGVbGaamOBaSWaaSbaaKqaGeaajugWaiaadMga aKqaGeqaaaaa@3EAA@  based on the step interval, and then dividing a particular To n i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfacaWGVbGaamOBaSWaaSbaaKqaGeaajugWaiaadMga aKqaGeqaaaaa@3EAA@  probability by that sum. An example is provided to make this procedure clearer (Table 1 & 2).

Tons per acre

Uniform (U)

t–score (ts)

t–distribution probability (t)

Posterior probabilities (PP)

Posterior distribution (PD)

Expected tons per acre

 

 1/(66–32)

( tons52.9 4.18 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaaeiDaiaab+gacaqG UbGaae4CaiabgkHiTiaaiwdacaaIYaGaaiOlaiaaiMdaaOqaaKqzGe GaaGinaiaac6cacaaIXaGaaGioaaaaaOGaayjkaiaawMcaaaaa@4754@  

 t–dist[t, 19, 2]/2

U*

PP/0.1199052

 tons*PD

32.00

0.029412

5.0000

0.0000

0.0000012

0.0000

0.0

32.85

0.029412

4.7967

0.0001

0.0000018

0.0000

0.0

33.70

0.029412

4.5933

0.0001

0.0000029

0.0000

0.0

34.55

0.029412

4.3900

0.0002

0.0000046

0.0000

0.0

35.40

0.029412

4.1866

0.0003

0.0000074

0.0001

0.0

36.25

0.029412

3.9833

0.0004

0.0000117

0.0001

0.0

37.10

0.029412

3.7799

0.0006

0.0000186

0.0002

0.0

37.95

0.029412

3.5766

0.0010

0.0000296

0.0002

0.0

38.80

0.029412

3.3732

0.0016

0.0000469

0.0004

0.0

39.65

0.029412

3.1699

0.0025

0.0000742

0.0006

0.0

40.50

0.029412

2.9665

0.0040

0.0001166

0.0010

0.0

41.35

0.029412

2.7632

0.0062

0.0001820

0.0015

0.1

42.20

0.029412

2.5598

0.0096

0.0002817

0.0023

0.1

43.05

0.029412

2.3565

0.0147

0.0004314

0.0036

0.2

43.90

0.029412

2.1531

0.0222

0.0006525

0.0054

0.2

44.75

0.029412

1.9498

0.0331

0.0009723

0.0081

0.4

45.60

0.029412

1.7464

0.0484

0.0014248

0.0119

0.5

46.45

0.029412

1.5431

0.0697

0.0020486

0.0171

0.8

47.30

0.029412

1.3397

0.0981

0.0028845

0.0241

1.1

48.15

0.029412

1.1364

0.1350

0.0039696

0.0331

1.6

49.00

0.029412

0.9330

0.1813

0.0053312

0.0445

2.2

49.85

0.029412

0.7297

0.2372

0.0069779

0.0582

2.9

50.70

0.029412

0.5263

0.3024

0.0088935

0.0742

3.8

51.55

0.029412

0.3230

0.3751

0.0110331

0.0920

4.7

52.40

0.029412

0.1196

0.4530

0.0133241

0.1111

5.8

53.25

0.029412

0.0837

0.4671

0.0137374

0.1146

6.1

54.10

0.029412

0.2871

0.3886

0.0114288

0.0953

5.2

54.95

0.029412

0.4904

0.3147

0.0092565

0.0772

4.2

55.80

0.029412

0.6938

0.2481

0.0072973

0.0609

3.4

56.65

0.029412

0.8971

0.1904

0.0056011

0.0467

2.6

57.50

0.029412

1.1005

0.1424

0.0041893

0.0349

2.0

58.35

0.029412

1.3038

0.1039

0.0030569

0.0255

1.5

59.20

0.029412

1.5072

0.0741

0.0021796

0.0182

1.1

60.05

0.029412

1.7105

0.0517

0.0015213

0.0127

0.8

60.90

0.029412

1.9139

0.0354

0.0010415

0.0087

0.5

61.75

0.029412

2.1172

0.0238

0.0007009

0.0058

0.4

62.60

0.029412

2.3206

0.0158

0.0004646

0.0039

0.2

63.45

0.029412

2.5239

0.0103

0.0003040

0.0025

0.2

64.30

0.029412

2.7273

0.0067

0.0001967

0.0016

0.1

65.15

0.029412

2.9306

0.0043

0.0001262

0.0011

0.1

66.00

0.029412

3.1340

0.0027

0.0000804

0.0007

0.0

Total

 

