Submit manuscript...
eISSN: 2577-8242

Fluid Mechanics Research International Journal

Mini Review Volume 2 Issue 1

The motion of a rigid body and a viscous fuid in abounded domain in presence of collisions

Nikolai V Chemetov,1 Sarka Necasova2

1Department of Mathematics, University of Lisbon, Portugal
2Institute of Mathematicsof the Czech Academy of Sciences, Czech Republic

Correspondence: Nikolai V Chemetov, Department of Mathematics, University of Lisbon, Campo Grande, Edifcio C6, 1749-016 Lisboa, Portugal

Received: July 13, 2017 | Published: January 4, 2018

Citation: Chemetov NV, Necasova S (2018) The Motion of a Rigid Body and a Viscous Fuid in Abounded Domain in Presence of Collisions. Fluid Mech Res Int 2(1): 00014. DOI: 10.15406/fmrij.2018.02.00014

Download PDF

Abstract

We consider the motion of a rigid body in a bounded domain filled by viscous incompressible fluid. The fluid is described by the Navier-Stokes equations. We assume the Navier condition on the boundary of the body and the Dirichlet condition on the boundary of the domain. We give the global-in-time solvability result of the weak solution. The result allows a possibility of collisions of the body with the boundary of the domain.

Keywords: navier-stokes equations, navier boundary condition, solidification

Presentation of the Problem

We investigate the motion of a rigid body inside a viscous incompressible fluid. Let Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo Wvaaa@3813@  be a bounded domain of N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaajugibiab=1risLqbaoaa CaaaleqajeaibaqcLbmacaWGobaaaaaa@4423@  for N=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGob GaaGypaiaaikdaaaa@38DB@  or 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maaaa@36B3@ . At the initial moment t=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b GaaGypaiaaicdaaaa@38FF@  the body and the fluid occupy an open connected set S 0 Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacqGHckcZcqqH PoWvaaa@3E42@  and the set F 0 =Ω\ S 0 ¯ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacaaI9aGaeuyQ dCLaaiixaKqbaoaanaaakeaajugibiaadofajuaGdaWgaaqcbasaaK qzadGaaGimaaWcbeaaaaqcLbsacaaISaaaaa@4401@  respectively. The motion of any point y=( y 1 ,.., y N ) T S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWH5b GaaGypaiaaiIcacaWG5bqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqa baqcLbsacaaISaGaaGOlaiaai6cacaaISaGaamyEaKqbaoaaBaaaje aibaqcLbmacaWGobaaleqaaKqzGeGaaGykaKqbaoaaCaaaleqajeai baqcLbmacaWGubaaaKqzGeGaeyicI4Saam4uaKqbaoaaBaaajeaiba qcLbmacaaIWaaaleqaaaaa@4DFE@  is described by an isometry, preserving orientation.

A(t,y)=q(t)+(t)(yq(0)),t0,T], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHbb GaaGikaiaadshacaaISaGaaCyEaiaaiMcacaaI9aGaaCyCaiaaiIca caWG0bGaaGykaiabgUcaRmrr1ngBPrwtHrhAYaqeguuDJXwAKbstHr hAGq1DVbacfaGae8NgHeLaaGikaiaadshacaaIPaGaaGikaiaahMha cqGHsislcaWHXbGaaGikaiaaicdacaaIPaGaaGykaiaaiYcacaaMf8 UaaGzbVlaadshacqGHiiIZcaaIWaGaaGilaiaadsfacaaIDbGaaGil aaaa@5E1A@ (1)

where q=q(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHXb GaaGypaiaahghacaaIOaGaamiDaiaaiMcaaaa@3B9E@  is the body mass center and Q(t) is the rotation matrix, such that (t) (t) T =I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaajugibiab=PrirjaaiIca caWG0bGaaGykaiab=PrirjaaiIcacaWG0bGaaGykaKqbaoaaCaaale qajeaibaqcLbmacaWGubaaaKqzGeGaaGypaiab=Hi8jbaa@4D8E@ , (0)=I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaajugibiab=PrirjaaiIca caaIWaGaaGykaiaai2dacqWFicFsaaa@4665@  with I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaajugibiab=Hi8jbaa@426E@  being the identity matrix. Hence the body and the fluid occupy the sets S(t)=A(t, S 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaMe8 Uaam4uaiaaiIcacaWG0bGaaGykaiaai2dacaWGbbGaaGikaiaadsha caaISaGaam4uaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGe GaaGykaaaa@441C@  and F(t)=Ω\ S(t) ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb GaaGikaiaadshacaaIPaGaaGypaiabfM6axjaacYfajuaGdaqdaaGc baqcLbsacaWGtbGaaGikaiaadshacaaIPaaaaaaa@4151@  at any time t. The velocity of the body is related with the isometry A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHbb aaaa@374F@  by

u=q'(t)+(t)(xq(t))forxS(t), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWH1b GaaGypaiaahghacaGGNaGaaGikaiaadshacaaIPaGaey4kaSYefv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFzecucaaIOa GaamiDaiaaiMcacaaIOaGaaCiEaiabgkHiTiaahghacaaIOaGaamiD aiaaiMcacaaIPaGaaGzbVlaaywW7caqGMbGaae4BaiaabkhacaaMe8 UaaGjbVlaahIhacqGHiiIZcaWGtbGaaGikaiaadshacaaIPaGaaGil aaaa@6061@ (2)

where the matrix (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaajugibiab=LriqjaaiIca caWG0bGaaGykaaaa@4395@  fulfills d dt T = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1D VbacfaGae8NgHefakeaajugibiaadsgacaWG0baaaiab=PrirLqbao aaCaaaleqajeaibaqcLbmacaWGubaaaKqzGeGaaGypaiab=Lriqbaa @4BA7@ , such that there exists a vector ω=ω(t) N , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDcaaI9aGaeqyYdCNaaGikaiaadshacaaIPaGaeyicI4SaaGjcVprr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHivcfa 4aaWbaaSqabKqaGeaajugWaiaad6eaaaqcLbsacaaISaaaaa@4F3C@  satisfying (t)x=ω(t)×x, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaajugibiab=LriqjaaiIca caWG0bGaaGykaiaahIhacaaI9aGaeqyYdCNaaGikaiaadshacaaIPa Gaey41aqRaaCiEaiaaiYcaaaa@4D56@   x N . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaMe8 UaeyiaIiIaaCiEaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbst HrhAGq1DVbacfaGae8xhHivcfa4aaWbaaSqabKqaGeaajugWaiaad6 eaaaqcLbsacaaIUaaaaa@4A4C@

Let ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCaaa@3845@  be the density of the body S(t) and of the fluid F(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb GaaGikaiaadshacaaIPaaaaa@39AE@  at a time t0,T]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b GaeyicI4SaaGimaiaaiYcacaWGubGaaGyxaiaai6caaaa@3CEA@  Then the mass of the body S(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb GaaGikaiaadshacaaIPaaaaa@39BB@  is equal to m= S(t) ρdx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWbcjugibi aad2gacaaI9aGcdaWdraqabSqaceaagPqcLbmacaWGtbGaaGikaiaa dshacaaIPaaaleqajugGbiabgUIiYdqcLbsacqaHbpGCcaaMi8Uaam izaiaahIhaaaa@45E8@ . The stress and the deformation-rate tensors of the fluid are given by

P=pI+2 μ f DuandDu= 1 2 {u+ ( u ) T }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb GaaGypaiabgkHiTiaadchacaWGjbGaey4kaSIaaGOmaiabeY7aTLqb aoaaBaaaleaajugibiaadAgaaSqabaqcLbsacaaMi8+efv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFdcprcaWH1bGaaGzb VlaabggacaqGUbGaaeizaiaaywW7cqWFdcprcaWH1bGaaGypaKqbao aalaaakeaajugibiaaigdaaOqaaKqzGeGaaGOmaaaacaaI7bGaey4b IeTaaCyDaiabgUcaRKqbaoaabmaakeaajugibiabgEGirlaahwhaaO GaayjkaiaawMcaaKqbaoaaCaaaleqajeaibaqcLbmacaWGubaaaKqz GeGaaGyFaiaaiYcaaaa@6B62@

where p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb aaaa@377A@  is the fluid pressure and the viscosity μ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBjuaGdaWgaaqcbasaaKqzadGaamOzaaWcbeaaaaa@3B38@  of the fluid is a positive constant. The matrix of the inertia moments of the body is calculated as

