Submit manuscript...
eISSN: 2577-8242

Fluid Mechanics Research International Journal

Research Article Volume 1 Issue 1

Instability in Walters B’ visco elastic dusty fluid through porous medium

Pardeep Kumar

Department of Mathematics, ICDEOL, Himachal Pradesh University, India

Correspondence: Pardeep Kumar, Professor of Mathematics, ICDEOL, Himachal Pradesh University, Summerhill, Shimla-171005 (INDIA), Tel (+)911772833443

Received: August 01, 2017 | Published: September 19, 2017

Citation: Kumar P. Instability in Walters B’ visco elastic dusty fluid through porous medium. Fluid Mech Res Int. 2017;1(1):26-31. DOI: 10.15406/fmrij.2017.01.00005

Download PDF

Abstract

The thermal instability of Walters B′ viscoelastic fluid in the presence of uniform horizontal magnetic field and suspended particles through porous medium is considered. It is found that Walters B′ viscoelastic fluid behaves like a Newtonian fluid for stationary convection. Further, the medium permeability and suspended particles hasten the onset of convection whereas the magnetic field postpones the onset of convection, for the case of stationary convection. A sufficient condition for the invalidity of the ‘Principle of exchange of stabilities’ is derived, in the context, which states that the exchange principle is not valid provided the thermal Rayleigh number R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb aaaa@375C@ , medium permeability P l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb qcfa4aaSbaaKqaGeaajugWaiaadYgaaSqabaaaaa@3A5D@ and suspended particles parameter H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGib Gbauaaaaa@375E@ are restricted by the inequality H P l R π 2 < 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGabmisayaafaGaamiuaKqbaoaaBaaajeaibaqcLbmacaWG SbaaleqaaKqzGeGaamOuaaGcbaqcLbsacqaHapaCjuaGdaahaaWcbe qcbasaaKqzadGaaGOmaaaaaaqcLbsacqGH8aapcaaIXaaaaa@44B7@ . Further it is found that the magnetic field and viscoelasticity introduce oscillatory modes in the system which was non-existent in their absence.

Keywords: Walters B′viscoelastic fluid; Thermal instability; Suspended particles; Uniform horizontal magnetic field; Porous medium; Rayleigh number; Prandtl number; Darcys law

Introduction

A detailed account of the theoretical and experimental study of thermal instability (Bénard convection) in Newtonian fluids, under varying assumptions of hydrodynamics and hydromagnetics, has been treated in detail by Chandrasekhar.1 The use of Boussinesq approximation has been made throughout, which states that the density may be treated as a constant in all the terms in the equations of motion except the external force term. Chandra2 observed that in an air layer, convection occurred at much lower gradients than predicted if the layer depth was less than 7mm, and called this motion “Columnar instability”. However, a Bénard -type cellular convection was observed for layers deeper than 10mm. Chandra2 added an aerosol to mark the flow pattern. Thus there is a decades-old contradiction between the theory and the experiment. Scanlon et al.,3 have considered the effect of suspended particles on the onset of Bénard convection and found that the critical Rayleigh number was reduced solely because the heat capacity of the pure fluid was supplemented by that of the particles. The effect of suspended particles was thus found to destabilize the layer. Palaniswamy et al.,4 have considered the stability of shear flow of stratified fluids with fine dust and have found the effect of fine dust to increase the region of instability. The medium has been considered to be non-porous and the fluid to be Newtonian in all the above studies.

Lapwood5 has studied the stability of convective flow in a porous medium using Rayleigh’s procedure. Wooding6 has considered the Rayleigh instability of a thermal boundary layer in flow through porous medium. The gross effect when the fluid slowly percolates through the pores of the rock is represented by the well known Darcy’s law. The problem of thermal instability in fluids in a porous medium is of importance in geophysics, soil sciences, ground water hydrology and astrophysics. The development of geothermal power resources has increased general interest, in the properties of convection in porous media. The effect of a magnetic field on the stability of such a flow is of interest in geophysics, particularly in the study of Earth’s core where the Earth’s mantle, which consists of conducting fluid, behaves like a porous medium which can become convectively unstable as a result of differential diffusion. The other application of the results of flow through a porous medium in the presence of a magnetic field is in the study of the stability of a convective flow in the geothermal region.

The importance of non-Newtonian fluids in modern technology and industries is ever increasing and the investigations on such fluids are desirable. One such class of non-Newtonian fluids is Walters B¢ fluid. Chakraborty et al.,7 have studied the flow of unsteady viscoelastic (Walters B¢ liquid) conducting fluid through two porous concentric non-conducting infinite circular cylinders rotating with different angular velocities in the presence of uniform axial magnetic field. Sharma et al.,8 have studied the stability of two superposed Walters B¢ viscoelastic liquids. In another study, Sharma et al.,9 have studied the Rayleigh-Taylor instability of two superposed conducting Walters B¢ elastico-viscous fluids in hydromagnetics. Kumar10 has studied the stability of two superposed viscoelastic (Walters B¢) fluid-particle mixtures in porous medium. MHD flow of viscoelastic (Walters liquid model B') fluid through porous medium with heat source has been considered by Bhagwat et al.11 Attia et al.,12 have studied the stability of flow through a porous medium of a viscoelastic fluid above a stretching plate. Magneto-gravitational instability of a Walters B' viscoelastic rotating anisotropic heat-conducting fluid in Brinkman porous medium has been considered by Sayed et al.13

In many geophysical fluid dynamical problems encountered, the fluid is electrically conducting and a uniform magnetic field of the Earth pervades the system. A study has, therefore, been made to study the effect of suspended (or dust) particles on the Walters B¢ viscoelastic fluid heated from below in porous medium in the presence of a uniform horizontal magnetic field. The problem is often encountered in chemical engineering, paper and pulp technology and several geophysical situations.

Formulation of the problem and perturbation equations

Here we consider an infinite horizontal layer of an electrically conducting Walters B′ viscoelastic fluid permeated with suspended (dust) particles and bounded by the planes z = 0 and z = d in a porous medium. This layer is heated from below so that, the temperatures and densities at the bottom surface z = 0 are T0 and r0 and at the upper surface z = d are Td and ρ d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg8aYLqbaoaaBaaabaqcLbmacaWGKbaajuaGbeaaaaa@3BB9@ respectively and that a uniform temperature gradient β ( = | d T d z | ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbmacqaHYo GylmaabmaakeaajugWaiabg2da9SWaaqWaaOqaaSWaaSaaaOqaaKqz adGaamizaiaadsfaaOqaaKqzadGaamizaiaadQhaaaaakiaawEa7ca GLiWoaaiaawIcacaGLPaaaaaa@460D@ is maintained. A uniform horizontal magnetic field H ( H , 0 , 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGib GbaSaajuaGdaqadaGcbaqcLbsacaWGibGaaiilaiaaicdacaGGSaGa aGimaaGccaGLOaGaayzkaaaaaa@3DBF@ and gravity field g ( 0 , 0 , g ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGNb GbaSaajuaGdaqadaGcbaqcLbsacaaIWaGaaiilaiaaicdacaGGSaGa eyOeI0Iaam4zaaGccaGLOaGaayzkaaaaaa@3EEA@ pervades the system.

The equations of motion and continuity for Walters B′ viscoelastic fluid in the presence of suspended particles and magnetic field in porous medium are

1 [ q t + 1 ( q ) q ] = 1 ρ 0 p g ( 1 + δ ρ ρ 0 ) λ 1 k 1 ( υ υ t ) q + K N ρ 0 ( q d q ) + μ e 4 π ρ 0 ( × H ) × H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda WcaaGcbaqcLbsacaaIXaaakeaajugibiabgIGiodaajuaGdaWadaGc baqcfa4aaSaaaOqaaKqzGeGaeyOaIyRabmyCayaalaaakeaajugibi abgkGi2kaadshaaaGaey4kaSscfa4aaSaaaOqaaKqzGeGaaGymaaGc baqcLbsacqGHiiIZaaqcfa4aaeWaaOqaaKqzGeGabmyCayaalaGaey yXICTaey4bIenakiaawIcacaGLPaaajugibiqadghagaWcaaGccaGL BbGaayzxaaqcLbsacqGH9aqpcqGHsisljuaGdaWcaaGcbaqcLbsaca aIXaaakeaajugibiabeg8aYLqbaoaaBaaajeaibaqcLbmacaaIWaaa leqaaaaajugibiabgEGirlaadchacqGHsislcaWGNbqcfa4aaeWaaO qaaKqzGeGaaGymaiabgUcaRKqbaoaalaaakeaajugibiabes7aKjab eg8aYbGcbaqcLbsacqaHbpGCjuaGdaWgaaqcbasaaKqzadGaaGimaa WcbeaaaaaakiaawIcacaGLPaaajugibiqbeU7aSzaalaGaeyOeI0sc fa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWGRbqcfa4aaSbaaK qaGeaajugWaiaaigdaaSqabaaaaKqbaoaabmaakeaajugibiabew8a 1jabgkHiTiqbew8a1zaafaqcfa4aaSaaaOqaaKqzGeGaeyOaIylake aajugibiabgkGi2kaadshaaaaakiaawIcacaGLPaaajugibiqadgha gaWcaaGcbaqcLbsacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRKqb aoaalaaakeaajugibiaadUeacaWGobaakeaajugibiabeg8aYLqbao aaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaeyicI4maaKqbaoaa bmaakeaajugibiqadghagaWcaKqbaoaaBaaajeaibaqcLbmacaWGKb aaleqaaKqzGeGaeyOeI0IabmyCayaalaaakiaawIcacaGLPaaajugi biabgUcaRKqbaoaalaaakeaajugibiabeY7aTLqbaoaaBaaajeaiba qcLbmacaWGLbaaleqaaaGcbaqcLbsacaaI0aGaeqiWdaNaeqyWdixc fa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaaaKqbaoaabmaakeaaju gibiabgEGirlabgEna0kqadIeagaWcaaGccaGLOaGaayzkaaqcLbsa cqGHxdaTceWGibGbaSaaaaaa@2B34@ ,            (1)

q = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHhi s0cqGHflY1ceWGXbGbaSaacqGH9aqpcaaIWaGaaGjbVlaaysW7caaM e8Uaaiilaaaa@4274@ (2)

where p , ρ , T , q ( u , v , w ) , q d ( x ¯ , t ) , N ( x ¯ , t ) , υ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb GaaiilaiaaykW7caaMc8UaaGPaVlabeg8aYjaacYcacaaMc8UaaGPa VlaaykW7caWGubGaaiilaiaaykW7caaMc8UabmyCayaalaqcfa4aae WaaOqaaKqzGeGaamyDaiaacYcacaWG2bGaaiilaiaadEhaaOGaayjk aiaawMcaaKqzGeGaaiilaiaaykW7caaMc8UabmyCayaalaqcfa4aaS baaKqaGeaajugWaiaadsgaaSqabaqcfa4aaeWaaOqaaKqzGeGabmiE ayaaraGaaiilaiaadshaaOGaayjkaiaawMcaaKqzGeGaaiilaiaayk W7caaMc8UaaGPaVlaad6eajuaGdaqadaGcbaqcLbsaceWG4bGbaeba caGGSaGaamiDaaGccaGLOaGaayzkaaqcLbsacaGGSaGaaGPaVlaayk W7caaMc8UaaGPaVlabew8a1baa@73BB@ and υ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaHfp qDgaqbaaaa@3858@ denote fluid pressure, density, temperature, filter velocity, suspended particles velocity, suspended particles number density, kinematic viscosity and kinematic viscoelasticity respectively. Symbol ' ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGNa GaeyicI4Saai4jaaaa@395F@ is the medium porosity, k1 is the medium permeability, g is the acceleration due to gravity, x ¯ = ( x , y , z ) , λ = ( 0 , 0 , 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG4b GbaebacqGH9aqpjuaGdaqadaGcbaqcLbsacaWG4bGaaiilaiaadMha caGGSaGaamOEaaGccaGLOaGaayzkaaqcLbsacaGGSaGaaGPaVlaayk W7caaMc8Uafq4UdWMbaSaacqGH9aqpjuaGdaqadaGcbaqcLbsacaaI WaGaaiilaiaaicdacaGGSaGaaGymaaGccaGLOaGaayzkaaaaaa@4EA9@ and K = 6 π μ η , η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGlb Gaeyypa0JaaGOnaiabec8aWjabeY7aTjqbeE7aOzaafaGaaiilaiaa ykW7caaMc8UaaGPaVlaaykW7cuaH3oaAgaqbaaaa@46DA@ , being the particle radius, is the Stokes’ drag coefficient. Assuming a uniform particle size, a spherical shape and small relative velocities between the fluid and particles, the presence of particles adds an extra force term in the equations of motion (1), proportional to the velocity difference between the particles and the fluid.