 

 

0.1199052

1

52.9

Table 1 Estimate of average tons per ac using Bayesian methodology for a loblolly pine plantation in southeastern Arkansas. A Uniform prior distribution was used with a minimum tons of 32 tons ac–1 and a maximum tons of 66 tons ac–1. A step interval of 0.85 is used. Values in bold are approximate 95% credible intervals of tons per ac based on the posterior distribution. After conducting the inventory, average tons was estimated to be 52.9 tons ac–1 with a standard error of 4.18

Tons per acre

Beta (B)

t–score (ts)

t–distribution probability (t)

Probabilities proportional to posterior probabilities (PP)

Posterior distribution (PD)

Expected tons per acre

 

(tons–32)3.66–1
(66–tons)4.28–1

( tons52.9 4.18 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaaeiDaiaab+gacaqG UbGaae4CaiabgkHiTiaaiwdacaaIYaGaaiOlaiaaiMdaaOqaaKqzGe Gaaeinaiaab6cacaqGXaGaaeioaaaaaOGaayjkaiaawMcaaaaa@473E@  

t–dist[t, 19, 2]/2 

B*

PP/58102334

 tons*PD

32.00

0

5.0000

0.0000

0

0.0000

0.0000000

32.85

63867

4.7967

0.0001

4

0.0000

0.0000023

33.70

370851

4.5933

0.0001

37

0.0000

0.0000213

34.55

999316

4.3900

0.0002

157

0.0000

0.0000935

35.40

1963632

4.1866

0.0003

491

0.0000

0.0002993

36.25

3241442

3.9833

0.0004

1290

0.0000

0.0008050

37.10

4787180

3.7799

0.0006

3032

0.0001

0.0019358

37.95

6540848

3.5766

0.0010

6583

0.0001

0.0042999

38.80

8434346

3.3732

0.0016

13462

0.0002

0.0089895

39.65

10396262

3.1699

0.0025

26217

0.0005

0.0178907

40.50

12355585

2.9665

0.0040

48976

0.0008

0.0341383

41.35

14244597

2.7632

0.0062

88150

0.0015

0.0627340

42.20

16001124

2.5598

0.0096

153259

0.0026

0.1113129

43.05

17570248

2.3565

0.0147

257734

0.0044

0.1909640

43.90

18905567

2.1531

0.0222

419400

0.0072

0.3168837

44.75

19970064

1.9498

0.0331

660200

0.0114

0.5084812

45.60

20736634

1.7464

0.0484

1004558

0.0173

0.7883994

46.45

21188304

1.5431

0.0697

1475847

0.0254

1.1798678

47.30

21318184

1.3397

0.0981

2090712

0.0360

1.7020089

48.15

21129174

1.1364

0.1350

2851749

0.0491

2.3632734

49.00

20633447

0.9330

0.1813

3740004

0.0644

3.1540939

49.85

19851744

0.7297

0.2372

4709780

0.0811

4.0408452

50.70

18812486

0.5263

0.3024

5688510

0.0979

4.9637843

51.55

17550729

0.3230

0.3751

6583699

0.1133

5.8412399

52.40

16106985

0.1196

0.4530

7296803

0.1256

6.5806736

53.25

14525917

0.0837

0.4671

6784659

0.1168

6.2180479

54.10

12854933

0.2871

0.3886

4995154

0.0860

4.6510666

54.95

11142701

0.4904

0.3147

3506858

0.0604

3.3165943

55.80

9437586

0.6938

0.2481

2341539

0.0403

2.2487541

56.65

7786066

0.8971

0.1904

1482768

0.0255

1.4457041

57.50

6231102

1.1005

0.1424

887531

0.0153

0.8783303

58.35

4810537

1.3038

0.1039

499981

0.0086

0.5021120

59.20

3555515

1.5072

0.0741

263486

0.0045

0.2684634

60.05

2488988

1.7105

0.0517

128740

0.0022

0.1330558

60.90

1624332

1.9139

0.0354

57519

0.0010

0.0602887

61.75

964163

2.1172

0.0238

22975

0.0004

0.0244173

62.60

499417

2.3206

0.0158

7888

0.0001

0.0084989

63.45

208853

2.5239

0.0103

2158

0.0000

0.0023571

64.30

59210

2.7273

0.0067

396

0.0000

0.0004383

65.15

6514

2.9306

0.0043

28

0.0000

0.0000313

66.00

0

3.1340

0.0027

0

0.0000

0.0000000

Total

 