J= S(t) ρ(|xq(t )| 2 I(xq(t))(xq(t)))dx. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaajugibiab=Li8kjaai2da kmaapebabeqcbasaaKqzGeGaam4uaiaaiIcacaWG0bGaaGykaaWcbe qcLbyacqGHRiI8aKqzGeGaeqyWdiNaaGikaiaaiYhacaWH4bGaeyOe I0IaaCyCaiaaiIcacaWG0bGaaGykaiaaiYhajuaGdaahaaWcbeqcba saaKqzadGaaGOmaaaajugibiab=Hi8jjabgkHiTiaaiIcacaWH4bGa eyOeI0IaaCyCaiaaiIcacaWG0bGaaGykaiaaiMcacqGHxkcXcaaIOa GaaCiEaiabgkHiTiaahghacaaIOaGaamiDaiaaiMcacaaIPaGaaGyk aiaayIW7caWGKbGaaCiEaiaai6caaaa@6F46@

Therefore the motion of the fluid and of the body is governed by the following system

t ρ+(u)ρ=0,divu=0,ρ( t u+(u)u)=divP+gforxF(t), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITjuaGdaWgaaqcbasaaKqzadGaamiDaaWcbeaajugibiabeg8aYjab gUcaRiaaiIcacaWH1bGaeyyXICTaey4bIeTaaGykaiabeg8aYjaai2 dacaaIWaGaaGilaiaaywW7caqGKbGaaeyAaiaabAhacaWH1bGaaGyp aiaaicdacaaISaGaaGzbVlabeg8aYjaaiIcacqGHciITjuaGdaWgaa qcbasaaKqzadGaamiDaaWcbeaajugibiaahwhacqGHRaWkcaaIOaGa aCyDaiabgwSixlabgEGirlaaiMcacaWH1bGaaGykaiaai2dacaqGKb GaaeyAaiaabAhacaWGqbGaey4kaSIaaC4zaiaaywW7caaMf8UaaeOz aiaab+gacaqGYbGaaGjbVlaahIhacqGHiiIZcaWGgbGaaGikaiaads hacaaIPaGaaGilaaaa@76BB@

mq"= S(t) Pndx+ S(t) gdx, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb GaaCyCaiaackcacaaI9aGcdaWdraqabKazba4=baqcLbmacqGHciIT caWGtbGaaGikaiaadshacaaIPaaaleqajugGbiabgUIiYdqcLbsaca WGqbGaaeOBaiaayIW7caWGKbGaaCiEaiabgUcaROWaa8qeaeqajqwa a+FaaKqzadGaam4uaiaaiIcacaWG0bGaaGykaaWcbeqcLbyacqGHRi I8aKqzGeGaaC4zaiaayIW7caWGKbGaaCiEaiaaiYcaaaa@5A36@

d(Jω) dt = S(t) (xq(t))×Pndx+ S(t) (xq(t))×gdxforxS(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy 0HgiuD3BaGqbaiab=Li8kjabeM8a3jaaiMcaaOqaaKqzGeGaamizai aadshaaaGaaGypaOWaa8qeaeqajqwaa+FaaKqzGdGaeyOaIyRaam4u aiaaiIcacaWG0bGaaGykaaWcbeqcLbyacqGHRiI8aKqzGeGaaGikai aahIhacqGHsislcaWHXbGaaGikaiaadshacaaIPaGaaGykaiabgEna 0kaadcfacaqGUbGaaGjcVlaadsgacaWH4bGaey4kaSIcdaWdraqabK azba4=baqcLbmacaWGtbGaaGikaiaadshacaaIPaaaleqajugGbiab gUIiYdqcLbsacaaIOaGaaCiEaiabgkHiTiaahghacaaIOaGaamiDai aaiMcacaaIPaGaey41aqRaaC4zaiaayIW7caWGKbGaaCiEaiaaywW7 caaMf8UaaeOzaiaab+gacaqGYbGaaGjbVlaahIhacqGHiiIZcaWGtb GaaGikaiaadshacaaIPaaaaa@88EF@  (3)

with the initial conditions

S= S 0 ,ρ= ρ 0 ,u= u 0 att=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb GaaGypaiaadofajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugi biaaiYcacaaMf8UaeqyWdiNaaGypaiabeg8aYLqbaoaaBaaajeaiba qcLbmacaaIWaaaleqaaKqzGeGaaGilaiaaywW7caWH1bGaaGypaiaa hwhajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiaaywW7ca qGHbGaaeiDaiaaykW7caaMc8UaamiDaiaai2dacaaIWaGaaGOlaaaa @5850@ (4)

In system (3) n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGUb aaaa@3776@  is the unit outward normal to S(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITcaWGtbGaaGikaiaadshacaaIPaaaaa@3B21@  and g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHNb aaaa@3775@  is an external force.

The global existence of weak solutions of rigid bodies moving in a fluid has been investigated by many mathematicians: Hoffmann, Starovoitov,1 Conca C et al.2 Feireisl E et al.3 Bost C et al.4 Desjardins B et al.5 Gunzburger MD et al.,6 Takahashi T et al,7 Judakov NV8 and etc.. All of these authors have considered the non-slip boundary condition on the boundaries of the body and the domain, although this boundary condition gives a paradoxical result of no collisions between the body and the boundary of the domain.9‒11 In the articles,11‒13 the authors have studied the question of possible collisions with respect of the regularity of velocity and the regularity of boundaries. For instance, in Gérard-Varet et al.12 have demonstrated that under C 1,α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb qcfa4aaWbaaSqabKqaGeaajugWaiaaigdacaaISaGaeqySdegaaaaa @3C70@ -boundaries the collision is possible in a finite period of time if and only if α<1/2. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qycaaI8aGaaGymaiaai+cacaaIYaGaaGOlaaaa@3BD2@ These mentioned results have demonstrated that a more accurate model is needed for the description of the motion of bodies in a viscous incompressible fluid.

Another possibility to include collisions is to consider the slippage on the boundaries. The slippage is prescribed by the Navier type of boundary condition. It means that there is only the continuity of velocity field in the normal component. A particular case, when the motion of a rigid body is prescribed, has been considered by Neustupa & Penel.14 They have investigated a prescribed collision of a ball with a wall, when the slippage is allowed on the boundaries of the ball and of the wall. This pioneer result14 has shown that the slip boundary condition cleans the no-collision paradox. First result in the case of the motion of a single body, moved in the whole space 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaajugibiab=1risLqbaoaa CaaaleqajeaibaqcLbmacaaIZaaaaaaa@440D@ , has been considered in G Planas15 Recently Gérard-Varet et al.16 have proved a local-in-time existence result: up to collisions. The free fall of a ball with assumptions on symmetry and touching point has been studied in D Gérard Varet17 In this article it has been shown that the ball touches the boundary of the wall in a finite period of time in the case of Navier boundary conditions on the boundaries of the ball and the wall.

In this article we close system (3) by adding Navier boundary condition

u s n= u f n,(Pn+γ( u f u s ))s=0onS(t), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWH1b qcfa4aaSbaaKqaGeaajugWaiaadohaaSqabaqcLbsacqGHflY1caqG UbGaaGypaiaahwhajuaGdaWgaaqcbasaaKqzadGaamOzaaWcbeaaju gibiabgwSixlaab6gacaaISaGaaGzbVlaaywW7caaIOaGaamiuaiaa b6gacqGHRaWkcqaHZoWzcaaIOaGaaCyDaKqbaoaaBaaajeaibaqcLb macaWGMbaaleqaaKqzGeGaeyOeI0IaaCyDaKqbaoaaBaaajeaibaqc LbmacaWGZbaaleqaaKqzGeGaaGykaiaaiMcacqGHflY1caqGZbGaaG ypaiaaicdacaaMf8Uaae4Baiaab6gacaaMc8UaeyOaIyRaam4uaiaa iIcacaWG0bGaaGykaiaaiYcaaaa@6AEB@ (5)

and Dirichlet boundary condition

u=0onΩ. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWH1b GaaGypaiaaicdacaaMf8Uaae4Baiaab6gacaaMc8UaaGPaVlabgkGi 2kabfM6axjaai6caaaa@4337@ (6)

Here u s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWH1b qcfa4aaSbaaKqaGeaajugWaiaadohaaSqabaaaaa@3A8D@  and u f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWH1b qcfa4aaSbaaKqaGeaajugWaiaadAgaaSqabaaaaa@3A80@  are the trace values of the velocity u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWH1b aaaa@3783@  on S(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITcaWGtbGaaGikaiaadshacaaIPaaaaa@3B21@  from the rigid side S(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb GaaGikaiaadshacaaIPaaaaa@39BB@  and from the fluid side F(t), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb GaaGikaiaadshacaaIPaGaaGilaaaa@3A64@  respectively. The outer normal and arbitrary tangent vector to S(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITcaWGtbGaaGikaiaadshacaaIPaaaaa@3B21@  are denoted by n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGUb aaaa@3776@  and s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGZb aaaa@377B@ . The constant γ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHZo WzcaaI+aGaaGimaaaa@39AE@  is a so-called friction coefficient of S 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITcaWGtbqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacaaI Uaaaaa@3CD6@

Weak Solution of System (1)-(6) and the Main Result

To introduce the concept of weak solution for system (1)-(6), let us define some spaces of functions