Since the force exerted by the fluid on the particles is equal and opposite to that exerted by the particles on the fluid, there must be an extra force term, equal in magnitude but opposite in sign, in the equations of motion for the particles. Interparticle reactions are ignored because the distances between the particles are assumed to be quite large compared with their diameter. The effects due to pressure, gravity, Darcy’s force and magnetic field on the particles are small and so are ignored. If mN is the mass of particles per unit volume, then the equations of motion and continuity for the particles, under the above assumptions, are

m N [ q d t + 1 ( q d ) q d ] = K N ( q q d ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb GaamOtaKqbaoaadmaakeaajuaGdaWcaaGcbaqcLbsacqGHciITceWG XbGbaSaajuaGdaWgaaqcbasaaKqzadGaamizaaWcbeaaaOqaaKqzGe GaeyOaIyRaamiDaaaacqGHRaWkjuaGdaWcaaGcbaqcLbsacaaIXaaa keaajugibiabgIGiodaajuaGdaqadaGcbaqcLbsaceWGXbGbaSaaju aGdaWgaaqcbasaaKqzadGaamizaaWcbeaajugibiabgwSixlabgEGi rdGccaGLOaGaayzkaaqcLbsaceWGXbGbaSaajuaGdaWgaaqcbasaaK qzadGaamizaaWcbeaaaOGaay5waiaaw2faaKqzGeGaeyypa0Jaam4s aiaad6eajuaGdaqadaGcbaqcLbsaceWGXbGbaSaacqGHsislceWGXb GbaSaajuaGdaWgbaqcbasaaKqzadGaamizaaWcbeaaaOGaayjkaiaa wMcaaKqzGeGaaiilaaaa@663F@ (3)

N t + ( N q d ) = 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHii IZjuaGdaWcaaGcbaqcLbsacqGHciITcaWGobaakeaajugibiabgkGi 2kaadshaaaGaey4kaSIaey4bIeTaeyyXICDcfa4aaeWaaOqaaKqzGe GaamOtaiqadghagaWcaKqbaoaaBaaajeaibaqcLbmacaWGKbaaleqa aaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaaIWaGaaiOlaaaa@4DB4@ (4)

If Cv, Cpt, T and q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGXb Gbauaaaaa@3787@ denote the heat capacity of fluid at constant volume, heat capacity of the particles, temperature and ‘effective thermal conductivity’ of the pure fluid, respectively. Assuming that the particles and the fluid are in thermal equilibrium, the equation of heat conduction gives

[ ρ 0 C v + ρ s C s ( 1 ) ] T t + ρ 0 C v ( q ) T + m N C p t ( t + q d ) T = q 2 T , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeGaeqyWdixcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqc LbsacaWGdbqcfa4aaSbaaKqaGeaajugWaiaadAhaaSqabaqcLbsacq GHiiIZcqGHRaWkcqaHbpGCjuaGdaWgaaqcbasaaKqzadGaam4CaaWc beaajugibiaadoeajuaGdaWgaaqcbasaaKqzadGaam4CaaWcbeaaju aGdaqadaGcbaqcLbsacaaIXaGaeyOeI0IaeyicI4makiaawIcacaGL PaaaaiaawUfacaGLDbaajuaGdaWcaaGcbaqcLbsacqGHciITcaWGub aakeaajugibiabgkGi2kaadshaaaGaey4kaSIaeqyWdixcfa4aaSba aKqaGeaajugWaiaaicdaaSqabaqcLbsacaWGdbqcfa4aaSbaaKqaGe aajugWaiaadAhaaSqabaqcfa4aaeWaaOqaaKqzGeGabmyCayaalaGa eyyXICTaey4bIenakiaawIcacaGLPaaajugibiaadsfacqGHRaWkca WGTbGaamOtaiaadoeajuaGdaWgaaqcbasaaKqzadGaamiCaiaadsha aSqabaqcfa4aaeWaaOqaaKqzGeGaeyicI4Ccfa4aaSaaaOqaaKqzGe GaeyOaIylakeaajugibiabgkGi2kaadshaaaGaey4kaSIabmyCayaa laqcfa4aaSbaaKqaGeaajugWaiaadsgaaSqabaqcLbsacqGHflY1cq GHhis0aOGaayjkaiaawMcaaKqzGeGaamivaiabg2da9iqadghagaqb aiabgEGirNqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaam ivaiaacYcaaaa@91A2@ (5)

where ρ s , C s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCjuaGdaWgaaqcbasaaKqzadGaam4CaaWcbeaajugibiaacYcacaaM c8UaaGPaVlaaykW7caaMc8Uaam4qaKqbaoaaBaaajeaibaqcLbmaca WGZbaaleqaaaaa@468C@ are the density and the heat capacity of the solid (porous matrix) material respectively.

The Maxwell’s equations yield

H t = ( H ) q + η 2 H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHii IZjuaGdaWcaaGcbaqcLbsacqGHciITceWGibGbaSaaaOqaaKqzGeGa eyOaIyRaamiDaaaacqGH9aqpjuaGdaqadaGcbaqcLbsaceWGibGbaS aacqGHflY1cqGHhis0aOGaayjkaiaawMcaaKqzGeGabmyCayaalaGa ey4kaSIaeyicI4Saeq4TdGMaey4bIeDcfa4aaWbaaSqabKqaGeaaju gWaiaaikdaaaqcLbsaceWGibGbaSaaaaa@5258@ ,                              (6)

H = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHhi s0cqGHflY1ceWGibGbaSaacqGH9aqpcaaIWaaaaa@3CF4@ ,                                                              (7)

where η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeE7aObaa@3851@ stands for the electrical resistivity.

The equation of state for the fluid is

ρ = ρ 0 [ 1 α ( T T 0 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCcqGH9aqpcqaHbpGCjuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaa juaGdaWadaGcbaqcLbsacaaIXaGaeyOeI0IaeqySdewcfa4aaeWaaO qaaKqzGeGaamivaiabgkHiTiaadsfajuaGdaWgaaqcbasaaKqzadGa aGimaaWcbeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@4C5C@ ,                     (8)

where α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg7aHbaa@3844@ is the coefficient of thermal expansion and the suffix zero refers to values at the reference level z = 0. The kinematic viscosity ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH9o GBaaa@383D@ , kinematic viscoelasticity ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH9o GBgaqbaaaa@3849@ , magnetic permeability μ e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBjuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaaaaa@3B37@ , electrical resistivity η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH3o aAaaa@3831@ and coefficient of thermal expansion α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyaaa@3824@ are all assumed to be constants.

The basic motionless solution is

q = ( 0 , 0 , 0 ) , q d = ( 0 , 0 , 0 ) , T = T 0 β z , ρ = ρ 0 ( 1 + α β z ) , N = N 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGXb GbaSaacqGH9aqpcaGGOaGaaGimaiaacYcacaaIWaGaaiilaiaaicda caGGPaGaaGjbVlaacYcacaaMe8UabmyCayaalaqcfa4aaSbaaKqaGe aajugWaiaadsgaaSqabaqcLbsacqGH9aqpcaGGOaGaaGimaiaacYca caaIWaGaaiilaiaaicdacaGGPaGaaGjbVlaacYcacaaMe8UaaGPaVl aadsfacqGH9aqpcaWGubqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqa baqcLbsacqGHsislcqaHYoGycaWG6bGaaiilaiaaykW7cqaHbpGCcq GH9aqpcqaHbpGCjuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugi biaacIcacaaIXaGaey4kaSIaeqySdeMaeqOSdiMaamOEaiaacMcaca aMe8UaaiilaiaaysW7caaMc8UaamOtaiabg2da9iaad6eajuaGdaWg aaqcbasaaKqzadGaaGimaaWcbeaajugibiaaysW7caGGSaGaaGPaVl aaykW7aaa@7CB8@ a constant.        (9)

Assume small perturbations around the basic solution and let δ p , δ ρ , θ , q ( u , v , w ) , q d ( l , r , s ) , N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH0o azcaWGWbGaaiilaiaaykW7caaMc8UaeqiTdqMaeqyWdiNaaiilaiaa ykW7caaMc8UaaGPaVlabeI7aXjaacYcacaaMc8UaaGPaVlaaykW7ce WGXbGbaSaajuaGdaqadaGcbaqcLbsacaWG1bGaaiilaiaadAhacaGG SaGaam4DaaGccaGLOaGaayzkaaqcLbsacaaMe8UaaiilaiaaykW7ca aMc8UabmyCayaalaqcfa4aaSbaaKqaGeaajugWaiaadsgaaSqabaqc fa4aaeWaaOqaaKqzGeGaamiBaiaacYcacaWGYbGaaiilaiaadohaaO GaayjkaiaawMcaaKqzGeGaaGjbVlaacYcacaaMc8UaaGPaVlaaykW7 caWGobGaaGPaVdaa@6F5F@ and h ( h x , h y , h z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGOb GbaSaajuaGdaqadaGcbaqcLbsacaWGObqcfa4aaSbaaKqaGeaajugW aiaadIhaaSqabaqcLbsacaGGSaGaamiAaKqbaoaaBaaajeaibaqcLb macaWG5baaleqaaKqzGeGaaiilaiaadIgajuaGdaWgaaqcbasaaKqz adGaamOEaaWcbeaaaOGaayjkaiaawMcaaaaa@48B3@ denote respectively the perturbations in fluid pressure p, density ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg8aYbaa@3865@ , temperature T, fluid velocity (0, 0, 0), suspended particles velocity (0, 0, 0), suspended particles number density N0 and magnetic. T field H ( H , 0 , 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGib GbaSaajuaGdaqadaGcbaqcLbsacaWGibGaaiilaiaaicdacaGGSaGa aGimaaGccaGLOaGaayzkaaaaaa@3DBF@ he change in density δρ caused mainly by the perturbation θ in temperature, is given by

δ ρ = α ρ 0 θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH0o azcqaHbpGCcqGH9aqpcqGHsislcqaHXoqycqaHbpGCjuaGdaWgaaqc basaaKqzadGaaGimaaWcbeaajugibiabeI7aXbaa@444D@ .                         (10)

Then the linearized perturbed equations of Walters B′ viscoelastic fluid become

1 q t = 1 ρ 0 δ p + g α θ λ 1 k 1 ( υ υ t ) q + K N 0 ρ 0 ( q d q ) + μ e 4 π ρ 0 ( × h ) × H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda WcaaGcbaqcLbsacaaIXaaakeaajugibiabgIGiodaajuaGdaWcaaGc baqcLbsacqGHciITceWGXbGbaSaaaOqaaKqzGeGaeyOaIyRaamiDaa aacqGH9aqpcqGHsisljuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugi biabeg8aYLqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaaaajugibi abgEGirlabes7aKjaadchacqGHRaWkcaWGNbGaeqySdeMaeqiUdeNa fq4UdWMbaSaacqGHsisljuaGdaWcaaGcbaqcLbsacaaIXaaakeaaju gibiaadUgajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaaaaqcfa4a aeWaaOqaaKqzGeGaeqyXduNaeyOeI0IafqyXduNbauaajuaGdaWcaa GcbaqcLbsacqGHciITaOqaaKqzGeGaeyOaIyRaamiDaaaaaOGaayjk aiaawMcaaKqzGeGabmyCayaalaGaey4kaSscfa4aaSaaaOqaaKqzGe Gaam4saiaad6eajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaaaOqa aKqzGeGaeqyWdixcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLb sacqGHiiIZaaqcfa4aaeWaaOqaaKqzGeGabmyCayaalaqcfa4aaSba aKqaGeaajugWaiaadsgaaSqabaqcLbsacqGHsislceWGXbGbaSaaaO GaayjkaiaawMcaaaqaaKqzGeGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8Uaey4kaSscfa4aaSaaaOqaaKqzGeGaeqiVd0wc fa4aaSbaaSqaaKqzGeGaamyzaaWcbeaaaOqaaKqzGeGaaGinaiabec 8aWjabeg8aYLqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaaaajuaG daqadaGcbaqcLbsacqGHhis0cqGHxdaTceWGObGbaSaaaOGaayjkai aawMcaaKqzGeGaey41aqRabmisayaalaaaaaa@2F25@ ,      (11)

q = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHhi s0cqGHflY1ceWGXbGbaSaacqGH9aqpcaaIWaaaaa@3D1D@ ,                              (12)

m N 0 q d t = K N 0 ( q q d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb GaamOtaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqbaoaalaaa keaajugibiabgkGi2kqadghagaWcaKqbaoaaBaaajeaibaqcLbmaca WGKbaaleqaaaGcbaqcLbsacqGHciITcaWG0baaaiabg2da9iaadUea caWGobqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcfa4aaeWaaO qaaKqzGeGabmyCayaalaGaeyOeI0IabmyCayaalaqcfa4aaSbaaKqa GeaajugWaiaadsgaaSqabaaakiaawIcacaGLPaaaaaa@52D5@ ,                                  (13)

( E + h ) θ t = β ( w + h s ) + κ 2 θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamyraiabgUcaRiaadIgacqGHiiIZaOGaayjkaiaawMca aKqbaoaalaaakeaajugibiabgkGi2kabeI7aXbGcbaqcLbsacqGHci ITcaWG0baaaiabg2da9iabek7aILqbaoaabmaakeaajugibiaadEha cqGHRaWkcaWGObGaam4CaaGccaGLOaGaayzkaaqcLbsacqGHRaWkcq aH6oWAcqGHhis0juaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugi biabeI7aXbaa@56F9@ ,                   (14)

h t = ( H ) q + η 2 h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHii IZjuaGdaWcaaGcbaqcLbsacqGHciITceWGObGbaSaaaOqaaKqzGeGa eyOaIyRaamiDaaaacqGH9aqpjuaGdaqadaGcbaqcLbsaceWGibGbaS aacqGHflY1cqGHhis0aOGaayjkaiaawMcaaKqzGeGabmyCayaalaGa ey4kaSIaeyicI4Saeq4TdGMaey4bIeDcfa4aaWbaaSqabKqaGeaaju gWaiaaikdaaaqcLbsaceWGObGbaSaaaaa@5298@ ,                                                (15)

h = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHhi s0cqGHflY1ceWGObGbaSaacqGH9aqpcaaIWaaaaa@3D14@ ,                                                               (16)

where E = + ( 1 ) ρ s C s ρ 0 C v , h = m N 0 C p t ρ 0 C v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb Gaeyypa0JaeyicI4Saey4kaSscfa4aaeWaaOqaaKqzGeGaaGymaiab gkHiTiabgIGiodGccaGLOaGaayzkaaqcfa4aaSaaaOqaaKqzGeGaeq yWdixcfa4aaSbaaKqaGeaajugWaiaadohaaSqabaqcLbsacaWGdbqc fa4aaSbaaKqaGeaajugWaiaadohaaSqabaaakeaajugibiabeg8aYL qbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaam4qaKqbaoaa BaaajeaibaqcLbmacaWG2baaleqaaaaajugibiaacYcacaaMc8UaaG PaVlaaykW7caaMc8UaamiAaiabg2da9Kqbaoaalaaakeaajugibiaa d2gacaWGobqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsaca WGdbqcfa4aaSbaaKqaGeaajugWaiaadchacaWG0baaleqaaaGcbaqc LbsacqaHbpGCjuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibi aadoeajuaGdaWgaaqcbasaaKqzadGaamODaaWcbeaaaaaaaa@7292@ and κ = q ρ 0 C v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH6o WAcqGH9aqpjuaGdaWcaaGcbaqcLbsaceWGXbGbauaaaOqaaKqzGeGa eqyWdixcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacaWGdb qcfa4aaSbaaKqaGeaajugWaiaadAhaaSqabaaaaaaa@44FF@ .