 

 

58102334

1

51.6

Table 2 Estimate of average tons per ac using Bayesian methodology for a loblolly pine plantation in southeastern Arkansas. A Beta prior distribution was used with minimum, most probable, and maximum tons of 32, 47, and 66 ac–1; respectively. A step interval of 0.85 is used. Values in bold are approximate 95% credible intervals of tons per ac based on the posterior distribution. After conducting the inventory, an average ton was estimated to be 52.9 tons ac–1 with a standard error of 4.18. For brevity, for the Beta column, values of 3.66 and 4.28 are shown but within the Excel spreadsheet values of 3.660764 and 4.283873 were used; respectively

Determining prior probability distributions– P{To n i } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadcfacaGG7bGaamivaiaad+gacaWGUbWcdaWgaaqcbasa aKqzadGaamyAaaqcbasabaqcLbsacaGG9baaaa@420E@
For this paper, we use two distributions to quantify probabilities associated with a particular average tons being the true average tons prior to inventorying the stand. One is the Uniform (equation (2)) and the second is the Beta (equation (3)):

f( y ) = 1 MaxMin ;  MinyMax MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaKqba+aadaqadaGcbaqcLbsapeGa amyEaaGcpaGaayjkaiaawMcaaKqzGeWdbiaabccacqGH9aqpjuaGpa WaaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaqGnbGaaeyyaiaabIha cqGHsislcaqGnbGaaeyAaiaab6gaaaGaai4oa8qacaGGGcGaaiiOa8 aacaqGnbGaaeyAaiaab6gacqGHKjYOcaWG5bGaeyizImQaaeytaiaa bggacaqG4baaaa@5654@                                (2)

f( y ) = (α+β-1)! (α-1)!(β-1)! (y - Min) α-1 (Max-y) β-1 (Max-Min) α+β-1 ;  MinyMax MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaKqba+aadaqadaGcbaqcLbsapeGa amyEaaGcpaGaayjkaiaawMcaaKqzGeWdbiaabccacqGH9aqpjuaGpa WaaSaaaOqaaKqzGeGaaiikaiaabg7acqGHRaWkcaqGYoGaaeylaiaa bgdacaqGPaGaaeyiaaGcbaqcLbsacaGGOaGaaeySdiaab2cacaqGXa GaaeykaiaabgcacaGGOaGaaeOSdiaab2cacaqGXaGaaeykaiaabgca aaqcfa4aaSaaaOqaaKqzGeGaaiikaiaadMhacaqGGaGaaeylaiaabc cacaqGnbGaaeyAaiaab6gacaqGPaWcdaahaaqabeaajugWaiaabg7a caqGTaGaaeymaaaajugibiaacIcacaqGnbGaaeyyaiaabIhacaqGTa GaamyEaiaabMcajuaGdaahaaqcbasabeaajugWaiaabk7acaqGTaGa aeymaaaaaOqaaKqzGeGaaeikaiaab2eacaqGHbGaaeiEaiaab2caca qGnbGaaeyAaiaab6gacaqGPaqcfa4aaWbaaKqaGeqabaqcLbmacaqG XoGaey4kaSIaaeOSdiaab2cacaqGXaaaaaaajugibiaacUdapeGaai iOaiaacckapaGaaeytaiaabMgacaqGUbGaeyizImQaamyEaiabgsMi Jkaab2eacaqGHbGaaeiEaaaa@8586@        (3)

Where:
y–any average tons ( To n i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfacaWGVbGaamOBaSWaaSbaaKqaGeaajugWaiaadMga aKqaGeqaaaaa@3EAA@ ) within the range of the specified minimum (Min) and maximum (Max) values prior to sampling, including the minimum and maximum values themselves, Min, Max– are the estimated minimum and maximum average tons prior to sampling; respectively, and α, β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaabg7acaqGSaGaaeiiaiaabk7aaaa@3D0F@ – are parameters to be estimated.