V 0,2 (Ω)={v L 2 (Ω):divv=0in D ' (Ω),vn=0in H 1/2 (Ω)}, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb qcfa4aaWbaaSqabKqaGeaajugWaiaaicdacaaISaGaaGOmaaaajugi biaaiIcacqqHPoWvcaaIPaGaaGypaiaaiUhacaWH2bGaeyicI4Saam itaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaaGikaiab fM6axjaaiMcacaaI6aGaaGjcVlaayIW7caWGKbGaamyAaiaadAhaca aMe8UaaGjcVlaahAhacaaI9aGaaGimaiaaywW7caqGPbGaaeOBaiaa ysW7tuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=n q8eLqbaoaaCaaaleqabaqcLbsacaWGNaaaaiaaiIcacqqHPoWvcaaI PaGaaGilaiaaywW7caWH2bGaeyyXICTaaeOBaiaai2dacaaIWaGaaG jbVlaaysW7caqGPbGaaeOBaiaaysW7caWGibqcfa4aaWbaaSqabKqa GeaajugWaiabgkHiTiaaigdacaaIVaGaaGOmaaaajugibiaaiIcacq GHciITcqqHPoWvcaaIPaGaaGyFaiaaiYcaaaa@8735@

B D 0 (Ω)={ v L 1 (Ω):DvM(Ω),v=0onΩ }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGcb GaamiraKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaaGik aiabfM6axjaaiMcacaaI9aqcfa4aaiWaaOqaaKqzGeGaaCODaiabgI GiolaadYeajuaGdaahaaWcbeqcbasaaKqzadGaaGymaaaajugibiaa iIcacqqHPoWvcaaIPaGaaGOoaiaayIW7tuuDJXwAK1uy0HMmaeHbfv 3ySLgzG0uy0HgiuD3BaGqbaiab=ni8ejaahAhacqGHiiIZtuuDJXwA K1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGGbaiab+ntinjaaiIcacq qHPoWvcaaIPaGaaGilaiaaywW7caWH2bGaaGypaiaaicdacaaMf8Ua ae4Baiaab6gacaaMe8UaeyOaIyRaeuyQdCfakiaawUhacaGL9baaju gibiaaiYcaaaa@7886@

Where n is the unit normal to the boundary Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITcqqHPoWvaaa@3979@  of the domain Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo Wvaaa@3813@  and M(Ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=ntinjaaiIca cqqHPoWvcaaIPaaaaa@4428@  is the space of bounded Radon measures. Let S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqLejugibi aadofaaaa@37C6@  be an open connected subset of Ω. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo WvcaaIUaaaaa@38CB@  We consider the space

KB(S)={ vB D 0 (Ω):Dv L 2 (Ω\ S ¯ ),Dv=0a.e.onS,divv=0in D ' (Ω) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGlb GaamOqaiaaiIcacaWGtbGaaGykaiaai2dajuaGdaGadaGcbaqcLbsa caWH2bGaeyicI4SaamOqaiaadseajuaGdaWgaaqcbasaaKqzadGaaG imaaWcbeaajugibiaaiIcacqqHPoWvcaaIPaGaaGOoaiaayIW7tuuD JXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=ni8ejaahA hacqGHiiIZcaWGmbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqc LbsacaaIOaGaeuyQdCLaaiixaKqbaoaanaaakeaajugibiaadofaaa GaaGykaiaaiYcacaaMf8Uae83GWtKaaCODaiaai2dacaaIWaGaaGzb VlaabggacaqGUaGaaeyzaiaab6cacaaMc8Uaae4Baiaab6gacaaMc8 Uaam4uaiaaiYcacaaMf8UaaGjcVlaadsgacaWGPbGaamODaiaayIW7 caWH2bGaaGypaiaaicdacaaMf8UaaGjcVlaadMgacaWGUbGaaGjbVl aayIW7caaMe8+efv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvga iyaacqGFdeprjuaGdaahaaWcbeqaaKqzGeGaam4jaaaacaaIOaGaeu yQdCLaaGykaaGccaGL7bGaayzFaaaaaa@99CD@

In what follows we admit that the boundary Ω C 0,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITcqqHPoWvcqGHiiIZcaWGdbqcfa4aaWbaaSqabKqaGeaajugWaiaa icdacaaISaGaaGymaaaaaaa@4003@  of the domain Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCLaaG jbVdaa@3911@  and the boundary S 0 C 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOaIyRaam 4uamaaBaaaleaacaaIWaaabeaakiabgIGiolaadoeadaahaaWcbeqa aiaaikdaaaaaaa@3C59@  of the rigid body S 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaaIWaaabeaakiaai6caaaa@3876@

Definition

The triple { A,ρ,u } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaaO qaaKqzGeGaaCyqaiaaiYcacqaHbpGCcaaISaGaaCyDaaGccaGL7bGa ayzFaaaaaa@3E4C@  is a weak solution of system (1)-(6), if the following three conditions are fulfilled:

    1. The function A(t,): N N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHbb GaaGikaiaadshacaaISaGaeyyXICTaaGykaiaaiQdatuuDJXwAK1uy 0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risLqbaoaaCaaale qajeaibaqcLbmacaWGobaaaKqzGeGaeyOKH4Qae8xhHivcfa4aaWba aSqabKqaGeaajugWaiaad6eaaaaaaa@5186@ is an isometry (1), such that the functions q, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHXb GaaGilamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGa e8NgHefaaa@42E9@  are absolutely continuous on [0,T] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIBb GaaGimaiaaiYcacaWGubGaaGyxaaaa@3A9A@ . The isometry A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHbb aaaa@374F@  is compatible with the rigid body velocity (2) on S(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb GaaGikaiaadshacaaIPaaaaa@39BB@  and defines a time dependent set S(t)=A(t, S 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb GaaGikaiaadshacaaIPaGaaGypaiaahgeacaaIOaGaamiDaiaaiYca caWGtbqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacaaIPa aaaa@4293@ ;
    2. The function ρ L ((0,T)×Ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCcqGHiiIZcaWGmbqcfa4aaWbaaSqabKqaGeaajugWaiabg6HiLcaa jugibiaaiIcacaaIOaGaaGimaiaaiYcacaWGubGaaGykaiabgEna0k abfM6axjaaiMcaaaa@4765@  satisfies the integral equality
    3. 0 T Ω ρ( ξ t +(u)ξ)dtdx= Ω ρ 0 ξ(0,)dx,ξ C 1 ([0,T]× Ω ¯ ),ξ(T,)=0; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqaje aibaqcLbmacaaIWaaajqwaa+FaaKqzadGaamivaaqcLbyacqGHRiI8 aOWaa8qeaeqajeaibaqcLbmacqqHPoWvaSqabKqzagGaey4kIipaca aMc8EcLbsacqaHbpGCcaaIOaGaeqOVdGxcfa4aaSbaaKqaGeaajugW aiaadshaaSqabaqcLbsacqGHRaWkcaaIOaGaaCyDaiabgwSixlabgE GirlaaiMcacqaH+oaEcaaIPaGaaGjcVlaadsgacaWG0bGaamizaiaa hIhacaaI9aGaeyOeI0IcdaWdraqabKazba4=baqcLbmacqqHPoWvaS qabKqzagGaey4kIipacaaMc8EcLbsacqaHbpGCjuaGdaWgaaqcbasa aKqzadGaaGimaaWcbeaajugibiabe67a4jaaiIcacaaIWaGaaGilai abgwSixlaaiMcacaaMi8UaamizaiaahIhacaaISaGaaGzbVlabgcGi Iiabe67a4jabgIGiolaadoeajuaGdaahaaWcbeqcbasaaKqzadGaaG ymaaaajugibiaaiIcacaaIBbGaaGimaiaaiYcacaWGubGaaGyxaiab gEna0MqbaoaanaaakeaajugibiabfM6axbaacaaIPaGaaGilaiaayw W7cqaH+oaEcaaIOaGaamivaiaaiYcacqGHflY1caaIPaGaaGypaiaa icdacaaI7aaaaa@98F3@  (7)