Eliminating q d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGXb GbaSaajuaGdaWgaaqcbasaaKqzadGaamizaaWcbeaaaaa@3A88@ in equation (11) with the help of equation (13), writing the scalar components of resulting equation and eliminating u, v, hx, hy, δ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabes7aKjaadchaaaa@393F@ between them, by using equation (12) and equation (16), we obtain

n ( 2 w ) + k 1 ( υ υ t ) 2 w g α ( 2 θ x 2 + 2 θ y 2 ) μ e H 4 π ρ 0 x ( 2 h z ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi qad6gagaqbaKqbaoaabmaakeaajugibiabgEGirNqbaoaaCaaaleqa jeaibaqcLbmacaaIYaaaaKqzGeGaam4DaaGccaGLOaGaayzkaaqcLb sacqGHRaWkjuaGdaWcaaGcbaqcLbsacqGHiiIZaOqaaKqzGeGaam4A aKqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaaaajuaGdaqadaGcba qcLbsacqaHfpqDcqGHsislcuaHfpqDgaqbaKqbaoaalaaakeaajugi biabgkGi2cGcbaqcLbsacqGHciITcaWG0baaaaGccaGLOaGaayzkaa qcLbsacqGHhis0juaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugi biaadEhacqGHsislcqGHiiIZcaWGNbGaeqySdewcfa4aaeWaaOqaaK qbaoaalaaakeaajugibiabgkGi2MqbaoaaCaaaleqajeaibaqcLbma caaIYaaaaKqzGeGaeqiUdehakeaajugibiabgkGi2kaadIhajuaGda ahaaWcbeqcbasaaKqzadGaaGOmaaaaaaqcLbsacqGHRaWkjuaGdaWc aaGcbaqcLbsacqGHciITjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaa aajugibiabeI7aXbGcbaqcLbsacqGHciITcaWG5bqcfa4aaWbaaSqa bKqaGeaajugWaiaaikdaaaaaaaGccaGLOaGaayzkaaaabaqcLbsaca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7cqGHsisljuaGdaWcaaGcbaqcLbsa cqaH8oqBjuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaajugibiabgI GiolaadIeaaOqaaKqzGeGaaGinaiabec8aWjabeg8aYLqbaoaaBaaa jeaibaqcLbmacaaIWaaaleqaaaaajugibiaaykW7caaMc8Ecfa4aaS aaaOqaaKqzGeGaeyOaIylakeaajugibiabgkGi2kaadIhaaaqcfa4a aeWaaOqaaKqzGeGaey4bIeDcfa4aaWbaaSqabKqaGeaajugWaiaaik daaaqcLbsacaWGObqcfa4aaSbaaKqaGeaajugWaiaadQhaaSqabaaa kiaawIcacaGLPaaajugibiabg2da9iaaicdacaaMc8oaaaa@148D@ ,                    (17)

( m K t + 1 ) [ E + h ¯ t κ 2 ] θ = β [ m K t + 1 + h ] w , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqbaoaalaaakeaajugibiaad2gaaOqaaKqzGeGaam4saaaacaaM c8UaaGPaVNqbaoaalaaakeaajugibiabgkGi2cGcbaqcLbsacqGHci ITcaWG0baaaiabgUcaRiaaigdaaOGaayjkaiaawMcaaKqbaoaadmaa keaajuaGdaqdaaGcbaqcLbsacaWGfbGaey4kaSIaamiAaiabgIGiod aajuaGdaWcaaGcbaqcLbsacqGHciITaOqaaKqzGeGaeyOaIyRaamiD aaaacqGHsislcqaH6oWAcqGHhis0juaGdaahaaWcbeqcbasaaKqzad GaaGOmaaaaaOGaay5waiaaw2faaKqzGeGaeqiUdeNaeyypa0JaeqOS diwcfa4aamWaaOqaaKqbaoaalaaakeaajugibiaad2gaaOqaaKqzGe Gaam4saaaacaaMc8UaaGPaVNqbaoaalaaakeaajugibiabgkGi2cGc baqcLbsacqGHciITcaWG0baaaiabgUcaRiaaigdacqGHRaWkcaWGOb aakiaawUfacaGLDbaajugibiaadEhacaGGSaaaaa@73D1@ (18)

[ t η 2 ] h z = H w x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHii IZjuaGdaWadaGcbaqcfa4aaSaaaOqaaKqzGeGaeyOaIylakeaajugi biabgkGi2kaadshaaaGaeyOeI0Iaeq4TdGMaey4bIeDcfa4aaWbaaS qabKqaGeaajugWaiaaikdaaaaakiaawUfacaGLDbaajugibiaadIga juaGdaWgaaqcbasaaKqzadGaamOEaaWcbeaajugibiabg2da9iaadI eajuaGdaWcaaGcbaqcLbsacqGHciITcaWG3baakeaajugibiabgkGi 2kaadIhaaaaaaa@54A4@ ,                                                                   (19)

where n = t [ 1 + m N 0 K | ρ 0 m t + K ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGUb GbauaacqGH9aqpjuaGdaWcaaGcbaqcLbsacqGHciITaOqaaKqzGeGa eyOaIyRaamiDaaaajuaGdaWadaGcbaqcLbsacaaIXaGaey4kaSscfa 4aaSaaaOqaaKqzGeGaamyBaiaad6eajuaGdaWgaaqcbasaaKqzadGa aGimaaWcbeaajugibiaadUeajuaGdaabbaGcbaqcLbsacqaHbpGCju aGdaWgaaqcbasaaKqzadGaaGimaaWcbeaaaOGaay5bSdaabaqcLbsa caWGTbqcfa4aaSaaaOqaaKqzGeGaeyOaIylakeaajugibiabgkGi2k aadshaaaGaey4kaSIaam4saaaaaOGaay5waiaaw2faaaaa@5A1F@ .

Dispersion relation

Here we analyze the disturbances into normal modes and assume that the perturbation quantities are of the form

[ w , θ , h z ] = [ W ( z ) , Θ ( z ) , X ( z ) ] exp ( i k x x + i k y y + n t ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeGaam4DaiaacYcacqaH4oqCcaGGSaGaamiAaKqbaoaaBaaa jeaibaqcLbmacaWG6baaleqaaaGccaGLBbGaayzxaaqcLbsacqGH9a qpjuaGdaWadaGcbaqcLbsacaWGxbqcfa4aaeWaaOqaaKqzGeGaamOE aaGccaGLOaGaayzkaaqcLbsacaGGSaGaeuiMdevcfa4aaeWaaOqaaK qzGeGaamOEaaGccaGLOaGaayzkaaqcLbsacaGGSaGaaGPaVlaaykW7 caWGybqcfa4aaeWaaOqaaKqzGeGaamOEaaGccaGLOaGaayzkaaaaca GLBbGaayzxaaqcLbsaciGGLbGaaiiEaiaacchajuaGdaqadaGcbaqc LbsacaWGPbGaam4AaKqbaoaaBaaajeaibaqcLbmacaWG4baaleqaaK qzGeGaamiEaiabgUcaRiaadMgacaWGRbqcfa4aaSbaaKqaGeaajugW aiaadMhaaSqabaqcLbsacaWG5bGaey4kaSIaamOBaiaadshaaOGaay jkaiaawMcaaKqzGeGaaiilaaaa@71CD@ (20)

where kx, ky are wave numbers along the x- and y-directions respectively. k = k x 2 + k y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRb Gaeyypa0tcfa4aaOaaaOqaaKqzGeGaam4AaKqbaoaaDaaajeaibaqc LbmacaWG4baajeaibaqcLbmacaaIYaaaaKqzGeGaey4kaSIaam4AaK qbaoaaDaaajeaibaqcLbmacaWG5baajeaibaqcLbmacaaIYaaaaaWc beaaaaa@4741@ is the resultant wave number and n is, in general , a complex constant. Using expression (20), equations (17)-(19) in non-dimensional form become

[ σ + 1 P l { 1 F σ } ] ( D 2 a 2 ) W + g α d 2 a 2 Θ υ i k x μ e H d 2 4 π ρ 0 υ ( D 2 a 2 ) X = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqbaoaalaaakeaajugibiqbeo8aZzaafaaakeaajugibiabgIGi odaacqGHRaWkjuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaadc fajuaGdaWgaaqcbasaaKqzadGaeS4eHWgaleqaaaaajuaGdaGadaGc baqcLbsacaaIXaGaeyOeI0IaamOraiabeo8aZbGccaGL7bGaayzFaa aacaGLBbGaayzxaaqcfa4aaeWaaOqaaKqzGeGaamiraKqbaoaaCaaa leqajeaibaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaamyyaKqbaoaaCa aaleqajeaibaqcLbmacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacaaM c8Uaam4vaiabgUcaRKqbaoaalaaakeaajugibiaadEgacqaHXoqyca WGKbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacaWGHbqc fa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacqqHyoquaOqaaK qzGeGaeqyXduhaaiabgkHiTKqbaoaalaaakeaajugibiaadMgacaWG Rbqcfa4aaSbaaKqaGeaajugWaiaadIhaaSqabaqcLbsacqaH8oqBju aGdaWgaaqcbasaaKqzadGaamyzaaWcbeaajugibiaadIeacaWGKbqc fa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaakeaajugibiaaisdacq aHapaCcqaHbpGCjuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugi biabew8a1baacaaMc8Ecfa4aaeWaaOqaaKqzGeGaamiraKqbaoaaCa aaleqajeaibaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaamyyaKqbaoaa CaaaleqajeaibaqcLbmacaaIYaaaaaGccaGLOaGaayzkaaqcLbsaca WGybGaeyypa0JaaGimaaaa@97D5@ ,               (21)

[ τ υ σ d 2 + 1 ] [ D 2 a 2 E + h ¯ p 1 σ ] Θ = β d 2 κ [ H + τ υ σ d 2 ] W , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqbaoaalaaakeaajugibiabes8a0jabew8a1jabeo8aZbGcbaqc LbsacaWGKbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaaaKqzGe Gaey4kaSIaaGymaaGccaGLBbGaayzxaaqcLbsacaaMc8UaaGPaVNqb aoaadmaakeaajugibiaadseajuaGdaahaaWcbeqcbasaaKqzadGaaG OmaaaajugibiabgkHiTiaadggajuaGdaahaaWcbeqcbasaaKqzadGa aGOmaaaajugibiabgkHiTKqbaoaanaaakeaajugibiaadweacqGHRa WkcaWGObGaeyicI4maaiaaykW7caaMc8UaamiCaKqbaoaaBaaajeai baqcLbmacaaIXaaaleqaaKqzGeGaeq4WdmhakiaawUfacaGLDbaaju gibiabfI5arjabg2da9iabgkHiTKqbaoaalaaakeaajugibiabek7a IjaadsgajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaOqaaKqzGe GaeqOUdSgaaKqbaoaadmaakeaajugibiqadIeagaqbaiabgUcaRKqb aoaalaaakeaajugibiabes8a0jabew8a1jabeo8aZbGcbaqcLbsaca WGKbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaaaaGccaGLBbGa ayzxaaqcLbsacaWGxbGaaiilaaaa@83BD@ (22)

[ D 2 a 2 p 2 σ ] X = i k x H d 2 η W , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeGaamiraKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqz GeGaeyOeI0IaamyyaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaK qzGeGaeyOeI0IaamiCaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqa aKqzGeGaeq4WdmhakiaawUfacaGLDbaajugibiaaykW7caaMc8Uaam iwaiabg2da9iabgkHiTKqbaoaalaaakeaajugibiaadMgacaWGRbqc fa4aaSbaaKqaGeaajugWaiaadIhaaSqabaqcLbsacaWGibGaamizaK qbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaGcbaqcLbsacqGHiiIZ cqaH3oaAaaGaam4vaiaacYcaaaa@6075@ (23)

where we have expressed the coordinates x, y, z in the new unit of length d, time t in the new unit of length d 2 κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaGc baqcLbsacqaH6oWAaaaaaa@3D30@ and put a = kd, σ = n d 2 υ , p 1 = υ κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCcqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGUbGaamizaKqbaoaaCaaa leqajeaibaqcLbmacaaIYaaaaaGcbaqcLbsacqaHfpqDaaGaaiilai aaykW7caaMc8UaaGPaVlaadchajuaGdaWgaaqcbasaaKqzadGaaGym aaWcbeaajugibiabg2da9Kqbaoaalaaakeaajugibiabew8a1bGcba qcLbsacqaH6oWAaaaaaa@5181@ is the Prandtl number, p 2 = υ η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb qcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqcLbsacqGH9aqpjuaG daWcaaGcbaqcLbsacqaHfpqDaOqaaKqzGeGaeq4TdGgaaaaa@4120@ is the magnetic Prandtl number, ρ l = k 1 d 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCjuaGdaWgaaqcbasaaKqzadGaamiBaaWcbeaajugibiabg2da9Kqb aoaalaaakeaajugibiaadUgajuaGdaWgaaqcbasaaKqzadGaaGymaa WcbeaaaOqaaKqzGeGaamizaKqbaoaaCaaaleqajeaibaqcLbmacaaI Yaaaaaaaaaa@4622@ is the dimensionless medium permeability, F = υ d 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb Gaeyypa0tcfa4aaSaaaOqaaKqzGeGafqyXduNbauaaaOqaaKqzGeGa amizaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaaaaaa@3FB1@ is the dimensionless kinematic viscoelasticity, σ = n d 2 υ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaHdp WCgaqbaiabg2da9Kqbaoaalaaakeaajugibiqad6gagaqbaiaadsga juaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaeqyXdu haaaaa@41A8@ , H = h + 1 , τ = m ξ κ d 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGib GbauaacqGH9aqpcaWGObGaey4kaSIaaGymaiaacYcacaaMc8UaaGPa VlaaykW7cqaHepaDcqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGTbGaeq OVdGhakeaajugibiabeQ7aRjaadsgajuaGdaahaaWcbeqcbasaaKqz adGaaGOmaaaaaaaaaa@4CF9@ and D = d d z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaamizaaGcbaqcLbsacaWGKbGa amOEaaaaaaa@3CF5@ .