In practice, a simplified version of equation (3) can be used to obtain probabilities proportional to the Beta probabilities:

f( y ) = (y - Min) α-1 (Max-y) β-1 ;  MinyMax MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaKqba+aadaqadaGcbaqcLbsapeGa amyEaaGcpaGaayjkaiaawMcaaKqzGeWdbiaabccacqGH9aqppaGaai ikaiaadMhacaqGGaGaaeylaiaabccacaqGnbGaaeyAaiaab6gacaqG PaWcdaahaaqcbasabeaajugWaiaabg7acaqGTaGaaeymaaaajugibi aacIcacaqGnbGaaeyyaiaabIhacaqGTaGaamyEaiaabMcalmaaCaaa jeaibeqaaKqzadGaaeOSdiaab2cacaqGXaaaaKqzGeGaai4oa8qaca GGGcGaaiiOa8aacaqGnbGaaeyAaiaab6gacqGHKjYOcaWG5bGaeyiz ImQaaeytaiaabggacaqG4baaaa@638D@                                (4)

As mentioned in Van Oijen et al.6 care should be taken to avoid being excessively precise in determining the prior probabilities of average tons. To clarify, for example, we mean defining too narrow of a range of the minimum and maximum average tons beyond what is reasonable prior to conducting a forest inventory. When using Bayesian inference, the range of the priors will be the range of the posterior distribution. An unreasonably narrow range of the priors will severely limit the impact of the data on the posterior distribution.

Obtaining a Bayesian estimate of average tons using actual forest inventory data
Study area description
The study area was located in a 40–acre thinned loblolly pine plantation around five miles southwest of Monticello, Arkansas (33.6290° N, 91.7910° W). This site was row–thinned and was nearly pure loblolly pine (Figure 1). The soil is mainly classified as coarse–silty, siliceous, active, thermic Glossaquic Fragiudults and fine–silty, siliceous, semi active, thermic Typic Endoaquults. Site index is around 90 ft (base age 50). A total of twenty 20–BAF (Basal Area Factor) points (English units) were established using a prism. Trees ac–1, total average basal area ac–1, and total average tons ac–1 were estimated to be 175, 79 sq ft, and 52.9, respectively. Tons ac–1 had a standard deviation of 18.71 and a standard error of the mean of 4.18. Quadratic mean diameter was 9.1 in.

Figure 1 Location map and aerial photograph of the loblolly pine plantation used to conduct the inventory. The study area was located in a 40–acre thinned plantation around five miles southwest of Monticello, Arkansas (33.6290° N, 91.7910° W).

Forest Inventory sample procedures
In the summer of 2008, a total of 79 trees were sampled across 20 variable radius points. The points were established using a systematic grid to ensure distribution across the site. A 20 ft2 ac–1 BAF was selected based on the “rule of thumb” of 4–8 trees per sampling point. Only live loblolly pine trees MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgwMiZcaa@3B14@ 4 in. were measured and recorded for analysis. Equations presented in Bullock BP et al.10 were used to estimate tons.

Prior distributions
Based on previous experience and prior to conducting the inventory, reasonable minimum and maximum average tons of 32 ac–1 and 66 ac–1 were determined; respectively. For the uniform distribution, all volumes within the range of 32–66, including 32 and 66, are equally likely to occur. In order to use the Beta distribution, the most probable average tons of 47 ac–1 was determined. To obtain estimates of α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqySdegaaa@3B0D@  and β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3B0F@  for the Beta distribution, a PERT analysis technique11 was used to first estimate the mean, V ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqdaaGcbaqcLbsacaqGwbaaaaaa@3AD0@  and variance, S V 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaabofalmaaDaaajeaibaqcLbmacaqGwbaajeaibaqcLbma caqGYaaaaaaa@3E8F@  of the Beta distribution based on the minimum, maximum, and most probable average tons:

V ¯ = Min +  4V p +Max 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqdaaGcbaqcLbsacaqGwbaaaiabg2da9Kqbaoaalaaakeaa jugibiaab2eacaqGPbGaaeOBaiaabccacqGHRaWkcaqGGaGaaeinai aabAfajuaGdaWgaaqcbasaaKqzadGaaeiCaaWcbeaajugibiabgUca Riaab2eacaqGHbGaaeiEaaGcbaqcLbsacaaI2aaaaaaa@4BF0@                                         (5)

t= ( y52.9 ) 4.18 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiDaiabg2da9Kqbaoaalaaak8aabaqc fa4dbmaabmaak8aabaqcLbsapeGaamyEaiabgkHiTiaaiwdacaaIYa GaaiOlaiaaiMdaaOGaayjkaiaawMcaaaWdaeaajugib8qacaaI0aGa aiOlaiaaigdacaaI4aaaaaaa@4783@                                                       (6)

Where:
Min–minimum expected average tons prior to sampling, V p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaabAfajuaGdaWgaaqcbasaaKqzadGaaeiCaaWcbeaaaaa@3D2C@ –most probable average tons prior to sampling, and
Max–maximum expected average tons prior to sampling.