    4. The function u L 2 (0,T;KB(S(t))) L (0,T; V 0,2 (Ω)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWH1b GaeyicI4SaamitaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqz GeGaaGikaiaaicdacaaISaGaamivaiaaiUdacaWGlbGaamOqaiaaiI cacaWGtbGaaGikaiaadshacaaIPaGaaGykaiaaiMcacqGHPiYXcaWG mbqcfa4aaWbaaSqabKqaGeaajugWaiabg6HiLcaajugibiaaiIcaca aIWaGaaGilaiaadsfacaaI7aGaamOvaKqbaoaaCaaaleqajeaibaqc LbmacaaIWaGaaGilaiaaikdaaaqcLbsacaaIOaGaeuyQdCLaaGykai aaiMcaaaa@5B6C@  satisfies the integral equality
    5. 0 T Ω\S(t) {ρu y t +ρ(uu):Dy2 μ f Du:Dy+gy}dxdt = Ω ρ 0 u 0 y(0,)dx+ 0 T { S(t) γ( u s u f )( y s y f )dx }dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWdXa qabKazba4=baqcLbmacaaIWaaajqwaa+FaaKqzadGaamivaaqcLbya cqGHRiI8aOWaa8qeaeqajqwaa+FaaKqzadGaeuyQdCLaaiixaiabgk Gi2kaadofacaaIOaGaamiDaiaaiMcaaSqabKqzagGaey4kIipajugi biaaiUhacqaHbpGCcaWH1bGaaOyEaKqbaoaaBaaajqwaa+FaaKqzGc GaamiDaaWcbeaajugibiabgUcaRiabeg8aYjaaiIcacaWH1bGaey4L IqSaaCyDaiaaiMcacaaI6aWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiuaacqWFdcprcaGI5bGaeyOeI0IaaGOmaiabeY7aTLqb aoaaBaaajqwaa+FaaKqzGcGaamOzaaWcbeaajugibiaayIW7cqWFdc prcaWH1bGaaGOoaiab=ni8ejaakMhacaaMi8Uaey4kaSIaaC4zaiaa kMhacaaI9bGaamizaiaahIhacaWGKbGaamiDaaGcbaqcLbsacaaI9a GaeyOeI0IcdaWdraqabKazba4=baqcLbmacqqHPoWvaSqabKqzagGa ey4kIipajugibiabeg8aYLqbaoaaBaaajeaibaqcLbmacaaIWaaale qaaKqzGeGaaCyDaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqz GeGaaOyEaiaaiIcacaaIWaGaaGilaiabgwSixlaaiMcacaaMi8Uaam izaiaahIhacqGHRaWkkmaapedabeqcKfaG=haajugWaiaaicdaaKaz ba4=baqcLbmacaWGubaajugGbiabgUIiYdqcfa4aaiWaaOqaamaape babeqcKfaG=haajugWaiabgkGi2kaadofacaaIOaGaamiDaiaaiMca aSqabKqzagGaey4kIipacaaMc8EcLbsacqaHZoWzcaaIOaGaaCyDaK qbaoaaBaaajeaibaqcLbmacaWGZbaaleqaaKqzGeGaeyOeI0IaaCyD aKqbaoaaBaaajeaibaqcLbmacaWGMbaaleqaaKqzGeGaaGykaiaaiI cacaGI5bqcfa4aaSbaaKqaGeaajugWaiaadohaaSqabaqcLbsacqGH sislcaGI5bqcfa4aaSbaaKqaGeaajugWaiaadAgaaSqabaqcLbsaca aIPaGaaGjcVlaadsgacaWH4baakiaawUhacaGL9baajugibiaadsga caWG0baaaaa@E021@ (8)

for any y L 2 (0,T;KB(S(t))), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGI5b GaeyicI4SaamitaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqz GeGaaGikaiaaicdacaaISaGaamivaiaaiUdacaWGlbGaamOqaiaaiI cacaWGtbGaaGikaiaadshacaaIPaGaaGykaiaaiMcacaaISaaaaa@4898@  such that y L 2 (0,T;KB(S(t))), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGI5b GaeyicI4SaamitaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqz GeGaaGikaiaaicdacaaISaGaamivaiaaiUdacaWGlbGaamOqaiaaiI cacaWGtbGaaGikaiaadshacaaIPaGaaGykaiaaiMcacaaISaaaaa@4898@  and y(T,)=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGI5b GaaGikaiaadsfacaaISaGaeyyXICTaaGykaiaai2dacaaIWaGaaGOl aaaa@3F01@  Here we denote the trace values of u,y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWH1b GaaGilaiaaykW7caGI5baaaa@3AC9@  on S(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITcaWGtbGaaGikaiaadshacaaIPaaaaa@3B21@  from the rigid side S(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb GaaGikaiaadshacaaIPaaaaa@39BB@  and the fluid side F(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb GaaGikaiaadshacaaIPaaaaa@39AE@  by u s (t,), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWH1b qcfa4aaSbaaKqaGeaajugWaiaadohaaSqabaqcLbsacaaIOaGaamiD aiaaiYcacqGHflY1caaIPaGaaGilaaaa@4130@   y s (t,) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGI5b qcfa4aaSbaaKqaGeaajugWaiaadohaaSqabaqcLbsacaaIOaGaamiD aiaaiYcacqGHflY1caaIPaaaaa@4081@  and u f (t,), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWH1b qcfa4aaSbaaKqaGeaajugWaiaadAgaaSqabaqcLbsacaaIOaGaamiD aiaaiYcacqGHflY1caaIPaGaaGilaaaa@4123@   y f (t,), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGI5b qcfa4aaSbaaKqaGeaajugWaiaadAgaaSqabaqcLbsacaaIOaGaamiD aiaaiYcacqGHflY1caaIPaGaaGilaaaa@412A@  respectively.

Our main result is the following theorem shown in NV Chemetov28

Theorem We assume that S 0 ¯ Ω. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0aaaO qaaKqzGeGaam4uaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaaaa jugibiabgkOimlabfM6axjaai6caaaa@3FA3@ Let

ρ 0 (x)={ ρ s (x)const>0, x S 0 , ρ f =const>0, x F 0 , ρ s L ( S 0 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCjuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiaaiIcacaWH 4bGaaGykaiaai2dajuaGdaGabaGcbaqcLbsafaqaaeGacaaakeaaju gibiabeg8aYLqbaoaaBaaajeaibaqcLbmacaWGZbaaleqaaKqzGeGa aGikaiaahIhacaaIPaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDOb cv39gaiuaacqWF+PsHcaWGJbGaam4Baiaad6gacaWGZbGaamiDaiaa i6dacaaIWaGaaGilaaGcbaqcLbsacaaMf8UaaCiEaiabgIGiolaado fajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiaaiYcaaOqa aKqzGeGaeqyWdixcfa4aaSbaaKqaGeaajugWaiaadAgaaSqabaqcLb sacaaI9aGaam4yaiaad+gacaWGUbGaam4CaiaadshacaaI+aGaaGim aiaaiYcaaOqaaKqzGeGaaGzbVlaahIhacqGHiiIZcaWGgbqcfa4aaS baaKqaGeaajugWaiaaicdaaSqabaqcLbsacaaISaaaaaGccaGL7baa jugibiaaywW7caaMf8UaeqyWdixcfa4aaSbaaKqaGeaajugWaiaado haaSqabaqcLbsacqGHiiIZcaWGmbqcfa4aaWbaaSqabKqaGeaajugW aiabg6HiLcaajugibiaaiIcacaWGtbqcfa4aaSbaaKqaGeaajugWai aaicdaaSqabaqcLbsacaaIPaGaaGilaaaa@9247@

u 0 V 0,2 (Ω),D u 0 =0in D ' ( S 0 ),g L 2 (0,T;(KB(S(t ))) ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWH1b qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacqGHiiIZcaWG wbqcfa4aaWbaaSqabKqaGeaajugWaiaaicdacaaISaGaaGOmaaaaju gibiaaiIcacqqHPoWvcaaIPaGaaGilaiaaywW7tuuDJXwAK1uy0HMm aeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=ni8ejaahwhajuaGdaWgaa qcbasaaKqzadGaaGimaaWcbeaajugibiaai2dacaaIWaGaaGzbVlaa bMgacaqGUbGaaGjbVprr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8 KBLbacgaGae43aXtucfa4aaWbaaSqabeaajugibiaadEcaaaGaaGik aiaadofajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiaaiM cacaaISaGaaGzbVlaahEgacqGHiiIZcaWGmbqcfa4aaWbaaSqabKqa GeaajugWaiaaikdaaaqcLbsacaaIOaGaaGimaiaaiYcacaWGubGaaG 4oaiaaiIcacaWGlbGaamOqaiaaiIcacaWGtbGaaGikaiaadshacaaI PaGaaGykaiaaiMcajuaGdaahaaWcbeqaaKqzGeGaey4fIOcaaiaaiM cacaaIUaaaaa@88AB@ (9)

Then for any given T>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub GaaGOpaiaaicdaaaa@38E0@  system (1)-(6) possesses a weak solution { A,ρ,u }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaaO qaaKqzGeGaaCyqaiaaiYcacqaHbpGCcaaISaGaaCyDaaGccaGL7bGa ayzFaaqcLbsacaaISaaaaa@3F91@  such that the isometry A(t,) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHbb GaaGikaiaadshacaaISaGaeyyXICTaaGykaaaa@3CAD@  is Lipschitz continuous with respect to t[0,T], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b GaeyicI4Saai4waiaaicdacaaISaGaamivaiaai2facaaISaaaaa@3DC7@