Eliminating Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHyo quaaa@37FC@ and X between equations (21) - (23), we obtain

[ 1 + υ τ σ d 2 ] [ D 2 a 2 E + h ¯ p 1 σ ] [ { σ + 1 P l ( 1 F σ ) } ( D 2 a 2 p 2 σ ) k x 2 Q ] ( D 2 a 2 ) W = R a 2 [ H + υ τ σ d 2 ] [ D 2 a 2 p 2 σ ] W , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda WadaGcbaqcLbsacaaIXaGaey4kaSscfa4aaSaaaOqaaKqzGeGaeqyX duNaeqiXdqNaeq4WdmhakeaajugibiaadsgajuaGdaahaaWcbeqcba saaKqzadGaaGOmaaaaaaaakiaawUfacaGLDbaajugibiaaykW7caaM c8Ecfa4aamWaaOqaaKqzGeGaamiraKqbaoaaCaaaleqajeaibaqcLb macaaIYaaaaKqzGeGaeyOeI0IaamyyaKqbaoaaCaaaleqajeaibaqc LbmacaaIYaaaaKqzGeGaeyOeI0scfa4aa0aaaOqaaKqzGeGaamyrai abgUcaRiaadIgacqGHiiIZaaGaaGPaVlaaykW7caWGWbqcfa4aaSba aKqaGeaajugWaiaaigdaaSqabaqcLbsacqaHdpWCaOGaay5waiaaw2 faaKqzGeGaaGPaVlaaykW7juaGdaWabaGcbaqcfa4aaiWaaOqaaKqb aoaalaaakeaajugibiqbeo8aZzaafaaakeaajugibiabgIGiodaacq GHRaWkjuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaadcfajuaG daWgaaqcbasaaKqzadGaeS4eHWgaleqaaaaajuaGdaqadaGcbaqcLb sacaaIXaGaeyOeI0IaamOraiabeo8aZbGccaGLOaGaayzkaaaacaGL 7bGaayzFaaqcfa4aaeWaaOqaaKqzGeGaamiraKqbaoaaCaaaleqaje aibaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaamyyaKqbaoaaCaaaleqa jeaibaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaamiCaKqbaoaaBaaaje aibaqcLbmacaaIYaaaleqaaKqzGeGaeq4WdmhakiaawIcacaGLPaaa aiaawUfaaaqaaKqbakaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8+aamGaaOqaaKqzGeGaeyOeI0scfa4aaSaa aOqaaKqzGeGaam4AaKqbaoaaDaaajeaibaqcLbmacaWG4baajeaiba qcLbmacaaIYaaaaKqzGeGaamyuaaGcbaqcLbsacqGHiiIZaaaakiaa w2faaKqbaoaabmaakeaajugibiaadseajuaGdaahaaWcbeqcbasaaK qzadGaaGOmaaaajugibiabgkHiTiaadggajuaGdaahaaWcbeqcbasa aKqzadGaaGOmaaaaaOGaayjkaiaawMcaaKqzGeGaaGPaVlaaykW7ca WGxbGaeyypa0JaamOuaiaadggajuaGdaahaaWcbeqcbasaaKqzadGa aGOmaaaajuaGdaWadaGcbaqcLbsaceWGibGbauaacqGHRaWkjuaGda WcaaGcbaqcLbsacqaHfpqDcqaHepaDcqaHdpWCaOqaaKqzGeGaamiz aKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaaaaOGaay5waiaaw2 faaKqzGeGaaGPaVlaaykW7juaGdaWadaGcbaqcLbsacaWGebqcfa4a aWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacqGHsislcaWGHbqcfa 4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacqGHsislcaWGWbqc fa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqcLbsacqaHdpWCaOGaay 5waiaaw2faaKqzGeGaam4vaiaacYcaaaaa@1F76@ (24)

where R = g α β d 4 υ κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaam4zaiabeg7aHjabek7aIjaa dsgajuaGdaahaaWcbeqcbasaaKqzadGaaGinaaaaaOqaaKqzGeGaeq yXduNaeqOUdSgaaaaa@4591@ is the Rayleigh number and Q = μ e H 2 d 2 4 π ρ 0 υ η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaeqiVd0wcfa4aaSbaaKqaGeaa jugWaiaadwgaaSqabaqcLbsacaWGibqcfa4aaWbaaSqabKqaGeaaju gWaiaaikdaaaqcLbsacaWGKbqcfa4aaWbaaSqabKqaafaajug4aiaa ikdaaaaakeaajugibiaaisdacqaHapaCcqaHbpGCjuaGdaWgaaqcba saaKqzadGaaGimaaWcbeaajugibiabew8a1jabeE7aObaaaaa@529E@ is the Chandrasekhar1 number.

Here we consider the case in which both the boundaries are free, the medium adjoining the fluid is perfectly conducting and temperatures at the boundaries are kept fixed. The case of two free boundaries is little artificial but allows us to have analytical solution. The boundary conditions, appropriate to the problem, are Chandrasekhar S.1

W = 0 , D 2 W = 0 , Θ = 0 , X = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb Gaeyypa0JaaGimaiaacYcacaWLjaGaamiraKqbaoaaCaaaleqajeai baqcLbmacaaIYaaaaKqzGeGaam4vaiabg2da9iaaicdacaGGSaGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeuiMdeLaeyypa0Ja aGimaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadIfacq GH9aqpcaaIWaaaaa@5963@ at z = 0 and z = 1 . (25)

Using the above boundary conditions (25), it can be shown with the help of equations (21) - (23) that all the even order derivatives of W must vanish for z = 0 and z = 1 and hence the proper solution of W characterizing the lowest mode is

W = W 0 sin π z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb Gaeyypa0Jaam4vaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqz GeGaaGPaVlaaykW7ciGGZbGaaiyAaiaac6gacaaMc8UaaGPaVlabec 8aWjaadQhaaaa@485E@ ,                                     (26)

where W0 is a constant.

Substituting the proper solution (26) in equation (24), we obtain the dispersion relation

R 1 = ( 1 + x ) ( 1 + x + E + h ¯ i σ 1 p 1 ) ( 1 + i υ τ π 2 σ 1 d 2 ) [ i σ 1 + + 1 P { 1 i π 2 F σ 1 } { 1 + x + i σ 1 p 2 } + Q 1 x cos 2 θ ] x [ H + i υ τ π 2 σ 1 d 2 ] [ 1 + x + i σ 1 p 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb qcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacqGH9aqpjuaG daWcaaqcLbsaeaqabOqaaKqbaoaabmaakeaajugibiaaigdacqGHRa WkcaWG4baakiaawIcacaGLPaaajuaGdaqadaGcbaqcLbsacaaIXaGa ey4kaSIaamiEaiabgUcaRKqbaoaanaaakeaajugibiaadweacqGHRa WkcaWGObGaeyicI4maaiaaykW7caaMc8UaamyAaiabeo8aZLqbaoaa BaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaamiCaKqbaoaaBaaaje aibaqcLbmacaaIXaaaleqaaaGccaGLOaGaayzkaaqcLbsacaaMc8Ua aGPaVNqbaoaabmaakeaajugibiaaigdacqGHRaWkjuaGdaWcaaGcba qcLbsacaWGPbGaeqyXduNaeqiXdqNaeqiWdaxcfa4aaWbaaSqabKqa GeaajugWaiaaikdaaaqcLbsacqaHdpWCjuaGdaWgaaqcbasaaKqzad GaaGymaaWcbeaaaOqaaKqzGeGaamizaKqbaoaaCaaaleqajeaibaqc LbmacaaIYaaaaaaaaOGaayjkaiaawMcaaKqzGeGaaGPaVNqbaoaade aakeaajuaGdaWcaaGcbaqcLbsacaWGPbGafq4WdmNbauaajuaGdaWg aaqcbasaaKqzadGaaGymaaWcbeaaaOqaaKqzGeGaeyicI4maaaGcca GLBbaajugibiabgUcaRaGcbaqcfa4aamGaaOqaaKqzGeGaey4kaSsc fa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWGqbaaaKqbaoaacm aakeaajugibiaaigdacqGHsislcaWGPbGaeqiWdaxcfa4aaWbaaSqa bKqaGeaajugWaiaaikdaaaqcLbsacaWGgbGaeq4Wdmxcfa4aaSbaaK qaGeaajugWaiaaigdaaSqabaaakiaawUhacaGL9baajugibiaaykW7 caaMc8Ecfa4aaiWaaOqaaKqzGeGaaGymaiabgUcaRiaadIhacqGHRa WkcaWGPbGaeq4Wdmxcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqc LbsacaWGWbqcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaaakiaawU hacaGL9baajugibiabgUcaRKqbaoaalaaakeaajugibiaadgfajuaG daWgaaqcbasaaKqzadGaaGymaaWcbeaajugibiaadIhaciGGJbGaai 4BaiaacohajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiab eI7aXbGcbaqcLbsacqGHiiIZaaaakiaaw2faaaaabaqcLbsacaWG4b qcfa4aamWaaOqaaKqzGeGabmisayaafaGaey4kaSscfa4aaSaaaOqa aKqzGeGaamyAaiabew8a1jabes8a0jabec8aWLqbaoaaCaaaleqaje aibaqcLbmacaaIYaaaaKqzGeGaeq4Wdmxcfa4aaSbaaKqaGeaajugW aiaaigdaaSqabaaakeaajugibiaadsgajuaGdaahaaWcbeqcbasaaK qzadGaaGOmaaaaaaaakiaawUfacaGLDbaajugibiaaykW7caaMc8Ec fa4aamWaaOqaaKqzGeGaaGymaiabgUcaRiaadIhacqGHRaWkcaWGPb Gaeq4Wdmxcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacaWG Wbqcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaaakiaawUfacaGLDb aaaaaaaa@EFB1@ ,                            (27)

where x = a 2 π 2 , i σ 1 = σ π 2 , P = π 2 P l , R 1 = R π 4 , i σ 1 = σ π 2 , Q 1 = Q π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaamyyaKqbaoaaCaaaleqajeai baqcLbmacaaIYaaaaaGcbaqcLbsacqaHapaCjuaGdaahaaWcbeqcba saaKqzadGaaGOmaaaaaaqcLbsacaGGSaGaaGPaVlaaykW7caaMc8Ua amyAaiabeo8aZLqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGe Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaeq4Wdmhakeaajugibiabec8a WLqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaaajugibiaacYcaca aMc8UaaGPaVlaaykW7caWGqbGaeyypa0JaeqiWdaxcfa4aaWbaaSqa bKqaGeaajugWaiaaikdaaaqcLbsacaWGqbqcfa4aaSbaaKqaGeaaju gWaiabloriSbWcbeaajugibiaacYcacaaMc8UaaGPaVlaaykW7caWG sbqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacqGH9aqpju aGdaWcaaGcbaqcLbsacaWGsbaakeaajugibiabec8aWLqbaoaaCaaa leqajeaibaqcLbmacaaI0aaaaaaajugibiaacYcacaaMc8UaaGPaVl aaykW7caaMc8UaamyAaiqbeo8aZzaafaqcfa4aaSbaaKqaGeaajugW aiaaigdaaSqabaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacuaHdp WCgaqbaaGcbaqcLbsacqaHapaCjuaGdaahaaWcbeqcbasaaKqzadGa aGOmaaaaaaqcLbsacaGGSaGaaGPaVlaaykW7caaMc8UaamyuaKqbao aaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaeyypa0tcfa4aaSaa aOqaaKqzGeGaamyuaaGcbaqcLbsacqaHapaCjuaGdaahaaWcbeqcba saaKqzadGaaGOmaaaaaaaaaa@A3E6@ and k x = k cos θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRb qcfa4aaSbaaKqaGeaajugWaiaadIhaaSqabaqcLbsacqGH9aqpcaWG RbGaci4yaiaac+gacaGGZbGaeqiUdehaaa@4192@ .

When the instability sets in as stationary convection, the marginal state will be characterized by σ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeo8aZjabg2da9iaaicdaaaa@3A28@ . Putting σ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeo8aZjabg2da9iaaicdaaaa@3A28@ , the dispersion relation (27) reduces to

R 1 = ( 1 + x ) [ 1 + x P + Q 1 x cos 2 θ ] x H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb qcfa4aaSbaaKazba4=baqcLbmacaaIXaaaleqaaKqzGeGaeyypa0tc fa4aaSaaaOqaaKqbaoaabmaakeaajugibiaaigdacqGHRaWkcaWG4b qcfa4aaWbaaSqabeaaaaaakiaawIcacaGLPaaajugibiaaykW7caaM c8Ecfa4aamWaaOqaaKqbaoaalaaakeaajugibiaaigdacqGHRaWkca WG4baakeaajugibiaadcfaaaGaey4kaSscfa4aaSaaaOqaaKqzGeGa amyuaKqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaamiEai GacogacaGGVbGaai4CaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaa aKqzGeGaeqiUdehakeaajugibiabgIGiodaaaOGaay5waiaaw2faaa qaaKqzGeGaamiEaiqadIeagaqbaaaaaaa@6361@ .                                   (28)

We thus find that for stationary convection the viscoelastic parameter F vanishes with σ and Walters B′ viscoelastic fluid behaves like an ordinary Newtonian fluid.

To study the effects of magnetic field, suspended particles and medium permeability, we examine the natures of d R 1 d Q 1 , d R 1 d H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaiaadkfajuaGdaWgaaqcbasaaKqzadGaaGymaaWc beaaaOqaaKqzGeGaamizaiaadgfajuaGdaWgaaqcbasaaKqzadGaaG ymaaWcbeaaaaqcLbsacaGGSaGaaGPaVlaaykW7caaMc8Ecfa4aaSaa aOqaaKqzGeGaamizaiaadkfajuaGdaWgaaqcbasaaKqzadGaaGymaa WcbeaaaOqaaKqzGeGaamizaiqadIeagaqbaaaaaaa@4EDE@ and d R 1 d P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaiaadkfajuaGdaWgaaqcbasaaKqzadGaaGymaaWc beaaaOqaaKqzGeGaamizaiaadcfaaaaaaa@3E11@ . Equation (28) yields

d R 1 d Q 1 = ( 1 + x ) cos 2 θ H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaiaadkfajuaGdaWgaaqcbasaaKqzadGaaGymaaWc beaaaOqaaKqzGeGaamizaiaadgfajuaGdaWgaaqcbasaaKqzadGaaG ymaaWcbeaaaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcfa4aaeWaaOqa aKqzGeGaaGymaiabgUcaRiaadIhaaOGaayjkaiaawMcaaKqzGeGaci 4yaiaac+gacaGGZbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqc LbsacqaH4oqCaOqaaKqzGeGabmisayaafaGaeyicI4maaaaa@53DC@ ,                                          (29)

d R 1 d H = ( 1 + x ) [ 1 + x P + Q 1 x cos 2 θ ] x H 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaiaadkfajuaGdaWgaaqcbasaaKqzadGaaGymaaWc beaaaOqaaKqzGeGaamizaiqadIeagaqbaaaacqGH9aqpcaaMc8UaaG PaVlabgkHiTiaaykW7caaMc8UaaGPaVlaaykW7juaGdaWcaaGcbaqc fa4aaeWaaOqaaKqzGeGaaGymaiabgUcaRiaadIhaaOGaayjkaiaawM caaKqbaoaadmaakeaajuaGdaWcaaGcbaqcLbsacaaIXaGaey4kaSIa amiEaaGcbaqcLbsacaWGqbaaaiabgUcaRKqbaoaalaaakeaajugibi aadgfajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugibiaadIha ciGGJbGaai4BaiaacohajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaa aajugibiabeI7aXbGcbaqcLbsacqGHiiIZaaaakiaawUfacaGLDbaa aeaajugibiaadIhaceWGibGbauaajuaGdaahaaWcbeqcbasaaKqzad GaaGOmaaaaaaaaaa@6D99@ ,             (30)

d R 1 d P = ( 1 + x ) 2 x H P 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaiaadkfajuaGdaWgaaqcbasaaKqzadGaaGymaaWc beaaaOqaaKqzGeGaamizaiaadcfaaaGaeyypa0JaeyOeI0scfa4aaS aaaOqaaKqbaoaabmaakeaajugibiaaigdacqGHRaWkcaWG4baakiaa wIcacaGLPaaajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaOqaaK qzGeGaamiEaiqadIeagaqbaiaadcfajuaGdaahaaWcbeqcbasaaKqz adGaaGOmaaaaaaaaaa@4EE2@ .                                                (31)

It is clear from equations (29)-(31) that for stationary convection the magnetic field postpone the onset of convection whereas the suspended particles and medium permeability hasten the onset of convection in Walters B′ viscoelastic fluid permeated with suspended particles, heated from below in porous medium in presence of a uniform horizontal magnetic field.

