Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 6 Issue 4

The odd log-logistic generalized gamma model: properties, applications, classical and bayesian approach

Fábio Prataviera,1 Gauss M Cordeiro,2 Adriano K Suzuki,3 Edwin MM Ortega4

1Departamento de Ciências Exatas, Universidade de São Paulo, Brazil
2Departamento de Estat´ıstica, Universidade Federal de Pernambuco, Brazil
3Departamento de Matemática Aplicada e Estat´ıstica, Universidade de São Paulo, Brazil
4Departamento de Ciências Exatas, Universidade de São Paulo, Brazil

Correspondence: Edwin M. M. Ortega, Departamento de Ciências Exatas, Universidade de São Paulo, Piracicaba, SP, Brazil

Received: September 23, 2017 | Published: October 27, 2017

Citation: Prataviera, F, Cordeiro GM, Suzuki AK, et al. The odd log-logistic generalized gamma model: properties, applications, classical and bayesian approach. Biom Biostat Int J. 2017;6(4):388-405. DOI: 10.15406/bbij.2017.06.00174

Download PDF

Abstract

We propose a new lifetime model called the odd log-logistic generalized gamma distri­bution that can be easily interpreted. Some of its special models are discussed. We obtain general mathematical properties of this distribution including the ordinary moments, and quantile functions. We discuss parameter estimation by the maximum likelihood method and a Bayesian approach, where Gibbs algorithms along with metropolis steps are used to obtain the posterior summaries of interest for survival data with right censoring. Further, for different parameter settings, sample sizes and censoring percentages, we perform various simulations and evaluate the behavior of the estimators. The potentiality of the new distri­bution is proved by means of two real data sets. In fact, the new distribution can produce better fits than some well-known distributions.

Keywords:censored data, exponentiated distribution, generalized gamma distribution, moments, survival analysis

Introducton

The statistics literature is filled with hundreds of continuous univariate distributions. Recent developments focus on new techniques for building meaningful models. More recently, seve­ral methods of introducing one or more parameters to generate new distributions have been proposed. Among these methods, the compounding of some discrete and important lifetime distributions has been in the vanguard of lifetime modeling. So, several families of distributions were investigated by compounding some useful lifetime and truncated discrete distributions. The log-logistic (LL) distribution with a shape parameter λ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq 4UdWMaeyOpa4JaaGimaaaa@3B44@ is a useful model for survival analysis and it is an alternative to the log-normal distribution. Unlike the more commonly used Weibull distribution, the LL distribution has a non-monotonic hazard rate function (hrf), which makes it suitable for modeling cancer survival data. For λ>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq 4UdWMaeyOpa4JaaGymaaaa@3B45@ , the hrf is unimodal and when λ=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq 4UdWMaeyypa0JaaGymaaaa@3B43@ , the hazard decreases monotonically. The fact that its cumulative distribution function (cdf) has a closed-form is particularly useful for analysis of survival data with censoring.

The odd log-logistic (OLL) family of distributions was pioneered by Gleaton and Lynch;1 they called this family the generalized log-logistic (GLL) family. Recently, Braga et al.2 studied the odd log-logistic normal distribution, da Cruz et al.3 proposed the odd log-logistic Weibull distribution and Cordeiro et al.2 proposed the beta odd log-logistic generalized family. We develop a similar methodology to propose a new model based on the generalized gamma (GG) distribution. The GG distribution plays a very important role in sta­tistical inferential problems. When modeling monotone hazard rates, the Weibull distribution may be an initial choice because of its negatively and positively skewed density shapes. However, the Weibull distribution does not provide a reasonable parametric fit for modeling phenomenon with bathtub shaped and unimodal failure rates, which are common in biological and reliability studies. Alternatively, other extensions of the GG distribution were developed for modeling lifetime data. For example, Cordeiro et al.4 defined the exponentiated generalized gamma with applications, Pascoa et al.5 introduced the Kumaraswamy generalized gamma distri­bution, Ortega et al.6 proposed the generalized gamma geometric distribution, Cordeiro et al.7 studied the beta generalized gamma distribution and, more recently, Lucena et al.8 defines the transmuted generalized gamma distribution and Silva et al.9 proposed the generalized gamma power series class.

Given a continuous baseline cdf G( t;ξ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4ramaabmaabaGaamiDaiaacUdaieqacaWF+oaacaGLOaGaayzkaaaa aa@3D27@ with a parameter vector ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbeqcfa Oaa8NVdaaa@391A@ , the cdf of the odd log-logistic-G (“OLL-G” for short) distribution with an extra shape parameter λ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq 4UdWMaeyOpa4JaaGimaaaa@3B44@ is defined by

F( t ) =  0 G( t;ξ ) G ¯ ( t;ξ ) λ x λ1 ( 1+ x λ ) 2 dx= G ( t;ξ ) λ G ( t;ξ ) λ + G ¯ ( t;ξ ) λ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfa Oaa8NramaabmaabaGaamiDaaGaayjkaiaawMcaaabaaaaaaaaapeGa aiiOa8aacqGH9aqpjug4b8qacaGGGcqcLbOacqGHRiI8kmaaBaaale aacaaIWaaabeaakmaaCaaaleqabaWdamaalaaabaWdbiaadEeadaqa daqaaiaadshacaGG7aacceWdaiab+57a4bWdbiaawIcacaGLPaaaa8 aabaWdbiqadEeagaqeamaabmaabaGaamiDaiaacUdapaGae4NVdGha peGaayjkaiaawMcaaaaaaaGcdaWcaaqaaKqbakabeU7aSjaadIhakm aaCaaaleqabaGaeq4UdWMaeyOeI0IaaGymaaaaaOqaamaabmaabaqc faOaaGymaiabgUcaRiaadIhakmaaCaaaleqabaGaeq4UdWgaaaGcca GLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaajuaGcaWGKbGaamiE aiabg2da9maalaaabaGaam4ramaabmaabaGaamiDaiaacUdapaGae4 NVdGhapeGaayjkaiaawMcaaKGbaoaaCaaajuaGbeqaaKqzadGaeq4U dWgaaaqcfayaaiaadEeadaqadaqaaiaadshacaGG7aWdaiab+57a4b WdbiaawIcacaGLPaaadaahaaqabeaajugWaiabeU7aSbaajuaGcqGH RaWkceWGhbGbaebadaqadaqaaiaadshacaGG7aWdaiab+57a4bWdbi aawIcacaGLPaaadaahaaqabeaajugWaiabeU7aSbaaaaqcfaOaaiOl aaaa@816C@ (1)

We can write

λ= log[ F( t ) F ¯ ( t ) ] log[ G( t ) G ¯ ( t ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaH7oaBcqGH9aqpdaWcaaqaaiGacYgacaGGVbGaai4z amaadmaabaWaaSaaaeaaieGapaGaa8NramaabmaabaGaamiDaaGaay jkaiaawMcaaaWdbeaapaGab8NrayaaraWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaaWdbiaawUfacaGLDbaaaeaaciGGSbGaai4BaiaacE gadaWadaqaamaalaaabaWdaiaa=DeadaqadaqaaiaadshaaiaawIca caGLPaaaa8qabaGabm4rayaaraWdamaabmaabaGaamiDaaGaayjkai aawMcaaaaaa8qacaGLBbGaayzxaaaaaaaa@523D@ and G ¯ ( t;ξ ) = 1G( t;ξ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qaceWGhbGbaebadaqadaqaaiaadshacaGG7aaccaWdaiab =57a4bWdbiaawIcacaGLPaaacaGGGcGaeyypa0JaaiiOaiaaigdacq GHsislcaWGhbWaaeWaaeaacaWG0bGaai4oa8aacqWF+oaEa8qacaGL OaGaayzkaaaaaa@48DA@

So, the parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaH7oaBaaa@39A2@ represents the quotient of the log odds ratio for the generated and baseline distributions. We note that there is no complicated function in equation (1) in contrast with the beta generalized family (Eugene et al.,10), which includes two extra parameters and also involves the beta incomplete function. The baseline cdf G(t;ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieGaju gibiaa=DeacaqGOaGaa8hDaiaabUdaiiqacqGF+oaEcaqGPaaaaa@3FF0@ is clearly a special case of (1) when G(t;ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieGaju gibiaa=DeacaqGOaGaa8hDaiaabUdaiiqacqGF+oaEcaqGPaaaaa@3FF0@ . If G(t;ξ) = t/(1+t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieGaju gibiaa=DeacaqGOaGaa8hDaiaabUdaiiqacqGF+oaEcaqGPaGaaeii aiaab2dacaqGGaGaa8hDaiaab+cacaqGOaGaaeymaiaabUcacaWF0b Gaaeykaaaa@474B@ , it becomes the LL distribution. Several distributions can be generated from equation (1). For example, the odd log-logistic Fréchet and odd log-logistic gamma distributions are obtained by taking G(t;ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieGaju gibiaa=DeacaqGOaGaa8hDaiaabUdaiiqacqGF+oaEcaqGPaaaaa@3FF0@ to be the Fréchet and gamma cumulative distributions, respectively. The probability density function (pdf) of the new family is given by

f(t) = λg( t;ξ ) { G( t;ξ )[ 1G( t;ξ ) ] } λ-1 { G ( t;ξ ) λ +[ 1+G ( t;ξ ) λ ] } 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeGabaaHdG qacKqzGeGaa8NzaiaabIcacaWF0bGaaeykaiaabccacaqG9aqddaWc aaGcbaqcLbsacqaH7oaBcaWGNbqddaqadaGcbaqcLbsacaWG0bGaai 4oaGGabiab+57a4bGccaGLOaGaayzkaaqddaGadaGcbaqcLbsacaWG hbqddaqadaGcbaqcLbsacaWG0bGaai4oaiab+57a4bGccaGLOaGaay zkaaqddaWadaGcbaqcLbsacaaIXaGaeyOeI0Iaam4ra0WaaeWaaOqa aKqzGeGaamiDaiaacUdacqGF+oaEaOGaayjkaiaawMcaaaGaay5wai aaw2faaaGaay5Eaiaaw2haa0WaaWbaaSqabKqaGfaajugWaiabeU7a SHqaaiaa91cacaqFXaaaaaGcbaqddaGadaGcbaqcLbsacaWGhbqdda qadaGcbaqcLbsacaWG0bGaai4oaiab+57a4bGccaGLOaGaayzkaaqd daahaaWcbeqcbauaaKqzadGaeq4UdWgaaKqzGeGaey4kaSsddaWada GcbaqcLbsacaaIXaGaey4kaSIaam4ra0WaaeWaaOqaaKqzGeGaamiD aiaacUdacqGF+oaEaOGaayjkaiaawMcaa0WaaWbaaSqabKqaafaaju gWaiabeU7aSbaaaOGaay5waiaaw2faaaGaay5Eaiaaw2haa0WaaWba aSqabKqaafaajugWaiaaikdaaaaaaaaa@803A@ (2)

The OLL-G family of densities (2) allows for greater flexibility of its tails and can be widely applied in many areas of engineering and biology. We can study some of its mathematical properties because it extends several well-known distributions.

The inferential part of this model is carried out using the asymptotic distribution of the maximum likelihood estimators (MLEs), which in situations when the sample size is small or moderate, might lead to poor inference on the model parameters. Hence, in this paper, we also explore the Markov Chain Monte Carlo (MCMC) techniques to develop a Bayesian inference as an alternative analysis for the model. So, we discuss the inference aspects of the OLL-G model following both a classical and a Bayesian approach.

The rest of the paper is organized as follows. In Section 2, we define the odd log-logistic generalized gamma (OLLGG) distribution and present some special cases. Section 3 provides a useful linear representation for the OLLGG density function. We derive in Section 4 some structural properties of the new distribution. Considering censored data, we adopt a classic analysis for the parameters of the model in Section 5. In Section 6, the Bayesian approach is considered using MCMC with Metropolis-Hasting algorithms steps to obtain the posterior summaries of interest. In Section 7, we present results from various simulation studies displayed graphically and commented. Two applications to real data are performed in Section 8. Some concluding remarks are given in Section 9.

The OLLGG distribution

The gamma distribution is the most popular model for analyzing skewed data. The gene­ralized gamma distribution (GG) was introduced by Stacy11 and includes as special models: the exponential, Weibull, gamma and Rayleigh distributions, among others. It is suitable for modeling data with different forms of the hazard rate function (hrf): increasing, decreasing, bathtub and unimodal. This characteristic is useful for estimating individual hrfs and both relative hazards and relative times. The GG distribution has been used in several research areas such as engineering, hydrology and survival analysis.

The cdf and pdf of the GG(α,τ,k) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeGabaaHdK qzGeGaae4raiaabEeacaqGOaGaeqySdeMaaiilaiabes8a0jaacYca ieGacaWFRbGaa8xkaaaa@4379@ distribution (Stacy,10) are given by

G(t;α,τ,k)= γ 1 ( k, ( t α ) τ )= γ( k, ( t/α ) τ ) Γ( k ) ,t>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeGabaaHdK qzGeGaae4raiaabIcaieGacaWF0bGaae4oaiabeg7aHjaacYcacqaH epaDcaGGSaGaa83AaGqaaiaa+LcacaGF9aGaeq4SdCwddaWgaaqcea saaKqzadGaa4xmaaGdbeaanmaabmaabaqcLbsacaWFRbGaa8hla0Wa aeWaaeaadaWcaaqaaKqzGeGaamiDaaqdbaqcLbsacqaHXoqyaaaani aawIcacaGLPaaadaahaaGdbeqceasaaKqzadGaeqiXdqhaaaqdcaGL OaGaayzkaaqcLbsacqGH9aqpnmaalaaabaqcLbsacaGFZoqddaqada qaaKqzGeGaam4AaiaacYcanmaabmaabaqcLbsacaWG0bGaai4laiab eg7aHbqdcaGLOaGaayzkaaWaaWbaa4qabKabGeaajugWaiabes8a0b aaa0GaayjkaiaawMcaaaqaaGGabKqzGeGae03KdCuddaqadaqaaKqz GeGaam4AaaqdcaGLOaGaayzkaaaaaKqzGeGaaiilaiaadshacqGH+a GpcaaIWaaaaa@6ED3@    (3)

g(t;α,τ,k)= τ αΓ( k ) ( t α ) τk1 exp[ ( t α ) τ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeGabaaHdG qacKqzGeGaa83zaiaabIcacaWF0bGaae4oaiabeg7aHjaacYcacqaH epaDcaGGSaGaa83AaGqaaiaa+LcacaGF9aqddaWcaaqcgayaaiabes 8a0bqdbaqcLbsacqaHXoqycqqHtoWrnmaabmaabaqcLbsacaWGRbaa niaawIcacaGLPaaaaaWaaeWaaeaadaWcaaqaaKqzGeGaamiDaaqdba qcLbsacqaHXoqyaaaaniaawIcacaGLPaaadaahaaGdbeqcKray=hGa baGbaKqzadGaeqiXdqNaam4AaiabgkHiTiaaigdaaaqcLbsaciGGLb GaaiiEaiaacchanmaadmaabaqcLbsacqGHsislnmaabmaabaWaaSaa aeaajugibiaadshaa0qaaKqzGeGaeqySdegaaaqdcaGLOaGaayzkaa WaaWbaa4qabKabGeaajugWaiabes8a0baaa0Gaay5waiaaw2faaaaa @6B30@ (4)

where α>0,T>0,k>0,γ( k,x )= 0 x w k1 e -w dw MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeGabaaHdK qzGeGaeqySdeMaeyOpa4JaaGimaiaacYcacaWGubGaeyOpa4JaaGim aiaacYcacaWGRbGaeyOpa4JaaGimaiaacYcaieaacaWFZoqddaqada GcbaqcLbsacaWGRbGaaiilaiaadIhaaOGaayjkaiaawMcaaKqzGeGa eyypa0tddaWdXaqaaerbn9MBVrxEWvgid9MCZLMDHbacfiaeaaaaaa aaa8qacaGF3bWdamaaCaaaoeqajqgbG9FaaKqzadGaam4AaiabgkHi TiaaigdaaaqcLbsacaWGLbqdpeWaaWbaa4qabeaajugWaiaa+1caca GF3baaaKqzGeWdaiaadsgan8qacaGF3baao8aabaqcLbmacaaIWaaa oeaajugWaiaadIhaaKqzGeGaey4kIipaaaa@68BF@  is the incomplete gamma function and Γ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeGabaaHdK qzGeGaeu4KdCuddaqadaGcbaqcLbsacaGGUaaakiaawIcacaGLPaaa aaa@3F28@ is the gamma function. Basic properties of the GG distribution are given by Stacy and Mihram12 and Lawless.13 The OLLGG distribution (for t > 0) is defined by substituting G( t;α,τ,k )and g( t;α,τ,k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeGabaaHdK qzGeGaam4ra0WaaeWaaOqaaKqzGeGaamiDaiaacUdacqaHXoqycaGG SaGaeqiXdqNaaiilaiaadUgaaOGaayjkaiaawMcaaGqaaKqzGeGaa8 xyaiaa=5gacaWFKbGaa8hiaGqaciaa+Dganmaabmaakeaajugibiaa dshacaGG7aGaeqySdeMaaiilaiabes8a0jaacYcacaWGRbaakiaawI cacaGLPaaaaaa@53CC@ in equations (1) and (2), respectively. Hence, its density function with four positive parameters ξ= ( α,τ,k ) T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiqaju gibiab=57a4jabg2da90WaaeWaaOqaaKqzGeGaeqySdeMaaiilaiab es8a0jaacYcacaWGRbaakiaawIcacaGLPaaanmaaCaaaleqajeaqba qcLbmacaWGubaaaaaa@4792@ and λ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeU7aSjabg6da+iaaicdaaaa@3DC1@ has the form

f( t )= λτ ( t/α ) τκ1 exp[ ( t/α ) τ ] { γ 1 ( k, ( t/α ) τ )[ 1 γ 1 ( k, ( t/α ) τ ) ] } λ1 αΓ( κ ) { γ 1 λ ( k, ( t/α ) τ )+ [ 1 γ 1 ( k, ( t/α ) τ ) ] λ } 2 ,t>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadAganmaabmaabaqcLbsacaWG0baaniaawIcacaGLPaaajugibiab g2da90WaaSaaaeaajugibiabeU7aSjabes8a01WaaeWaaeaajugibi aadshacqGHVaWlcqaHXoqya0GaayjkaiaawMcaamaaCaaaoeqajqai baqcLbmacqaHepaDcqaH6oWAcqGHsislcqGHXaqmaaqcLbsaciGGLb GaaiiEaiaacchanmaadmaabaqcLbsacqGHsislnmaabmaabaqcLbsa caWG0bGaey4la8IaeqySdeganiaawIcacaGLPaaadaahaaGdbeqcea saaKqzadGaeqiXdqhaaaqdcaGLBbGaayzxaaWaaiWaaeaaiiaacqWF ZoWzdaWgaaqceasaaKqzadGaeyymaedaoeqaa0WaaeWaaeaajugibi aadUgacqGHSaalnmaabmaabaqcLbsacaWG0bGaey4la8IaeqySdega niaawIcacaGLPaaadaahaaGdbeqceasaaKqzadGaeqiXdqhaaaqdca GLOaGaayzkaaWaamWaaeaajugibiabggdaXiabgkHiT0Gae83SdC2a aSbaaKabGeaajugWaiabggdaXaGdbeaanmaabmaabaqcLbsacaWGRb GaeyilaWsddaqadaqaaKqzGeGaamiDaiabg+caViabeg7aHbqdcaGL OaGaayzkaaWaaWbaa4qabKabGeaajugWaiabes8a0baaa0Gaayjkai aawMcaaaGaay5waiaaw2faaaGaay5Eaiaaw2haamaaCaaaoeqajqai baqcLbmacqaH7oaBcqGHsislcqGHXaqmaaaaneaajugibiabeg7aHj abfo5ah1WaaeWaaeaajugibiabeQ7aRbqdcaGLOaGaayzkaaWaaiWa aeaacqWFZoWzdaqhaaqceasaaKqzadGaeyymaedajqaibaqcLbmacq aH7oaBaaqddaqadaqaaKqzGeGaam4AaiabgYcaS0WaaeWaaeaajugi biaadshacqGHVaWlcqaHXoqya0GaayjkaiaawMcaamaaCaaaoeqajq aibaqcLbmacqaHepaDaaaaniaawIcacaGLPaaajugibiabgUcaR0Wa amWaaeaajugibiabggdaXiabgkHiT0Gae83SdC2aaSbaaKabGeaaju gWaiabggdaXaGdbeaanmaabmaabaqcLbsacaWGRbGaeyilaWsddaqa daqaaKqzGeGaamiDaiabg+caViabeg7aHbqdcaGLOaGaayzkaaWaaW baa4qabKabGeaajugWaiabes8a0baaa0GaayjkaiaawMcaaaGaay5w aiaaw2faamaaCaaaoeqajqaibaqcLbmacqaH7oaBaaaaniaawUhaca GL9baadaahaaGdbeqceasaaKqzadGaeyOmaidaaaaajugibiabgYca SiaadshacqGH+aGpcqGHWaamaaa@CDB8@ (5)

where α is a scale parameter and the other positive parameters τ, k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadUgaaaa@3B3B@ and λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaaju gibiaa=T7aaaa@3B93@ are shape parameters. One major benefit of (5) is its ability of fitting skewed data that can not be properly fitted by existing distributions. The OLLGG density allows for greater flexibility of its tails and can be widely applied in many areas of engineering and biology.