Thus, estimates of V ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqdaaGcbaqcLbsacaqGwbaaaaaa@3AD0@ and S V 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaabofalmaaDaaajeaibaqcLbmacaqGwbaajeaibaqcLbma caqGYaaaaaaa@3E8F@  for our data are:

V ¯ = 32 + 4(47)+66 6 =47.67 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqdaaGcbaqcLbsacaqGwbaaaiabg2da9Kqbaoaalaaakeaa jugibiaaiodacaaIYaGaaiiiaiabgUcaRiaacccacaGG0aGaaiikai aaisdacaaI3aGaaiykaiabgUcaRiaaiAdacaaI2aaakeaajugibiaa cAdaaaGaeyypa0deaaaaaaaaa8qacaaI0aGaaG4naiaac6cacaaI2a GaaG4naaaa@4CCD@

S V 2 = (66-32) 2 36 =32.11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaabofalmaaDaaajeaibaqcLbmacaqGwbaajeaibaqcLbma caqGYaaaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaiikaiaaiA dacaaI2aGaaiylaiaaiodacaaIYaGaaiykaKqbaoaaCaaakeqajaai baqcLbmacaGGYaaaaaGcbaqcLbsacaGGZaGaaiOnaaaacqGH9aqpqa aaaaaaaaWdbiaaiodacaaIYaGaaiOlaiaaigdacaaIXaaaaa@4FF6@

The parameters α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqySdegaaa@3B0D@  and β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3B0F@  that describe the shape of the Beta distribution were then estimated:

α=[ V ¯ - Min Max - Min ][ (Max- V ¯ )( V ¯ Min) S V 2 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqySdeMaeyypa0tcfa4damaadmaakeaa juaGdaWcaaGcbaqcfa4aa0aaaOqaaKqzGeGaaeOvaaaacaqGTaGaae iiaiaab2eacaqGPbGaaeOBaaGcbaqcLbsacaqGnbGaaeyyaiaabIha caqGGaGaaeylaiaabccacaqGnbGaaeyAaiaab6gaaaaakiaawUfaca GLDbaajuaGdaWadaGcbaqcfa4aaSaaaOqaaKqzGeGaaiikaiaab2ea caqGHbGaaeiEaiaab2cajuaGdaqdaaGcbaqcLbsacaqGwbaaaiaacM cacaGGOaqcfa4aa0aaaOqaaKqzGeGaaeOvaaaacqGHsislcaqGnbGa aeyAaiaab6gacaqGPaaakeaajugibiaabofalmaaDaaajeaibaqcLb macaqGwbaajeaibaqcLbmacaqGYaaaaaaajugibiabgkHiTiaaigda aOGaay5waiaaw2faaaaa@6702@                                        (7)

β=α[ Max - V ¯   V ¯ - Min ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdiMaeyypa0JaeqySdewcfa4damaa dmaakeaajuaGdaWcaaGcbaqcLbsacaqGnbGaaeyyaiaabIhacaqGGa GaaeylaKqbaoaanaaakeaajugibiaabAfaaaaakeaajugibiaabcca juaGdaqdaaGcbaqcLbsacaqGwbaaaiaab2cacaqGGaGaaeytaiaabM gacaqGUbaaaaGccaGLBbGaayzxaaaaaa@4EEE@                                                                   (8)

For our data, estimates of the parameters are:

α=[ 47.67- 32 66 - 32 ][ (66-47.67)(47.6732) 32.11 1 ]= 3.66 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHjabg2da9KqbaoaadmaakeaajuaGdaWcaaGcbaqc LbsacaaI0aGaaG4naiaac6cacaaI2aGaaG4naiaac2cacaGGGaGaaG 4maiaackdaaOqaaKqzGeGaaGOnaiaaiAdacaGGGaGaaiylaiaaccca caaIZaGaaiOmaaaaaOGaay5waiaaw2faaKqbaoaadmaakeaajuaGda WcaaGcbaqcLbsacaGGOaGaaGOnaiaaiAdacaGGTaGaaGinaiaaiEda caGGUaGaaGOnaiaaiEdacaGGPaGaaiikaiaaisdacaaI3aGaaiOlai aaiAdacaaI3aGaeyOeI0IaaG4maiaackdacaGGPaaakeaajugibiaa iodacaaIYaGaaiOlaiaaigdacaaIXaaaaiabgkHiTiaacgdaaOGaay 5waiaaw2faaKqzGeaeaaaaaaaaa8qacqGH9aqpcaqGGaGaaG4maiaa c6cacaaI2aGaaGOnaaaa@6952@