Graphs have been plotted between R1 and x for various values of Q1, P and H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGib Gbauaaaaa@375E@ . It is evident from Figures 1-3 that the magnetic field postpones the onset of convection while medium permeability and suspended particles hasten the onset of convection.

Figure 1 Variation of R1 with X for a fixed = 0.4 , θ = 45 , P = 10 , H = 20 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgIGiolabg2da9iaaicdacaGGUaGaaGinaiaacYcacaaM c8UaaGPaVlaaykW7cqaH4oqCcqGH9aqpcaaI0aGaaGynaKqbaoaaCa aabeqaaKqzGeGaeSigI8gaaiaacYcacaaMc8UaaGPaVlaaykW7caWG qbGaeyypa0JaaGymaiaaicdacaGGSaGaaGPaVlaaykW7ceWGibGbau aacqGH9aqpcaaIYaGaaGimaaaa@5718@ for different values of Q1 (=100,500).

Figure 2 Variation of R1 with X for a fixed = 0.4 , θ = 45 , Q 1 = 100 , H = 20 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgIGiolabg2da9iaaicdacaGGUaGaaGinaiaacYcacaaM c8UaaGPaVlaaykW7cqaH4oqCcqGH9aqpcaaI0aGaaGynaKqbaoaaCa aabeqaaKqzGeGaeSigI8gaaiaacYcacaaMc8UaaGPaVlaadgfajuaG daWgaaqcfasaaKqzadGaaGymaaqcfayabaqcLbsacqGH9aqpcaaIXa GaaGimaiaaicdacaGGSaGaaGPaVlaaykW7ceWGibGbauaacqGH9aqp caaIYaGaaGimaaaa@5A2B@ for different values of P (=2, 10).

Figure 3 Variation of R1 with X for a fixed = 0.4 , θ = 45 , Q 1 = 100 , P = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgIGiolabg2da9iaaicdacaGGUaGaaGinaiaacYcacaaM c8UaaGPaVlaaykW7cqaH4oqCcqGH9aqpcaaI0aGaaGynaKqbaoaaCa aabeqaaKqzGeGaeSigI8gaaiaacYcacaaMc8UaaGPaVlaadgfajuaG daWgaaqcfasaaKqzadGaaGymaaqcfayabaqcLbsacqGH9aqpcaaIXa GaaGimaiaaicdacaGGSaGaaGPaVlaaykW7caWGqbGaeyypa0JaaGyn aaaa@5970@ for different values of H ( = 20 , 40 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadIeagaqbaiaacIcacqGH9aqpcaaIYaGaaGimaiaacYca caaI0aGaaGimaiaacMcaaaa@3D7B@ .

Mathematical analysis

We first prove the following lemma:
Lemma: If [ σ = σ r + i σ i , W , Θ , X ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeGaeq4WdmNaeyypa0Jaeq4Wdmxcfa4aaSbaaKqaGeaajugW aiaadkhaaSqabaqcLbsacqGHRaWkcaWGPbGaeq4Wdmxcfa4aaSbaaK qaGeaajugWaiaadMgaaSqabaqcLbsacaaMe8UaaiilaiaaysW7caWG xbGaaiilaiaaysW7cqqHyoqucaGGSaGaaGjbVlaadIfaaOGaay5wai aaw2faaKqzGeGaaGjbVdaa@55EF@ is a non-trivial solution of the double Eigen value problem for σ r a n d σ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCjuaGdaWgaaqcbasaaKqzadGaamOCaaWcbeaajugibiaaysW7caWG HbGaamOBaiaadsgacaaMe8Uaeq4Wdmxcfa4aaSbaaKqaGeaajugWai aadMgaaSqabaaaaa@467F@ described by the equations (21)-(23) with the boundary conditions (25). Then a necessary condition for σ = 0 ( i . e . σ r = σ i = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCcqGH9aqpcaaIWaGaaGjbVNqbaoaabmaakeaajugibiaadMgacaGG UaGaamyzaiaac6cacaaMe8Uaeq4Wdmxcfa4aaSbaaKqaGeaajugWai aadkhaaSqabaqcLbsacqGH9aqpcqaHdpWCjuaGdaWgaaqcbasaaKqz adGaamyAaaWcbeaajugibiabg2da9iaaicdaaOGaayjkaiaawMcaaa aa@508B@ to be an Eigen value is that

0 1 ( | D Θ | 2 + a 2 | Θ | 2 ) d z β 2 d 4 H 2 κ 2 π 2 0 1 | W | 2 d z . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8qCaO qaaKqbaoaabmaakeaajuaGdaabdaGcbaqcLbsacaWGebGaeuiMdefa kiaawEa7caGLiWoajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaju gibiabgUcaRiaadggajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaa juaGdaabdaGcbaqcLbsacqqHyoquaOGaay5bSlaawIa7aKqbaoaaCa aaleqajeaibaqcLbmacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacaWG KbGaamOEaiabgsMiJMqbaoaalaaakeaajugibiabek7aILqbaoaaCa aaleqajeaibaqcLbmacaaIYaaaaKqzGeGaamizaKqbaoaaCaaaleqa jeaibaqcLbmacaaI0aaaaKqzGeGabmisayaafaqcfa4aaWbaaSqabK qaGeaajugWaiaaikdaaaaakeaajugibiabeQ7aRLqbaoaaCaaaleqa jeaibaqcLbmacaaIYaaaaKqzGeGaeqiWdaxcfa4aaWbaaSqabKqaGe aajugWaiaaikdaaaaaaKqbaoaapehakeaajuaGdaabdaGcbaqcLbsa caWGxbaakiaawEa7caGLiWoajuaGdaahaaWcbeqcbasaaKqzadGaaG OmaaaajugibiaadsgacaWG6bGaaGjbVlaaysW7caGGUaaajeaibaqc LbmacaaIWaaajeaibaqcLbmacaaIXaaajugibiabgUIiYdaajeaiba qcLbmacaaIWaaajeaibaqcLbmacaaIXaaajugibiabgUIiYdaaaa@8945@

Proof of Lemma: Since σ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCcqGH9aqpcaaIWaaaaa@3A08@ is an Eigen value, we have from equation (22)

( D 2 a 2 ) Θ = β d 2 H κ W . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamiraKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqz GeGaeyOeI0IaamyyaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaa GccaGLOaGaayzkaaqcLbsacqqHyoqucqGH9aqpcqGHsisljuaGdaWc aaGcbaqcLbsacqaHYoGycaWGKbqcfa4aaWbaaSqabKqaGeaajugWai aaikdaaaqcLbsaceWGibGbauaaaOqaaKqzGeGaeqOUdSgaaiaadEfa caGGUaaaaa@5143@ (32)

Multiplying both sides of equation (32) by Θ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHyo qujuaGdaahaaWcbeqcbasaaKqzadGaaiOkaaaaaaa@3ABD@ (the complex conjugate of Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHyo quaaa@37FC@ ), integrating the resulting equation by parts for sufficient number of times over the vertical range of z by making the use of boundary conditions (25) and separating the real parts of both sides of the equation so obtained, we get

0 1 ( | D Θ | 2 + a 2 | Θ | 2 ) d z = Re β d 2 H κ 0 1 Θ * W d z = β d 2 H κ Re 0 1 Θ * W d z . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaju aGdaqadaGcbaqcfa4aaqWaaOqaaKqzGeGaamiraiabfI5arbGccaGL hWUaayjcSdqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacq GHRaWkcaWGHbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcfa4a aqWaaOqaaKqzGeGaeuiMdefakiaawEa7caGLiWoajuaGdaahaaWcbe qcbasaaKqzadGaaGOmaaaaaOGaayjkaiaawMcaaKqzGeGaamizaiaa dQhacqGH9aqpciGGsbGaaiyzaKqbaoaalaaakeaajugibiabek7aIj aadsgajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiqadIea gaqbaaGcbaqcLbsacqaH6oWAaaGcdaWdXbqaaKqzGeGaeuiMdevcfa 4aaWbaaSqabKqaGeaajugWaiaacQcaaaqcLbsacaWGxbGaamizaiaa dQhacqGH9aqpjuaGdaWcaaGcbaqcLbsacqaHYoGycaWGKbqcfa4aaW baaSqabKqaGeaajugWaiaaikdaaaqcLbsaceWGibGbauaaaOqaaKqz GeGaeqOUdSgaaiGackfacaGGLbGcdaWdXbqaaKqzGeGaeuiMdevcfa 4aaWbaaSqabKqaGeaajugWaiaacQcaaaqcLbsacaWGxbGaamizaiaa dQhacaaMe8UaaGjbVRGaaiOlaaWcbaqcLbmacaaIWaaaleaajugWai aaigdaa0Gaey4kIipaaSqaaKqzadGaaGimaaWcbaqcLbmacaaIXaaa niabgUIiYdaaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aaaa@9053@ (33)

Now

Re 0 1 Θ * W d z | 0 1 Θ * W d z | 0 1 | Θ * W | d z 0 1 | Θ | | W | d z 0 1 | Θ | 2 d z 0 1 | W | 2 d z . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi GackfacaGGLbGcdaWdXbqaaKqzGeGaeuiMdevcfa4aaWbaaSqabeaa jugibiaacQcaaaGaam4vaiaadsgacaWG6bGaeyizImQcdaabdaqaam aapehabaqcLbsacqqHyoqujuaGdaahaaWcbeqaaKqzGeGaaiOkaaaa caWGxbGaamizaiaadQhaaSqaaKqzadGaaGimaaWcbaqcLbmacaaIXa aaniabgUIiYdaakiaawEa7caGLiWoaaKqaGeaajugWaiaaicdaaSqa aKqzadGaaGymaaqdcqGHRiI8aOGaaGPaVNqzGeGaeyizImQcdaWdXb qaaKqbaoaaemaakeaajugibiabfI5arLqbaoaaCaaaleqabaqcLbsa caGGQaaaaiaadEfaaOGaay5bSlaawIa7aKqzGeGaamizaiaadQhaaS qaaKqzadGaaGimaaWcbaqcLbmacaaIXaaaniabgUIiYdqcLbsacqGH KjYOkmaapehabaqcfa4aaqWaaOqaaKqzGeGaeuiMdefakiaawEa7ca GLiWoajuaGdaabdaGcbaqcLbsacaWGxbaakiaawEa7caGLiWoajugi biaadsgacaWG6baaleaajugWaiaaicdaaSqaaKqzadGaaGymaaqdcq GHRiI8aOGaeyizImkabaqcLbsacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UcdaGcaaqaamaapehabaqcfa4aaqWaaOqaaKqzGe GaeuiMdefakiaawEa7caGLiWoajuaGdaahaaWcbeqaaKqzadGaaGOm aaaaaSqaaKqzadGaaGimaaWcbaqcLbmacaaIXaaaniabgUIiYdqcLb sacaWGKbGaamOEaOGaaGjbVdWcbeaakiaaysW7caaMe8+aaOaaaeaa daWdXbqaaKqbaoaaemaakeaajugibiaadEfaaOGaay5bSlaawIa7aK qbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaaGjbVlaadsga caWG6baaleaajugWaiaaicdaaSqaaKqzadGaaGymaaqdcqGHRiI8aa WcbeaakiaaysW7caaMe8EcLbsacaaMe8UaaiOlaaaaaa@0839@ (by Schwartz inequality)

Equation (32) and inequality (33) implies that

0 1 ( | D Θ | 2 + a 2 | Θ | 2 ) d z β d 2 H κ 0 1 | Θ | 2 d z 0 1 | W | 2 d z , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8qCaO qaaKqbaoaabmaakeaajuaGdaabdaGcbaqcLbsacaWGebGaeuiMdefa kiaawEa7caGLiWoajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaju gibiabgUcaRiaadggajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaa juaGdaabdaGcbaqcLbsacqqHyoquaOGaay5bSlaawIa7aKqbaoaaCa aaleqajeaibaqcLbmacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacaWG KbGaamOEaiabgsMiJMqbaoaalaaakeaajugibiabek7aIjaadsgaju aGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiqadIeagaqbaaGc baqcLbsacqaH6oWAaaqcfa4aaOaaaOqaaKqbaoaapehakeaajuaGda abdaGcbaqcLbsacqqHyoquaOGaay5bSlaawIa7aKqbaoaaCaaaleqa jeaibaqcLbmacaaIYaaaaKqzGeGaamizaiaadQhaaKqaGeaajugWai aaicdaaKqaGeaajugWaiaaigdaaKqzGeGaey4kIipaaSqabaqcLbsa caaMe8UaaGjbVNqbaoaakaaakeaajuaGdaWdXbGcbaqcfa4aaqWaaO qaaKqzGeGaam4vaaGccaGLhWUaayjcSdqcfa4aaWbaaSqabKqaGeaa jugWaiaaikdaaaqcLbsacaWGKbGaamOEaaqcbasaaKqzadGaaGimaa qcbasaaKqzadGaaGymaaqcLbsacqGHRiI8aaWcbeaajugibiaaysW7 caaMe8UaaiilaaqcbasaaKqzadGaaGimaaqcbasaaKqzadGaaGymaa qcLbsacqGHRiI8aaaa@9375@ (34)

which in turn implies that

0 1 | D Θ | 2 d z β d 2 H κ 0 1 | Θ | 2 d z 0 1 | W | 2 d z , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8qCaO qaaKqbaoaaemaakeaajugibiaadseacqqHyoquaOGaay5bSlaawIa7 aKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaamizaiaadQ hacqGHKjYOjuaGdaWcaaGcbaqcLbsacqaHYoGycaWGKbqcfa4aaWba aSqabKqaGeaajugWaiaaikdaaaqcLbsaceWGibGbauaaaOqaaKqzGe GaeqOUdSgaaKqbaoaakaaakeaajuaGdaWdXbGcbaqcfa4aaqWaaOqa aKqzGeGaeuiMdefakiaawEa7caGLiWoajuaGdaahaaWcbeqcbasaaK qzadGaaGOmaaaajugibiaadsgacaWG6baajeaibaqcLbmacaaIWaaa jeaibaqcLbmacaaIXaaajugibiabgUIiYdaaleqaaKqzGeGaaGjbVl aaysW7juaGdaGcaaGcbaqcfa4aa8qCaOqaaKqbaoaaemaakeaajugi biaadEfaaOGaay5bSlaawIa7aKqbaoaaCaaaleqajeaibaqcLbmaca aIYaaaaKqzGeGaamizaiaadQhaaKqaGeaajugWaiaaicdaaKqaGeaa jugWaiaaigdaaKqzGeGaey4kIipaaSqabaqcLbsacaaMe8UaaGjbVl aacYcaaKqaGeaajugWaiaaicdaaKqaGeaajugWaiaaigdaaKqzGeGa ey4kIipaaaa@838B@ (35)

hence we derive from inequality (35) using Rayleigh-Ritz inequality

0 1 | D Θ | 2 d z π 2 0 1 | Θ | 2 d z , ( since Θ = 0 a t z = 0 a n d z = 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8qCaO qaaKqbaoaaemaakeaajugibiaadseacqqHyoquaOGaay5bSlaawIa7 aKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaamizaiaadQ hacqGHLjYScqaHapaCjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaa juaGdaWdXbGcbaqcfa4aaqWaaOqaaKqzGeGaeuiMdefakiaawEa7ca GLiWoajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaadsga caWG6bGaaiilaaqcbasaaKqzadGaaGimaaqcbasaaKqzadGaaGymaa qcLbsacqGHRiI8aaqcbasaaKqzadGaaGimaaqcbasaaKqzadGaaGym aaqcLbsacqGHRiI8aKqbakaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daqadaGcbaqcLbsacaqG ZbGaaeyAaiaab6gacaqGJbGaaeyzaiaaysW7caaMe8UaeuiMdeLaey ypa0JaaGimaiaaysW7caWGHbGaamiDaiaaysW7caWG6bGaeyypa0Ja aGimaiaaysW7caWGHbGaamOBaiaadsgacaaMe8UaamOEaiabg2da9i aaigdaaOGaayjkaiaawMcaaaaa@9089@ (36)