The Weibull and GG distributions are the most important sub-models of (5) for λ=k=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeU7aSHqaaiaa=1dacaWFRbGaa8xpaiaa=fdaaaa@3F22@ and λ=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeU7aSHqaaiaa=1dacaWFXaaaaa@3D78@ , respectively. The OLLGG distribution approaches the log-normal (LN) distribution when λ=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeU7aSHqaaiaa=1dacaWFXaaaaa@3D78@ and k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieGaju gibiaa=TgacqGHsgIRcqGHEisPaaa@3EA0@ . Other sub-models are listed in Table 2: OLL-Gamma, OLL-Chi-Square, OLL-Exponential, OLL-Weibull, OLL-Rayleigh, OLL-Maxwell, OLL-Folded normal, among others.

Distribution

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabes8a0baa@3A1E@

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiaadUgaaaa@3949@

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeq4UdWgaaa@3A0E@

OLL-Gamma

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

1

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiaadUgaaaa@3949@

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeq4UdWgaaa@3A0E@

OLL-Weibull

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabes8a0baa@3A1E@

1

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeq4UdWgaaa@3A0E@

OLL-Exponential

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

1

1

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeq4UdWgaaa@3A0E@

OLL-Chi-square

2

1

n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbmaalaaabaGaamOBaaqaaiaaikdaaaaaaa@3A18@

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeq4UdWgaaa@3A0E@

OLL-Chi

2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda Gcaaqaaiaaikdaaeqaaaaa@3905@

2

n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbmaalaaabaGaamOBaaqaaiaaikdaaaaaaa@3A18@

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeq4UdWgaaa@3A0E@

OLL-Rayleigh

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

2

1

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeq4UdWgaaa@3A0E@

OLL-Maxwell

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

2

3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbmaalaaabaGaaG4maaqaaiaaikdaaaaaaa@39E2@

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeq4UdWgaaa@3A0E@

OLL-Folded normal

2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda Gcaaqaaiaaikdaaeqaaaaa@3905@

2

1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbmaalaaabaGaaGymaaqaaiaaikdaaaaaaa@39E0@

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeq4UdWgaaa@3A0E@

OLL-Circular normal

2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda Gcaaqaaiaaikdaaeqaaaaa@3905@

2

1

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeq4UdWgaaa@3A0E@

OLL-Spherical Normal

2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda Gcaaqaaiaaikdaaeqaaaaa@3905@

2

3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbmaalaaabaGaaG4maaqaaiaaikdaaaaaaa@39E2@

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeq4UdWgaaa@3A0E@

Table 1 Some new OLL-G sub-models

If T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiaadsfaaaa@3932@ is a random variable with density function (5), we write TOLLGG( α,τ,k,λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadsfacqWI8iIoieaacaWFpbGaa8htaiaa=XeacaWFhbGaa83ra0Wa aeWaaeaajugibiabeg7aHjaacYcacqaHepaDcaGGSaGaam4AaiaacY cacqaH7oaBa0GaayjkaiaawMcaaaaa@4A9A@ . The survival and hazard rate functions corresponding to (5) are

S( t )=1F( t )= [ 1 γ 1 ( k, ( t/α ) τ ) ] λ γ 1 λ ( k, ( t/α ) τ )+ [ 1 γ 1 ( k, ( t/α ) τ ) ] λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGtbqcfa4aaeWaaOqaaKqzGeGaamiDaaGccaGLOaGaayzkaaqcLbsa cqGH9aqpcaaIXaGaeyOeI0IaamOraKqbaoaabmaakeaajugibiaads haaOGaayjkaiaawMcaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqbaoaa dmaakeaajugibiaaigdacqGHsisliiaacqWFZoWzjuaGdaWgaaqcKf ay=haajugWaiaaigdaaSqabaqcfa4aaeWaaOqaaKqzGeGaam4Aaiaa cYcajuaGdaqadaGcbaqcLbsacaWG0bGaai4laiabeg7aHbGccaGLOa Gaayzkaaqcfa4aaWbaaSqabKazba2=baqcLbmacqaHepaDaaaakiaa wIcacaGLPaaaaiaawUfacaGLDbaadaahaaWcbeqaaKqzadGaeq4UdW gaaaGcbaqcLbsacqWFZoWzjuaGdaqhaaqcKfay=haajugWaiaaigda aKazba2=baacbaqcLbmaqaaaaaaaaaWdbiaa+T7aaaqcfa4damaabm aakeaajugibiaadUgacaGGSaqcfa4aaeWaaOqaaKqzGeGaamiDaiaa c+cacqaHXoqyaOGaayjkaiaawMcaaKqbaoaaCaaaleqajqwaG9FaaK qzadGaeqiXdqhaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkjuaGdaWa daGcbaqcLbsacaaIXaGaeyOeI0Iae83SdCwcfa4aaSbaaKazba2=ba qcLbmacaaIXaaaleqaaKqbaoaabmaakeaajugibiaadUgacaGGSaqc fa4aaeWaaOqaaKqzGeGaamiDaiaac+cacqaHXoqyaOGaayjkaiaawM caaKqbaoaaCaaaleqajqwaG9FaaKqzadGaeqiXdqhaaaGccaGLOaGa ayzkaaaacaGLBbGaayzxaaWaaWbaaSqabeaajugWaiabeU7aSbaaaa aaaa@9E91@           (6)

h( t )= λτ ( t/α ) τk1 exp[ ( t/α ) τ ] γ 1 λ1 ( k, ( t/α ) τ ){ γ 1 λ ( k, ( t/α ) τ )+ [ 1 γ 1 ( k, ( t/α ) τ ) ] λ } αΓ( k ) { γ 1 λ ( k, ( t/α ) τ )+ [ 1 γ 1 ( k, ( t/α ) τ ) ] λ } 2 [ 1 γ 1 ( k, ( t/α ) τ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGObqcfa4aaeWaaOqaaKqzGeGaamiDaaGccaGLOaGaayzkaaqcLbsa cqGH9aqpjuaGdaWcaaGcbaqcLbsaqaaaaaaaaaWdbiabeU7aSjabes 8a0LqbaoaabmaakeaajugibiaadshacaGGVaGaeqySdegakiaawIca caGLPaaajuaGdaahaaWcbeqcKfay=haajugWa8aacqaHepaDcaWGRb GaeyOeI0IaaGymaaaajugib8qaciGGLbGaaiiEaiaacchajuaGdaWa daGcbaqcLbsacqGHsisljuaGdaqadaGcbaqcLbsacaWG0bGaai4lai abeg7aHbGccaGLOaGaayzkaaqcfa4aaWbaaSqabKazba2=baqcLbma cqaHepaDaaaakiaawUfacaGLDbaaiiaajugibiab=n7aNLqbaoaaDa aajqwaG9FaaKqzadGaaGymaaqcKfay=haajugWaiabeU7aSjabgkHi Tiaaigdaaaqcfa4aaeWaaOqaaKqzGeGaam4AaiaacYcajuaGdaqada GcbaqcLbsacaWG0bGaai4laiabeg7aHbGccaGLOaGaayzkaaqcfa4a aWbaaSqabKazba4=baqcLbmacqaHepaDaaaakiaawIcacaGLPaaaju aGdaGadaGcbaqcLbsacqWFZoWzjuaGdaqhaaqcKfaG=haajugWaiaa igdaaKazba2=baqcLbmacqaH7oaBaaqcfa4aaeWaaOqaaKqzGeGaam 4AaiaacYcajuaGdaqadaGcbaqcLbsacaWG0bGaai4laiabeg7aHbGc caGLOaGaayzkaaqcfa4aaWbaaSqabKazba2=baqcLbmacqaHepaDaa aakiaawIcacaGLPaaajugibiabgUcaRKqbaoaadmaakeaajugibiaa igdacqGHsislcqWFZoWzjuaGdaWgaaqcKfaG=haajugWaiaaigdaaS qabaqcfa4aaeWaaOqaaKqzGeGaam4AaiaacYcajuaGdaqadaGcbaqc LbsacaWG0bGaai4laiabeg7aHbGccaGLOaGaayzkaaqcfa4aaWbaaK qaGeqajqwaG9FaaKqzadGaeqiXdqhaaaGccaGLOaGaayzkaaaacaGL BbGaayzxaaWaaWbaaSqabeaajugWaiabeU7aSbaaaOGaay5Eaiaaw2 haaaWdaeaajugibiabeg7aHjabfo5ahLqbaoaabmaakeaajugibiaa dUgaaOGaayjkaiaawMcaaKqbaoaacmaakeaajugib8qacqWFZoWzju aGpaWaa0baaKazba2=baqcLbmacaaIXaaajqwaG9FaaKqzadWdbiab eU7aSbaajuaGdaqadaGcbaqcLbsacaWGRbGaaiilaKqbaoaabmaake aajugibiaadshacaGGVaGaeqySdegakiaawIcacaGLPaaajuaGdaah aaWcbeqcKfay=haajugWaiabes8a0baaaOGaayjkaiaawMcaaKqzGe Gaey4kaSscfa4aamWaaOqaaKqzGeGaaGymaiabgkHiTiab=n7aNLqb aoaaBaaajqwaG9FaaKqzadGaaGymaaqcbasabaqcfa4aaeWaaOqaaK qzGeGaam4AaiaacYcajuaGdaqadaGcbaqcLbsacaWG0bGaai4laiab eg7aHbGccaGLOaGaayzkaaqcfa4aaWbaaKqaGeqajqwaG9FaaKqzad GaeqiXdqhaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaqcfa4aaWba aSqabKazba2=baqcLbmacqaH7oaBaaaak8aacaGL7bGaayzFaaqcfa 4aaWbaaeqajuaibaqcLbmacaaIYaaaaKqbaoaadmaakeaajugibiaa igdacqGHsislpeGae83SdCwcfa4aaSbaaKazba4=baqcLbmacaaIXa aaleqaaKqbaoaabmaakeaajugibiaadUgacaGGSaqcfa4aaeWaaOqa aKqzGeGaamiDaiaac+cacqaHXoqyaOGaayjkaiaawMcaaKqbaoaaCa aaleqajqwaa+FaaKqzadGaeqiXdqhaaaGccaGLOaGaayzkaaaapaGa ay5waiaaw2faaaaaaaa@23F0@ (7)

respectively. Plots of the OLLGG density function for selected parameter values are given in Figure 1. We note that the OLLGG density function can be symmetrical, left-skewed, right-skewed, unimodal and bimodal shaped.

The hrf (7) is quite flexible for modeling survival data as indicated by the plots for selected parameter values in Figure 2. The hrf can be increasing, decreasing, unimodal, bathtub and have other forms.

Figure 1 Plots of the OLLGG density function for some parameter values. (a) Fixed λ=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLb sacaWF7oGaeyypa0JaaGymaaaa@3B38@ . (b) Fixed α=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aHXoqycqGH9aqpcaaIYaaaaa@3B90@ , τ=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aHepaDcqGH9aqpcaaIZaaaaa@3BB7@  and k=10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGRbGaeyypa0JaaGymaiaaicdaaaa@3B9A@ . (c) Fixed α=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aHXoqycqGH9aqpcaaIYaaaaa@3B90@ , τ=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aHepaDcqGH9aqpcaaI1aaaaa@3BB9@ and λ=0,15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLb sacaWF7oGaeyypa0JaaGimaiaacYcacaaIXaGaaGynaaaa@3D61@ .

Figure 2 The OLLGG hrf. (a) Bathtub. (b) Unimodal. (c) Increasing, decreasing and other forms.

The OLLGG model is easily simulated by inverting (1) as follows:

t= Q GG ( υ 1/λ ( 1υ ) 1/λ + υ 1/λ ,α,τ,k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG0bGaeyypa0JaamyuaKqbaoaaBaaajqwaG9FaaKqzadGaam4raiaa dEeaaSqabaqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiabew8a1L qbaoaaCaaabeqcfasaaKqzadGaaGymaiaac+cacqaH7oaBaaaakeaa juaGdaqadaGcbaqcLbsacaaIXaGaeyOeI0IaeqyXduhakiaawIcaca GLPaaajuaGdaahaaWcbeqcKfay=haajugWaiaaigdacaGGVaGaeq4U dWgaaKqzGeGaey4kaSIaeqyXduxcfa4aaWbaaSqabKqaGeaajuaGda ahaaqccasabeaajugWaiaaigdacaGGVaGaeq4UdWgaaaaaaaqcLbsa caGGSaGaeqySdeMaaiilaiabes8a0jaacYcaieGacaWFRbaakiaawI cacaGLPaaaaaa@67F5@  , (8)

where u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yDaaaa@38C8@ has a uniform U( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGvbqcfa4aaeWaaeaajugibiaaicdacaGGSaGaaGymaaqcfaOaayjk aiaawMcaaaaa@3E62@  distribution and Q GG ( . )= G 1 ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGrbqcfa4aaSbaaKqaGeaajugWaiaadEeacaWGhbaaleqaaKqbaoaa bmaakeaajugibiaac6caaOGaayjkaiaawMcaaKqzGeGaeyypa0Jaam 4raKqbaoaaCaaaleqajeaibaqcLbmacqGHsislcaaIXaaaaKqbaoaa bmaakeaajugibiaac6caaOGaayjkaiaawMcaaaaa@49A3@ is the baseline quantile function (qf).

Some properties of the OLLGG distribution are:

If TOLLGG( α,τ,k,λ )bTOLLGG( bα,τ,k,λ ),b>0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGubGaeyipI4Naam4taiaadYeacaWGmbGaam4raiaadEeajuaGdaqa daGcbaqcLbsacqaHXoqycaGGSaGaeqiXdqNaaiilaiaadUgacaGGSa Gaeq4UdWgakiaawIcacaGLPaaajugibiabgkDiElaadkgacaWGubGa am4taiaadYeacaWGmbGaam4raiaadEeajuaGdaqadaGcbaqcLbsaca WGIbGaeqySdeMaaiilaiabes8a0jaacYcacaWGRbGaaiilaiabeU7a SbGccaGLOaGaayzkaaqcLbsacaGGSaGaeyiaIiIaamOyaiabg6da+i aaicdacaGGUaaaaa@632D@

If TOLLGG( α,τ,k,λ ) T m OLLGG( α m ,τ/m,k,λ ), m0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGubGaeyipI4Naam4taiaadYeacaWGmbGaam4raiaadEeajuaGdaqa daGcbaqcLbsacqaHXoqycaGGSaGaeqiXdqNaaiilaiaadUgacaGGSa Gaeq4UdWgakiaawIcacaGLPaaajugibiabgkDiElaadsfajuaGdaah aaqabKqbGeaajugWaiaad2gaaaqcLbsacaWGpbGaamitaiaadYeaca WGhbGaam4raKqbaoaabmaakeaajugibiabeg7aHLqbaoaaCaaabeqc fasaaKqzadGaamyBaaaajugibiaacYcacqaHepaDcaGGVaGaamyBai aacYcacaWGRbGaaiilaiabeU7aSbGccaGLOaGaayzkaaqcLbsacaGG SaGaeyiaIiIcqaaaaaaaaaWdbiaacckajugib8aacaWGTbGaeyiyIK RaaGimaiaac6caaaa@6CD4@  

So, the new distribution is closed under power transformation.

Linear representation for the OLLGG distribution

First, we define the exponentiated-generalized gamma (“Exp-GG”) distribution, say W~Ex p c ( GG ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGxbGaaiOFaiaadweacaWG4bGaamiCaSWaaWbaaKqaGeqabaqcLbma caWGJbaaaKqbaoaabmaakeaajugibiaadEeacaWGhbaakiaawIcaca GLPaaaaaa@4388@ with power parameter c>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGJbGaeyOpa4JaaGimaaaa@3AD9@ , if W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGxbaaaa@390B@ has cdf and pdf given by

H c ( t )=G ( t;α,τ,k ) c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGibqcfa4aaSbaaKqaGeaajugWaiaadogaaSqabaqcfa4aaeWaaOqa aKqzGeGaamiDaaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaWGhbqcfa 4aaeWaaOqaaKqzGeGaamiDaiaacUdacqaHXoqycaGGSaGaeqiXdqNa aiilaiaadUgaaOGaayjkaiaawMcaaSWaaWbaaKqaGeqabaqcLbmaca WGJbaaaaaa@4E9D@ and  h c ( t )= cτ αΓ( k ) ( t α ) τk1 G ( x;α,τ,k ) c1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGObqcfa4aaSbaaKqaGeaajugWaiaadogaaSqabaqcfa4aaeWaaOqa aKqzGeGaamiDaaGccaGLOaGaayzkaaqcLbsacqGH9aqpjuaGdaWcaa GcbaqcLbsacaWGJbGaeqiXdqhakeaajugibiabeg7aHjabfo5ahLqb aoaabmaakeaajugibiaadUgaaOGaayjkaiaawMcaaaaajuaGdaqada Gcbaqcfa4aaSaaaOqaaKqzGeGaamiDaaGcbaqcLbsacqaHXoqyaaaa kiaawIcacaGLPaaajuaGdaahaaWcbeqcbasaaKqzadGaeqiXdqNaam 4AaiabgkHiTiaaigdaaaqcLbsacaWGhbqcfa4aaeWaaOqaaKqzGeGa amiEaiaacUdacqaHXoqycaGGSaGaeqiXdqNaaiilaiaadUgaaOGaay jkaiaawMcaaSWaaWbaaKqaGeqabaqcLbmacaWGJbGaeyOeI0IaaGym aaaajugibiaacYcaaaa@6A68@

respectively. In a general context, the properties of the exponentiated-G (Exp-G) distributions have been studied by several authors for some baseline G models, see Mudholkar and Srivastava14 and Mudholkar et al.15 for exponentiated Weibull, Nadarajah16 for exponentiated Gumbel, Shirke and Kakade.17 for exponentiated log-normal and Nadarajah and Gupta18 for exponentiated gamma distributions. See, also, Nadarajah and Kotz,19 among others.