ρ(t,x)={ ρ s ( A 1 (t,x)), xS(t); ρ f , xF(t), fora.e.t(0,T), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCcaaIOaGaamiDaiaaiYcacaWH4bGaaGykaiaai2dajuaGdaGabaGc baqcLbsafaqaaeGacaaakeaajugibiabeg8aYLqbaoaaBaaajeaiba qcLbmacaWGZbaaleqaaKqzGeGaaGikaiaahgeajuaGdaahaaWcbeqc basaaKqzadGaeyOeI0IaaGymaaaajugibiaaiIcacaWG0bGaaGilai aahIhacaaIPaGaaGykaiaaiYcaaOqaaKqzGeGaaCiEaiabgIGiolaa dofacaaIOaGaamiDaiaaiMcacaaI7aaakeaajugibiabeg8aYLqbao aaBaaajeaibaqcLbmacaWGMbaaleqaaKqzGeGaaGilaaGcbaqcLbsa caWH4bGaeyicI4SaamOraiaaiIcacaWG0bGaaGykaiaaiYcaaaaaki aawUhaaKqzGeGaaGzbVlaabAgacaqGVbGaaeOCaiaaykW7caqGHbGa aeOlaiaabwgacaqGUaGaamiDaiabgIGiolaaiIcacaaIWaGaaGilai aadsfacaaIPaGaaGilaaaa@75E9@ (10)

u C weak (0,T; V 0,2 (Ω)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWH1b GaeyicI4Saam4qaKqbaoaaBaaajeaibaqcLbmacaqG3bGaaeyzaiaa bggacaqGRbaaleqaaKqzGeGaaGikaiaaicdacaaISaGaamivaiaaiU dacaWGwbqcfa4aaWbaaSqabKqaGeaajugWaiaaicdacaaISaGaaGOm aaaajugibiaaiIcacqqHPoWvcaaIPaGaaGykaaaa@4D33@ and the following energy inequality holds

1 2 Ω ρ|u | 2 (r)dx+ 0 r { F(t) 2 μ f |Du | 2 dx+ S(t) γ| u f u s | 2 dx }dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaOWaa8qeaeqajqwaa+Fa aKqzadGaeuyQdCfaleqajugGbiabgUIiYdqcLbsacaaMc8UaeqyWdi NaaGiFaiaahwhacaaI8bqcfa4aaWbaaSqabKqaGeaajugWaiaaikda aaqcLbsacaaIOaGaamOCaiaaiMcacaaMe8UaamizaiaahIhacqGHRa WkkmaapedabeqcKfaG=haajugWaiaaicdaaKazba4=baqcLbmacaWG YbaajugGbiabgUIiYdqcfa4aaiWaaOqaamaapebabeqcKfaG=haaju gWaiaadAeacaaIOaGaamiDaiaaiMcaaSqabKqzagGaey4kIipajugi biaaikdacqaH8oqBjuaGdaWgaaqcbasaaKqzadGaamOzaaWcbeaaju gibiaayIW7caaI8bWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiuaacqWFdcprcaaMi8UaaCyDaiaaiYhajuaGdaahaaWcbeqcba saaKqzadGaaGOmaaaajugibiaayIW7caaMi8UaamizaiaahIhacqGH RaWkkmaapebabeqcKfaG=haajugWaiabgkGi2kaadofacaaIOaGaam iDaiaaiMcaaSqabKqzagGaey4kIipajugibiabeo7aNjaaiYhacaWH 1bqcfa4aaSbaaKqaGeaajugWaiaadAgaaSqabaqcLbsacqGHsislca WH1bqcfa4aaSbaaKqaGeaajugWaiaadohaaSqabaqcLbsacaaI8bqc fa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacaaMe8Uaamizai aahIhaaOGaay5Eaiaaw2haaKqzGeGaamizaiaadshaaaa@ACF2@

1 2 Ω ρ 0 | u 0 | 2 dx+ 0 r <g,u>dtfora.e.r(0,T). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaajugibiab=1NkeMqbaoaa laaakeaajugibiaaigdaaOqaaKqzGeGaaGOmaaaakmaapebabeqcba saaKqzadGaeuyQdCfaleqajugGbiabgUIiYdGaaGPaVNqzGeGaeqyW dixcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacaaI8bGaaC yDaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaaGiFaKqb aoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaaGjbVlaadsgaca WH4bGaey4kaSIcdaWdXaqabKazba4=baqcLbmacaaIWaaajqwaa+Fa aKqzadGaamOCaaqcLbyacqGHRiI8aKqzGeGaaGipaiaahEgacaWHSa GaaCyDaiaai6dacaaMe8UaamizaiaadshacaaMf8UaaeOzaiaab+ga caqGYbGaaGPaVlaaykW7caqGHbGaaeOlaiaabwgacaqGUaGaaGjcVl aadkhacqGHiiIZcaaIOaGaaGimaiaaiYcacaWGubGaaGykaiaai6ca aaa@8682@ (11)

Let us point out that in D Gérard Varet17 it has been also studied the mixed case: Navier type condition on the boundary of the ball and Dirichlet condition on the boundary of the wall (the boundary conditions (5), (6)). The boundaries of the ball and the wall have been belonged to the class C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb qcfa4aaWbaaSqabKqaGeaajugWaiabg6HiLcaaaaa@3AD1@ . In this case it has been shown that the ball never touches the boundary of the wall for these boundary conditions. Nevertheless of the result,17 the contacts of the body and the boundary of the domain are available in Theorem 2.2, due to the low regularity of the boundaries Ω C 0,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITcqqHPoWvcqGHiiIZcaWGdbqcfa4aaWbaaSqabKqaGeaajugWaiaa icdacaaISaGaaGymaaaaaaa@4003@ , S 0 C 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITcaWGtbqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacqGH iiIZcaWGdbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaaaa@4139@ . Moreover Theorem 2.2 is valid for any external force g L 2 (0,T;(KB(S(t ))) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHNb GaeyicI4SaamitaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqz GeGaaGikaiaaicdacaaISaGaamivaiaaiUdacaaIOaGaam4saiaadk eacaaIOaGaam4uaiaaiIcacaWG0bGaaGykaiaaiMcacaaIPaqcfa4a aWbaaSqabeaajugibiabgEHiQaaacaaIPaaaaa@4B6B@ . Let us refer to the example constructed by Starovoitov.11 In order to create a collision of the body with the boundary of the domain (in the case of non-slip conditions on the boundaries Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITcqqHPoWvaaa@3979@  and S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITcaWGtbqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaaaa@3B8F@ ), an appropriate external force from H 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGib qcfa4aaWbaaSqabKqaGeaajugWaiabgkHiTiaaigdaaaaaaa@3B0D@ -space has been chosen. Regarding to the uniqueness of solutions we have to investigate two different situations: firstly we consider that the body S(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb GaaGikaiaadshacaaIPaaaaa@39BB@  does not touch the boundary Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITcqqHPoWvaaa@3979@  and secondly we admit the body contacts the boundary.

The unique solvability of the weak solution for the 2-D case was proved in the work of Glass O et al.16 The uniqueness result was obtained on the time interval as long as no collision occurs. It is well-known that the uniqueness of the weak solution is not yet shown for the three-dimensional Navier-Stokes equations, then we can not expect to derive the uniqueness for 3D weak solution of system (1)-(6). Concerning to the 3D uniqueness of strong solution, we remark that the local existence of unique strong solution and the weak-strong uniqueness have been obtained in the articles19 on the time interval where the strong solution exists.

In case that the body contacts the boundary, the situation is more delicate, since Definition 2.1 does not predict what may happen after the collision of the body S(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb GaaGikaiaadshacaaIPaaaaa@39BB@  with the boundary Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITcqqHPoWvaaa@3979@ . In fact, equation (8) does not prescribe any rebound law. In the article20 two solutions have been constructed with different behaviors after collisions: the first describes the body hits the boundary Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITcqqHPoWvaaa@3979@  and gets bounced back, and in the second solution the body and the boundary Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITcqqHPoWvaaa@3979@  remain in contact after the collision. Therefore when the collisions happen the model must be more sophisticated.

It is not clear how to model correctly the situation at/after the collisions. It is still an open question. One natural way is to consider an elastic body and an elastic boundary instead of rigid ones. We can mention few results for the motion of an elastic body (and an elastic boundary) in a viscous fluid obtained by Boulakia M,21 Canic S22 and Kukavica I, et al.23 where local-in-time existence results have been demonstrated as long as no collisions occur. The investigations of contacts of elastic bodies are not known to us.

Sketch of the Proof of Theorem

First we introduce an approximate scheme to system (1)-(6), using the idea that the "body+fluid" can be approximated by a non-homogeneous fluid, having different values of viscosity in three zones: approximation of "body", approximation of Navier boundary condition (5) and "fluid" zone.