0 1 | Θ | 2 d z β d 2 H π 2 κ 0 1 | W | 2 d z . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaO qaaKqbaoaapehakeaajuaGdaabdaGcbaqcLbsacqqHyoquaOGaay5b SlaawIa7aKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaam izaiaadQhaaKqaGeaajugWaiaaicdaaKqaGeaajugWaiaaigdaaKqz GeGaey4kIipaaSqabaqcLbsacaaMe8UaeyizImAcfa4aaSaaaOqaaK qzGeGaeqOSdiMaamizaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaa aKqzGeGabmisayaafaaakeaajugibiabec8aWLqbaoaaCaaaleqaje aibaqcLbmacaaIYaaaaKqzGeGaeqOUdSgaaKqbaoaakaaakeaajuaG daWdXbGcbaqcfa4aaqWaaOqaaKqzGeGaam4vaaGccaGLhWUaayjcSd qcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacaWGKbGaamOE aaqcbasaaKqzadGaaGimaaqcbasaaKqzadGaaGymaaqcLbsacqGHRi I8aaWcbeaajugibiaaysW7caaMe8UaaGjbVlaac6caaaa@7532@ (37)

Inequalities (34) and (37) lead to

0 1 ( | D Θ | 2 + a 2 | Θ | 2 ) d z ( β d 2 H π κ ) 2 0 1 | W | 2 d z , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8qCaO qaaKqbaoaabmaakeaajuaGdaabdaGcbaqcLbsacaWGebGaeuiMdefa kiaawEa7caGLiWoajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaju gibiabgUcaRiaadggajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaa juaGdaabdaGcbaqcLbsacqqHyoquaOGaay5bSlaawIa7aKqbaoaaCa aaleqajeaibaqcLbmacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacaWG KbGaamOEaiabgsMiJMqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacq aHYoGycaWGKbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsa ceWGibGbauaaaOqaaKqzGeGaeqiWdaNaeqOUdSgaaaGccaGLOaGaay zkaaqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcfa4aa8qCaOqa aKqbaoaaemaakeaajugibiaadEfaaOGaay5bSlaawIa7aKqbaoaaCa aaleqajeaibaqcLbmacaaIYaaaaKqzGeGaamizaiaadQhacaaMe8Ua aGjbVlaaysW7caGGSaaajeaibaqcLbmacaaIWaaajeaibaqcLbmaca aIXaaajugibiabgUIiYdaajeaibaqcLbmacaaIWaaajeaibaqcLbma caaIXaaajugibiabgUIiYdaaaa@836E@ (38)

and hence the lemma.

The contents of the above lemma when presented otherwise from the point of view of theoretical hydrodynamics imply that

Lemma: A necessary condition for the validity of the principle of exchange of stabilities in thermal convection configuration of Walters B' viscoelastic fluid in porous medium in the presence of magnetic field and suspended particles is that

0 1 ( | D Θ | 2 + a 2 | Θ | 2 ) d z ( β d 2 H π κ ) 2 0 1 | W | 2 d z . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8qCaO qaaKqbaoaabmaakeaajuaGdaabdaGcbaqcLbsacaWGebGaeuiMdefa kiaawEa7caGLiWoajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaju gibiabgUcaRiaadggajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaa juaGdaabdaGcbaqcLbsacqqHyoquaOGaay5bSlaawIa7aKqbaoaaCa aaleqajeaibaqcLbmacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacaWG KbGaamOEaiabgsMiJMqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacq aHYoGycaWGKbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsa ceWGibGbauaaaOqaaKqzGeGaeqiWdaNaeqOUdSgaaaGccaGLOaGaay zkaaqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcfa4aa8qCaOqa aKqbaoaaemaakeaajugibiaadEfaaOGaay5bSlaawIa7aKqbaoaaCa aaleqajeaibaqcLbmacaaIYaaaaKqzGeGaamizaiaadQhacaaMe8Ua aGjbVlaaysW7caGGUaaajeaibaqcLbmacaaIWaaajeaibaqcLbmaca aIXaaajugibiabgUIiYdaajeaibaqcLbmacaaIWaaajeaibaqcLbma caaIXaaajugibiabgUIiYdaaaa@8370@ >

We now prove the following theorem:
Theorem: If [ σ = σ r + i σ i , W , Θ , X ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeGaeq4WdmNaeyypa0Jaeq4Wdmxcfa4aaSbaaKqaGeaajugW aiaadkhaaSqabaqcLbsacqGHRaWkcaWGPbGaeq4Wdmxcfa4aaSbaaK qaGeaajugWaiaadMgaaSqabaqcLbsacaaMe8UaaiilaiaaysW7caWG xbGaaiilaiaaysW7cqqHyoqucaGGSaGaaGjbVlaadIfaaOGaay5wai aaw2faaKqzGeGaaGjbVdaa@55EF@ is a non-trivial solution of the double eigen value problem for σ r a n d σ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbIt LDhis9wBH5garqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7 rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9 pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaq aafaaakeaacqaHdpWCdaWgaaWcbaGaamOCaaqabaGccaaMe8Uaamyy aiaad6gacaWGKbGaaGjbVlabeo8aZnaaBaaaleaacaWGPbaabeaaaa a@488D@ described by the equations (21)-(23) with the boundary conditions (25) for given values of other parameters, then a sufficiency condition for the invalidity of σ = 0 ( i . e . σ r = σ i = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCcqGH9aqpcaaIWaGaaGjbVNqbaoaabmaakeaajugibiaadMgacaGG UaGaamyzaiaac6cacaaMe8Uaeq4Wdmxcfa4aaSbaaSqaaKqzadGaam OCaaWcbeaajugibiabg2da9iabeo8aZTWaaSbaaeaajugWaiaadMga aSqabaqcLbsacqGH9aqpcaaIWaaakiaawIcacaGLPaaaaaa@4FBF@ to be an Eigen value is that R H P l π 2 < 1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamOuaiqadIeagaqbaiaadcfajuaGdaWgaaqcbasaaKqz adGaamiBaaWcbeaaaOqaaKqzGeGaeqiWdaxcfa4aaWbaaSqabKqaGe aajugWaiaaikdaaaaaaKqzGeGaeyipaWJaaGjbVlaaigdacaGGUaaa aa@4667@

Proof: Multiplying equation (21) by W*, the complex conjugate of W, integrating over the range of z and using equations (22) and (23) together with the boundary conditions (25), we obtain

[ σ + 1 P l ( 1 F σ ) ] I 1 g α κ a 2 υ β [ d 2 + υ τ σ * H d 2 + υ τ σ * ] [ I 2 + E + h ¯ p 1 σ * I 3 ] + μ e η 4 π ρ 0 υ [ I 4 + p 2 σ * I 5 ] = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda WadaGcbaqcfa4aaSaaaOqaaKqzGeGafq4WdmNbauaaaOqaaKqzGeGa eyicI4maaiabgUcaRKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGe GaamiuaKqbaoaaBaaajeaibaqcLbmacqWItecBaSqabaaaaKqbaoaa bmaakeaajugibiaaigdacqGHsislcaWGgbGaeq4WdmhakiaawIcaca GLPaaaaiaawUfacaGLDbaajugibiaadMeajuaGdaWgaaqcbasaaKqz adGaaGymaaWcbeaajugibiabgkHiTKqbaoaalaaakeaajugibiaadE gacqaHXoqycqaH6oWAcaWGHbqcfa4aaWbaaSqabKqaGeaajugWaiaa ikdaaaaakeaajugibiabew8a1jabek7aIbaajuaGdaWadaGcbaqcfa 4aaSaaaOqaaKqzGeGaamizaKqbaoaaCaaaleqajeaibaqcLbmacaaI YaaaaKqzGeGaey4kaSIaeqyXduNaeqiXdqNaeq4Wdmxcfa4aaWbaaS qabKqaGeaajugWaiaacQcaaaaakeaajugibiqadIeagaqbaiaadsga juaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiabgUcaRiabew 8a1jabes8a0jabeo8aZLqbaoaaCaaaleqajeaibaqcLbmacaGGQaaa aaaaaOGaay5waiaaw2faaKqzGeGaaGPaVlaaykW7juaGdaWadaGcba qcLbsacaWGjbqcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqcLbsa cqGHRaWkjuaGdaqdaaGcbaqcLbsacaWGfbGaey4kaSIaamiAaiabgI GiodaacaaMc8UaaGPaVlaadchajuaGdaWgaaqcbasaaKqzadGaaGym aaWcbeaajugibiabeo8aZLqbaoaaCaaaleqajeaibaqcLbmacaGGQa aaaKqzGeGaamysaKqbaoaaBaaajeaibaqcLbmacaaIZaaaleqaaKqb aoaaCaaabeqaamaaCaaabeqcfauaaaaaaaaakiaawUfacaGLDbaaae aajugibiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cq GHRaWkjuaGdaWcaaGcbaqcLbsacqaH8oqBjuaGdaWgaaqcbasaaKqz adGaamyzaaWcbeaajugibiabeE7aOjabgIGiodGcbaqcLbsacaaI0a GaeqiWdaNaeqyWdixcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqc LbsacqaHfpqDaaqcfa4aamWaaOqaaKqzGeGaamysaKqbaoaaBaaaje aibaqcLbmacaaI0aaaleqaaKqzGeGaey4kaSIaamiCaKqbaoaaBaaa jeaibaqcLbmacaaIYaaaleqaaKqzGeGaeq4Wdmxcfa4aaWbaaSqabK qaGeaajugWaiaacQcaaaqcLbsacaWGjbqcfa4aaSbaaKqaGeaajugW aiaaiwdaaSqabaqcfa4aaWbaaSqabeaajuaGdaahaaadbeqaaKqbao aaCaaameqabaaaaaaaaaaakiaawUfacaGLDbaajugibiabg2da9iaa icdacaGGSaaaaaa@7D46@ (39)

where

I 1 = 0 1 ( | D W | 2 + a 2 | W | 2 ) d z , I 2 = 0 1 ( | D Θ | 2 + a 2 | Θ | 2 ) d z , I 3 = 0 1 | Θ | 2 d z , I 4 = 0 1 ( | D 2 X | 2 + 2 a 2 | D X | 2 + a 4 | X | 2 ) d z , I 5 = 0 1 ( | D X | 2 + a 2 | X | 2 ) d z , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadMeajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugibiabg2da 9KqbaoaapedakeaajuaGdaqadaGcbaqcfa4aaqWaaOqaaKqzGeGaam iraiaadEfaaOGaay5bSlaawIa7aKqbaoaaCaaaleqajeaibaqcLbma caaIYaaaaKqzGeGaey4kaSIaamyyaKqbaoaaCaaaleqajeaibaqcLb macaaIYaaaaKqbaoaaemaakeaajugibiaadEfaaOGaay5bSlaawIa7 aKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaGccaGLOaGaayzkaa qcLbsacaWGKbGaamOEaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caWGjbqcfa4aaSbaaKqaGeaajugWaiaaikdaaSqaba qcLbsacqGH9aqpaKqaGeaajugWaiaaicdaaKqaGeaajugWaiaaigda aKqzGeGaey4kIipajuaGdaWdXaGcbaqcfa4aaeWaaOqaaKqbaoaaem aakeaajugibiaadseacqqHyoquaOGaay5bSlaawIa7aKqbaoaaCaaa leqajeaibaqcLbmacaaIYaaaaKqzGeGaey4kaSIaamyyaKqbaoaaCa aaleqajeaibaqcLbmacaaIYaaaaKqbaoaaemaakeaajugibiabfI5a rbGccaGLhWUaayjcSdqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaa aakiaawIcacaGLPaaajugibiaadsgacaWG6bGaaiilaaqcbasaaKqz adGaaGimaaqcbasaaKqzadGaaGymaaqcLbsacqGHRiI8aaGcbaqcLb sacaWGjbqcfa4aaSbaaKqaGeaajugWaiaaiodaaSqabaqcLbsacqGH 9aqpjuaGdaWdXaGcbaqcfa4aaqWaaOqaaKqzGeGaeuiMdefakiaawE a7caGLiWoajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaa dsgacaWG6bGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWG jbqcfa4aaSbaaKqaGeaajugWaiaaisdaaSqabaqcLbsacqGH9aqpaK qaGeaajugWaiaaicdaaKqaGeaajugWaiaaigdaaKqzGeGaey4kIipa juaGdaWdXaGcbaqcfa4aaeWaaOqaaKqbaoaaemaakeaajugibiaads eajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaadIfaaOGa ay5bSlaawIa7aKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGe Gaey4kaSIaaGOmaiaadggajuaGdaahaaWcbeqcbasaaKqzadGaaGOm aaaajuaGdaabdaGcbaqcLbsacaWGebGaamiwaaGccaGLhWUaayjcSd qcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcaWG Hbqcfa4aaWbaaSqabKqaGeaajugWaiaaisdaaaqcfa4aaqWaaOqaaK qzGeGaamiwaaGccaGLhWUaayjcSdqcfa4aaWbaaSqabKqaGeaajugW aiaaikdaaaaakiaawIcacaGLPaaajugibiaadsgacaWG6bGaaiilaa qcbasaaKqzadGaaGimaaqcbasaaKqzadGaaGymaaqcLbsacqGHRiI8 aaGcbaqcLbsacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaamysaKqbaoaaBaaajeaibaqcLbmacaaI1aaale qaaKqzGeGaeyypa0tcfa4aa8qmaOqaaKqbaoaabmaakeaajuaGdaab daGcbaqcLbsacaWGebGaamiwaaGccaGLhWUaayjcSdqcfa4aaWbaaS qabKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcaWGHbqcfa4aaWba aSqabKqaGeaajugWaiaaikdaaaqcfa4aaqWaaOqaaKqzGeGaamiwaa GccaGLhWUaayjcSdqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaa kiaawIcacaGLPaaajugibiaadsgacaWG6bGaaiilaiaaxMaaaKqaGe aajugWaiaaicdaaKqaGeaajugWaiaaigdaaKqzGeGaey4kIipaaaaa @6C10@

and σ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeo8aZjaacQcaaaa@3916@ is the complex conjugate of σ. The integrals I1, I2, …., I5 are all positive definite.