First, we obtain an expansion for F( t;α,τ,k,λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGgbqcfa4aaeWaaOqaaKqzGeGaamiDaiaacUdacqaHXoqycaGGSaGa eqiXdqNaaiilaiaadUgacaGGSaGaeq4UdWgakiaawIcacaGLPaaaaa a@4584@ using a power series for G ( t;α,τ,k ) λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGhbqcfa4aaeWaaOqaaKqzGeGaamiDaiaacUdacqaHXoqycaGGSaGa eqiXdqNaaiilaiaadUgaaOGaayjkaiaawMcaaSWaaWbaaKqaGeqaba qcLbmacqaH7oaBaaaaaa@465A@  ( λ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLb sacaWF7oGaa8Npaiaa=bdaaaa@3AE7@ real)

G ( t;α,τ,k ) λ = j=0 a j G( t;α,τ,k ) j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGhbqcfa4aaeWaaOqaaKqzGeGaamiDaiaacUdacqaHXoqycaGGSaGa eqiXdqNaaiilaiaacUgaaOGaayjkaiaawMcaaKqbaoaaCaaaleqaje aibaqcLbmacqaH7oaBaaqcLbsacqGH9aqpjuaGdaaeWbGcbaqcLbsa caWGHbWcdaWgaaqcbasaaKqzadGaamOAaaqcbasabaqcLbsacaWGhb qcfa4aaeWaaOqaaKqzGeGaamiDaiaacUdacqaHXoqycaGGSaGaeqiX dqNaaiilaiaacUgaaOGaayjkaiaawMcaaaWcbaqcLbmacaWGQbGaey ypa0JaaGimaaWcbaqcLbmacqGHEisPaKqzGeGaeyyeIuoajuaGdaah aaWcbeqcbasaaKqzadGaamOAaaaajuaGcaGGSaaaaa@6631@  (9)

where

a j = a j ( λ ) υ=j ( 1 ) j+υ ( υ λ )( j υ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGHbqcfa4aaSbaaKqbGeaajugWaiaadQgaaKqbagqaaKqzGeGaeyyp a0JaamyyaKqbaoaaBaaajuaibaqcLbmacaWGQbaajuaGbeaadaqada qaaKqzGeGaeq4UdWgajuaGcaGLOaGaayzkaaWaaabCaOqaaKqbaoaa bmaakeaajugibiabgkHiTiaaigdaaOGaayjkaiaawMcaaaWcbaqcLb macqaHfpqDcqGH9aqpcaWGQbaaleaajugWaiabg6HiLcqcLbsacqGH ris5aKqbaoaaCaaaleqajqwaG9FaaKqzadGaamOAaiabgUcaRiabew 8a1baajuaGdaqadaqaaSWaa0baaKqbagaajugibiabew8a1bqcfaya aKqzGeGaeq4UdWgaaaqcfaOaayjkaiaawMcaamaabmaabaWcdaqhaa qcfayaaKqzGeGaamOAaaqcfayaaKqzGeGaeqyXduhaaaqcfaOaayjk aiaawMcaaKqzGeGaaiOlaaaa@6E08@

For any real λ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeU7aSjabg6da+iaaicdaaaa@3DC1@ , we consider the generalized binomial expansion

[ 1G( t;α,τ,k ) ] λ = j=0 ( 1 ) j ( λ j )G ( t;α,τ,k ) j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aam WaaeaajugibiaaigdacqGHsislcaWGhbqcfa4aaeWaaeaajugibiaa dshacaGG7aGaeqySdeMaaiilaiabes8a0jaacYcacaWGRbaajuaGca GLOaGaayzkaaaacaGLBbGaayzxaaWaaWbaaeqajuaibaqcLbmacqaH 7oaBaaqcLbsacqGH9aqpjuaGdaaeWbGcbaqcfa4aaeWaaOqaaKqzGe GaeyOeI0IaaGymaaGccaGLOaGaayzkaaaaleaajugWaiaadQgacqGH 9aqpcaaIWaaaleaajugWaiabg6HiLcqcLbsacqGHris5aKqbaoaaCa aabeqcfasaaKqzadGaamOAaaaajuaGdaqadaqaaKqzGeqbaeqabiqa aaqcfayaaKqzGeGaeq4UdWgajuaGbaqcLbsacaWGQbaaaaqcfaOaay jkaiaawMcaaKqzGeGaam4raKqbaoaabmaakeaajugibiaadshacaGG 7aGaeqySdeMaaiilaiabes8a0jaacYcacaWGRbaakiaawIcacaGLPa aajuaGdaahaaWcbeqcbasaaKqzadGaamOAaaaajuaGcaGGUaaaaa@75AB@   (10)

Inserting (9) and (10) in equation (1), we obtain

F( t;α,τ,k,λ )= j=0 a j G ( t;α,τ,k ) j j=0 b j G ( t;α,τ,k ) j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGgbqcfa4aaeWaaOqaaKqzGeGaamiDaiaacUdacqaHXoqycaGGSaGa eqiXdqNaaiilaiaadUgacaGGSaGaeq4UdWgakiaawIcacaGLPaaaju gibiabg2da9KqbaoaalaaabaWaaabmaeaajugibiaadggajuaGdaWg aaqcfasaaKqzadGaamOAaaqcfayabaqcLbsacaWGhbqcfa4aaeWaae aajugibiaadshacaGG7aGaeqySdeMaaiilaiabes8a0jaacYcacaWG RbaajuaGcaGLOaGaayzkaaWaaWbaaeqajuaibaqcLbmacaWGQbaaaa qcfayaaKqzadGaamOAaiabg2da9iaaicdaaKqbagaajugWaiabg6Hi LcqcLbsacqGHris5aaqcfayaamaaqadabaqcLbsacaWGIbqcfa4aaS baaKqbGeaajugWaiaadQgaaKqbagqaaKqzGeGaam4raKqbaoaabmaa baqcLbsacaWG0bGaai4oaiabeg7aHjaacYcacqaHepaDcaGGSaGaam 4AaaqcfaOaayjkaiaawMcaamaaCaaabeqcfasaaKqzadGaamOAaaaa aKqbagaajugWaiaadQgacqGH9aqpcaaIWaaajuaGbaqcLbmacqGHEi sPaKqzGeGaeyyeIuoaaaqcfaOaaiilaaaa@8470@

where b j = a j + ( 1 ) j ( λ j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGIbqcfa4aaSbaaKqaGeaajugWaiaadQgaaSqabaqcLbsacqGH9aqp caWGHbqcfa4aaSbaaKqaGeaajugWaiaadQgaaSqabaqcLbsacqGHRa WkjuaGdaqadaGcbaqcLbsacqGHsislcaaIXaaakiaawIcacaGLPaaa juaGdaahaaWcbeqcbasaaKqzadGaamOAaaaajuaGdaqadaGcbaqcLb safaqabeGabaaakeaajugibiabeU7aSbGcbaqcLbsacaWGQbaaaaGc caGLOaGaayzkaaaaaa@5104@ for j0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGQbGaeyyzImRaaGimaiaac6caaaa@3C50@

The ratio of the two power series can be expressed as

F( t;α,τ,k,λ )= j=0 c j G( t;α,τ,k ) j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGgbqcfa4aaeWaaOqaaKqzGeGaamiDaiaacUdacqaHXoqycaGGSaGa eqiXdqNaaiilaiaadUgacaGGSaGaeq4UdWgakiaawIcacaGLPaaaju gibiabg2da9KqbaoaaqahakeaajugibiaadogajuaGdaWgaaqcbasa aKqzadGaamOAaaWcbeaajugibiaadEeajuaGdaqadaGcbaqcLbsaca WG0bGaai4oaiabeg7aHjaacYcacqaHepaDcaGGSaGaam4AaaGccaGL OaGaayzkaaaaleaajugWaiaadQgacqGH9aqpcaaIWaaaleaajugWai abg6HiLcqcLbsacqGHris5aKqbaoaaCaaaleqajeaibaqcLbmacaWG QbaaaKqbakaacYcaaaa@6535@               (11)

where c 0 = a 0 / b 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGJbqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacqGH9aqp juaGdaWcgaGcbaqcLbsacaqGHbqcfa4aaSbaaKqaGeaajugWaiaaic daaSqabaaakeaajugibiaadkgajuaGdaWgaaqcbasaaKqzadGaaGim aaWcbeaaaaaaaa@46B1@ and the coefficients c j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGJbqcfa4aaSbaaKazba2=baqcLbmacaWGQbaaleqaaaaa@3DBB@ ’s (for j1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGQbGaeyyzImRaaGymaaaa@3B9F@ ) are determined from the recurrence equation

c j = b 0 1 ( a j r=1 j b r c jr ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGJbqcfa4aaSbaaKazba2=baqcLbmacaWGQbaaleqaaKqzGeGaeyyp a0JaamOyaKqbaoaaDaaajuaibaqcLbmacaaIWaaajuaibaqcLbmacq GHsislcaaIXaaaaKqbaoaabmaabaqcLbsacaWGHbqcfa4aaSbaaKqb GeaajugWaiaadQgaaKqbagqaaKqzGeGaeyOeI0scfa4aaabCaeaaju gibiaadkgajuaGdaWgaaqcfasaaKqzadGaamOCaaqcfayabaqcLbsa caWGJbqcfa4aaSbaaKqbGeaajugWaiaadQgacqGHsislcaWGYbaaju aGbeaaaeaajugibiaadkhacqGH9aqpcaaIXaaajuaGbaqcLbsacaWG QbaacqGHris5aaqcfaOaayjkaiaawMcaaKqzGeGaaiOlaaaa@6454@

The pdf of Τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLb sacaWFKoaaaa@3962@ is obtaining by differentiating (11) as

f( t;α,τ,k,λ )= j=0 c j+1 h j+1 ( t ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGMbqcfa4aaeWaaOqaaKqzGeGaamiDaiaacUdacqaHXoqycaGGSaGa eqiXdqNaaiilaiaadUgacaGGSaGaeq4UdWgakiaawIcacaGLPaaaju gibiabg2da9KqbaoaaqahakeaajugibiaadogajuaGdaWgaaqcbasa aKqzadGaamOAaiabgUcaRiaaigdaaSqabaqcLbsacaWGObqcfa4aaS baaKqaGeaajugWaiaadQgacqGHRaWkcaaIXaaaleqaaKqbaoaabmaa keaajugibiaadshaaOGaayjkaiaawMcaaKqzGeGaaiilaaWcbaqcLb macaWGQbGaeyypa0JaaGimaaWcbaqcLbmacqGHEisPaKqzGeGaeyye Iuoaaaa@623D@        (12)

where

h j+1 ( t )= ( j+1 )τ αΓ( k ) ( t α ) τk1 exp[ ( t α ) τ ]G ( t;α,τ,k ) j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGObqcfa4aaSbaaKqaGeaajugWaiaadQgacqGHRaWkcaaIXaaaleqa aKqbaoaabmaakeaajugibiaadshaaOGaayjkaiaawMcaaKqzGeGaey ypa0tcfa4aaSaaaOqaaKqbaoaabmaakeaajugibiaadQgacqGHRaWk caaIXaaakiaawIcacaGLPaaajugibiabes8a0bGcbaqcLbsacqaHXo qycqqHtoWrjuaGdaqadaGcbaqcLbsacaWGRbaakiaawIcacaGLPaaa aaqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiaadshaaOqaaKqzGe GaeqySdegaaaGccaGLOaGaayzkaaqcfa4aaWbaaSqabKqaGeaajugW aiabes8a0jaadUgacqGHsislcaaIXaaaaKqzGeGaciyzaiaacIhaca GGWbqcfa4aamWaaOqaaKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsa caWG0baakeaajugibiabeg7aHbaaaOGaayjkaiaawMcaaKqbaoaaCa aaleqajeaibaqcLbmacqaHepaDaaaakiaawUfacaGLDbaajugibiaa dEeajuaGdaqadaGcbaqcLbsacaWG0bGaai4oaiabeg7aHjaacYcacq aHepaDcaGGSaGaam4AaaGccaGLOaGaayzkaaqcfa4aaWbaaSqabKqa GeaajugWaiaadQgaaaaaaa@7E7D@

is the Exp-GG density function with power parameter j+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGQbGaey4kaSIaaGymaaaa@3ABB@ .

For j0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGQbGaeyyzImRaaGimaaaa@3B9E@ , we can write

h j+1 ( t )= ( j+1 )τ αΓ( k ) ( t α ) τk1 exp[ ( t α ) τ ] γ 1 ( k, ( t/α ) τ ) j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGObqcfa4aaSbaaKazba2=baqcLbmacaWGQbGaey4kaSIaaGymaaWc beaajuaGdaqadaGcbaqcLbsacaWG0baakiaawIcacaGLPaaajugibi abg2da9KqbaoaalaaakeaajuaGdaqadaGcbaqcLbsacaWGQbGaey4k aSIaaGymaaGccaGLOaGaayzkaaqcLbsacqaHepaDaOqaaKqzGeGaeq ySdeMaeu4KdCucfa4aaeWaaOqaaKqzGeGaam4AaaGccaGLOaGaayzk aaaaaKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacaWG0baakeaaju gibiabeg7aHbaaaOGaayjkaiaawMcaaKqbaoaaCaaaleqajqwaG9Fa aKqzadGaeqiXdqNaam4AaiabgkHiTiaaigdaaaqcLbsaciGGLbGaai iEaiaacchajuaGdaWadaGcbaqcLbsacqGHsisljuaGdaqadaGcbaqc fa4aaSaaaOqaaKqzGeGaamiDaaGcbaqcLbsacqaHXoqyaaaakiaawI cacaGLPaaajuaGdaahaaWcbeqcKfay=haajugWaiabes8a0baaaOGa ay5waiaaw2faaGGaaKqzGeGae83SdCwcfa4aaSbaaKqbGeaajugWai aaigdaaKqbagqaamaabmaabaqcLbsacaWGRbGaaiilaKqbaoaabmaa baGaamiDaiaac+cacqaHXoqyaiaawIcacaGLPaaalmaaCaaajuaibe qaaKqzadGaeqiXdqhaaaqcfaOaayjkaiaawMcaamaaCaaabeqcfasa aKqzadGaamOAaaaajuaGcaGGSaaaaa@8C8F@             (13)

where γ 1 ( k, ( t/α ) τ )=γ( k, ( t/α ) τ )/Γ( k ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLb sacqWFZoWzlmaaBaaajqwbG8FaaKqzadGaaGymaaqcfasabaqcfa4a aeWaaeaajugibiaadUgacaGGSaqcfa4aaeWaaeaajugibiaadshaca GGVaGaeqySdegajuaGcaGLOaGaayzkaaWaaWbaaKqbGeqajqwbG8Fa aKqzadGaeqiXdqhaaaqcfaOaayjkaiaawMcaaKqzGeGaeyypa0Jae8 3SdCwcfa4aaeWaaOqaaKqzGeGaam4AaiaacYcajuaGdaqadaGcbaqc LbsacaWG0bGaai4laiabeg7aHbGccaGLOaGaayzkaaWcdaahaaqcba sabeaajugWaiabes8a0baaaOGaayjkaiaawMcaaKqzGeGaai4laiab fo5ahLqbaoaabmaakeaajugibiaadUgaaOGaayjkaiaawMcaaKqzGe GaaiOlaaaa@664B@

By application of an equation in Section 0.314 of Gradshteyn and Ryzhik20 for a power series raised to a power, we obtain for any j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGQbaaaa@38DD@ positive integer

( i0 a i x i ) j = i=0 d j,i x i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaOqaaKqbaoaaqahakeaajugibiaadggajuaGdaWgaaqcbasaaKqz adGaamyAaaWcbeaajugibiaadIhalmaaCaaajeaibeqaaKqzadGaam yAaaaaaSqaaKqzGeGaamyAaiabgkHiTiaaicdaaSqaaKqzGeGaeyOh IukacqGHris5aaGccaGLOaGaayzkaaqcfa4aaWbaaSqabKqaGeaaju gWaiaadQgaaaqcLbsacqGH9aqpjuaGdaaeWbGcbaqcLbsacaWGKbqc fa4aaSbaaSqaaKqzadGaamOAaiaacYcacaWGPbaaleqaaKqzGeGaam iEaKqbaoaaCaaaleqajeaibaqcLbmacaWGPbaaaKqzGeGaaiilaaWc baqcLbsacaWGPbGaeyypa0JaaGimaaWcbaqcLbsacqGHEisPaiabgg HiLdaaaa@62AB@ (14)

where the coefficients d j,i ( for i=1,2,..... ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGKbqcfa4aaSbaaKqaGeaajugWaiaadQgacaGGSaGaamyAaaWcbeaa juaGdaqadaqaaKqzGeGaamOzaiaad+gacaWGYbqcfaieaaaaaaaaa8 qacaGGGcqcLbsapaGaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaa cYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaaqcfaOaayjkaiaawM caaaaa@4E76@  satisfy the recurrence relation

d j,i = ( i a 0 ) 1 p=1 i [ j( p+1 )i ] a p d j,ip MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGKbqcfa4aaSbaaKazba2=baqcLbmacaWGQbGaaiilaiaadMgaaSqa baqcLbsacqGH9aqpjuaGdaqadaqaaKqzGeGaamyAaiaadggajuaGda WgaaqcfasaaKqzadGaaGimaaqcfayabaaacaGLOaGaayzkaaWaaWba aeqajuaibaqcLbmacqGHsislcaaIXaaaaKqbaoaaqahabaWaamWaae aajugibiaadQgajuaGdaqadaqaaKqzGeGaamiCaiabgUcaRiaaigda aKqbakaawIcacaGLPaaajugibiabgkHiTiaadMgaaKqbakaawUfaca GLDbaaaeaajugWaiaadchacqGH9aqpcaaIXaaajuaGbaqcLbmacaWG PbaajugibiabggHiLdGaamyyaKqbaoaaBaaajuaibaqcLbmacaWGWb aajuaGbeaajugibiaadsgajuaGdaWgaaqcfasaaKqzadGaamOAaiaa cYcacaWGPbGaeyOeI0IaamiCaaqcfayabaaaaa@6ED9@    (15)

and d j,0 = a 0 j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGKbWcdaWgaaqcKfay=haajugWaiaadQgacaGGSaGaaGimaaqcbasa baqcLbsacqGH9aqpcaWGHbWcdaqhaaqcfasaaKqzadGaaGimaaqcfa saaKqzadGaamOAaaaaaaa@45CB@ . The coefficient d j,i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGKbWcdaWgaaqcKfay=haajugWaiaadQgacaGGSaGaaiyAaaqcbasa baaaaa@3EF5@ can be expressed explicitly from d j,0,..., d j,i1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGKbWcdaWgaaqcKfay=haajugWaiaadQgacaGGSaGaaGimaiaacYca caGGUaGaaiOlaiaac6cacaGGSaaajqwaG9FabaqcLbsacaWGKbqcfa 4aaSbaaKGaGeaajugWaiaadQgacaGGSaGaamyAaiabgkHiTiaaigda aWqabaaaaa@4B9C@ and then from a 0,.., a i, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGHbWcdaWgaaqcbasaaKqzadGaaGimaiaacYcacaGGUaGaaiOlaiaa cYcaaKqaGeqaaKqzGeGaamyyaSWaaSbaaKqaGeaajugWaiaadMgaca GGSaaajeaibeaaaaa@4302@ , although it is not necessary for programming numerically our expansions using any software with numerical facilities.