To construct such approximation problem we fix the following notations. For an open connected set S N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb GaeyOGIW8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqWFDeIujuaGdaahaaWcbeqcbasaaKqzadGaamOtaaaaaaa@46F7@ , we define dist[x,S]= inf yS |xy|, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGKb GaaeyAaiaabohacaqG0bGaaG4waiaahIhacaaISaGaam4uaiaai2fa caaI9aqcfa4aaubeaOqabKqaGeaajugWaiaahMhacqGHiiIZcaWGtb aaleqakeaajugibiGacMgacaGGUbGaaGPaVlaacAgaaaGaaGiFaiaa hIhacqGHsislcaWH5bGaaGiFaiaaiYcaaaa@4F8F@   d S (x)=dist[x, N \S]dist[x,S] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaMe8 UaamizaKqbaoaaBaaajeaibaqcLbmacaWGtbaaleqaaKqzGeGaaGik aiaahIhacaaIPaGaaGypaiaabsgacaqGPbGaae4CaiaabshacaaIBb GaaCiEaiaaiYcacaaMi8+efv3ySLgznfgDOjdaryqr1ngBPrginfgD Obcv39gaiuaacqWFDeIujuaGdaahaaWcbeqcbasaaKqzadGaamOtaa aajugibiaacYfacaWGtbGaaGyxaiabgkHiTiaabsgacaqGPbGaae4C aiaabshacaaIBbGaaCiEaiaaiYcacaWGtbGaaGyxaaaa@6162@  for any x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWH4b GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqWFDeIujuaGdaahaaWcbeqcbasaaKqzadGaamOtaaaaaaa@46A8@ , [S] δ = d S 1 ((δ,+)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaMe8 UaaG4waiaadofacaaIDbqcfa4aaSbaaKqaGeaajugWaiabes7aKbWc beaajugibiaai2dacaWGKbWcdaqhaaqcbasaaKqzadGaam4uaaqcba saaKqzadGaeyOeI0IaaGymaaaajugibiaaiIcacaaIOaGaeqiTdqMa aGilaiabgUcaRiabg6HiLkaaiMcacaaIPaaaaa@4E10@  - the δkernel MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH0o azcqGHsislkabaaaaaaaaapeGaae4AaiaabwgacaqGYbGaaeOBaiaa bwgacaqGSbaaaa@3ED4@ of S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb aaaa@375D@  and ]S [ δ = d S 1 ((δ,+)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaMe8 UaaGyxaiaadofacaaIBbqcfa4aaSbaaKqaGeaajugWaiabes7aKbWc beaajugibiaai2dacaWGKbWcdaqhaaqcbasaaKqzadGaam4uaaqcba saaKqzadGaeyOeI0IaaGymaaaajugibiaaiIcacaaIOaGaeyOeI0Ia eqiTdqMaaGilaiabgUcaRiabg6HiLkaaiMcacaaIPaaaaa@4EFD@  - the δneighborhood MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH0o azqaaaaaaaaaWdbiabgkHiTiaab6gacaqGLbGaaeyAaiaabEgacaqG ObGaaeOyaiaab+gacaqGYbGaaeiAaiaab+gacaqGVbGaaeizaaaa@4453@  of S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb aaaa@375D@ .

As Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo Wvaaa@3813@  is a bounded domain, we assume that Ω]L,L [ N =T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo WvcqGHckcZcaaIDbGaeyOeI0IaamitaiaaiYcacaWGmbGaaG4waKqb aoaaCaaaleqajeaibaqcLbmacaWGobaaaKqzGeGaaGypamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83eXtfaaa@4EC3@  for a certain L>0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb GaaGOpaiaaicdacaaIUaaaaa@3990@  Let us extend the functions ρ 0 , u 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCjuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiaaiYcacaWH 1bqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaaaa@4020@  and g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHNb aaaa@3775@  by zero values on T. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=nr8ujaai6ca aaa@42A4@  Let us consider the characteristic functions ξ(x), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaMe8 UaeqOVdGNaaGikaiaahIhacaaIPaGaaGilaaaa@3CF1@   φ 0 (x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHgp GAjuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiaaiIcacaWH 4bGaaGykaaaa@3E03@  and χ 0 δ (x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhp WylmaaDaaajeaibaqcLbmacaaIWaaajeaibaqcLbmacqaH0oazaaqc LbsacaaIOaGaaCiEaiaaiMcaaaa@406D@  of the sets T\ [Ω] 2τ ¯ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=nr8ujaacYfa juaGdaqdaaGcbaqcLbsacaaIBbGaeuyQdCLaaGyxaKqbaoaaBaaaje aibaqcLbmacaaIYaGaeqiXdqhaleqaaaaajugibiaaiYcaaaa@4D36@   S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaMe8 Uaam4uaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaaaa@3BB6@  and ] S 0 [ δ \ S 0 ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIDb Gaam4uaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaaG4w aKqbaoaaBaaajeaibaqcLbmacqaH0oazaSqabaqcLbsacaGGCbqcfa 4aa0aaaOqaaKqzGeGaam4uaKqbaoaaBaaajeaibaqcLbmacaaIWaaa leqaaaaaaaa@4686@ , defined on the whole T. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=nr8ujaai6ca aaa@42A4@  Also we define ρ 0 εδ =(1 χ 0 δ ) ρ 0 +ε χ 0 δ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GClmaaDaaajeaibaqcLbmacaaIWaaajeaibaqcLbmacqaH1oqzcqaH 0oazaaqcLbsacaaI9aGaaGikaiaaigdacqGHsislcqaHhpWylmaaDa aajeaibaqcLbmacaaIWaaajeaibaqcLbmacqaH0oazaaqcLbsacaaI PaGaeqyWdixcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacq GHRaWkcqaH1oqzcqaHhpWylmaaDaaajeaibaqcLbmacaaIWaaajeai baqcLbmacqaH0oazaaqcLbsacaaIUaaaaa@5AEB@

Let σ C () MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCcqGHiiIZcaWGdbqcfa4aaWbaaSqabKqaGeaajugWaiabg6HiLcaa jugibiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaG qbaiab=1risjaaiMcaaaa@4AC4@  be a positive even function with support in (1,1), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaeyOeI0IaaGymaiaaiYcacaaIXaGaaGykaiaaiYcaaaa@3BB9@  such that N σ(|x|)dx=1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qeaeqajq waa+Faamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaqc LbmacqWFDeIulmaaCaaajqwaa+FabeaajugWaiaad6eaaaaaleqaju gGbiabgUIiYdqcLbsacqaHdpWCcaaIOaGaaGiFaiaahIhacaaI8bGa aGykaiaaysW7caWGKbGaaCiEaiaai2dacaaIXaGaaGOlaaaa@5746@  We denote σ τ (x)= 1 τ N σ( |x| τ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCjuaGdaahaaWcbeqcbasaaKqzadGaeqiXdqhaaKqzGeGaaGikaiaa hIhacaaIPaGaaGypaKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGe GaeqiXdqxcfa4aaWbaaSqabKqaGeaajugWaiaad6eaaaaaaKqzGeGa eq4WdmNaaGikaKqbaoaalaaakeaajugibiaaiYhacaWH4bGaaGiFaa GcbaqcLbsacqaHepaDaaGaaGykaaaa@516B@  for any τ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHep aDcaaI+aGaaGimaaaa@39CC@ . Now we can define the standard mollification of u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWH1b aaaa@3783@  on τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHep aDaaa@384A@  by u ¯ τ (t,x)= T u(t,y) σ τ (xy)dy,x N , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0aaaO qaaKqzGeGaaCyDaaaajuaGdaahaaWcbeqcbasaaKqzadGaeqiXdqha aKqzGeGaaGikaiaadshacaaISaGaaCiEaiaaiMcacaaI9aGcdaWdra qabKazba4=baWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaajugWaiab=nr8ubWcbeqcLbyacqGHRiI8aKqzGeGaaCyDaiaaiI cacaWG0bGaaGilaiaahMhacaaIPaGaaGjbVlabeo8aZLqbaoaaCaaa leqajeaibaqcLbmacqaHepaDaaqcLbsacaaIOaGaaCiEaiabgkHiTi aahMhacaaIPaGaaGjbVlaadsgacaWH5bGaaGilaiaaywW7cqGHaiIi caWH4bGaeyicI48efv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39 gaiyaacqGFDeIujuaGdaahaaWcbeqcbasaaKqzadGaamOtaaaajugi biaaiYcaaaa@7C8C@ where u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWH1b aaaa@3783@  is extended by zero outside of a domain Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo Wvaaa@3813@ .