β = 3.66[ 66 -47.67 47.67- 32 ]= 4.28 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdiMaaeiiaiabg2da9iaabccacaaI ZaGaaiOlaiaaiAdacaaI2aqcfa4damaadmaakeaajuaGdaWcaaGcba qcLbsacaaI2aGaaGOnaiaacccacaGGTaGaaGinaiaaiEdacaGGUaGa aGOnaiaaiEdaaOqaaKqzGeGaaiiiaiaaisdacaaI3aGaaiOlaiaaiA dacaaI3aGaaiylaiaacccacaaIZaGaaiOmaaaaaOGaay5waiaaw2fa aKqzGeWdbiabg2da9iaabccacaaI0aGaaiOlaiaaikdacaaI4aaaaa@5798@

To obtain probabilities associated with any average tons proportional to the Beta probabilities, estimated Min and Max values and parameters were placed into equation (4):

f( y ) =  ( y 32 ) 3.661 ( 66 y ) 4.281 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaKqba+aadaqadaGcbaqcLbsapeGa amyEaaGcpaGaayjkaiaawMcaaKqzGeWdbiaabccacqGH9aqpcaqGGa qcfa4damaabmaakeaajugib8qacaWG5bGaeyOeI0Iaaeiiaiaaioda caaIYaaak8aacaGLOaGaayzkaaWcdaahaaqcbasabeaajugWa8qaca aIZaGaaiOlaiaaiAdacaaI2aGaeyOeI0IaaGymaaaajuaGpaWaaeWa aOqaaKqzGeWdbiaaiAdacaaI2aGaaeiiaiabgkHiTiaadMhaaOWdai aawIcacaGLPaaalmaaCaaajeaibeqaaKqzadWdbiaaisdacaGGUaGa aGOmaiaaiIdacqGHsislcaaIXaaaaaaa@5B66@

Determining the likelihood of the observed data– L{data|To n i } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadYeacaGG7bGaamizaiaadggacaWG0bGaamyyaiaacYha caWGubGaam4Baiaad6galmaaBaaajeaibaqcLbmacaWGPbaajeaibe aajugibiaac2haaaa@46B8@
Based on the estimated average tons and standard error from the actual timber cruise, a t distribution was used to describe the probability (Likelihood) of observing the data given a particular To n i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfacaWGVbGaamOBaSWaaSbaaKqaGeaajugWaiaadMga aKqaGeqaaaaa@3EAA@  is the true average tons. Despite the Bayesian inference complex terminology, this is nothing more than the usual practice of describing uncertainty associated with the estimated average tons from a forest inventory. A t–score is calculated as:

t= ( y y ¯ ) s y ¯ ;  -y+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiDaiabg2da9Kqbaoaalaaak8aabaqc fa4dbmaabmaak8aabaqcLbsapeGaamyEaiabgkHiTiqadMhagaqeaa GccaGLOaGaayzkaaaapaqaaKqzGeWdbiaabohal8aadaWgaaqcbasa aKqzadGabmyEayaaraaajeaibeaaaaqcLbsapeGaai4oaiaacckaca GGGcWdaiaab2cacqGHEisPcqGHKjYOcaWG5bGaeyizImQaey4kaSIa eyOhIukaaa@5316@                                                     (9)

Where:
y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhaaaa@3A4C@ –Average tons,
y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqadMhagaqeaaaa@3A64@ –Estimated average tons from the forest inventory, and s y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaabohalmaaBaaajeaibaWcdaqdaaqcbasaaKqzadGaamyE aaaaaKqaGeqaaaaa@3D36@ –Standard error of the mean.

Thus, based on results from the forest inventory, equation (9) becomes:

t= ( y52.9 ) 4.18 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiDaiabg2da9Kqbaoaalaaak8aabaqc fa4dbmaabmaak8aabaqcLbsapeGaamyEaiabgkHiTiaaiwdacaaIYa GaaiOlaiaaiMdaaOGaayjkaiaawMcaaaWdaeaajugib8qacaaI0aGa aiOlaiaaigdacaaI4aaaaaaa@4783@

For this analysis, probabilities of the t–score were generated using procedures in Microsoft® Excel (tdist[t, 19, 2]/2).