Further, using equation (14), we can write (for j1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGQbGaeyyzImRaaGymaaaa@3B9F@ )

γ 1 ( k, ( t/α ) τ ) j = ( t/α ) jkτ Γ ( k ) j i=0 d j,i ( t/α ) iτ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLb sacqWFZoWzjuaGdaWgaaqcKvai=haajugWaiaaigdaaKqbGeqaaKqb aoaabmaabaqcLbsacaWGRbGaaiilaKqbaoaabmaabaqcLbsacaWG0b Gaai4laiabeg7aHbqcfaOaayjkaiaawMcaamaaCaaajuaibeqcKvai =haajugWaiabes8a0baaaKqbakaawIcacaGLPaaadaahaaqabKqbGe aajugWaiaadQgaaaqcLbsacqGH9aqpjuaGdaWcaaqaamaabmaabaqc LbsacaWG0bGaai4laiabeg7aHbqcfaOaayjkaiaawMcaaSWaaWbaaK qbGeqabaqcLbmacaWGQbGaam4Aaiabes8a0baaaKqbagaajugibiab fo5ahLqbaoaabmaabaqcLbsacaWGRbaajuaGcaGLOaGaayzkaaWaaW baaeqajuaibaqcLbmacaWGQbaaaaaajuaGdaaeWbqaaKqzGeGaamiz aKqbaoaaBaaajuaibaqcLbmacaWGQbGaaiilaiaadMgaaKqbagqaam aabmaabaqcLbsacaWG0bGaai4laiabeg7aHbqcfaOaayjkaiaawMca aSWaaWbaaKqbGeqabaqcLbmacaWGPbGaeqiXdqhaaaqcfayaaKqzad GaamyAaiabg2da9iaaicdaaKqbagaajugWaiabg6HiLcqcLbsacqGH ris5aiaacYcaaaa@8386@ (16)

where the coefficients d j,i ( for i1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGKbqcfa4aaSbaaKqbGeaajugWaiaadQgacaGGSaGaamyAaaqcfaya baWaaeWaaeaajugibiaadAgacaWGVbGaamOCaKqbacbaaaaaaaaape GaaiiOaKqzGeWdaiaadMgacqGHLjYScaaIXaaajuaGcaGLOaGaayzk aaaaaa@4999@ are determined from (15) with a p = ( 1 ) p /[ ( k+p )p! ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGHbqcfa4aaSbaaKqaGeaajugWaiaadchaaSqabaqcLbsacqGH9aqp juaGdaqadaGcbaqcLbsacqGHsislcaaIXaaakiaawIcacaGLPaaaju aGdaahaaWcbeqcbasaaKqzadGaamiCaaaajugibiaac+cajuaGdaWa daGcbaqcfa4aaeWaaOqaaKqzGeGaam4AaiabgUcaRiaadchaaOGaay jkaiaawMcaaKqzGeGaamiCaiaacgcaaOGaay5waiaaw2faaKqzGeGa aiOlaaaa@51DC@ Based upon equation (16), we can write the Exp-GG density (for j1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGQbGaeyyzImRaaGymaaaa@3B9F@ ) from (13) as

h j+1 ( t )= ( j+1 )τ αΓ ( k ) j+1 exp[ ( t α ) τ ] i=0 ( t α ) [ i+( j+1 )k ]τ1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGObqcfa4aaSbaaKqaGeaajugWaiaadQgacqGHRaWkcaaIXaaaleqa aKqbaoaabmaakeaajugibiaadshaaOGaayjkaiaawMcaaKqzGeGaey ypa0tcfa4aaSaaaOqaaKqbaoaabmaakeaajugibiaadQgacqGHRaWk caaIXaaakiaawIcacaGLPaaajugWaiabes8a0bGcbaqcLbsacqaHXo qycqqHtoWrjuaGdaqadaGcbaqcLbsacaWGRbaakiaawIcacaGLPaaa juaGdaahaaWcbeqcKfay=haajugWaiaadQgacqGHRaWkcaaIXaaaaa aajugibiGacwgacaGG4bGaaiiCaKqbaoaadmaakeaajugibiabgkHi TKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacaWG0baakeaajugibi abeg7aHbaaaOGaayjkaiaawMcaaKqbaoaaCaaaleqajqwaG9FaaKqz adGaeqiXdqhaaaGccaGLBbGaayzxaaqcfa4aaabCaOqaaKqbaoaabm aakeaajuaGdaWcaaGcbaqcLbsacaWG0baakeaajugibiabeg7aHbaa aOGaayjkaiaawMcaaaWcbaqcLbsacaWGPbGaeyypa0JaaGimaaWcba qcLbsacqGHEisPaiabggHiLdqcfa4aaWbaaSqabeaajuaGdaWadaWc baqcLbmacaWGPbGaey4kaSscfa4aaeWaaSqaaKqzadGaamOAaiabgU caRiaaigdaaSGaayjkaiaawMcaaKqzadGaam4AaaWccaGLBbGaayzx aaqcLbmacqaHepaDcqGHsislcaaIXaaaaKqzGeGaaiOlaaaa@8FCF@

The last density can be expressed in terms of the GG density functions. By noting the form of (4), we can write (for j1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGQbGaeyyzImRaaGymaaaa@3B9F@ )

h j+1 ( t )= i=0 e j,i g( t;α,τ,[ i+( j+1 )k ] ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGObWcdaWgaaqcKfay=haajugWaiaadQgacqGHRaWkcaaIXaaajeai beaajuaGdaqadaGcbaqcLbsacaWG0baakiaawIcacaGLPaaajugibi abg2da9KqbaoaaqahabaqcLbsacaWGLbqcfa4aaSbaaKqbGeaajugW aiaadQgacaGGSaGaamyAaaqcfayabaqcLbsacaWGNbqcfa4aaeWaae aajugibiaadshacaGG7aGaeqySdeMaaiilaiabes8a0jaacYcajuaG daWadaqaaKqzGeGaamyAaiabgUcaRKqbaoaabmaabaqcLbsacaWGQb Gaey4kaSIaaGymaaqcfaOaayjkaiaawMcaaKqzGeGaam4AaaqcfaOa ay5waiaaw2faaaGaayjkaiaawMcaaaqaaKqzGeGaamyAaiabg2da9i aaicdaaKqbagaajugibiabg6HiLcGaeyyeIuoacaGGSaaaaa@6B5C@                 (17)

where g( t;α,τ,[ i+( j+1 )k ] ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGNbqcfa4aaeWaaOqaaKqzGeGaamiDaiaacUdacqaHXoqycaGGSaGa eqiXdqNaaiilaKqbaoaadmaakeaajugibiaadMgacqGHRaWkjuaGda qadaGcbaqcLbsacaWGQbGaey4kaSIaaGymaaGccaGLOaGaayzkaaqc LbsacaWGRbaakiaawUfacaGLDbaaaiaawIcacaGLPaaaaaa@4DFF@  is the GG density function with parameters α,τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aHXoqycaGGSaGaeqiXdqhaaa@3C43@ and i+( j+1 )k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGPbGaey4kaSscfa4aaeWaaOqaaKqzGeGaamOAaiabgUcaRiaaigda aOGaayjkaiaawMcaaKqzGeGaam4Aaaaa@40C4@ and

e j,i = ( j+1 )Γ( [ i+( j+1 )k ] ) Γ ( k ) j+1 d j,i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGLbWcdaWgaaqcbasaaKqzadGaamOAaiaacYcacaWGPbaajeaibeaa jugibiabg2da9KqbaoaalaaakeaajuaGdaqadaGcbaqcLbsacaWGQb Gaey4kaSIaaGymaaGccaGLOaGaayzkaaqcLbsacqqHtoWrjuaGdaqa daGcbaqcfa4aamWaaOqaaKqzGeGaamyAaiabgUcaRKqbaoaabmaake aajugibiaadQgacqGHRaWkcaaIXaaakiaawIcacaGLPaaajugibiaa dUgaaOGaay5waiaaw2faaaGaayjkaiaawMcaaaqaaKqzGeGaeu4KdC ucfa4aaeWaaOqaaKqzGeGaam4AaaGccaGLOaGaayzkaaqcfa4aaWba aSqabKqaGeaajugWaiaadQgacqGHRaWkcaaIXaaaaaaajugibiaads gajuaGdaWgaaqcbasaaKqzadGaamOAaiaacYcacaWGPbaaleqaaKqb akaac6caaaa@663E@ (18)

For j=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGQbGaeyypa0JaaGimaaaa@3ADE@ , we have from (13) h 1 ( t )= τ αΓ( k ) ( t/α ) τk1 exp[ ( t α ) τ ]=g( t;α,τ,k ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGObWcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcfa4aaeWaaOqa aKqzGeGaamiDaaGccaGLOaGaayzkaaqcLbsacqGH9aqpjuaGdaWcaa GcbaqcLbsacqaHepaDaOqaaKqzGeGaeqySdeMaeu4KdCucfa4aaeWa aOqaaKqzGeGaam4AaaGccaGLOaGaayzkaaaaaKqbaoaabmaakeaaju gibiaadshacaGGVaGaeqySdegakiaawIcacaGLPaaalmaaCaaajeai beqaaKqzadGaeqiXdqNaam4AaiabgkHiTiaaigdaaaqcLbsaciGGLb GaaiiEaiaacchajuaGdaWadaGcbaqcfa4aaeWaaOqaaKqbaoaalaaa keaajugibiaadshaaOqaaKqzGeGaeqySdegaaaGccaGLOaGaayzkaa qcfa4aaWbaaSqabKqaGeaajugWaiabes8a0baaaOGaay5waiaaw2fa aKqzGeGaeyypa0Jaam4zaKqbaoaabmaakeaajugibiaadshacaGG7a GaeqySdeMaaiilaiabes8a0jaacYcacaWGRbaakiaawIcacaGLPaaa jugibiaac6caaaa@754B@ Combining the result (17) (for j1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGQbGaeyyzImRaaGymaaaa@3B9F@ ) and that one for j=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGQbGaeyypa0JaaGimaaaa@3ADE@ , we can write f( t )=f( t;α,τ,k,λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGMbqcfa4aaeWaaOqaaKqzGeGaamiDaaGccaGLOaGaayzkaaqcLbsa cqGH9aqpcaWGMbqcfa4aaeWaaOqaaKqzGeGaamiDaiaacUdacqaHXo qycaGGSaGaeqiXdqNaaiilaiaadUgacaGGSaacbaGaa83UdaGccaGL OaGaayzkaaaaaa@4B6B@  in (12) as

f( t )= c 1 g( t;α,τ,k )+ j=1 i=0 e j,i c j+1 g( t;α,τ,[ i+( j+1 )k ] ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGMbqcfa4aaeWaaOqaaKqzGeGaamiDaaGccaGLOaGaayzkaaqcLbsa cqGH9aqpcaWGJbqcfa4aaSbaaKqbGeaajugWaiaaigdaaKqbagqaaK qzGeGaam4zaKqbaoaabmaakeaajugibiaadshacaGG7aGaeqySdeMa aiilaiabes8a0jaacYcacaWGRbaakiaawIcacaGLPaaajugibiabgU caRKqbaoaaqahabaWaaabCaeaajugibiaadwgalmaaBaaajuaibaqc LbmacaWGQbGaaiilaiaadMgaaKqbGeqaaaqcfayaaKqzGeGaamyAai abg2da9iaaicdaaKqbagaajugibiabg6HiLcGaeyyeIuoaaKqbagaa jugibiaadQgacqGH9aqpcaaIXaaajuaGbaqcLbsacqGHEisPaiabgg HiLdGaam4yaKqbaoaaBaaajuaibaqcLbmacaWGQbGaey4kaSIaaGym aaqcfayabaqcLbsacaWGNbqcfa4aaeWaaeaajugibiaadshacaGG7a GaeqySdeMaaiilaiabes8a0jaacYcajuaGdaWadaqaaKqzGeGaamyA aiabgUcaRKqbaoaabmaabaqcLbsacaWGQbGaey4kaSIaaGymaaqcfa OaayjkaiaawMcaaKqzGeGaam4AaaqcfaOaay5waiaaw2faaaGaayjk aiaawMcaaKqzGeGaaiOlaaaa@8599@  (19)

Equation (19) reveals that the OLLGG density function is a linear combination of Exp-GG densities. Hence, some mathematical properties of the OLLGG distribution can follow directly from those properties of the GG distribution. For example, the ordinary, central, fac¬torial moments and the moment generating function (mgf) of the proposed distribution can be obtained from the same weighted infinite linear combination of the corresponding quantities for the GG distribution. This equation is the main result of this section.

Mathematical properties

Some of the most important features and characteristics of a distribution can be studied through moments (e.g., tendency, dispersion, skewness and kurtosis). In this section, we give two different expansions for calculating the moments of the EGG distribution.

First, we obtain an infinite sum representation for the r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGYbaaaa@38E5@ th ordinary moment μ r ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH8oqBjuaGdaqhaaqcbasaaKqzadGaamOCaaqcbasaaKqzadGaai4j aaaaaaa@3EE7@ of the EGG distribution based on the equation (19). The r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGYbaaaa@38E5@ th moment of the GG( α,τ,k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGhbGaam4raKqbaoaabmaakeaajugibiabeg7aHjaacYcacqaHepaD caGGSaGaam4AaaGccaGLOaGaayzkaaaaaa@4235@ distribution is well known to be

μ r,GG ' = α r Γ( k+r/τ ) Γ( k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH8oqBjuaGdaqhaaqcKfay=haajugWaiaadkhacaGGSaGaam4raiaa dEeaaKazba2=baqcLbmacaGGNaaaaKqzGeGaeyypa0tcfa4aaSaaae aajugibiabeg7aHLqbaoaaCaaabeqcfasaaKqzadGaamOCaaaajugi biabfo5ahLqbaoaabmaabaqcLbsacaWGRbGaey4kaSIaamOCaiaac+ cacqaHepaDaKqbakaawIcacaGLPaaaaeaajugibiabfo5ahLqbaoaa bmaabaqcLbsacaWGRbaajuaGcaGLOaGaayzkaaaaaaaa@5C60@

Equation (19) then immediately gives

μ r ' = c 1 α r Γ( k+r/τ ) Γ( k ) + α r Γ( k ) j=1 i=0 e j,i c j+1 Γ( [ i+( j+1 )k ]+r/τ ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH8oqBlmaaDaaajqwaG9FaaKqzadGaamOCaaqcKfay=haajugWaiaa cEcaaaqcLbsacqGH9aqpjuaGdaWcaaqaaKqzGeGaam4yaKqbaoaaBa aajuaibaqcLbmacaaIXaaajuaGbeaajugibiabeg7aHLqbaoaaCaaa beqcfasaaKqzadGaamOCaaaajugibiabfo5ahLqbaoaabmaabaqcLb sacaWGRbGaey4kaSIaamOCaiaac+cacqaHepaDaKqbakaawIcacaGL Paaaaeaajugibiabfo5ahLqbaoaabmaabaqcLbsacaWGRbaajuaGca GLOaGaayzkaaaaaKqzGeGaey4kaSscfa4aaSaaaeaajugibiabeg7a HLqbaoaaCaaabeqcfasaaKqzadGaamOCaaaaaKqbagaajugibiabfo 5ahLqbaoaabmaabaqcLbsacaWGRbaajuaGcaGLOaGaayzkaaaaamaa qahabaWaaabCaeaajugibiaadwgajuaGdaWgaaqcKvaq=haajugWai aadQgacaGGSaGaamyAaaqcfasabaqcLbsacaWGJbqcfa4aaSbaaKqb GeaajugWaiaadQgacqGHRaWkcaaIXaaajuaGbeaajugibiabfo5ahL qbaoaabmaabaWaamWaaeaajugibiaadMgacqGHRaWkjuaGdaqadaqa aKqzGeGaamOAaiabgUcaRiaaigdaaKqbakaawIcacaGLPaaajugibi aadUgaaKqbakaawUfacaGLDbaajugibiabgUcaRiaadkhacaGGVaGa eqiXdqhajuaGcaGLOaGaayzkaaaabaqcLbsacaWGPbGaeyypa0JaaG imaaqcfayaaKqzGeGaeyOhIukacqGHris5aaqcfayaaKqzGeGaamOA aiabg2da9iaaigdaaKqbagaajugibiabg6HiLcGaeyyeIuoacaGGUa aaaa@A16D@          (20)

Equation (20) reveals that the moment μ r ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH8oqBlmaaDaaajqwaG9FaaKqzadGaamOCaaqcKfay=haajugWaiaa cEcaaaaaaa@41AA@ does have the inconvenient of depending on the quantities e j,i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGLbqcfa4aaSbaaKazfa0=baqcLbmacaWGQbGaaiilaiaadMgaaKqb Geqaaaaa@3F62@ given by (18).

We now derive another infinite sum representation for μ r ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH8oqBlmaaDaaajqwaG9FaaKqzadGaamOCaaqcKfay=haajugWaiaa cEcaaaaaaa@41AA@ by computing the r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGYbaaaa@38E5@ th moment directly without requiring the quantities e j,i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGLbqcfa4aaSbaaKazfa0=baqcLbmacaWGQbGaaiilaiaadMgaaKqb Geqaaaaa@3F62@ . We readily obtain

μ r ' = β α r1 Γ( k ) 0 ( t α ) βk+r1 exp{ ( t α ) β } { γ 1 [ k, ( t α ) β ] } λ1 dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH8oqBlmaaDaaajqwaG9FaaKqzadGaamOCaaqcKfay=haajugWaiaa cEcaaaqcLbsacqGH9aqpjuaGdaWcaaqaaKqzGeGaeqOSdiMaeqySde 2cdaahaaqcfasabeaajugWaiaadkhacqGHsislcaaIXaaaaaqcfaya aKqzGeGaeu4KdCucfa4aaeWaaeaajugibiaadUgaaKqbakaawIcaca GLPaaaaaWaa8qCaeaadaqadaqaamaalaaabaqcLbsacaWG0baajuaG baqcLbsacqaHXoqyaaaajuaGcaGLOaGaayzkaaWaaWbaaeqajuaiba qcLbmacqaHYoGycaWGRbGaey4kaSIaamOCaiabgkHiTiaaigdaaaaa juaGbaqcLbsacaaIWaaajuaGbaqcLbsacqGHEisPaiabgUIiYdGaci yzaiaacIhacaGGWbqcfa4aaiWaaeaajugibiabgkHiTKqbaoaabmaa baWaaSaaaeaajugibiaadshaaKqbagaajugibiabeg7aHbaaaKqbak aawIcacaGLPaaadaahaaqabKqbGeaajugWaiabek7aIbaaaKqbakaa wUhacaGL9baadaGadaqaaGGaaKqzGeGae83SdCwcfa4aaSbaaKqbGe aalmaaBaaajuaibaqcLbmacaaIXaaajuaibeaaaKqbagqaamaadmaa baqcLbsacaWGRbGaaiilaKqbaoaabmaabaWaaSaaaeaajugibiaads haaKqbagaajugibiabeg7aHbaaaKqbakaawIcacaGLPaaadaahaaqa bKqbGeaajugWaiabek7aIbaaaKqbakaawUfacaGLDbaaaiaawUhaca GL9baadaahaaqabKqbGeaajugWaiabeU7aSjabgkHiTiaaigdaaaqc LbsacaWGKbGaamiDaaaa@9744@

and then x= ( t/α ) β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG4bGaeyypa0tcfa4aaeWaaeaajugibiaadshacaGGVaGaeqySdega juaGcaGLOaGaayzkaaWaaWbaaeqajuaibaqcLbmacqaHYoGyaaaaaa@43D0@ gives

μ r ' = λ α r Γ ( k ) λ 0 x k+r/β1 e x γ ( k,x ) λ1 dx. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH8oqBjuaGdaqhaaqcKfay=haajugibiaadkhaaKazba2=baqcLbsa caGGNaaaaiabg2da9KqbaoaalaaabaqcLbsacaGI7oGaeqySde2cda ahaaqcKvaq=hqabaqcLbmacaWGYbaaaaqcfayaaKqzGeGaeu4KdCuc fa4aaeWaaeaajugibiaadUgaaKqbakaawIcacaGLPaaalmaaCaaame qabaGaeq4UdWgaaaaajuaGdaWdXbqaaKqzGeGaamiEaSWaaWbaaKqb GeqabaqcLbmacaWGRbGaey4kaSIaamOCaiaac+cacqaHYoGycqGHsi slcaaIXaaaaaqcfayaaKqzGeGaaGimaaqcfayaaKqzGeGaeyOhIuka cqGHRiI8aiaadwgajuaGdaahaaqabKqbGeaajugWaiabgkHiTiaadI haaaaccaqcLbsacqWFZoWzjuaGdaqadaqaaKqzGeGaam4AaiaacYca caWG4baajuaGcaGLOaGaayzkaaWaaWbaaeqabaqcLbmacqaH7oaBcq GHsislcaaIXaaaaKqzGeGaamizaiaadIhacaGGUaaaaa@7881@

Using expansion (16) for γ( k,x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHZoWzdaqadaqaaiaadUgacaGGSaGaamiEaaGaayjkaiaawMcaaaaa @3E06@ leads to

γ ( k,x ) λ1 = j=0 m=0 j ( 1 ) j+m ( j λ1 )( m j )γ ( k,x ) m . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiaaju aGcqWFZoWzdaqadaqaaiaadUgacaGGSaGaamiEaaGaayjkaiaawMca amaaCaaabeqcfasaaiabeU7aSjabgkHiTiaaigdaaaqcfaOaeyypa0 ZaaabCaeaadaaeWbqaamaabmaabaGaeyOeI0IaaGymaaGaayjkaiaa wMcaaaqcfasaaiaad2gacqGH9aqpcaaIWaaabaGaamOAaaqcfaOaey yeIuoaaKqbGeaacaWGQbGaeyypa0JaaGimaaqaaiabg6HiLcqcfaOa eyyeIuoadaahaaqabKqbGeaacaWGQbGaey4kaSIaamyBaaaajuaGda qadaqaamaaxacabaGaamOAaaqabeaacqaH7oaBcqGHsislcaaIXaaa aaGaayjkaiaawMcaamaabmaabaWaaCbiaeaacaWGTbaabeqaaiaadQ gaaaaacaGLOaGaayzkaaGae83SdC2aaeWaaeaacaWGRbGaaiilaiaa dIhaaiaawIcacaGLPaaadaahaaqabKqbGeaacaWGTbaaaKqbakaac6 caaaa@69AE@

Inserting the last equation in the expression for μ r ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH8oqBlmaaDaaajqwaG9FaaKqzadGaamOCaaqcKfay=haajugWaiaa cEcaaaaaaa@41AA@ and interchanging terms, we obtain

μ r ' = λ α r Γ ( k ) r j=0 m=0 j ( 1 ) j+m ( j λ1 )( m j )I( k,r/β,m ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH8oqBdaqhaaqcKvay=haacaWGYbaajuaqbaGaai4jaaaajuaGcqGH 9aqpdaWcaaqaaiabeU7aSjabeg7aHnaaCaaabeqcfasaaiaadkhaaa aajuaGbaGaeu4KdC0aaeWaaeaacaWGRbaacaGLOaGaayzkaaWaaWba aeqajuaibaGaamOCaaaaaaqcfa4aaabCaeaadaaeWbqaamaabmaaba GaeyOeI0IaaGymaaGaayjkaiaawMcaaaqcfasaaiaad2gacqGH9aqp caaIWaaabaGaamOAaaqcfaOaeyyeIuoaaKqbGeaacaWGQbGaeyypa0 JaaGimaaqaaiabg6HiLcqcfaOaeyyeIuoadaahaaqabKqbGeaacaWG QbGaey4kaSIaamyBaaaajuaGdaqadaqaamaaxacabaGaamOAaaqabe aacqaH7oaBcqGHsislcaaIXaaaaaGaayjkaiaawMcaamaabmaabaWa aCbiaeaacaWGTbaabeqaaiaadQgaaaaacaGLOaGaayzkaaGaamysam aabmaabaGaam4AaiaacYcacaGGYbGaai4laiabek7aIjaacYcacaWG TbaacaGLOaGaayzkaaGaaiilaaaa@7200@  (21)

where

I( k,r/β,m )= 0 x k+r/β 1 e x γ( k,x ) m dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGjbWaaeWaaeaacaWGRbGaaiilaiaackhacaGGVaGaeqOSdiMaaiil aiaad2gaaiaawIcacaGLPaaacqGH9aqpdaWdXbqaaiaadIhadaahaa qabKqbGeaacaWGRbGaey4kaSIaamOCaiaac+cacqaHYoGycqGHsisl caaIXaqcfa4aaSbaaKqbGeaacaWGLbqcfa4aaWbaaKqbGeqabaGaey OeI0IaamiEaKqbaoaaBaaajuaibaGaeq4SdCwcfa4aaeWaaKqbGeaa caWGRbGaaiilaiaadIhaaiaawIcacaGLPaaaaeqaaaaaaeqaaKqbao aaCaaajuaibeqaaiaad2gaaaaaaaqaaiaaicdaaeaacqGHEisPaKqb akabgUIiYdGaamizaiaadIhaaaa@5EE9@ .