Putting σ r = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCjuaGdaWgaaqcbasaaKqzadGaamOCaaWcbeaajugibiabg2da9iaa icdaaaa@3DA0@ and f = m N 0 ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaMc8 UaamOzaiabg2da9Kqbaoaalaaakeaajugibiaad2gacaWGobqcfa4a aSbaaKqaGeaajugWaiaaicdaaSqabaaakeaajugibiabeg8aYLqbao aaBaaajeaibaqcLbmacaaIWaaaleqaaaaaaaa@44EE@ in equation (39) and separating the real and imaginary parts of the resulting equation, we derive

1 P l I 1 g α κ a 2 ν β ( H 2 d 4 + ν 2 τ 2 σ i 2 ) [ ( d 2 H + ν 2 τ 2 σ i 2 ) I 2 + ν τ σ i d 2 E + h ¯ p 1 σ i I 3 ν τ σ i 2 H d 2 E + h ¯ p 1 I 3 ] + μ e η ε 4 π ρ 0 ν I 4 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda WcaaGcbaqcLbsacaaIXaaakeaajugibiaadcfajuaGdaWgaaqcaasa aKqzadGaamiBaaGcbeaaaaqcLbsacaWGjbqcfa4aaSbaaKaaGeaaju gWaiaaigdaaOqabaqcLbsacqGHsisljuaGdaWcaaGcbaqcLbsacaWG NbGaeqySdeMaeqOUdSMaamyyaKqbaoaaCaaaleqajeaibaqcLbmaca aIYaaaaaGcbaqcLbsacqaH9oGBcqaHYoGyjuaGdaqadaGcbaqcLbsa ceWGibGbauaajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibi aadsgajuaGdaahaaWcbeqcbasaaKqzadGaaGinaaaajugibiabgUca Riabe27aULqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaeq iXdqxcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacqaHdpWC juaGdaqhaaqcbasaaKqzadGaamyAaaqcbasaaKqzadGaaGOmaaaaaO GaayjkaiaawMcaaaaajuaGdaWadaqcLbsaeaqabOqaaKqbaoaabmaa keaajugibiaadsgajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaju gibiqadIeagaqbaiabgUcaRiabe27aULqbaoaaCaaaleqajeaibaqc LbmacaaIYaaaaKqzGeGaeqiXdqxcfa4aaWbaaSqabKqaGeaajugWai aaikdaaaqcLbsacqaHdpWCjuaGdaqhaaqcbasaaKqzadGaamyAaaqc basaaKqzadGaaGOmaaaaaOGaayjkaiaawMcaaKqzGeGaamysaKqbao aaBaaajeaibaqcLbmacaaIYaaaleqaaKqzGeGaey4kaSIaeqyVd4Ma eqiXdqNaeq4Wdmxcfa4aaSbaaKqaGeaajugWaiaadMgaaSqabaqcLb sacaWGKbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcfa4aa0aa aOqaaKqzGeGaamyraiabgUcaRiaadIgacqGHiiIZaaGaaGjbVlaadc hajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugibiabeo8aZLqb aoaaBaaajeaibaqcLbmacaWGPbaaleqaaKqzGeGaamysaKqbaoaaBa aajeaibaqcLbmacaaIZaaaleqaaaGcbaqcLbsacqGHsislcaaMe8Ua eqyVd4MaeqiXdqNaeq4Wdm3cdaqhaaqcbasaaKqzadGaamyAaaqcba saaKqzadGaaGOmaaaajugibiqadIeagaqbaiaadsgalmaaCaaajeai beqaaKqzadGaaGOmaaaajuaGdaqdaaGcbaqcLbsacaWGfbGaey4kaS IaamiAaiabgIGiodaacaaMe8UaamiCaSWaaSbaaKqaGeaajugWaiaa igdaaKqaGeqaaKqzGeGaamysaKqbaoaaBaaajeaibaqcLbmacaaIZa aaleqaaaaakiaawUfacaGLDbaaaeaajugibiaaysW7caaMe8UaaGjb VlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8 UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7 caaMe8UaaGjbVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG jbVlaaysW7cqGHRaWkjuaGdaWcaaGcbaqcLbsacqaH8oqBjuaGdaWg aaqcbasaaKqzadGaamyzaaWcbeaajugibiabeE7aOjabew7aLbGcba qcLbsacaaI0aGaeqiWdaNaeqyWdixcfa4aaSbaaKqaGeaajugWaiaa icdaaSqabaqcLbsacqaH9oGBaaGaamysaKqbaoaaBaaajeaibaqcLb macaaI0aaaleqaaKqzGeGaeyypa0JaaGimaaaaaa@48A5@ (40)

and

i σ i [ { 1 ( 1 + f 1 + p 1 2 τ 2 σ i 2 ) F P l } I 1 + g α κ a 2 υ β ( H 2 d 4 + υ 2 τ 2 σ i 2 ) { d 2 υ τ h I 2 + p 1 E + h ¯ ( H d 4 + υ 2 τ 2 σ i 2 ) I 3 } μ e η p 2 4 π ρ 0 υ I 5 ] = 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadMgacqaHdpWCjuaGdaWgaaqcbasaaKqzadGaamyAaaWcbeaajuaG daWabaGcbaqcfa4aaiWaaOqaaKqbaoaalaaakeaajugibiaaigdaaO qaaKqzGeGaeyicI4maaKqbaoaabmaakeaajugibiaaigdacqGHRaWk juaGdaWcaaGcbaqcLbsacaWGMbaakeaajugibiaaigdacqGHRaWkca WGWbWcdaqhaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaa jugibiabes8a0LqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGe Gaeq4Wdmxcfa4aa0baaKqaGeaajugWaiaadMgaaKqaGeaajugWaiaa ikdaaaaaaaGccaGLOaGaayzkaaqcLbsacqGHsisljuaGdaWcaaGcba qcLbsacaWGgbaakeaajugibiaadcfajuaGdaWgaaqcbasaaKqzadGa eS4eHWgaleqaaaaaaOGaay5Eaiaaw2haaKqzGeGaamysaKqbaoaaBa aajeaibaqcLbmacaaIXaaaleqaaKqzGeGaey4kaSscfa4aaSaaaOqa aKqzGeGaam4zaiabeg7aHjabeQ7aRjaadggajuaGdaahaaWcbeqcba saaKqzadGaaGOmaaaaaOqaaKqzGeGaeqyXduNaeqOSdiwcfa4aaeWa aOqaaKqzGeGabmisayaafaqcfa4aaWbaaSqabKqaGeaajugWaiaaik daaaqcLbsacaWGKbqcfa4aaWbaaSqabKqaGeaajugWaiaaisdaaaqc LbsacqGHRaWkcqaHfpqDjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaa aajugibiabes8a0LqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqz GeGaeq4Wdm3cdaqhaaqcbasaaKqzadGaamyAaaqcbasaaKqzadGaaG OmaaaaaOGaayjkaiaawMcaaaaajuaGdaGabaGcbaqcLbsacaWGKbqc fa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacqaHfpqDcqaHep aDcaaMe8UaamiAaiaadMeajuaGdaWgaaqcbasaaKqzadGaaGOmaaWc beaajuaGdaahaaWcbeqaaKqbaoaaCaaameqabaqcfa4aaWbaaWqabe aajuaGdaahaaadbeqaaaaaaaaaaaaaaOGaay5EaaaacaGLBbaaaeaa juaGdaWacaGcbaqcfa4aaiGaaOqaaKqzGeGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 cqGHRaWkcaWGWbqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcfa 4aa0aaaOqaaKqzGeGaamyraiabgUcaRiaadIgacqGHiiIZaaqcfa4a aeWaaOqaaKqzGeGabmisayaafaGaamizaKqbaoaaCaaaleqajeaiba qcLbmacaaI0aaaaKqzGeGaey4kaSIaeqyXduxcfa4aaWbaaSqabKqa GeaajugWaiaaikdaaaqcLbsacqaHepaDjuaGdaahaaWcbeqcbasaaK qzadGaaGOmaaaajugibiabeo8aZLqbaoaaDaaajeaibaqcLbmacaWG PbaajeaibaqcLbmacaaIYaaaaaGccaGLOaGaayzkaaqcfa4aaWbaaS qabeaajuaGdaahaaadbeqaaaaaaaqcLbsacaWGjbqcfa4aaSbaaKqa GeaajugWaiaaiodaaSqabaaakiaaw2haaKqzGeGaeyOeI0scfa4aaS aaaOqaaKqzGeGaeqiVd0wcfa4aaSbaaKqaGeaajugWaiaadwgaaSqa baqcLbsacqaH3oaAcqGHiiIZcaWGWbqcfa4aaSbaaKqaGeaajugWai aaikdaaSqabaaakeaajugibiaaisdacqaHapaCcqaHbpGCjuaGdaWg aaqcbasaaKqzadGaaGimaaWcbeaajugibiabew8a1baacaWGjbqcfa 4aaSbaaKqaGeaajugWaiaaiwdaaSqabaaakiaaw2faaKqzGeGaeyyp a0JaaGimaiaac6caaaaa@07C1@ (41)

Equations (40) and (41) must be satisfied when σ r = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCjuaGdaWgaaqcbasaaKqzadGaamOCaaWcbeaajugibiabg2da9iaa icdaaaa@3DA0@ . Further since σ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCjuaGdaWgaaqcbasaaKqzadGaamyAaaWcbeaaaaa@3B48@ is also zero as a necessary condition of the theorem, equation (41) is identically satisfied while equation (40) reduces to

1 P l I 1 g α κ a 2 ν β H d 2 I 2 + μ e ε η 4 π ρ 0 ν I 4 = 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaaGymaaGcbaqcLbsacaWGqbqcfa4aaSbaaKqaGeaajugW aiaadYgaaSqabaaaaKqzGeGaamysaKqbaoaaBaaajeaibaqcLbmaca aIXaaaleqaaKqzGeGaeyOeI0scfa4aaSaaaOqaaKqzGeGaam4zaiab eg7aHjabeQ7aRjaadggajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaa aaaOqaaKqzGeGaeqyVd4MaeqOSdiMabmisayaafaGaamizaKqbaoaa CaaaleqajeaibaqcLbmacaaIYaaaaaaajugibiaadMeajuaGdaWgaa qcbasaaKqzadGaaGOmaaWcbeaajugibiabgUcaRKqbaoaalaaakeaa jugibiabeY7aTLqbaoaaBaaajeaibaqcLbmacaWGLbaaleqaaKqzGe GaeqyTduMaeq4TdGgakeaajugibiaaisdacqaHapaCcqaHbpGCjuaG daWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiabe27aUbaacaWGjb qcfa4aaSbaaKqaGeaajugWaiaaisdaaSqabaqcLbsacqGH9aqpcaaI WaGaaiOlaaaa@7398@ (42)

Now making use of inequality (38) and the inequality

0 1 ( | D W | 2 + a 2 | W | 2 ) d z a 2 0 1 | W | 2 d z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8qCaO qaaKqbaoaabmaakeaajuaGdaabdaGcbaqcLbsacaWGebGaam4vaaGc caGLhWUaayjcSdqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLb sacqGHRaWkcaWGHbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqc fa4aaqWaaOqaaKqzGeGaam4vaaGccaGLhWUaayjcSdqcfa4aaWbaaS qabKqaGeaajugWaiaaikdaaaaakiaawIcacaGLPaaajugibiaadsga caWG6bGaeyyzImRaamyyaKqbaoaaCaaaleqajeaibaqcLbmacaaIYa aaaKqbaoaapehakeaajuaGdaabdaGcbaqcLbsacaWGxbaakiaawEa7 caGLiWoajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaads gacaWG6baajeaibaqcLbmacaaIWaaajeaibaqcLbmacaaIXaaajugi biabgUIiYdaajeaibaqcLbmacaaIWaaajeaibaqcLbmacaaIXaaaju gibiabgUIiYdaaaa@6FAD@ , (which is always valid),

we derive from the equation (42)

{ 1 P l I 1 + g a 2 α κ ν β H d 2 I 2 + μ e ε η 4 π ρ 0 ν I 4 } > { a 2 P l [ 1 H P l R π 2 ] 0 1 | W | 2 d z + μ e ε η 4 π ρ 0 ν I 4 } , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda GadaGcbaqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWGqbqc fa4aaSbaaKqaGeaajugWaiaadYgaaSqabaaaaKqzGeGaamysaKqbao aaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaey4kaSscfa4aaSaa aOqaaKqzGeGaam4zaiaadggajuaGdaahaaWcbeqcbasaaKqzadGaaG Omaaaajugibiabeg7aHjabeQ7aRbGcbaqcLbsacqaH9oGBcqaHYoGy ceWGibGbauaacaWGKbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaa aaaKqzGeGaamysaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqz GeGaey4kaSscfa4aaSaaaOqaaKqzGeGaeqiVd0wcfa4aaSbaaKqaGe aajugWaiaadwgaaSqabaqcLbsacqaH1oqzcqaH3oaAaOqaaKqzGeGa aGinaiabec8aWjabeg8aYLqbaoaaBaaajeaibaqcLbmacaaIWaaale qaaKqzGeGaeqyVd4gaaiaadMeajuaGdaWgaaqcbasaaKqzadGaaGin aaWcbeaaaOGaay5Eaiaaw2haaKqzGeGaeyOpa4dakeaajuaGdaGada Gcbaqcfa4aaSaaaOqaaKqzGeGaamyyaKqbaoaaCaaaleqajeaibaqc LbmacaaIYaaaaaGcbaqcLbsacaWGqbqcfa4aaSbaaKqaGeaajugWai aadYgaaSqabaaaaKqbaoaadmaakeaajugibiaaigdacqGHsisljuaG daWcaaGcbaqcLbsaceWGibGbauaacaWGqbqcfa4aaSbaaKazba4=ba qcLbkacaWGSbaaleqaaKqzGeGaamOuaaGcbaqcLbsacqaHapaCjuaG daahaaWcbeqcbasaaKqzadGaaGOmaaaaaaaakiaawUfacaGLDbaaju aGdaWdXbGcbaqcfa4aaqWaaOqaaKqzGeGaam4vaaGccaGLhWUaayjc Sdqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacaWGKbGaam OEaiabgUcaRKqbaoaalaaakeaajugibiabeY7aTLqbaoaaBaaajeai baqcLbmacaWGLbaaleqaaKqzGeGaeqyTduMaeq4TdGgakeaajugibi aaisdacqaHapaCcqaHbpGCjuaGdaWgaaqcbasaaKqzadGaaGimaaWc beaajugibiabe27aUbaacaWGjbqcfa4aaSbaaSqaaKqzGeGaaGinaa WcbeaaaKqaGeaajugWaiaaicdaaKqaGeaajugWaiaaigdaaKqzGeGa ey4kIipaaOGaay5Eaiaaw2haaKqzGeGaaGjbVlaaysW7caGGSaaaaa a@C286@ (43)

where R = g α β d 4 ν κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaam4zaiabeg7aHjabek7aIjaa dsgajuaGdaahaaWcbeqcbasaaKqzadGaaGinaaaaaOqaaKqzGeGaeq yVd4MaeqOUdSgaaaaa@4582@ is the thermal Rayleigh number.