Estimating posterior distributions P{To n i |data} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadcfacaGG7bGaamivaiaad+gacaWGUbWcdaWgaaqcbasa aKqzadGaamyAaaqcbasabaqcLbsacaGG8bGaamizaiaadggacaWG0b Gaamyyaiaac2haaaa@46BC@
The posterior distribution was obtained by multiplying the probability of observing the sample data given a particular tons is the true average tons, L{data|To n i } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadYeacaGG7bGaamizaiaadggacaWG0bGaamyyaiaacYha caWGubGaam4Baiaad6galmaaBaaajeaibaqcLbmacaWGPbaajeaibe aajugibiaac2haaaa@46B8@ , and the prior probability associated with any one particular average tons being the true average tons prior to sampling based on either the Uniform or Beta distributions. After manipulating the posterior distribution to integrate (or sum in practice) to unity as mentioned in the Determining posterior probability distributions section, by calculating the expected value of the posterior distribution an estimate of the average tons was obtained:

E[{To n i |data}= Min Max To n i f( y ) dy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyra8aacaGGBbGaai4EaiaadsfacaWG VbGaamOBaSWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaKqzGeGaai iFaiaadsgacaWGHbGaamiDaiaadggacaGG9bGaeyypa0tcfa4aa8qC aOqaaKqzGeWdbiaadsfacaWGVbGaamOBaSWdamaaBaaajeaibaqcLb mapeGaamyAaaqcbaYdaeqaaKqzGeWdbiaadAgajuaGpaWaaeWaaOqa aKqzGeWdbiaadMhaaOWdaiaawIcacaGLPaaajugib8qacaqGGaGaam izaiaadMhaaKqaG8aabaqcLbmacaqGnbGaaeyAaiaab6gaaKqaGeaa jugWaiaab2eacaqGHbGaaeiEaaqcLbsacqGHRiI8aaaa@631A@                                       (10)

In practice, an estimate of this integral is obtained from:                                                                           

E[{To n i |data}]= Min Max To n i f( y )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyra8aacaGGBbGaai4EaiaadsfacaWG VbGaamOBaSWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaKqzGeGaai iFaiaadsgacaWGHbGaamiDaiaadggacaGG9bGaaiyxaiabg2da9Kqb aoaaqahakeaajugib8qacaWGubGaam4Baiaad6gal8aadaWgaaqcba saaKqzadWdbiaadMgaaKqaG8aabeaajugib8qacaWGMbqcfa4damaa bmaakeaajugib8qacaWG5baak8aacaGLOaGaayzkaaqcLbsapeGaai iOaaqcbaYdaeaajugWaiaab2eacaqGPbGaaeOBaaqcbasaaKqzadGa aeytaiaabggacaqG4baajugibiabggHiLdaaaa@626E@  (11)
Where:
Min and Max–minimum and maximum average tons as specified by the prior distribution; respectively, and
f(y)–are probabilities obtained from the posterior distribution, P{To n i |data} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadcfacaGG7bGaamivaiaad+gacaWGUbWcdaWgaaqcbasa aKqzadGaamyAaaqcbasabaqcLbsacaGG8bGaamizaiaadggacaWG0b Gaamyyaiaac2haaaa@46BC@ .

When using equation (11), smaller step intervals (e.g. 32.1, 32.2, 35.3 … as opposed to 32, 33, 34…) will likely provide a closer approximation to the true integrated value shown in equation (10) because we are using a discrete approach to quantify continuous distributions (e.g. Beta, Uniform, and t).9 A lower credible interval for the estimate of average tons can be obtained by summing the posterior probabilities to some level of confidence (e.g. 0.025 for a two–sided 95% credible interval). An upper credible interval can be obtained in a similar manner (e.g. 0.975 for a two–sided 95% credible interval). Although more advanced integration techniques exist, this simple discrete approach can be implemented fairly easily within Microsoft® Excel.

Results and discussions

When using prior information to estimate tons along with the forest inventory sample, the estimated average tons didn’t change based on a Uniform prior distribution but it changed from 52.9 tons ac–1 to 51.6 tons ac–1 (–1.3 tons) when using a Beta prior distribution (Table 1 & 2). Differences in the posterior estimate of average tons arise because of varying strengths of the priors.4,9 Compared to the Beta prior distribution, the Uniform prior distribution is relatively weak in its influence and the data had a greater impact on the posterior distribution.