For calculating the last integral, the series expansion (16) for the incomplete gamma function gives

I( k,r/β,m )= 0 x k+r/β1 e x { x k p=0 ( x ) p ( k+p )p! } m dx . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGjbWaaeWaaeaacaWGRbGaaiilaiaackhacaGGVaGaeqOSdiMaaiil aiaad2gaaiaawIcacaGLPaaacqGH9aqpdaWdXbqaamaaCaaabeqaai aadIhadaahaaqabeaajuaicaWGRbGaey4kaSIaamOCaiaac+cacqaH YoGycqGHsislcaaIXaaaaaaajuaGdaahaaqabeaadaWgaaqaamaaCa aabeqaaiaadwgaaaWaaWbaaeqabaWaaWbaaeqajuaibaGaeyOeI0Ia amiEaaaaaaqcfa4aaWbaaeqabaWaaiWaaeaacaWG4bWaaWbaaeqaju aibaGaam4AaaaajuaGdaaeWbqaamaalaaabaWaaeWaaeaacqGHsisl caWG4baacaGLOaGaayzkaaWaaWbaaeqajuaibaGaamiCaaaaaKqbag aadaqadaqaaiaadUgacqGHRaWkcaWGWbaacaGLOaGaayzkaaGaamiC aiaacgcaaaaajuaibaGaamiCaiabg2da9iaaicdaaeaacqGHEisPaK qbakabggHiLdaacaGL7bGaayzFaaaaaaqabaWaaWbaaeqajuaibaGa amyBaaaaaaqcfaOaamizaiaadIhaaKqbGeaacaaIWaaajuaGbaGaey OhIukacqGHRiI8aiaac6caaaa@7027@

Now this integral can be obtained from equations (24) and (25) of Nadarajah21 in terms of the Lauricella function of type A (Exton,22 Aarts,23) defined by

F A ( n ) ( a; b 1 , . . . ,  b n ; c 1 , . . . ,  c n ; x 1 , . . . ,  x n ) = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGgbqcga4aa0baaKqbagaajugWaiaadgeaaKqbagaa jyaGpaWaaeWaaKqbagaajugWa8qacaWGUbaajuaGpaGaayjkaiaawM caaaaadaqadaqaa8qacaWGHbGaai4oaiaadkgajyaGdaWgaaqcfaya aKqzadGaaGymaaqcfayabaGaaiilaiaabccacaGGUaGaaeiiaiaac6 cacaqGGaGaaiOlaiaabccacaGGSaGaaeiiaiaadkgadaWgaaqaaKqz adGaamOBaaqcfayabaGaai4oaiaadogadaWgaaqaaKqzadGaaGymaa qcfayabaGaaiilaiaabccacaGGUaGaaeiiaiaac6cacaqGGaGaaiOl aiaabccacaGGSaGaaeiiaiaadogadaWgaaqaaKqzadGaamOBaaqcfa yabaGaai4oaiaadIhajyaGdaWgaaqcfayaaKqzadGaaGymaaqcfaya baGaaiilaiaabccacaGGUaGaaeiiaiaac6cacaqGGaGaaiOlaiaabc cacaGGSaGaaeiiaiaadIhajyaGdaWgaaqcfayaaKqzadGaamOBaaqc fayabaaapaGaayjkaiaawMcaa8qacaqGGaGaeyypa0daaa@7597@

m 1 =0 ... m n =0 ( a ) m 1 +...+ m n ( b 1 ) m 1 ... ( b n ) m n ( c 1 ) m 1 ... ( c n ) m n x 1 m 1 ... x n m n m 1 !... m n ! , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda aeWbqaaiaac6cacaGGUaGaaiOlaaqaaiaad2gadaWgaaqcfasaaiaa igdaaKqbagqaaiabg2da9iaaicdaaKqbGeaacqGHEisPaKqbakabgg HiLdWaaabCaeaadaWcaaqaamaabmaabaGaamyyaaGaayjkaiaawMca amaaBaaajuaibaGaamyBaaqabaqcfa4aaSbaaKqbGeaajuaGdaWgaa qcfasaaiaaigdaaeqaaiabgUcaRiaac6cacaGGUaGaaiOlaiabgUca Riaad2gajuaGdaWgaaqcfasaaiaad6gaaeqaaaqabaqcfa4aaeWaae aacaWGIbWcdaWgaaqcfayaaKqzadGaaGymaaqcfayabaaacaGLOaGa ayzkaaWaaSbaaKqbGeaacaWGTbaabeaajuaGdaWgaaqcfasaaKqbao aaBaaajuaibaGaaGymaaqabaaabeaajuaGcaGGUaGaaiOlaiaac6ca daqadaqaaiaadkgadaWgaaqcfasaaiaad6gaaKqbagqaaaGaayjkai aawMcaamaaBaaajuaibaGaamyBaaqabaqcfa4aaSbaaKqbGeaajuaG daWgaaqaaKqzadGaamOBaaqcfayabaaajuaibeaaaKqbagaadaqada qaaiaadogadaWgaaqcfasaaiaaigdaaKqbagqaaaGaayjkaiaawMca amaaBaaajuaibaGaamyBaKqbaoaaBaaajuaibaGaaGymaaqabaaaju aGbeaacaGGUaGaaiOlaiaac6cadaqadaqaaiaadogadaWgaaqcfasa aiaad6gaaKqbagqaaaGaayjkaiaawMcaamaaBaaajuaibaGaamyBaK qbaoaaBaaajuaibaGaamOBaaqabaaajuaGbeaaaaWaaSbaaeaaaeqa aaqaaiaad2gadaWgaaqcfasaaiaad6gaaKqbagqaaiabg2da9iaaic daaKqbGeaacqGHEisPaKqbakabggHiLdWaaSaaaeaacaWG4bWaa0ba aKqbGeaajuaGdaWgaaqcfasaaiaaigdaaeqaaaqaaiaad2gajuaGda WgaaqcfasaaiaaigdaaeqaaaaajuaGcaGGUaGaaiOlaiaac6cacaWG 4bWaa0baaKqbGeaajuaGdaWgaaqcfasaaiaad6gaaeqaaaqaaiaad2 gajuaGdaWgaaqcfasaaiaad6gaaeqaaaaaaKqbagaacaWGTbWaaSba aKqbGeaacaaIXaaabeaajuaGcaGGHaGaaiOlaiaac6cacaGGUaGaam yBamaaBaaajuaibaGaamOBaaqcfayabaGaaiyiaaaacaGGSaaaaa@990E@

where ( a ) i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda qadaqaaiaadggaaiaawIcacaGLPaaadaWgaaqcfasaaiaadMgaaeqa aaaa@3BE5@ is the ascending factorial defined by (with the convention that ( a ) 0 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qadaqadaqaaiaadggaaiaawIcacaGLPaaajyaGdaWgaaqc fayaaKqzadGaaGimaaqcfayabaGaeyypa0JaaGymaaaa@3FD2@ )

( a ) i =a( a+1 )...( a+i1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda qadaqaaiaadggaaiaawIcacaGLPaaadaWgaaqcfasaaiaadMgaaKqb agqaaiabg2da9iaadggadaqadaqaaiaadggacqGHRaWkcaaIXaaaca GLOaGaayzkaaGaaiOlaiaac6cacaGGUaWaaeWaaeaacaWGHbGaey4k aSIaamyAaiabgkHiTiaaigdaaiaawIcacaGLPaaacaGGUaaaaa@4B1A@

Numerical routines for the direct computation of the Lauricella function of type A are available, see Exton22 and Mathematica (Trott,24). We obtain

I( k,r/β,m )= k m Γ( r/β+k( m+1 ) ) F A ( m ) ( r/β+k( m+1 );k,...k;k+1,...,k+1;1,...1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq= He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGjbWaaeWaaeaacaWGRbGaaiilaiaadkhacaGGVaGaeqOSdiMaaiil aiaad2gaaiaawIcacaGLPaaacqGH9aqpcaWGRbWaaWbaaeqajuaiba GaeyOeI0IaamyBaaaajuaGcqqHtoWrdaqadaqaaiaadkhacaGGVaGa eqOSdiMaey4kaSIaam4AamaabmaabaGaamyBaiabgUcaRiaaigdaai aawIcacaGLPaaaaiaawIcacaGLPaaacaWGgbWaa0baaKqbGeaacaWG bbaabaqcfa4aaeWaaKqbGeaacaWGTbaacaGLOaGaayzkaaaaaKqbao aabmaabaGaamOCaiaac+cacqaHYoGycqGHRaWkcaWGRbWaaeWaaeaa caWGTbGaey4kaSIaaGymaaGaayjkaiaawMcaaiaacUdacaWGRbGaai ilaiaac6cacaGGUaGaaiOlaiaadUgacaGG7aGaam4AaiabgUcaRiaa igdacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaadUgacqGHRaWkca aIXaGaai4oaiabgkHiTiaaigdacaGGSaGaaiOlaiaac6cacaGGUaGa eyOeI0IaaGymaaGaayjkaiaawMcaaiaac6caaaa@7895@

(22) Hence, as an alternative way to equation (20), the rth moment of the EGG distribution follows from both formulae (21) and (22) as an infinite weighted sum of the Lauricella functions of type A. In Figures 3 and 3, we display plots of the skewness and kurtosis the OLGG distribution for some parameter values.

Maximum likelihood estimation

Let Ti be a random variable following (5) with the vector of parameters θ= ( T,k,λ ) T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiWaju aGcqWF4oqCcqGH9aqpdaqadaqaaiaadsfacaGGSaGaam4AaiaacYca cqaH7oaBaiaawIcacaGLPaaadaahaaqabKqbGeaacaWGubaaaaaa@428C@ . The data encountered in survival analysis and reliability studies are often censored. A very simple random censoring mechanism that is often realistic is one in which each individual i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGPbaaaa@3927@  is assumed to have a lifetime T i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGubWaaSbaaKqbGeaacaWGPbaabeaaaaa@3A4F@  and a censoring time C i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGdbWaaSbaaKqbGeaacaWGPbaajuaGbeaaaaa@3ACC@ , where T i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGubWaaSbaaKqbGeaacaWGPbaabeaaaaa@3A4F@  and C i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGdbWaaSbaaKqbGeaacaWGPbaajuaGbeaaaaa@3ACC@  are independent random variables. Suppose that the data consist of n independent observations t i =min( T i, C i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG0bWaaSbaaeaajuaicaWGPbaajuaGbeaakiabg2da9KqbakGac2ga caGGPbGaaiOBamaabmaabaGaamivamaaBaaabaqcLbmacaWGPbqcfa OaaiilaiaadoealmaaBaaajuaGbaqcLbmacaWGPbaajuaGbeaaaeqa aaGaayjkaiaawMcaaaaa@4976@ for i=1,...,n. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGPbGaeyypa0JaaGymaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGa amOBaiaac6caaaa@4003@

Figure 3 Skewness and kurtosis of the OLLGG distribution as a function of λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH7oaBaaa@39ED@ for some values of k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGRbaaaa@3929@ with α=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aHXoqycqGH9aqpcaaIYaaaaa@3B90@  and τ=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aHepaDcqGH9aqpcaaIXaaaaa@3BB5@ .

Figure 4 Skewness and kurtosis of the OLLGG distribution as a function of τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aHepaDaaa@39F4@ for some values of λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH7oaBaaa@39ED@ with α=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHXoqycqGH9aqpcaaIYaaaaa@3B9A@ and k=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGRbGaeyypa0JaaGymaaaa@3AE0@ .

The distribution of C i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGdbWaaSbaaKqbGeaacaWGPbaajuaGbeaaaaa@3ACC@ does not depend on any of the unknown parameters of T i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGubWaaSbaaKqbGeaacaWGPbaabeaaaaa@3A4F@ . Parametric inference for such data are usually based on likelihood methods and their asymptotic theory. The censored log-likelihood l( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGSbWaaeWaaeaaiiWacqWF4oqCaiaawIcacaGLPaaaaaa@3C71@ for the model parameters is given by

l( θ )=rlog[ λ T αΓ( k ) ] iF ( t i α ) t +( Tk1 ) iF log ( t i α )+( λ1 ) iF log ( u i )+ ( λ1 ) iF log ( 1 u i )1 iF log [ u i λ + ( 1 u i ) λ ]+λ ic log ( 1 u i ) ic log [ u i λ + ( 1 u i ) λ ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaK qbakaadYgadaqadaqaaGGadiab=H7aXbGaayjkaiaawMcaaiabg2da 9iaadkhaciGGSbGaai4BaiaacEgadaWadaqaamaalaaabaGaeq4UdW 2aaSbaaKqbGeaacaWGubaabeaaaKqbagaacqaHXoqycqqHtoWrdaqa daqaaiaadUgaaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaGaeyOeI0 YaaabuaeaadaqadaqaamaalaaabaGaamiDamaaBaaajuaibaGaamyA aaqabaaajuaGbaGaeqySdegaaaGaayjkaiaawMcaaaqcfasaaiaadM gacqGHiiIZcaWGgbaajuaGbeGaeyyeIuoadaahaaqabKqbGeaacaWG 0baaaKqbakabgUcaRmaabmaabaGaamivaiaadUgacqGHsislcaaIXa aacaGLOaGaayzkaaWaaabuaeaaciGGSbGaai4BaiaacEgaaKqbGeaa caWGPbGaeyicI4SaamOraaqcfayabiabggHiLdWaaeWaaeaadaWcaa qaaiaadshadaWgaaqcfasaaiaadMgaaeqaaaqcfayaaiabeg7aHbaa aiaawIcacaGLPaaacqGHRaWkdaqadaqaaiabeU7aSjabgkHiTiaaig daaiaawIcacaGLPaaadaaeqbqaaiGacYgacaGGVbGaai4zaaqcfasa aiaadMgacqGHiiIZcaWGgbaajuaGbeGaeyyeIuoadaqadaqaaiaadw hadaWgaaqcfasaaiaadMgaaKqbagqaaaGaayjkaiaawMcaaiabgUca RaqaamaabmaabaGaeq4UdWMaeyOeI0IaaGymaaGaayjkaiaawMcaam aaqafabaGaciiBaiaac+gacaGGNbaajuaibaGaamyAaiabgIGiolaa dAeaaKqbagqacqGHris5amaabmaabaGaaGymaiabgkHiTiaadwhada WgaaqcfasaaiaadMgaaeqaaaqcfaOaayjkaiaawMcaaiabgkHiTiaa igdadaaeqbqaaiGacYgacaGGVbGaai4zaaqcfasaaiaadMgacqGHii IZcaWGgbaajuaGbeGaeyyeIuoadaWadaqaaiaadwhadaqhaaqcfasa aiaadMgaaeaacqaH7oaBaaqcfaOaey4kaSYaaeWaaeaacaaIXaGaey OeI0IaamyDamaaBaaajuaibaGaamyAaaqabaaajuaGcaGLOaGaayzk aaWaaWbaaeqajuaibaGaeq4UdWgaaaqcfaOaay5waiaaw2faaiabgU caRiabeU7aSnaaqafabaGaciiBaiaac+gacaGGNbaajuaibaGaamyA aiabgIGiolaadogaaKqbagqacqGHris5amaabmaabaGaaGymaiabgk HiTiaadwhadaWgaaqcfasaaiaadMgaaeqaaaqcfaOaayjkaiaawMca aiabgkHiTmaaqafabaGaciiBaiaac+gacaGGNbaajuaibaGaamyAai abgIGiolaadogaaKqbagqacqGHris5amaadmaabaGaamyDamaaDaaa juaibaGaamyAaaqaaiabeU7aSbaajuaGcqGHRaWkdaqadaqaaiaaig dacqGHsislcaWG1bWaaSbaaKqbGeaacaWGPbaajuaGbeaaaiaawIca caGLPaaadaahaaqabKqbGeaacqaH7oaBaaaajuaGcaGLBbGaayzxaa Gaaiilaaaaaa@DD4E@  (23)

Where μ i = γ 1 ( k, ( t i α ) t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH8oqBlmaaBaaajuaGbaqcLbmacaWGPbaajuaGbeaacqGH9aqpcqaH ZoWzlmaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaadaqadaqaaiaadU gacaGGSaWaaeWaaeaadaWcaaqaaiaadshadaWgaaqaaKqzadGaamyA aaqcfayabaaabaGaeqySdegaaaGaayjkaiaawMcaamaaCaaabeqaaK qzadGaamiDaaaaaKqbakaawIcacaGLPaaaaaa@502D@ , r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OCaaaa@38C5@ is the number of failures and F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGgbaaaa@3904@ and C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGdbaaaa@3901@ denote the uncensored and censored sets of observations, respectively.