The approximation problem to system (1)-(6) consists of the transport equations

t ρ+( u ¯ τ )ρ=0, t φ+( u ¯ τ )φ=0, t χ+( u ¯ τ )χ=0in(0,T)×]T [ τ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITjuaGdaWgaaqcbasaaKqzadGaamiDaaWcbeaajugibiabeg8aYjab gUcaRiaaiIcajuaGdaqdaaGcbaqcLbsacaWH1baaaKqbaoaaCaaale qabaqcLbsacqaHepaDaaGaeyyXICTaey4bIeTaaGykaiabeg8aYjaa i2dacaaIWaGaaGilaiaaywW7cqGHciITjuaGdaWgaaqcbasaaKqzad GaamiDaaWcbeaajugibiabeA8aQjabgUcaRiaaiIcajuaGdaqdaaGc baqcLbsacaWH1baaaKqbaoaaCaaaleqabaqcLbsacqaHepaDaaGaey yXICTaey4bIeTaaGykaiabeA8aQjaai2dacaaIWaGaaGilaiaaywW7 cqGHciITjuaGdaWgaaqcbasaaKqzadGaamiDaaWcbeaajugibiabeE 8aJjabgUcaRiaaiIcajuaGdaqdaaGcbaqcLbsacaWH1baaaKqbaoaa CaaaleqabaqcLbsacqaHepaDaaGaeyyXICTaey4bIeTaaGykaiabeE 8aJjaai2dacaaIWaGaaGzbVlaabMgacaqGUbGaaGjbVlaaiIcacaaI WaGaaGilaiaadsfacaaIPaGaey41aqRaaGyxamrr1ngBPrwtHrhAXa qeguuDJXwAKbstHrhAG8KBLbacfaGae83eXtLaaG4waKqbaoaaBaaa jeaibaqcLbmacqaHepaDaSqabaqcLbsacaaISaaaaa@9818@

ρ(0)= ρ 0 εδ ,φ(0)= φ 0 ,χ(0)= χ 0 δ in]T [ τ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCcaaIOaGaaGimaiaaiMcacaaI9aGaeqyWdixcfa4aa0baaKqaGeaa jugWaiaaicdaaKqaGeaajugWaiabew7aLjabes7aKbaajugibiaaiY cacaaMf8UaaGzbVlabeA8aQjaaiIcacaaIWaGaaGykaiaai2dacqaH gpGAjuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiaaiYcaca aMf8UaaGzbVlabeE8aJjaaiIcacaaIWaGaaGykaiaai2dacqaHhpWy lmaaDaaajeaibaqcLbmacaaIWaaajeaibaqcLbmacqaH0oazaaqcLb sacaaMf8UaaGzbVlaabMgacaqGUbGaaGjbVlaai2fatuuDJXwAK1uy 0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=nr8ujaaiUfajuaGda WgaaqcbasaaKqzadGaeqiXdqhaleqaaKqzGeGaaGilaaaa@7B33@ (12)

and the momentum equation

0 T { T [ρu t y+ρu( u ¯ τ )y ξ ε uy μ δ Du:Dy+ρgy]dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqajq waa+FaaKqzadGaaGimaaqcKfaG=haajugWaiaadsfaaKqzagGaey4k IipajugibiaaiUhakmaapebabeqcKfaG=haatuuDJXwAK1uy0Hwmae Hbfv3ySLgzG0uy0Hgip5wzaGqbaKqzadGae83eXtfaleqajugGbiab gUIiYdqcLbsacaaIBbGaeqyWdiNaaCyDaiabgkGi2MqbaoaaBaaaje aibaqcLbmacaWG0baaleqaaKqzGeGaaOyEaiabgUcaRiabeg8aYjaa hwhacaaIOaqcfa4aa0aaaOqaaKqzGeGaaCyDaaaajuaGdaahaaWcbe qaaKqzGeGaeqiXdqhaaiabgwSixlabgEGirlaaiMcacaGI5bGaeyOe I0IaeqOVdGxcfa4aaSbaaKqaGeaajugWaiabew7aLbWcbeaajugibi aahwhacaGI5bGaeyOeI0IaeqiVd0wcfa4aaSbaaKqaGeaajugWaiab es7aKbWcbeaatuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaG GbaKqzGeGae43GWtKaaCyDaiaaiQdacqGFdcprcaGI5bGaey4kaSIa eqyWdiNaaC4zaiaakMhacaaIDbGaaGjbVlaadsgacaWH4baaaa@96DE@

]T [ τ ζ ε D u ¯ τ :D y ¯ τ dx}dt= T ρ 0 εδ u 0 y(0,)dx, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsi sljuaGdaWdraGcbeWcbaqcLbsacaaIDbWefv3ySLgznfgDOfdaryqr 1ngBPrginfgDObYtUvgaiuaacqWFtepvcaaIBbqcfa4aaSbaaKqaGe aajugWaiabes8a0bWcbeaaaeqajugibiabgUIiYdGaeqOTdOxcfa4a aSbaaKqaGeaajugWaiabew7aLbWcbeaatuuDJXwAK1uy0HMmaeXbfv 3ySLgzG0uy0HgiuD3BaGGbaKqzGeGae43GWtucfa4aa0aaaOqaaKqz GeGaaCyDaaaajuaGdaahaaWcbeqaaKqzGeGaeqiXdqhaaiaaiQdacq GFdcprjuaGdaqdaaGcbaqcLbsacaGI5baaaKqbaoaaCaaaleqabaqc LbsacqaHepaDaaGaaGjbVlaadsgacaWH4bGaaGyFaiaadsgacaWG0b GaaGypaiabgkHiTOWaa8qeaeqajqwaa+FaaKqzadGae83eXtfaleqa jugGbiabgUIiYdqcLbsacqaHbpGClmaaDaaabaqcLbmacaaIWaaale aajugWaiabew7aLjabes7aKbaajugibiaahwhajuaGdaWgaaqcbasa aKqzadGaaGimaaWcbeaajugibiaakMhacaaIOaGaaGimaiaaiYcacq GHflY1caaIPaGaaGjbVlaadsgacaWH4bGaaCilaaaa@93C9@ (13)

which is valid for any test function y L 2(N1) (0,T; V 1,2 (T)) H 1 ((0,T)×T): MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGI5b GaeyicI4SaamitaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaGaaGik aiaad6eacqGHsislcaaIXaGaaGykaaaajugibiaaiIcacaaIWaGaaG ilaiaadsfacaaI7aGaamOvaKqbaoaaCaaaleqajeaibaqcLbmacaaI XaGaaGilaiaaikdaaaqcLbsacaaIOaWefv3ySLgznfgDOfdaryqr1n gBPrginfgDObYtUvgaiuaacqWFtepvcaaIPaGaaGykaiabgMIihlaa dIeajuaGdaahaaWcbeqcbasaaKqzadGaaGymaaaajugibiaaiIcaca aIOaGaaGimaiaaiYcacaWGubGaaGykaiabgEna0kab=nr8ujaaiMca caaI6aaaaa@6799@   y(T,)=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaMe8 UaaOyEaiaaiIcacaWGubGaaGilaiabgwSixlaaiMcacaaI9aGaaGim aiaai6caaaa@408E@  Here

ξ ε = 1 ε ξ, μ δ =φ+2 μ f θ+ γ 0 χ ]T [ τ χdx, ζ ε = 1 ε φ,θ=1(φ+χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aEjuaGdaWgaaqcbasaaKqzadGaeqyTdugaleqaaKqzGeGaaGypaKqb aoaalaaakeaajugibiaaigdaaOqaaKqzGeGaeqyTdugaaiabe67a4j aaiYcacaaMf8UaeqiVd0wcfa4aaSbaaKqaGeaajugWaiabes7aKbWc beaajugibiaai2dacqaHgpGAcqGHRaWkcaaIYaGaeqiVd0wcfa4aaS baaKqaGeaajugWaiaadAgaaSqabaqcLbsacqaH4oqCcqGHRaWkcqaH ZoWzjuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiabeE8aJL qbaoaapebakeqaleaajugibiaai2fatuuDJXwAK1uy0HwmaeHbfv3y SLgzG0uy0Hgip5wzaGqbaiab=nr8ujaaiUfajuaGdaWgaaqcbasaaK qzadGaeqiXdqhaleqaaaqabKqzGeGaey4kIipacqaHhpWycaaMe8Ua amizaiaahIhacaaISaGaaGzbVlabeA7a6LqbaoaaBaaajeaibaqcLb macqaH1oqzaSqabaqcLbsacaaI9aqcfa4aaSaaaOqaaKqzGeGaaGym aaGcbaqcLbsacqaH1oqzaaGaeqOXdOMaaGilaiaaywW7cqaH4oqCca aI9aGaaGymaiabgkHiTiaaiIcacqaHgpGAcqGHRaWkcqaHhpWycaaI Paaaaa@9350@

with the constants γ 0 = γ | S 0 | , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaMe8 Uaeq4SdCwcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacaaI 9aqcfa4aaSaaaOqaaKqzGeGaeq4SdCgakeaajugibiaaiYhacqGHci ITcaWGtbqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacaaI 8baaaiaaiYcaaaa@49AD@   | S 0 |= S 0 1dx. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI8b GaeyOaIyRaam4uaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqz GeGaaGiFaiaai2dajuaGdaWdraGcbeWcbaqcLbsacqGHciITcaWGtb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaabeqcLbsacqGHRiI8 aiaaigdacaWGKbGaaCiEaiaah6caaaa@4B0B@