Although confident in the forest inventory protocol, due to random sampling error, the conventional point–sampling estimate most likely does not equal the true average tons. Based on previous experience, I was relatively confident that the true average tons ranged from 32 tons ac–1 to 66 tons ac–1, and thus Bayesian methods adjusted the estimated sampling distribution (quantified using a t–statistic) such that all tons outside this range had zero probability. All probabilities of tons outside the range of 32 tons ac–1 and 66 tons ac–1 when using the t–distribution have been “pushed” inwards2 producing taller but narrower posterior distributions (Figure 2) (Figure 3). This arises because before even conducting the timber cruise, the uncertainty associated with the estimate of average tons was decreased because of the prior information.3 For the Beta prior distribution, the posterior distribution is more definitively non–symmetric. Approximate 95% credible limits are in bold text in Tables 1 & 2.2,3 A smaller step interval would likely produce more precise estimates of the limits. Values of the 95% confidence limits using a frequentist inference approach are 44.2 tons ac–1 and 61.6 tons ac–1.

Figure 2 Posterior distribution of average tons ac–1 (bold line) based on a uniformly distributed prior and sample data obtained from a loblolly pine plantation in southeastern Arkansas. The lighter line is the estimated sampling distribution based exclusively on the forest inventory sample and the t–distribution.

Figure 3 Posterior distribution of average tons ac–1 (bold line) based on a Beta distributed prior and sample data obtained from a loblolly pine plantation in southeastern Arkansas. The lighter line is the estimated sampling distribution based exclusively on the forest inventory sample and the t–distribution. Notice the posterior distribution is non–symmetric due to the strength of the Beta distributed prior to alter the normally distributed likelihood distribution.

Although ton estimates do not differ much after incorporating ‘prior’ information, the inferential statements that can be made vary substantially. Rather than stating that we are 95% confident that an interval about the sample mean encompasses the true average tons, we can calculate probabilities about the value of the average tons using credible intervals.2,3 Additionally, the credible intervals do not need to be symmetrical since they are not calculated based on the assumption that sample means are normally distributed about the population mean. Finally, I have incorporated personal knowledge when calculating the uncertainty associated with the estimate of average tons.

As the standard error of the mean decreases and sample size remains constant, the observed data will have a greater impact on the posterior distribution.4 This is not surprising since we are using Bayesian methods in part to account for sampling error, as sampling error decreases the impacts of the prior information should be less. If the standard error of the mean remains constant, increases in sample size will also result in the observed data having a greater impact on the posterior distribution resulting from a narrower t–distribution.

A few comments about prior distributions should be made. It is true that a ‘Bayesian’ bears responsibility for the appropriate selection of priors.4 In Bayesian inference, the posterior mean is a weighted function of the prior mean and the sample mean where the weights are the relative levels of precision.2–4 Priors influence posteriors, particularly with small–sample datasets. A so–called non–informative prior can be selected. A non–informative prior is one that has such a large variance that it will have little or no impact on the posterior distribution.2,3 In fact, when one has incorrectly interpreted a frequentist inference to mean that there is some probability that the true average tons is within an interval, actually the interpretation would have been correct if using Bayesian inference and an assumption of a true non–informative prior.3 Therefore, most forester’s interpretation of quantifying the uncertainty associated with an average tons estimate has not been incorrect, they have just not known they were using Bayesian inference (and an assumption of a true non–informative prior).

As to the timing of when exactly a forester specifies their ‘priors’ is a matter of preference. For instance, if a forester knows for a particular plantation the planting density, age, site index, number of thinning, and has viewed aerial photographs, they can specify a very knowledgeable lower and upper bound. Almost all industrial land and much non–industrial land have these records. However, it would also be legitimate to use not only that information, but let us say a forester visits the stand before specifying their ‘priors’. This is also legitimate, obviously the forester would have a much better idea of the actual stocking of the forest and could incorporate this knowledge when specifying their ‘priors’.

Conclusions

An application of using Bayesian methods to incorporate prior personal knowledge when conducting a forest inventory for average tons estimates was presented. Bayesian analyses incorporate prior information about a parameter along with sample data to produce a posterior distribution. Before conducting a forest inventory, prior information may help reduce uncertainty associated with an estimate of average tons. Based on a forester’s previous experience, the posterior distribution should be more representative of what tons are actually expected to occur for a particular forested tract relative to conventional confidence intervals. Methodology presented in this paper can be applied to many forest types and for any desired measure of yield (e.g. tons, volume, biomass, carbon). Additionally, this methodology can be used to produce posterior distributions of other critical stand variables including basal area ac–1 and trees ac–1.

Acknowledgement

None.

Conflict of Interest

Author declares there is no conflict of interest.

References

Creative Commons Attribution License

©2018 VanderSchaaf. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.