The score components corresponding to the parameters in θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdehaaa@3984@ are:

U α ( θ )= rτk α +τ α τ1 iF t i τ +( λ1 ) iF [ u ˙ i ] α μ i ( λ1 ) iF [ u ˙ i ] α 1 μ i 2λ iF [ u ˙ i ] α [ u i λ1 ] ( 1 u i ) λ1 [ u i λ + ( 1 u i ) λ ] λ iC [ u ˙ i ] α ( 1 u i ) λ iC [ u ˙ i ] α [ u i λ1 ] ( 1 u i ) λ1 [ u i λ + ( 1 u i ) λ ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaK qbakaadwfakmaaBaaaleaacqaHXoqyaeqaaKqbaoaabmaabaaccmGa e8hUdehacaGLOaGaayzkaaGaeyypa0JaeyOeI0YaaSaaaeaacaWGYb GaeqiXdqNaam4Aaaqaaiabeg7aHbaacqGHRaWkkiabes8a0Lqbakab eg7aHnaaCaaabeqcfasaaiabes8a0jabgkHiTiaaigdaaaqcfa4aaa buaeaacaWG0bWaa0baaKqbGeaacaWGPbaabaGaeqiXdqhaaaqaaiaa dMgacqGHiiIZcaWGgbaajuaGbeGaeyyeIuoacqGHRaWkdaqadaqaai abeU7aSjabgkHiTiaaigdaaiaawIcacaGLPaaadaaeqbqaamaalaaa baWaamWaaeaaceWG1bGbaiaadaWgaaqcfasaaiaadMgaaKqbagqaaa Gaay5waiaaw2faamaaBaaabaqcLbmacqaHXoqyaKqbagqaaaqaaiab eY7aTnaaBaaajuaibaGaamyAaaqabaaaaaqaaiaadMgacqGHiiIZca WGgbaajuaGbeGaeyyeIuoacqGHsisldaqadaqaaiabeU7aSjabgkHi TiaaigdaaiaawIcacaGLPaaadaaeqbqaamaalaaabaWaamWaaeaace WG1bGbaiaadaWgaaqcfasaaiaadMgaaKqbagqaaaGaay5waiaaw2fa amaaBaaabaqcLbmacqaHXoqyaKqbagqaaaqaaiaaigdacqGHsislcq aH8oqBdaWgaaqcfasaaiaadMgaaeqaaaaaaeaacaWGPbGaeyicI4Sa amOraaqcfayabiabggHiLdaabaGaeyOeI0IaaGOmaiabeU7aSnaaqa fabaWaaSaaaeaadaWadaqaaiqadwhagaGaamaaBaaajuaibaGaamyA aaqcfayabaaacaGLBbGaayzxaaWaaSbaaeaajugWaiabeg7aHbqcfa yabaWaamWaaeaacaWG1bWaa0baaKqbGeaacaWGPbaabaGaeq4UdWMa eyOeI0IaaGymaaaaaKqbakaawUfacaGLDbaacqGHsisldaqadaqaai aaigdacqGHsislcaWG1bWaaSbaaKqbGeaacaWGPbaabeaaaKqbakaa wIcacaGLPaaadaahaaqabKqbGeaacqaH7oaBcqGHsislcaaIXaaaaa qcfayaamaadmaabaGaamyDamaaDaaajuaibaGaamyAaaqaaiabeU7a SbaajuaGcqGHRaWkdaqadaqaaiaaigdacqGHsislcaWG1bWaaSbaaK qbGeaacaWGPbaajuaGbeaaaiaawIcacaGLPaaadaahaaqabKqbGeaa cqaH7oaBaaaajuaGcaGLBbGaayzxaaaaaaqcfasaaiaadMgacqGHii IZcaWGgbaajuaGbeGaeyyeIuoacqGHsislcqaH7oaBdaaeqbqaamaa laaabaWaamWaaeaaceWG1bGbaiaadaWgaaqcfasaaiaadMgaaKqbag qaaaGaay5waiaaw2faamaaBaaabaqcLbmacqaHXoqyaKqbagqaaaqa amaabmaabaGaaGymaiabgkHiTiaadwhadaWgaaqcfasaaiaadMgaae qaaaqcfaOaayjkaiaawMcaaaaaaKqbGeaacaWGPbGaeyicI4Saam4q aaqcfayabiabggHiLdGaeyOeI0Iaeq4UdW2aaabuaeaadaWcaaqaam aadmaabaGabmyDayaacaWaaSbaaKqbGeaacaWGPbaajuaGbeaaaiaa wUfacaGLDbaadaWgaaqaaKqzadGaeqySdegajuaGbeaadaWadaqaai aadwhadaqhaaqcfasaaiaadMgaaeaacqaH7oaBcqGHsislcaaIXaaa aaqcfaOaay5waiaaw2faaiabgkHiTmaabmaabaGaaGymaiabgkHiTi aadwhadaWgaaqcfasaaiaadMgaaeqaaaqcfaOaayjkaiaawMcaamaa CaaajuaibeqaaiabeU7aSjabgkHiTiaaigdaaaaajuaGbaWaamWaae aacaWG1bWaa0baaKqbGeaacaWGPbaabaGaeq4UdWgaaKqbakabgUca RmaabmaabaGaaGymaiabgkHiTiaadwhadaWgaaqcfasaaiaadMgaae qaaaqcfaOaayjkaiaawMcaamaaCaaabeqcfasaaiabeU7aSbaaaKqb akaawUfacaGLDbaaaaaajuaibaGaamyAaiabgIGiolaadoeaaKqbag qacqGHris5aiaacYcaaaaa@08B5@

U τ ( θ )= r τ iF ( t i α ) τ log( t i α )+k iF ( t i α ) log+( λ1 ) iF [ u ˙ i ]τ μ i ( λ1 ) iF [ u ˙ i ]τ 1 μ i 2 iF [ u ˙ i ]τ[ u i λ1 ( 1 u i ) λ1 ] [ u i λ + ( 1 u i ) λ ] λ iC [ u ˙ i ]τ ( 1 μ i ) λ iC [ u ˙ i ]T[ u i λ1 ( 1 u i ) λ1 ] [ u i λ + ( 1 u i ) λ ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaK qbakaadwfadaWgaaqcfasaaiabes8a0bqcfayabaWaaeWaaeaaiiWa cqWF4oqCaiaawIcacaGLPaaacqGH9aqpcqGHsisldaWcaaqaaiaadk haaeaacqaHepaDaaGaeyOeI0YaaabuaeaadaqadaqaamaalaaabaGa amiDamaaBaaajuaibaGaamyAaaqabaaajuaGbaGaeqySdegaaaGaay jkaiaawMcaamaaCaaabeqaaiabes8a0baaaKqbGeaacaWGPbGaeyic I4SaamOraaqcfayabiabggHiLdGaciiBaiaac+gacaGGNbWaaeWaae aadaWcaaqaaiaadshadaWgaaqcfasaaiaadMgaaeqaaaqcfayaaiab eg7aHbaaaiaawIcacaGLPaaacqGHRaWkcaWGRbWaaabuaeaadaqada qaamaalaaabaGaamiDamaaBaaajuaibaGaamyAaaqcfayabaaabaGa eqySdegaaaGaayjkaiaawMcaaaqcfasaaiaadMgacqGHiiIZcaWGgb aajuaGbeGaeyyeIuoaciGGSbGaai4BaiaacEgacqGHRaWkdaqadaqa aiabeU7aSjabgkHiTiaaigdaaiaawIcacaGLPaaadaaeqbqaamaala aabaWaamWaaeaaceWG1bGbaiaadaWgaaqcfasaaiaadMgaaKqbagqa aaGaay5waiaaw2faaiabes8a0bqaaiabeY7aTnaaBaaajuaibaGaam yAaaqabaaaaaqaaiaadMgacqGHiiIZcaWGgbaajuaGbeGaeyyeIuoa cqGHsisldaqadaqaaiabeU7aSjabgkHiTiaaigdaaiaawIcacaGLPa aadaaeqbqaamaalaaabaWaamWaaeaaceWG1bGbaiaadaWgaaqcfasa aiaadMgaaeqaaaqcfaOaay5waiaaw2faaiabes8a0bqaaiaaigdacq GHsislcqaH8oqBdaWgaaqcfasaaiaadMgaaeqaaaaaaeaacaWGPbGa eyicI4SaamOraaqcfayabiabggHiLdaabaGaeyOeI0IaaGOmamaaqa fabaWaaSaaaeaadaWadaqaaiqadwhagaGaamaaBaaajuaibaGaamyA aaqabaaajuaGcaGLBbGaayzxaaGaeqiXdq3aamWaaeaacaWG1bWaa0 baaKqbGeaacaWGPbaabaGaeq4UdWMaeyOeI0IaaGymaaaajuaGcqGH sisldaqadaqaaiaaigdacqGHsislcaWG1bWaaSbaaKqbGeaacaWGPb aabeaaaKqbakaawIcacaGLPaaadaahaaqabKqbGeaacqaH7oaBcqGH sislcaaIXaaaaaqcfaOaay5waiaaw2faaaqaamaadmaabaGaamyDam aaDaaajuaibaGaamyAaaqaaiabeU7aSbaajuaGcqGHRaWkdaqadaqa aiaaigdacqGHsislcaWG1bWaaSbaaKqbGeaacaWGPbaabeaaaKqbak aawIcacaGLPaaadaahaaqabKqbGeaacqaH7oaBaaaajuaGcaGLBbGa ayzxaaaaaaqcfasaaiaadMgacqGHiiIZcaWGgbaajuaGbeGaeyyeIu oacqGHsislcqaH7oaBdaaeqbqaamaalaaabaWaamWaaeaaceWG1bGb aiaadaWgaaqcfasaaiaadMgaaKqbagqaaaGaay5waiaaw2faaiabes 8a0bqaamaabmaabaGaaGymaiabgkHiTiabeY7aTnaaBaaajuaibaGa amyAaaqcfayabaaacaGLOaGaayzkaaaaaaqcfasaaiaadMgacqGHii IZcaWGdbaajuaGbeGaeyyeIuoacqGHsislcqaH7oaBdaaeqbqaamaa laaabaWaamWaaeaaceWG1bGbaiaadaWgaaqcfasaaiaadMgaaKqbag qaaaGaay5waiaaw2faaKqbGiaadsfajuaGdaWadaqaaiaadwhadaqh aaqcfasaaiaadMgaaeaacqaH7oaBcqGHsislcaaIXaaaaKqbakabgk HiTmaabmaabaGaaGymaiabgkHiTiaadwhadaWgaaqcfasaaiaadMga aeqaaaqcfaOaayjkaiaawMcaamaaCaaajuaibeqaaiabeU7aSjabgk HiTiaaigdaaaaajuaGcaGLBbGaayzxaaaabaWaamWaaeaacaWG1bWa a0baaKqbGeaacaWGPbaabaGaeq4UdWgaaKqbakabgUcaRmaabmaaba GaaGymaiabgkHiTiaadwhadaWgaaqcfasaaiaadMgaaeqaaaqcfaOa ayjkaiaawMcaamaaCaaabeqcfasaaiabeU7aSbaaaKqbakaawUfaca GLDbaaaaaajuaibaGaamyAaiabgIGiolaadoeaaKqbagqacqGHris5 aiaacYcaaaaa@11F1@

U k ( θ )=rψ( k )+τ iF log ( t i α )+( λ1 ) iF [ u ˙ i ]k u i ( λ1 ) iF [ u ˙ i ]k 1 u i 2λ iF [ u ˙ i ]k[ u i λ1 1 ( 1 u i ) λ1 ] [ u i λ + ( 1 u i ) λ ] λ iC [ u ˙ i ]k ( 1 u i ) λ iC [ u ˙ i ]k[ u i λ1 ( 1 u i ) λ1 ] [ u i λ + ( 1 u i ) λ ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaK qbakaadwfadaWgaaqaaKqzadGaam4AaaqcfayabaWaaeWaaeaaiiWa cqWF4oqCaiaawIcacaGLPaaacqGH9aqpcqGHsislcaWGYbGaeqiYdK 3aaeWaaeaacaWGRbaacaGLOaGaayzkaaGaey4kaSIaeqiXdq3aaabu aeaaciGGSbGaai4BaiaacEgaaeaajugWaiaadMgacqGHiiIZcaWGgb aajuaGbeGaeyyeIuoadaqadaqaamaalaaabaGaamiDaSWaaSbaaKqb agaajugWaiaadMgaaKqbagqaaaqaaiabeg7aHbaaaiaawIcacaGLPa aacqGHRaWkdaqadaqaaiabeU7aSjabgkHiTiaaigdaaiaawIcacaGL PaaadaaeqbqaamaalaaabaWaamWaaeaaceWG1bGbaiaalmaaBaaaju aGbaqcLbmacaWGPbaajuaGbeaaaiaawUfacaGLDbaacaWGRbaabaGa amyDaSWaaSbaaKqbagaajugWaiaadMgaaKqbagqaaaaaaeaajugWai aadMgacqGHiiIZcaWGgbaajuaGbeGaeyyeIuoacqGHsisldaqadaqa aiabeU7aSjabgkHiTiaaigdaaiaawIcacaGLPaaadaaeqbqaamaala aabaWaamWaaeaaceWG1bGbaiaadaWgaaqaaKqzadGaamyAaaqcfaya baaacaGLBbGaayzxaaGaam4AaaqaaiaaigdacqGHsislcaWG1bWaaS baaeaajugWaiaadMgaaKqbagqaaaaaaeaajugWaiaadMgacqGHiiIZ caWGgbaajuaGbeGaeyyeIuoaaOqaaKqbakabgkHiTiaaikdacqaH7o aBdaaeqbqaamaalaaabaWaamWaaeaaceWG1bGbaiaadaWgaaqaaKqz adGaamyAaaqcfayabaaacaGLBbGaayzxaaGaam4AamaadmaabaGaam yDaSWaa0baaKqbagaajugWaiaadMgaaKqbagaalmaaCaaajuaGbeqa aKqzadGaeq4UdWMaeyOeI0IaaGymaaaaaaqcfaOaeyOeI0IaaGymam aabmaabaGaaGymaiabgkHiTiaadwhalmaaBaaajuaGbaqcLbmacaWG PbaajuaGbeaaaiaawIcacaGLPaaalmaaCaaajuaGbeqaaKqzadGaeq 4UdWMaeyOeI0IaaGymaaaaaKqbakaawUfacaGLDbaaaeaadaWadaqa aiaadwhadaqhaaqaaKqzadGaamyAaaqcfayaaKqzadGaeq4UdWgaaK qbakabgUcaRmaabmaabaGaaGymaiabgkHiTiaadwhalmaaBaaajuaG baqcLbmacaWGPbaajuaGbeaaaiaawIcacaGLPaaadaahaaqabeaaju gWaiabeU7aSbaaaKqbakaawUfacaGLDbaaaaaabaqcLbmacaWGPbGa eyicI4SaamOraaqcfayabiabggHiLdGaeyOeI0Iaeq4UdW2aaabuae aadaWcaaqaamaadmaabaGabmyDayaacaWcdaWgaaqcfayaaKqzadGa amyAaaqcfayabaaacaGLBbGaayzxaaGaam4AaaqaamaabmaabaGaaG ymaiabgkHiTiaadwhadaWgaaqaaKqzadGaamyAaaqcfayabaaacaGL OaGaayzkaaaaaaqaaKqzadGaamyAaiabgIGiolaadoeaaKqbagqacq GHris5aiabgkHiTiabeU7aSnaaqafabaWaaSaaaeaadaWadaqaaiqa dwhagaGaaSWaaSbaaKqbagaajugWaiaadMgaaKqbagqaaaGaay5wai aaw2faaiaadUgadaWadaqaaiaadwhalmaaDaaajuaGbaqcLbmacaWG PbaajuaGbaqcLbmacqaH7oaBcqGHsislcaaIXaaaaKqbakabgkHiTm aabmaabaGaaGymaiabgkHiTiaadwhalmaaBaaajuaGbaqcLbmacaWG PbaajuaGbeaaaiaawIcacaGLPaaadaahaaqabeaajugWaiabeU7aSj abgkHiTiaaigdaaaaajuaGcaGLBbGaayzxaaaabaWaamWaaeaacaWG 1bWcdaqhaaqcfayaaKqzadGaamyAaaqcfayaaKqzadGaeq4UdWgaaK qbakabgUcaRmaabmaabaGaaGymaiabgkHiTiaadwhalmaaBaaajuaG baqcLbmacaWGPbaajuaGbeaaaiaawIcacaGLPaaadaahaaqabeaaju gWaiabeU7aSbaaaKqbakaawUfacaGLDbaaaaaabaqcLbmacaWGPbGa eyicI4Saam4qaaqcfayabiabggHiLdGaaiilaaaaaa@2685@

and

U λ ( θ )= r λ iF log ( u i )+ iF log( 1 u i )2 iF u i λ log( u i )+ ( 1 u i ) λ log( 1 u i ) [ u i λ + ( 1 u i ) λ ] + iF log( 1 u i ) iF μ i λ log( u i )+ ( 1 u i ) λ log( 1 u i ) [ μ i λ + ( 1 u i ) λ ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaK qbakaadwfadaWgaaqaaKqzadGaeq4UdWgajuaGbeaadaqadaqaaGGa diab=H7aXbGaayjkaiaawMcaaiabg2da9maalaaabaGaamOCaaqaai abeU7aSbaadaaeqbqaaiGacYgacaGGVbGaai4zaaqcfasaaiaadMga cqGHiiIZcaWGgbaajuaGbeGaeyyeIuoadaqadaqaaiaadwhadaWgaa qcfasaaiaadMgaaKqbagqaaaGaayjkaiaawMcaaiabgUcaRmaaqafa baGaciiBaiaac+gacaGGNbWaaeWaaeaacaaIXaGaeyOeI0IaamyDam aaBaaajuaibaGaamyAaaqabaaajuaGcaGLOaGaayzkaaGaeyOeI0Ia aGOmaaqcfasaaiaadMgacqGHiiIZcaWGgbaajuaGbeGaeyyeIuoada aeqbqaamaalaaabaGaamyDamaaDaaajuaibaqcfa4aaSbaaKqbGeaa caWGPbaabeaaaeaacqaH7oaBaaqcfaOaciiBaiaac+gacaGGNbWaae WaaeaacaWG1bWaaSbaaKqbGeaacaWGPbaajuaGbeaaaiaawIcacaGL PaaacqGHRaWkdaqadaqaaiaaigdacqGHsislcaWG1bWaaSbaaKqbGe aacaWGPbaabeaaaKqbakaawIcacaGLPaaadaahaaqabKqbGeaacqaH 7oaBaaqcfaOaciiBaiaac+gacaGGNbWaaeWaaeaacaaIXaGaeyOeI0 IaamyDamaaBaaajuaibaGaamyAaaqabaaajuaGcaGLOaGaayzkaaaa baWaamWaaeaacaWG1bWaa0baaKqbGeaajuaGdaWgaaqcfasaaiaadM gaaeqaaaqaaiabeU7aSbaajuaGcqGHRaWkdaqadaqaaiaaigdacqGH sislcaWG1bWaaSbaaeaacaWGPbaabeaaaiaawIcacaGLPaaadaahaa qabKqbGeaacqaH7oaBaaaajuaGcaGLBbGaayzxaaaaaaqcfasaaiaa dMgacqGHiiIZcaWGgbaajuaGbeGaeyyeIuoaaeaacqGHRaWkdaaeqb qaaiGacYgacaGGVbGaai4zamaabmaabaGaaGymaiabgkHiTiaadwha daWgaaqcfasaaiaadMgaaeqaaaqcfaOaayjkaiaawMcaaiabgkHiTa qcfasaaiaadMgacqGHiiIZcaWGgbaajuaGbeGaeyyeIuoadaaeqbqa amaalaaabaGaeqiVd02aaSbaaKqbGeaajuaGdaqhaaqcfasaaiaadM gaaeaacqaH7oaBaaaabeaajuaGciGGSbGaai4BaiaacEgadaqadaqa aiaadwhadaWgaaqcfasaaiaadMgaaeqaaaqcfaOaayjkaiaawMcaai abgUcaRmaabmaabaGaaGymaiabgkHiTiaadwhadaWgaaqcfasaaiaa dMgaaKqbagqaaaGaayjkaiaawMcaamaaCaaabeqcfasaaiabeU7aSb aajuaGciGGSbGaai4BaiaacEgadaqadaqaaiaaigdacqGHsislcaWG 1bWaaSbaaKqbGeaacaWGPbaajuaGbeaaaiaawIcacaGLPaaaaeaada WadaqaaiabeY7aTnaaDaaajuaibaGaamyAaaqaaiabeU7aSbaajuaG cqGHRaWkdaqadaqaaiaaigdacqGHsislcaWG1bWaaSbaaKqbafaaca WGPbaabeaaaKqbakaawIcacaGLPaaadaahaaqabKqbGeaacqaH7oaB aaaajuaGcaGLBbGaayzxaaaaaaqcfasaaiaadMgacqGHiiIZcaWGgb aajuaGbeGaeyyeIuoacaGGSaaaaaa@DE4A@

Where

[ u ˙ i ]α+ γ1 ( k, ( t i α ) τ ) α [ u ˙ i ]τ γ1 ( k, ( t i α ) τ ) α [ u ˙ i ]k γ1 ( k, ( t i α ) τ ) k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda WadaqaaiqadwhagaGaamaaBaaajuaibaGaamyAaaqabaaajuaGcaGL BbGaayzxaaGaeqySdeMaey4kaSYaaSaaaeaadaWgaaqaaiabgkGi2o aaBaaajuaibaGaeq4SdCMaaGymaaqcfayabaWaaeWaaeaacaWGRbGa aiilamaabmaabaWaaSaaaeaacaWG0bWaaSbaaKqbGeaacaWGPbaaju aGbeaaaeaacqaHXoqyaaaacaGLOaGaayzkaaWaaWbaaeqabaqcLbma cqaHepaDaaaajuaGcaGLOaGaayzkaaaabeaaaeaacqGHciITcqaHXo qyaaWaamWaaeaaceWG1bGbaiaadaWgaaqcfasaaiaadMgaaeqaaaqc faOaay5waiaaw2faaKqzGeGaeqiXdqxcfa4aaSaaaeaadaWgaaqaai abgkGi2oaaBaaajuaibaGaeq4SdCMaaGymaaqcfayabaWaaeWaaeaa caWGRbGaaiilamaabmaabaWaaSaaaeaacaWG0bWaaSbaaKqbGeaaca WGPbaabeaaaKqbagaacqaHXoqyaaaacaGLOaGaayzkaaWaaWbaaeqa juaibaGaeqiXdqhaaaqcfaOaayjkaiaawMcaaaqabaaabaGaeyOaIy RaeqySdegaamaadmaabaGabmyDayaacaWaaSbaaKqbGeaacaWGPbaa juaGbeaaaiaawUfacaGLDbaacaWGRbWaaSaaaeaacqGHciITdaWgaa qcfasaaiabeo7aNjaaigdaaKqbagqaamaaBaaabaWaaeWaaeaacaWG RbGaaiilamaabmaabaWaaSaaaeaacaWG0bWaaSbaaKqbGeaacaWGPb aabeaaaKqbagaacqaHXoqyaaaacaGLOaGaayzkaaWaaWbaaeqajuai baGaeqiXdqhaaaqcfaOaayjkaiaawMcaaaqabaaabaGaeyOaIyRaam 4Aaaaaaaa@8806@

ψ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHipqEdaqadaqaaiaac6caaiaawIcacaGLPaaaaaa@3C42@ is the digamma function and i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGPbGaeyypa0JaaGymaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGa amOBaaaa@3F51@ .