Now if H P l R π 2 < 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGabmisayaafaGaamiuaKqbaoaaBaaajeaibaqcLbmacaWG SbaaleqaaKqzGeGaamOuaaGcbaqcLbsacqaHapaCjuaGdaahaaWcbe qcbasaaKqzadGaaGOmaaaaaaqcLbsacqGH8aapcaaIXaaaaa@44B7@ , then the right hand side of inequality (43) is a positive definite which in turn implies that the left hand side of the inequality (43) must also be positive definite and therefore (42) cannot be satisfied. Thus a sufficiency condition for the invalidity of zero being an Eigen-value for σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCaaa@3848@ is that H P l R π 2 < 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGabmisayaafaGaamiuaKqbaoaaBaaajeaibaqcLbmacaWG SbaaleqaaKqzGeGaamOuaaGcbaqcLbsacqaHapaCjuaGdaahaaWcbe qcbasaaKqzadGaaGOmaaaaaaqcLbsacqGH8aapcaaIXaaaaa@44B7@ .

It is clear from above that when regions outside the fluid are perfectly conducting

a { ( | K | 2 ) 1 + ( | K | 2 ) 0 } = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGHb qcfa4aaiWaaOqaaKqbaoaabmaakeaajuaGdaabdaGcbaqcLbsacaWG lbaakiaawEa7caGLiWoajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaa aaaOGaayjkaiaawMcaaKqbaoaaBaaajeaibaqcLbmacaaIXaaaleqa aKqzGeGaey4kaSscfa4aaeWaaOqaaKqbaoaaemaakeaajugibiaadU eaaOGaay5bSlaawIa7aKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaa aaGccaGLOaGaayzkaaqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqaba aakiaawUhacaGL9baajugibiabg2da9iaaicdacaGGSaaaaa@5881@ (44)

and hence the above analysis holds good for this case.

Presented otherwise from the point of view of theoretical hydrodynamics, we have the following theorem:

Theorem: A sufficiency condition for the invalidity of principle of exchange of stabilities in a thermal convection configuration of Walters B' viscoelastic fluid in porous medium in the presence of suspended particles and magnetic field is that the thermal Rayleigh number R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb aaaa@375C@ , the medium permeability P l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb qcfa4aaSbaaKqaGeaajugWaiaadYgaaSqabaaaaa@3A5D@ and suspended particles parameter H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGib Gbauaaaaa@375E@ are restricted by the inequality H P l R π 2 < 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGabmisayaafaGaamiuaKqbaoaaBaaajeaibaqcLbmacaWG SbaaleqaaKqzGeGaamOuaaGcbaqcLbsacqaHapaCjuaGdaahaaWcbe qcbasaaKqzadGaaGOmaaaaaaqcLbsacqGH8aapcaaIXaaaaa@44B7@ ,

or in the context of over stability, we can state the above theorem as:

Theorem: A sufficiency condition for the existence of overstability in a thermal convection configuration of Walters B' viscoelastic fluid in porous medium in the presence of suspended particles is that the thermal Rayleigh number R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb aaaa@375C@ , medium permeability P l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb qcfa4aaSbaaKqaGeaajugWaiaadYgaaSqabaaaaa@3A5D@ and suspended particles parameter H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGib Gbauaaaaa@375E@ are restricted by the inequality H P l R π 2 < 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGabmisayaafaGaamiuaKqbaoaaBaaajeaibaqcLbmacaWG SbaaleqaaKqzGeGaamOuaaGcbaqcLbsacqaHapaCjuaGdaahaaWcbe qcbasaaKqzadGaaGOmaaaaaaqcLbsacqGH8aapcaaIXaaaaa@44B7@ .

Stability of the system and oscillatory modes

Equation (41) yields that σ i = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCjuaGdaWgaaqcbasaaKqzadGaamyAaaWcbeaajugibiabg2da9iaa icdaaaa@3D97@ or σ i 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCjuaGdaWgaaqcbasaaKqzadGaamyAaaWcbeaajugibiabgcMi5kaa icdaaaa@3E58@ , which means that modes may be non-oscillatory or oscillatory. In the absence of magnetic field and viscoelasticity, equation (41) reduces to

i σ i [ { 1 ( 1 + f 1 + p 1 2 τ 2 σ i 2 ) } I 1 + g α κ a 2 υ β ( H 2 d 4 + υ 2 τ 2 σ i 2 ) { d 2 υ τ h I 2 + + p 1 E + h ¯ ( H d 4 + υ 2 τ 2 σ i 2 ) I 3 } ] = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadMgacqaHdpWCjuaGdaWgaaqcbasaaKqzadGaamyAaaWcbeaajuaG daWabaGcbaqcfa4aaiWaaOqaaKqbaoaalaaakeaajugibiaaigdaaO qaaKqzGeGaeyicI4maaKqbaoaabmaakeaajugibiaaigdacqGHRaWk juaGdaWcaaGcbaqcLbsacaWGMbaakeaajugibiaaigdacqGHRaWkca WGWbWcdaqhaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaa jugibiabes8a0TWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeq 4Wdm3cdaqhaaqcbasaaKqzadGaamyAaaqcbasaaKqzadGaaGOmaaaa aaaakiaawIcacaGLPaaaaiaawUhacaGL9baajugibiaadMealmaaBa aajeaibaqcLbmacaaIXaaajeaibeaajugibiabgUcaRKqbaoaalaaa keaajugibiaadEgacqaHXoqycqaH6oWAcaWGHbWcdaahaaqcbasabe aajugWaiaaikdaaaaakeaajugibiabew8a1jabek7aILqbaoaabmaa keaajugibiqadIeagaqbaKqbaoaaCaaaleqajeaibaqcLbmacaaIYa aaaKqzGeGaamizaSWaaWbaaKqaGeqabaqcLbmacaaI0aaaaKqzGeGa ey4kaSIaeqyXduxcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLb sacqaHepaDlmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabeo8a ZTWaa0baaKqaGeaajugWaiaadMgaaKqaGeaajugWaiaaikdaaaaaki aawIcacaGLPaaaaaqcfa4aaiqaaOqaaKqzGeGaamizaSWaaWbaaKqa GeqabaqcLbmacaaIYaaaaKqzGeGaeqyXduNaeqiXdqNaaGjbVlaadI gacaWGjbWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsacqGH RaWkjuaGdaahaaWcbeqaaKqbaoaaCaaameqabaqcfa4aaWbaaWqabe aajuaGdaahaaadbeqaaaaaaaaaaaaaaOGaay5EaaaacaGLBbaaaeaa jugibiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ecfa4a amGaaOqaaKqbaoaaciaakeaajugibiabgUcaRiaadchalmaaBaaaje aibaqcLbmacaaIXaaajeaibeaajuaGdaqdaaGcbaqcLbsacaWGfbGa ey4kaSIaamiAaiabgIGiodaajuaGdaqadaGcbaqcLbsaceWGibGbau aacaWGKbWcdaahaaqcbasabeaajugWaiaaisdaaaqcLbsacqGHRaWk cqaHfpqDlmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabes8a0T WaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeq4Wdm3cdaqhaaqc basaaKqzadGaamyAaaqcbasaaKqzadGaaGOmaaaaaOGaayjkaiaawM caaKqbaoaaCaaaleqabaqcfa4aaWbaaWqabeaaaaaaaKqzGeGaamys aSWaaSbaaKqaGeaajugWaiaaiodaaKqaGeqaaaGccaGL9baaaiaaw2 faaKqzGeGaeyypa0JaaGimaiaaykW7aaaa@1661@ (45)

and the quantity inside the brackets is positive definite. Thus σ i = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCjuaGdaWgaaqcbasaaKqzadGaamyAaaWcbeaajugibiabg2da9iaa icdaaaa@3D97@ , which means that oscillatory modes are not allowed and the principle of exchange of stabilities is valid. The magnetic field and viscoelasticity introduce oscillatory modes (as σ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCjuaGdaWgaaqcbasaaKqzadGaamyAaaWcbeaaaaa@3B48@ may not be zero) in the system which was non-existent in their absence.

Conclusion

A layer of Newtonian fluid heated from below, under varying assumptions of hydrodynamics and hydromagnetics, has been studied by Chandrasekhar.1 With the growing importance of non-Newtonian fluids in chemical engineering, modern technology and industry, the investigations on such fluids are desirable. The Walters B' fluid is one such important non-Newtonian (viscoelastic) fluid. Keeping in mind the importance of non-Newtonian fluids, the present paper considered the effect of suspended particles on the Walters B' viscoelastic fluid heated from below in porous medium in the presence of a uniform horizontal magnetic field.

The main conclusions from the analysis of this paper are as follows:

  1. For the case of stationary convection the following observations are made:
    1. The viscoelastic parameter F vanishes with σ and Walters B′ viscoelastic fluid behaves like an ordinary Newtonian fluid.
    2. The magnetic field is found to postpone the onset of convection whereas the medium permeability and suspended particles hasten the onset of convection.
  2. It is also observed from Figures 1-3 that the magnetic field postpones the onset of convection while medium permeability and suspended particles hasten the onset of convection.
  3. A necessary condition for the validity of the principle of exchange of stabilities in thermal convection configuration of Walters B' viscoelastic fluid in porous medium in the presence of magnetic field and suspended particles is that
  4. 0 1 ( | D Θ | 2 + a 2 | Θ | 2 ) d z ( β d 2 H π κ ) 2 0 1 | W | 2 d z . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8qCaO qaaKqbaoaabmaakeaajuaGdaabdaGcbaqcLbsacaWGebGaeuiMdefa kiaawEa7caGLiWoajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaju gibiabgUcaRiaadggajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaa juaGdaabdaGcbaqcLbsacqqHyoquaOGaay5bSlaawIa7aKqbaoaaCa aaleqajeaibaqcLbmacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacaWG KbGaamOEaiabgsMiJMqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacq aHYoGycaWGKbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsa ceWGibGbauaaaOqaaKqzGeGaeqiWdaNaeqOUdSgaaaGccaGLOaGaay zkaaqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcfa4aa8qCaOqa aKqbaoaaemaakeaajugibiaadEfaaOGaay5bSlaawIa7aKqbaoaaCa aaleqajeaibaqcLbmacaaIYaaaaKqzGeGaamizaiaadQhacaaMe8Ua aGjbVlaaysW7caGGUaaajeaibaqcLbmacaaIWaaajeaibaqcLbmaca aIXaaajugibiabgUIiYdaajeaibaqcLbmacaaIWaaajeaibaqcLbma caaIXaaajugibiabgUIiYdaaaa@8370@

  5. The magnetic field and viscoelasticity introduce oscillatory modes in the system which was non-existent in their absence.
  6. A sufficiency condition for the existence of over stability in a thermal convection configuration of Walters B' viscoelastic fluid in porous medium in the presence of suspended particles is that the thermal Rayleigh number R medium permeability P l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb qcfa4aaSbaaKqaGeaajugWaiaadYgaaSqabaaaaa@3A5D@ and suspended particles parameter H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGib Gbauaaaaa@375E@ are restricted by the inequality H P l R π 2 < 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGabmisayaafaGaamiuaKqbaoaaBaaajeaibaqcLbmacaWG SbaaleqaaKqzGeGaamOuaaGcbaqcLbsacqaHapaCjuaGdaahaaWcbe qcbasaaKqzadGaaGOmaaaaaaqcLbsacqGH8aapcaaIXaaaaa@44B7@ .

Acknowledgments

None.

Conflicts of interest

The authors declare that there is no conflicts of interest regarding the publication of this paper.

References

  1. Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. New York: Dover Publications; 1981. 704 p.
  2. Chandra K. Instability of fluids heated from below. Proc Roy Soc London A. 1938;1(164):231‒242.
  3. Scanlon JW Segel LA. Some effects of suspended particles on the onset of Bénard convection. Phys Fluids. 1973;16(10):1573‒1578.
  4. Palaniswamy VA, Purushotham CM. Stability of shear flow of stratified fluids with fine dust. Phys Fluids. 1981;24(7):1224‒1229.
  5. Lapwood ER. Convection of a fluid in a porous medium. Math Proc Camb Phil Soc. 1948;44(4):508‒521.
  6. Wooding RA. Rayleigh instability of a thermal boundary layer in flow through a porous medium. J Fluid Mech. 1960;9(2):183‒192.
  7. Chakraborty G, Sengupta PR. MHD flow of unsteady viscoelastic (Walters liquid B') conducting fluid between two porous concentric circular cylinders. Proc Nat Acad Sci India. 1994;64(1):75‒80.
  8. Sharma RC, Kumar P. On the stability of two superposed Walters elastico-viscous liquid B'. Czechoslovak Journal of Physics. 1997;47(2):197‒204.
  9. Sharma RC, Kumar P. Rayleigh-Taylor instability of two superposed conducting Walters B' elastico-viscous fluids in hydromagnetics. Proc Nat Acad Sci India. 1998;68:151‒161.
  10. Kumar P. Stability of two superposed viscoelastic (Walters B') fluid-particle mixture in porous medium. Z Naturforsch. 1998;54:343‒347.
  11. Bhagwat S, Kuldeep. MHD flow of a viscoelastic (Walters liquid model-B) fluid through porous medium. Int J Stability & Fluid Mechanics. 2010;1(2):193‒198.
  12. Attia HA, Abdeen MAM. Stability of flow through a porous medium of a viscoelastic fluid above a streching plate. Kragujevac J Sci. 2013;35:11‒14.
  13. Sayed El MF, Hussein DF. Magnetogravitational instability of a Walters B' viscoelastic rotating anisotropic heat-conducting fluid in Brinkman porous medium. Heat Transfer. 2014;43(2):93‒112.
Creative Commons Attribution License

©2017 Kumar. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.