In relation (13) the “viscosity” term ζ ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH2o GEjuaGdaWgaaqcbasaaKqzadGaeqyTdugaleqaaaaa@3BFB@  is an analog of penalization, introduced in KH offmann1 where the rigid body is replaced by a fluid, having high viscosity value. The first and second terms in the "viscosity" μ δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBjuaGdaWgaaqcbasaaKqzadGaeqiTdqgaleqaaaaa@3BF2@  correspond to the "rigid" region and the fluid, respectively. The third term in μ δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBjuaGdaWgaaqcbasaaKqzadGaeqiTdqgaleqaaaaa@3BF2@  defines a mixture region between the "body" and the fluid, which approximates the jump boundary term on S(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITcaWGtbGaaGikaiaadshacaaIPaaaaa@3B21@  in (8). The penalization ξ ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aEjuaGdaWgaaqcbasaaKqzadGaeqyTdugaleqaaaaa@3C01@  was developed in E Feireisl3 which is used here just for technical purposes. The solvability of this approximation problem (12)-(13) can be shown by Galerkin’s method and theoretical results for transport equations.24‒26

    1. Next in the approximation problem we have to pass on limits with respect of the parameters ε,δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzcaaISaGaeqiTdqgaaa@3A87@  and τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BB@ . These limits are based on the results for the transport equations.25
    2. The first limit on ε0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzcqGHsgIRcaaIWaaaaa@3AD3@  is related with a so-called "solidification" procedure in the zone of the non-homogeneous fluid, corresponding to the "body". This limit can be treated as in KH offmann1, JA San Martin13 In the limit we obtain the motion of the rigid body in a viscous fluid, which occupies the domain [Ω] 2τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIBb GaeuyQdCLaaGyxaKqbaoaaBaaajeaibaqcLbmacaaIYaGaeqiXdqha leqaaaaa@3E72@ ;
    3. In the second limit on δ0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH0o azcqGHsgIRcaaIWaaaaa@3AD1@ , we obtain the motion of the body already with a prescribed Navier boundary condition. Firstly we need to construct an appropriate set of test functions, depending on δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH0o azaaa@382A@ . Then, using embedding results in cusp domains, we show that the third term of μ δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBjuaGdaWgaaqcbasaaKqzadGaeqiTdqgaleqaaaaa@3BF2@  converges to the jump boundary term on S(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITcaWGtbGaaGikaiaadshacaaIPaaaaa@3B21@  in (8). The embedding results allow also to apply a compactness result in the convective term of (13) by using the approach of Proposition 6.1 in D Bucur27 (see also Lemmas 3.3, 4.9 and 4.10 in the article).28
    4. Finally we take the limit on τ0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHep aDcqGHsgIRcaaIWaGaaGjbVdaa@3C7E@ being the regularization of the velocity u ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca WH1baaaaaa@3705@ . Using the techniques developed in the previous limit on δ0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaey OKH4QaaGimaiaaysW7aaa@3BCF@  we demonstrate our main result: Theorem 2.2.

The demonstration of Theorem 2.2 is a quite lengthy and technical one. The details can be found in NV Chemetov.29

Acknowledgements

The work of S Necasova was supported by Grant No. 16-03230S of GACR in the framework of RVO 67985840.

Conflict of interest

Author declares that there is no conflict of interest.

References

  1. KH offmann, VN Starovoitov. On a motion of a solid body in a viscous fluid. Two dimensional case. Adv Math Sci Appl. 1999;9:633‒648.
  2. C Conca, J San Martin, M Tucsnak. Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Commun Partial Differential Equation. 2000;25:1019‒1042.
  3. E Feireisl, M Hillairet, Š Nečasová. On the motion of several rigid bodies in an incompressible non-Newtonian fluid. Nonlinearity. 2008;21(6):1349‒1366.
  4. C Bost, GH Cottet, E Maitre. Convergence Analysis of a Penalization Method for the Three-Dimensional Motion of a Rigid Body in an Incompressible Viscous Fluid. SIAM J Numer Anal. 2010;48(4):1313‒1337.
  5. B Desjardins, MJ Esteban. Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch in Rat Mech Anal. 1999;146(1):59‒71.
  6. MD Gunzburger, HC Lee, GA Seregin. Global Existence of Weak Solutions for Viscous Incompressible Flows around a Moving Rigid Body in Three Dimensions. J Math fluid mech. 2000;2(3):219‒266.
  7. T Takahashi. Analysis of strong solutions for the equations modelling the motion of a rigid-fluid system in a bounded domain. Advances in Differential Equations. 2003;8(12):1499‒1532.
  8. NV Judakov. The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid. Dinamika Splošn Sredy. 1974;18:249‒253.
  9. TI Hesla. Collision of smooth bodies in a viscous fluid: A mathematical investigation. PhD Thesis, University of Minnesota, USA; 2005. p. 159.
  10. M Hillairet. Lack of collision between solid bodies in a 2D incompressible viscous flow. Comm Partial Differential Equations. 2007;32(7‒9):1345‒1371.
  11. VN Starovoitov. Behavior of a rigid body in an incompressible viscous fluid near boundary. International Series of Numerical Mathematics. 2003;147:313‒327.
  12. D Gérard Varet, M Hillairet. Regularity issues in the problem of fluid structure interaction. Arch Ration Mech Anal. 2010;195(2):375‒407.
  13. JA San Martin, VN Starovoitov, M Tucsnak. Global weak solutions for the two dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch Rational Mech Anal. 2002;161(2):113‒147.
  14. J Neustupa, P Penel. Existence of a weak solution to the Navier-Stokes equation with Navier boundary condition around striking bodies. Comptes Rendus Mathematique. 2009;347(11‒12):685‒690.
  15. G Planas, F Sueur. On the "viscous incompressible fluid + rigid body" system with Navier conditions. Annales de l'Institut Henri Poincare (C) Non Linear Analysis. 2014;31(1):55‒80.
  16. D Gérard Varet, M Hillairet. Existence of weak solutions up to collision for viscous fluid-solid systems with slip. Comm Pure Appl Math. 2014;67(12):2022‒2076.
  17. D Gérard Varet, M Hillaire, C Wang. The influence of boundary conditions on the contact problem in a 3D Navier Stokes flow. J Math Pures Appl. 2015;103(1):1‒38.
  18. O Glass, F Sueur. Uniqueness results for weak solutions of two-dimensional fluid-solid systems. Arch Ration Mech Anal. 2015;218(2):907‒944.
  19. HA Baba, NV Chemetov, Š Necasová, Strong solutions in L2 framework for fluid-rigid body interaction problem-mixed case. arXiv.org. Analysis of PDEs. 2017:1‒14.
  20. VN Starovoitov. Nonuniqueness of a solution to the problem on motion of a rigid body in a viscous incompressible fluid. J Math Sci. 2005;130(4):4893‒4898.
  21. M Boulakia. Existence of weak solutions for the three-dimensional motion of an elastic structure in an incompressible fluid. J Math Fluid Mechanics.2007;9(2):262‒294.
  22. S Čanic, B Muha. Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls. Arch Ration Mech Anal. 2013;207(4):919‒968.
  23. I Kukavica, A Tuffaha, M Ziane. Strong solutions to a nonlinear fluids-structure interaction system. J of Differential Equations. 2009;247:1452‒1478.
  24. SN Antontsev, AV Kazhikhov, VN Monakhov. Boundary Value Problems in Mechanics of Non-homogeneous Fluids. In: Studies in Mathematics and its Applications. 1st Ed. Amsterdam, Netherlands: North-Holland Publishing Co; 1990. p. 309.
  25. F Boyer. Trace theorems and spatial continuity properties for the solutions of the transport equations. Differential Integral Equations. 2005;18(8):891‒934.
  26. R Temam. Navier-Stokes equations. Theory and numerical analysis. Providence, Rhode Island: AMS Chelsea publishing; 1984. p. 408.
  27. D Bucur, E Feireisl, Š Nečasová, et al. On the asymptotic limit of the Navier-Stokes system with rough boundaries. J Differential Equations. 2008;244(11):2890‒2908.
  28. NV Chemetov, Š Nečasová. The motion of the rigid body in viscous fluid including collisions. Global solvability result. Nonlinear Analysis: Real World Applications. 2017;34:416‒445.
  29. NV Chemetov, Š Nečasová, B Muha. Weak-strong uniqueness for fluid-rigid body interaction problem with slip boundary condition. arXiv.org, Analysis of PDEs. 2017:1‒18.
Creative Commons Attribution License

©2018 Chemetov, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.