The MLE  θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGnbGaamitaiaadweaqaaaaaaaaaWdbiaacckaiiWapaGaf8hUdeNb aKaaaaa@3DC7@ of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiWaju aGcqWF4oqCaaa@39F7@ can be obtained numerically from the nonlinear equations U τ ( θ )= U k ( θ )= U λ ( θ )=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGvbWaaSbaaeaajugWaiabes8a0bqcfayabaWaaeWaaeaaiiWacqWF 4oqCaiaawIcacaGLPaaacqGH9aqpcaWGvbWaaSbaaeaajugWaiaadU gaaKqbagqaamaabmaabaGae8hUdehacaGLOaGaayzkaaGaeyypa0Ja amyvamaaBaaabaqcLbmacqaH7oaBaKqbagqaamaabmaabaGae8hUde hacaGLOaGaayzkaaGaeyypa0JaaGimaiaac6caaaa@5300@  For interval estimation and hypothesis tests on the model parameters, we require the J=J( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGkbGaeyypa0JaamOsamaabmaabaaccmGae8hUdehacaGLOaGaayzk aaaaaa@3E24@ unit observed information matrix ( θ θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda qadaqaaGGadiqb=H7aXzaataGaeyOeI0Iae8hUdehacaGLOaGaayzk aaaaaa@3E38@ , whose elements are evaluated numerically. Under general regularity conditions, the asymptotic distribution of ( θ θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda qadaqaaGGadiqb=H7aXzaataGaeyOeI0Iae8hUdehacaGLOaGaayzk aaaaaa@3E38@  is N 4 ( 0, ( θ ) 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGobWaaSbaaeaajugWaiaaisdaaKqbagqaamaabmaabaGaaGimaiaa cYcadaqadaqaaGGadiab=H7aXbGaayjkaiaawMcaamaaCaaabeqcfa saaiabgkHiTiaaigdaaaaajuaGcaGLOaGaayzkaaaaaa@4467@ , where I( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGjbWaaeWaaeaaiiWacqWF4oqCaiaawIcacaGLPaaaaaa@3C4E@ is the expected information matrix. This matrix can be replaced by J( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGkbWaaeWaaeaaiiWacuWF4oqCgaWeaaGaayjkaiaawMcaaaaa@3C69@ , i.e., the observed information matrix evaluated at θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiWaju aGcuWF4oqCgaWeaaaa@3A11@ . The multivariate normal N 4 ( 0, ( θ ^ ) 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGobWaaSbaaeaadaWgaaqaaKqzadGaaGinaaqcfayabaaabeaadaqa daqaaiaaicdacaGGSaWaaeWaaeaaiiWacuWF4oqCgaqcaaGaayjkai aawMcaamaaCaaabeqaaKqzadGaeyOeI0IaaGymaaaaaKqbakaawIca caGLPaaaaaa@4598@ distribution can be used to construct approximate confidence intervals for the individual parameters. Further, the likelihood ratio (LR) statistic can be adopted for comparing this distribution with some of its special models. We can compute the maximum values of the unrestricted and restricted log-likelihoods to construct LR statistics for testing some sub-models of the OLLGG distribution. For example, the test of H 0 :λ=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGibWaaSbaaKqbGeaacaaIWaaajuaGbeaacaGG6aGaeq4UdWMaeyyp a0JaaGymaaaa@3ED0@ versus H: H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGibGaaiOoaiaacIeadaWgaaqcfasaaiaaicdaaeqaaaaa@3B99@ is not true is equivalent to compare the OLLGG and GG distributions and the LR statistic reduces to

w=2{ l( α , τ ^ , k , λ )l( α , τ ^ , k ,1 ) }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaruqtV5 2B0LhCLbYqVj3CPzxyaGqbcKqbakaa=DhacqGH9aqpcaaIYaWaaiWa aeaacaWGSbWaaeWaaeaacuaHXoqygaWeaiaacYcacuaHepaDgaqcai aacYcaceWGRbGbambacaGGSaGafq4UdWMbambaaiaawIcacaGLPaaa cqGHsislcaWGSbWaaeWaaeaacuaHXoqygaWeaiaacYcacuaHepaDga qcaiaacYcaceWGRbGbambacaGGSaGaaGymaaGaayjkaiaawMcaaaGa ay5Eaiaaw2haaiaacYcaaaa@5A05@

where α , τ ^ , k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHXoqygaWeaiaacYcacuaHepaDgaqcaiaacYcaceWGRbGbambaaaa@3E31@ , and λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aH7oaBgaWeaaaa@3A07@  are the MLEs under H and α , τ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHXoqygaWeaiaacYcacuaHepaDgaqcaaaa@3C77@ and k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGce WGRbGbambaaaa@3943@ are the estimates under H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGibWaaSbaaeaajugWaiaaicdaaKqbagqaaaaa@3B52@ .

Bayesian inference

In this section we briefly discuss the inference from a Bayesian viewpoint. We making a change in the parameters to ξ  =  ( log(λ),  log(k), log(τ),log(α) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacceqcfa Oae8NVdGheaaaaaaaaa8qacaGGGcGaaiiOaiabg2da9iaacckacaGG GcWaaeWaaeaaciGGSbGaai4BaiaacEgacaGGOaGaeq4UdWMaaiykai aacYcacaGGGcGaaiiOaiGacYgacaGGVbGaai4zaiaacIcacaWGRbGa aiykaiaacYcacaGGGcGaaiiBaiaac+gacaGGNbGaaiikaiabes8a0j aacMcacaGGSaGaaiiBaiaac+gacaGGNbGaaiikaiabeg7aHjaacMca aiaawIcacaGLPaaaaaa@5D5A@ , so that the parameter space is transformed into R 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb5 0ujbqegyvyULgaiuGajuaGcqWFsbGudaahaaqabeaajugWaiaaisda aaaaaa@3F85@ (necessary for the work with the proposed Gaussian densities). We assume that λ, k , τ  andα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq 4UdWMaaiilaabaaaaaaaaapeGaaiiOaiaadUgacaGGGcGaaiilaiaa cckacqaHepaDcaGGGcGaaiiOaiaacggacaGGUbGaaiizaiabeg7aHb aa@4829@ are prior independent, that is,

π (θ)  =  π(λ)π(k)π(τ)π(α), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iWdaheaaaaaaaaa8qacaGGGcGaaiikaGGadiab=H7aXjaacMcacaGG GcGaaiiOaiabg2da9iaacckacaGGGcGaeqiWdaNaaiikaiabeU7aSj aacMcacqaHapaCcaGGOaGaai4AaiaacMcacqaHapaCcaGGOaGaeqiX dqNaaiykaiabec8aWjaacIcacqaHXoqycaGGPaGaaiilaaaa@56EB@

where

log(λ)  N (0, σ 2 ),  log(k)   N (0, σ 2 ),  log(τ)   N (0, σ 2 ) andlog(α)   N (0, σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaGGSbGaai4BaiaacEgacaGGOaGaeq4UdWMaaiykaiaa cckacqWI8iIocaGGGcGaamOtaiaacckacaGGOaGaaGimaiaacYcacq aHdpWCdaahaaqabeaajugWaiaaikdaaaqcfaOaaiykaiaacYcacaGG GcGaaiiOaiGacYgacaGGVbGaai4zaiaacIcacaWGRbGaaiykaiaacc kacaGGGcGaeSipIOJaaiiOaiaad6eacaGGGcGaaiikaiaaicdacaGG SaGaeq4Wdm3aaWbaaeqabaqcLbmacaaIYaaaaKqbakaacMcacaGGSa GaaiiOaiaacckaciGGSbGaai4BaiaacEgacaGGOaGaeqiXdqNaaiyk aiaacckacaGGGcGaeSipIOJaaiiOaiaad6eacaGGGcGaaiikaiaaic dacaGGSaGaeq4Wdm3aaWbaaeqabaqcLbmacaaIYaaaaKqbakaacMca caGGGcGaaiyyaiaac6gacaGGKbGaciiBaiaac+gacaGGNbGaaiikai abeg7aHjaacMcacaGGGcGaaiiOaiablYJi6iaacckacaWGobGaaiiO aiaacIcacaaIWaGaaiilaiabeo8aZnaaCaaabeqaaKqzadGaaGOmaa aajuaGcaGGPaaaaa@8E57@ and N (μ, σ 2 )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGobGaaiiOaiaacIcacqaH8oqBcaGGSaGaeq4Wdm3a aWbaaeqabaqcLbmacaaIYaaaaKqbakaacMcacaGGGcaaaa@4385@ denotes the normal distribution with mean μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaH8oqBaaa@3A04@  and variance σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaHdpWCdaahaaqabeaajugWaiaaikdaaaaaaa@3C1D@ . All the hyper-parameters σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaHdpWCdaahaaqabeaajugWaiaaikdaaaaaaa@3C1D@  have been specified to express non-informative priors.

Regarding the Jacobian of this transformation, our joint posterior density (or target density) reduces to

π(ξ|D)  L(ξ;D) exp { 1 2 [ log(λ) σ 2  +  log(k) σ 2  +  log(τ) σ 2  +  log(α) σ 2 ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iWdaNaaiikaGGabiab=57a4jaacYhaieWacaGFebacbaGaa0xkaaba aaaaaaaapeGaaiiOaeXatLxBI9gBGqvANvMCaGqbaiab81Hi1kaacc kacaGGmbGaaiika8aacqWF+oaEpeGaai4oa8aacaGFebGaaiyka8qa caGGGcGaciyzaiaacIhacaGGWbGaaiiOamaacmaabaGaeyOeI0YaaS aaaeaacaaIXaaabaGaaGOmaaaadaWadaqaamaalaaabaGaciiBaiaa c+gacaGGNbGaaiikaiabeU7aSjaacMcaaeaacqaHdpWCdaahaaqabe aajugWaiaaikdaaaaaaKqbakaacckacqGHRaWkcaGGGcWaaSaaaeaa ciGGSbGaai4BaiaacEgacaGGOaGaam4AaiaacMcaaeaacqaHdpWCda ahaaqabeaajugWaiaaikdaaaaaaKqbakaacckacqGHRaWkcaGGGcWa aSaaaeaaciGGSbGaai4BaiaacEgacaGGOaGaeqiXdqNaaiykaaqaai abeo8aZnaaCaaabeqaaKqzadGaaGOmaaaaaaqcfaOaaiiOaiabgUca RiaacckadaWcaaqaaiGacYgacaGGVbGaai4zaiaacIcacqaHXoqyca GGPaaabaGaeq4Wdm3aaWbaaeqabaqcLbmacaaIYaaaaaaaaKqbakaa wUfacaGLDbaaaiaawUhacaGL9baaaaa@8AB1@      (25)

where L(ξ;D)  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam itaiaacIcaieWacaWF+oacbaGaa43oaiaa=reacaGFPaaeaaaaaaaa a8qacaGGGcaaaa@3E6F@ is the likelihood function.

This joint posterior density is analytically intractable. Therefore, we based our inference on the MCMC simulation methods. No closed-form is available for any of the full conditional distributions necessary for the implementation of the Gibbs sampler. Then, we have resorted to the Metropolis–Hastings algorithm. To implement this algorithm, we proceed as follows:

(1)          Start with any point ξ (10) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacceqcfa Oae8NVdG3aaSbaaeaajugWaiaacIcacaaIXaGaaGimaiaacMcaaKqb agqaaaaa@3EA2@ and stage indicator j= 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OAaiabg2da9abaaaaaaaaapeGaaiiOa8aacaaIWaaaaa@3C30@ ;

(2)          Generate a point ξ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacceqcfa Oae8NVdGNaai4jaaaa@3AA2@ according to the transitional kernel Q(ξ', ξ j )  =  N 4  ( ξ j , Σ ˜ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yuaGqaaiaa=HcaiiqacqGF+oaEcaGGNaGaa8hlaiaa=bcacqGF+oaE daWgaaqaceaaoZqcLbmacaWGQbaajuaGbeaacaGGPaaeaaaaaaaaa8 qacaGGGcGaaiiOaiabg2da9iaacckacaWGobWaaSbaaeaajugWaiaa isdaaKqbagqaaiaacckacaGGOaWdaiab+57a4naaBaaabaqcLbmaca WGQbaajuaGbeaacaGGSaGafu4OdmLbaGaacaGGPaaaaa@54E2@ , where Σ ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafu 4OdmLbaGaaaaa@39C1@ is the covariance matrix of ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacceqcfa Oae8NVdGhaaa@39F7@ , which is the same in any stage;

(3)          Update ξ (j)  to   ξ (j+1)  = ξ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacceqcfa Oae8NVdG3aaSbaaeaajugWaiaacIcacaWGQbGaaiykaaqcfayabaae aaaaaaaaa8qacaGGGcGaaiiDaiaac+gacaGGGcGaaiiOa8aacqWF+o aEdaWgaaqaaKqzadGaaiikaiaadQgacqGHRaWkcaaIXaGaaiykaaqc fayabaWdbiaacckacqGH9aqpcaGGGcWdaiab=57a4jaacEcaaaa@50F8@ ′ with probability p j = min{ 1, π(ξ' |D)/π( ξ (j) |D) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iCamaaBaaabaqcLbmacaWGQbaajuaGbeaaqaaaaaaaaaWdbiabg2da 9iaacckaciGGTbGaaiyAaiaac6gadaGadaqaaiaaigdacaGGSaGaai iOaiabec8aWjaacIcaiiqapaGae8NVdGNaai4ja8qacaGGGcGaaiiF aGqadiaa+reacaGGPaGaai4laiabec8aWjaacIcapaGae8NVdG3dbm aaBaaabaqcLbmacaGGOaGaamOAaiaacMcaaKqbagqaaiaacYhacaGF ebGaaiykaaGaay5Eaiaaw2haaaaa@59F7@ , or keep θ (j) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcfa Oae8hUde3aaSbaaeaajugWaiaacIcacaWGQbGaaiykaaqcfayabaaa aa@3E11@ ;

(4)          Repeat steps (2) and (3) by increasing the stage indicator until the process has reached a stationary distribution.

In this scheme, we consider 30,000 sample burn-in, and we use every tenth sample from the 200,000 MCMC posterior samples to reduce the autocorrelations and yield better convergence results, thus obtaining an effective sample of size 20,000 from which the posterior is based on. We monitor the convergence of the Metropolis-Hasting algorithm using the method proposed by Geweke (1992), as well as trace plots. All computations are performed in the R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGsbaaaa@38C5@  software ( R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGsbaaaa@38C5@  Development Core Team, 2011).

Bayesian model comparison

In the literature, a variety of Bayesian methodologies can be applied for comparing of several competing models for a given data set and selection of the best one to fit the data. In this paper, we use the deviance information criterion (DIC) proposed by Spiegelhalter et al.,25 the expected Akaike information criterion (EAIC)given by Brooks,26 and the expected Bayesian (or Schwarz) information criterion (EBIC) discussed by Carlin and Louis.27

They are based on the posterior mean of the deviance, which can be approximated by d ¯  =  Σ q=1 Q  d( θ q )/Q, where d(θ) =  2  Σ i=1 n  log[ f( t i |θ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabm izayaaraaeaaaaaaaaa8qacaGGGcGaeyypa0ZaaCbmaeaacaGGGcGa eu4OdmfabaqcLbmacaWGXbGaeyypa0JaaGymaaqcfayaaKqzadGaam yuaaaajuaGcaGGGcGaamizaiaacIcacqaH4oqCdaWgaaqaaKqzadGa amyCaaqcfayabaGaaiykaiaac+cacaWGrbGaaiilaiaacckacaWG3b GaamiAaiaadwgacaWGYbGaamyzaiaacckacaWGKbGaaiikaiabeI7a XjaacMcacaGGGcGaeyypa0JaaiiOaiaacckacqGHsislcaaIYaWaaC bmaeaacaGGGcGaeu4OdmfabaqcLbmacaWGPbGaeyypa0JaaGymaaqc fayaaKqzadGaamOBaaaajuaGcaGGGcGaciiBaiaac+gacaGGNbWaam WaaeaacaWGMbWaaeWaaeaacaWG0bWaaSbaaeaacaWGPbaabeaacaGG 8bGaeqiUdehacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@77D1@ . The DIC criterion can be estimated using the MCMC output by DIC ^  =   d ¯  +  ρd ^  = 2 d ¯   d ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae caaeaacaWGebGaamysaiaadoeaaiaawkWaaabaaaaaaaaapeGaaiiO aiabg2da9iaacckacaGGGcGabmizayaaraGaaiiOaiabgUcaRiaacc kadaqiaaqaaiabeg8aYjaadsgaaiaawkWaaiaacckacqGH9aqpcaGG GcGaaGOmaiqadsgagaqeaiabgkHiTiaacckadaqiaaqaaiaadsgaai aawkWaaaaa@503E@ , where ρD is the effective number of parameters given by E{d(θ)}  d{E(θ)},and d{E(θ)} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yraiaacUhacaWGKbGaaiikaiabeI7aXjaacMcacaGG9baeaaaaaaaa a8qacaGGGcGaeyOeI0IaaiiOaiaadsgacaGG7bGaamyraiaacIcacq aH4oqCcaGGPaGaaiyFaiaacYcacaWGHbGaamOBaiaadsgacaGGGcGa amizaiaacUhacaWGfbGaaiikaiabeI7aXjaacMcacaGG9baaaa@545F@  is the deviance evaluated at the posterior mean. Similarly, the EAIC and EBIC criteria can be estimated by means of EAIC ^  =   d ¯  + 2 # (θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae caaeGabaaDkiaadweacaWGbbGaamysaiaadoeaaiaawkWaaabaaaaa aaaapeGaaiiOaiabg2da9iaacckacaGGGcGabmizayaaraGaaiiOai abgUcaRiaacckacaaIYaGaaiiOaiaacocacaGGGcGaaiikaiabeI7a XjaacMcaaaa@4C0E@  and EAIC ^  =   d ¯  + # (θ) log(n), where # (θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae caaeGabaaDkiaadweacaWGbbGaamysaiaadoeaaiaawkWaaabaaaaa aaaapeGaaiiOaiabg2da9iaacckacaGGGcGabmizayaaraGaaiiOai abgUcaRiaacckacaGGJaGaaiiOaiaacIcacqaH4oqCcaGGPaGaaiiO aiGacYgacaGGVbGaai4zaiaacIcacaWGUbGaaiykaiaacYcacaGGGc Gaam4DaiaadIgacaWGLbGaamOCaiaadwgacaGGGcGaai4iaiaaccka caGGOaGaeqiUdeNaaiykaaaa@5CF4@ is the number of the model parameters.

Simulation study

We evaluate some properties of the MLEs using the classical and Bayesian analysis by means of a simulation study. We simulate the OLLGG distribution considering modality form from equation (8) by using a random variable U having a uniform distribution in (0, 1).

We take n=50, 150 and 350 and, for each replication, we calculate the MLEs α ^ ,  τ ^ ,  k ^  and  λ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafq ySdeMbaKaacaGGSaaeaaaaaaaaa8qacaGGGcGafqiXdqNbaKaacaGG SaGaaiiOaiqadUgagaqcaiaacckacaWGHbGaamOBaiaadsgacaGGGc Gafq4UdWMbaKaaaaa@4748@ . We repeat this process 1, 000 times and determine the average estimates (AEs), biases and means squared errors (MSEs). In this study, we consider two scenarios. In the first scenario, we take α = 2, τ = 5, k = 10, λ = 0.5. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegeaaaaaaaaa8qacaGGGcGaeyypa0JaaiiOaiaaikdacaGGSaGa aiiOaiabes8a0jaacckacqGH9aqpcaGGGcGaaGynaiaacYcacaGGGc Gaam4AaiaacckacqGH9aqpcaGGGcGaaGymaiaaicdacaGGSaGaaiiO aiabeU7aSjaacckacqGH9aqpcaGGGcGaaGimaiaac6cacaaI1aGaai Olaaaa@56D7@ In the second scenario, we use the values fitted in the adjustment to the temperature data set in Section 8 (α = 21.2911, τ = 13.0661, k = 2.8755, λ = 0.2882) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai ikaiabeg7aHbbaaaaaaaaapeGaaiiOaiabg2da9iaacckacaaIYaGa aGymaiaac6cacaaIYaGaaGyoaiaaigdacaaIXaGaaiilaiaacckacq aHepaDcaGGGcGaeyypa0JaaiiOaiaaigdacaaIZaGaaiOlaiaaicda caaI2aGaaGOnaiaaigdacaGGSaGaaiiOaiaadUgacaGGGcGaeyypa0 JaaiiOaiaaikdacaGGUaGaaGioaiaaiEdacaaI1aGaaGynaiaacYca caGGGcGaeq4UdWMaaiiOaiabg2da9iaacckacaaIWaGaaiOlaiaaik dacaaI4aGaaGioaiaaikdacaGGPaaaaa@6577@ . The estimates of α,τ,k, andλ  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdeMaaiilaabaaaaaaaaapeGaeqiXdqNaaiilaiaadUgacaGGSaGa aiiOaiaacggacaGGUbGaaiizaiabeU7aSjaacckaaaa@456D@ are determined by solving the nonlinear equations U α (θ) = 0,  U T (θ) = 0,  U k (θ) = 0,  U λ (θ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yvamaaBaaabaqcLbmacqaHXoqyaKqbagqaaiaacIcacqaH4oqCcaGG Paaeaaaaaaaaa8qacaGGGcGaeyypa0JaaiiOaiaaicdacaGGSaGaai iOaiaadwfadaWgaaqaaKqzadGaamivaaqcfayabaGaaiikaiabeI7a XjaacMcacaGGGcGaeyypa0JaaiiOaiaaicdacaGGSaGaaiiOaiaadw fadaWgaaqaaKqzadGaam4AaaqcfayabaGaaiikaiabeI7aXjaacMca caGGGcGaeyypa0JaaiiOaiaaicdacaGGSaGaaiiOaiaadwfadaWgaa qaaKqzadGaeq4UdWgajuaGbeaacaGGOaGaeqiUdeNaaiykaiaaccka cqGH9aqpcaGGGcGaaGimaaaa@6A1E@ . The results of the Monte Carlo study under maximum likelihood and Bayesian estimation are given in Tables 2 and 3, respectively. They indicate that the MSEs of the MLEs of α, τ, k, and λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdeMaaiilaabaaaaaaaaapeGaaiiOaiabes8a0jaacYcacaGGGcGa am4AaiaacYcacaGGGcGaamyyaiaad6gacaWGKbGaaiiOaiabeU7aSb aa@47B8@ decay toward zero as the sample size increases, as expected under first-order asymptotic theory. The same results are obtained using the Bayesian approach. In Figures 5 and 6, we present the estimated densities based on 1,000 samples of the AEs of the parameters α,τ,k, andλ  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdeMaaiilaabaaaaaaaaapeGaeqiXdqNaaiilaiaadUgacaGGSaGa aiiOaiaacggacaGGUbGaaiizaiabeU7aSjaacckaaaa@456D@ , respectively and n = 50, 150 and 350 for both scenarios. These plots are in agreement with the first-order asymptotic theory for the MLEs and reveal a fast convergence even for small sample sizes.

Simulation study of random censored values

Similarly, we also consider a simulation study in the presence of censored data. The censoring times C i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4qamaaBaaabaqcLbmacaWGPbaajuaGbeaaaaa@3BC1@  are sampled from the uniform distribution in the interval (0,v), where v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai ikaiaaicdacaGGSaGaamODaiaacMcacaGGSaaeaaaaaaaaa8qacaGG GcGaam4DaiaadIgacaWGLbGaamOCaiaadwgacaGGGcGaamODaaaa@44B3@ denotes the proportion of censored observations. In this study, the proportions of censored observations are approximately equal to 10% and 30%. In this scenario, we take the values of the parameters as α = 2, τ= 5, k=10, λ =0.15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegeaaaaaaaaa8qacaGGGcGaeyypa0JaaiiOaiaaikdacaGGSaGa aiiOaiabes8a0jabg2da9iaacckacaaI1aGaaiilaiaacckacaWGRb Gaeyypa0JaaGymaiaaicdacaGGSaGaaiiOaiabeU7aSjaacckacqGH 9aqpcaaIWaGaaiOlaiaaigdacaaI1aaaaa@5250@ . Table 4 lists the averages of the MLEs (Mean) and the MSEs. The figures in this table indicate that the MSEs increase when the censoring percentage increases. Further, the MSEs of the MLEs of α,τ,k, andλ  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdeMaaiilaabaaaaaaaaapeGaeqiXdqNaaiilaiaadUgacaGGSaGa aiiOaiaacggacaGGUbGaaiizaiabeU7aSjaacckaaaa@456D@ decay toward zero as the sample size increases, as expected under first-order asymptotic theory.

Table 5 lists the posterior means (Mean) and the MSEs. We can note that increasing the sample size and decreasing the percentage of censure, the estimates are closer to the true values with lower MSEs.

Scenario 1

n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju aGqaaaaaaaaaWdbiaa=5gaaaa@3954@

Parameters

AEs

Biases

MSEs

50

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

2.0404

-0.0404

0.1984

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabes8a0baa@3A1E@

5.3257

-0.3257

1.8523

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiaadUgaaaa@3949@

10.7653

-0.7653

2.9000

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeU7aSbaa@3A0D@

0.1708

-0.0208

0.0115

150

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

2.0393

-0.0393

0.0242

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabes8a0baa@3A1E@

5.1585

-0.1585

0.2070

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiaadUgaaaa@3949@

9.8491

0.1509

1.9955

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeU7aSbaa@3A0D@

0.1528

-0.0028

0.0011

350

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

2.0065

-0.0065

0.0024

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabes8a0baa@3A1E@

5.0417

-0.0417

0.0276

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiaadUgaaaa@3949@

10.012

-0.0012

0.2220

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeU7aSbaa@3A0D@

0.1511

-0.0011

0.0001

Scenario 2

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

Parameters

AEs

Biases

MSEs

50

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

21.1422

0.1489

7.7557

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabes8a0baa@3A1E@

15.5491

-2.483

64.7128

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiaadUgaaaa@3949@

4.5288

-1.6533

22.2571

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeU7aSbaa@3A0D@

0.3400

-0.0518

0.0685

150

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

21.3407

-0.0496

2.1903

τ

13.8973

-0.8312

9.9415

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGRbaaaa@3929@

3.2666

-0.3911

3.3779

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeU7aSbaa@3A0D@

0.3060

-0.0178

0.0167

350

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

21.2908

0.0003

0.8393

τ

13.3138

-0.2477

3.0814

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGRbaaaa@3929@

3.0593

-0.1838

1.2018

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeU7aSbaa@3A0D@

0.2956

-0.0074

0.0058

Table 2 AEs, biases and MSEs for the estimates of the OLLGG parameters

In Figures 7 and 8, we present the estimated densities based on 1,000 samples of the AEs of the parameters α,τ,k, andλ  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdeMaaiilaabaaaaaaaaapeGaeqiXdqNaaiilaiaadUgacaGGSaGa aiiOaiaacggacaGGUbGaaiizaiabeU7aSjaacckaaaa@456D@ respectively, and n = 50, 150 and 350 for both scenarios with 10% and 30% of censored. These plots are in agreement with the first-order asymptotic theory for the MLEs and indicate a fast convergence even for small sample sizes and considering censored data.

Applications

In this section, we provide two applications to real data to prove empirically the flexibility of the OLLG model. The computations are performed using the R software and NLMixed procedure in SAS. In the first application, we give an application for bimodal data comparing the OLLGG, GG and Weibull models. In the second application, we prove the usefulness of the new distribution for censored data.

Figure 5 Some OLLGG density functions at the true parameter values and at the AEs for scenario 1.

Figure 6 Some OLLGG density functions at the true parameter values and at the AEs for scenario 2.

Temperature data

The first data set refers to daily temperatures ( C 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaae aajuaGdaahbaqabeaajugWaiaaicdaaaqcfaOaam4qaaGccaGLOaGa ayzkaaaaaa@3CC2@ ( n=365 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaacaWGUbGaeyypa0JaaG4maiaaiAdacaaI1aaacaGLOaGaayzk aaaaaa@3D8C@ in the period from January 1 to December 31, 2011 in the city of Piracicaba obtained from the Department of Biosystems Engi-neering of the Luiz de Queiroz Superior School of Agriculture (ESALQ), part of the University of São Paulo (USP).

We show the superiority of the OLLGG distribution as compared to some of its sub-mo¬dels and also to the following non-nested models: the exponentiated generalized gamma (EGG) proposed by Cordeiro et al.28 and beta Weibull (BW) distributions. The BW cdf (Famoye et al.,29) is given by

Scenario 1

n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju aGqaaaaaaaaaWdbiaa=5gaaaa@3954@

Parameters

Means

Biases

MSEs

50

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

1.8130

0.1870

0.0703

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabes8a0baa@3A1E@

4.1719

0.8281

1.1152

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiaadUgaaaa@3949@

9.9011

0.0989

0.0601

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeU7aSbaa@3A0D@

0.2795

-0.1295

0.0319

150

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

1.8891

0.1109

0.0240

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabes8a0baa@3A1E@

4.4648

0.5352

0.4132

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiaadUgaaaa@3949@

9.9893

0.0107

0.0824

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeU7aSbaa@3A0D@

0.2005

-0.0505

0.0031

350

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

1.9283

0.0717

0.0128

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabes8a0baa@3A1E@

4.6425

0.3575

0.2232

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiaadUgaaaa@3949@

9.9929

0.0071

0.0913

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeU7aSbaa@3A0D@

0.1812

-0.0312

0.0014

Scenario 2

n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju aGqaaaaaaaaaWdbiaa=5gaaaa@3954@

Parameters

Means

Biases

MSEs

50

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

19.4002

1.8909

6.0127

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabes8a0baa@3A1E@

10.6098

2.4563

15.3457

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiaadUgaaaa@3949@

5.2667

-2.3912

6.8778

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeU7aSbaa@3A0D@

0.4200

-0.1318

0.0536

150

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

20.4151

0.8760

1.5490

τ

11.5327

1.5334

5.6849

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGRbaaaa@3929@

4.1478

-1.2723

2.3679

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeU7aSbaa@3A0D@

0.3344

-0.0462

0.0070

350

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

21.3516

-0.0605

0.1011

τ

13.2395

-0.1734

0.2929

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGRbaaaa@3929@

3.0900

-0.2145

0.2465

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeU7aSbaa@3A0D@

0.3040

-0.0158

0.0020

Table 3 Posterior means, biases and MSEs for the estimates of the OLLGG parameters

F( t )= 1 B( a,b ) 0 { 1exp[ ( t α )γ ] } w a1 ( 1w ) b1 dw. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OramaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9maalaaabaGa aGymaaqaaiaadkeadaqadaqaaiaadggacaGGSaGaamOyaaGaayjkai aawMcaaaaadaWdbaqaamaaDaaabaqcLbmacaaIWaaajuaGbaqcga4a aiWaaKqbagaajugWaiaaigdacqGHsislciGGLbGaaiiEaiaacchajy aGdaWadaqcfayaaKqzadGaeyOeI0scga4aaeWaaKqbagaajyaGdaWc caqcfayaaKqzadGaamiDaaqcfayaaKqzadGaeqySdegaaaqcfaOaay jkaiaawMcaaGGaaKqzadGae83SdCgajuaGcaGLBbGaayzxaaaacaGL 7bGaayzFaaaaaaqabeqacqGHRiI8aiaadEhajyaGdaahaaqcfayabe aajugWaiaadggacqGHsislcaaIXaaaaKqbaoaabmaabaGaaGymaiab gkHiTiaadEhaaiaawIcacaGLPaaajyaGdaahaaqcfayabeaajugWai aadkgacqGHsislcaaIXaaaaKqbakaadsgacaWG3bGaaiOlaaaa@747D@

The Kumaraswamy generalized gamma (KumGG) distribution (for t > 0) is defined by Pascoa et al.5 Its density function with five positive parameters α,τ,k,λ and φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdeMaaiilaiabes8a0jaacYcacaWGRbGaaiilaiabeU7aSbbaaaaa aaaapeGaaiiOa8aacaWGHbGaamOBaiaadsgapeGaaiiOa8aacqaHgp GAaaa@46FB@  is given by

f( t )= λφτ αΓ( k ) ( t α ) τk1 exp[ ( t α ) τ ] { γ 1 [ k ( t α ) τ ] } λ1 ( 1 { γ 1 [ k, ( t α ) τ ] } λ ) φ1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OzamaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9maalaaabaGa eq4UdWMaeqOXdOMaeqiXdqhabaGaeqySdeMaeu4KdC0aaeWaaeaaca WGRbaacaGLOaGaayzkaaaaamaabmaabaWaaSaaaeaacaWG0baabaGa eqySdegaaaGaayjkaiaawMcaamaaCaaajuaibeqaaiabes8a0jaadU gacqGHsislcaaIXaaaaKqbakGacwgacaGG4bGaaiiCamaadmaabaGa eyOeI0YaaeWaaeaadaWcaaqaaiaadshaaeaacqaHXoqyaaaacaGLOa GaayzkaaWaaWbaaeqajuaibaGaeqiXdqhaaaqcfaOaay5waiaaw2fa amaacmaabaGaeq4SdCgddaWgaaqcfasaaKqzGbGaaGymaaqcfasaba qcfa4aamWaaeaacaWGRbWaaeWaaeaadaWcaaqaaiaadshaaeaacqaH XoqyaaaacaGLOaGaayzkaaWaaWbaaeqajuaibaGaeqiXdqhaaaqcfa Oaay5waiaaw2faaaGaay5Eaiaaw2haamaaCaaabeqcfasaaiabeU7a SjabgkHiTiaaigdaaaqcfa4aaeWaaeaacaaIXaGaeyOeI0YaaiWaae aacqaHZoWzjyaGdaWgaaqcfayaaKqzadGaaGymaaqcfayabaWaamWa aeaacaWGRbGaaiilamaabmaabaWaaSaaaeaacaWG0baabaGaeqySde gaaaGaayjkaiaawMcaamaaCaaajuaibeqaaiabes8a0baaaKqbakaa wUfacaGLDbaaaiaawUhacaGL9baadaahaaqabKqbGeaacqaH7oaBaa aajuaGcaGLOaGaayzkaaqcga4aaWbaaKqbagqabaqcLbmacqaHgpGA cqGHsislcaaIXaaaaaaa@8EF1@ , (26)

n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWFUbaaaa@379C@

Parameters

Actual values

0%

10%

30%

50

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

2.00

2.0404 (0.1984)

2.0366(0.2257)

2.0441 (0.2836)

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabes8a0baa@3A1E@

5.00

5.3257 (1.8523)

5.395 (3.3121)

5.5626 (4.3955)

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiaadUgaaaa@3949@

10.00

10.7653 (2.9900)

10.9566 (3.20461)

11.2739 (3.63055) (3.63055)

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeU7aSbaa@3A0D@

0.15

0.1708 (0.0115)

0.1708 (0.0149)

0.1736 (0.0201)

150

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

2.00

2.0393 (0.0242)

2.0382 (0.03220)

2.0427 (0.0621)

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabes8a0baa@3A1E@

5.00

5.1585 (0.2070)

5.1763 (0.2784)

5.2257 (0.5882)

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiaadUgaaaa@3949@

10.00

9.8491 (1.9955)

9.9663 (3.2201)

10.0686 (7.2771)

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeU7aSbaa@3A0D@

0.15

0.1528 (0.0011)

0.1521 (0.0015)

0.1539 (0.0022)

350

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

2.00

2.0065 (0.0024)

2.0089 (0.0033)

2.0181 (0.0115)

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabes8a0baa@3A1E@

5.00

5.0417 (0.0276)

5.0483 (0.0315)

5.0823 (0.0969)

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiaadUgaaaa@3949@

10.00

10.0120 (0.2220)

9.9941 (0.3281)

9.9645 (1.3263)

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeU7aSbaa@3A0D@

0.15

0.1511 (0.0001)

0.1506 (0.0002)

0.1510 (0.0005)

Table 4 MLEs and (MSEs) for the estimates of the OLLGG parameters

n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWFUbaaaa@379C@

Parameteres

Actual values

0%

10%

30%

50

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

2.00

1.8130 (0.0703)

1.7642 (0.1691)

1.6585 (0.3824)

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabes8a0baa@3A1E@

5.00

4.1719 (1.1152)

3.9498 (1.8535)

3.6105 (2.7121)

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiaadUgaaaa@3949@

10.00

9.9011 (0.0601)

9.6298 (3.3379)

10.2626 (6.3004)

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeU7aSbaa@3A0D@

0.15

0.2795 (0.0319)

0.3293 (0.0623)

0.4377 (0.3072)

150

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

2.00

1.8891 (0.0240)

1.9183 (0.0474)

1.9070 (0.0548)

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabes8a0baa@3A1E@

5.00

4.4648 (0.4132)

4.4970 (0.5506)

4.4131 (0.6805)

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiaadUgaaaa@3949@

10.00

9.9893 (0.0824)

9.6082 (3.9058)

9.5601 (4.2357)

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeU7aSbaa@3A0D@

0.15

0.2005 (0.0031)

0.2169 (0.0061)

0.2397 (0.0119)

350

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

2.00

1.9283 (0.0128)

1.9348 (0.0169)

1.9336 (0.0211)

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabes8a0baa@3A1E@

5.00

4.6425 (0.2232)

4.6729 (0.2098)

4.6333 (0.2833)

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiaadUgaaaa@3949@

10.00

9.9929 (0.0913)

10.0471 (1.1531)

9.9108 (1.1627)

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeU7aSbaa@3A0D@

0.15

0.1812 (0.0014)

0.1795 (0.0012)

0.1876 (0.0020)

Table 5 Posterior means and (MSEs) for the estimates of the OLLGG parameters

where γ 1 ( k,x )= γ( k,x ) Γ( k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq 4SdCwcga4aaSbaaKqbagaajugWaiaaigdaaKqbagqaamaabmaabaGa am4AaiaacYcacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSGaaeaacq aHZoWzdaqadaqaaiaadUgacaGGSaGaamiEaaGaayjkaiaawMcaaaqa aiabfo5ahnaabmaabaGaam4AaaGaayjkaiaawMcaaaaaaaa@4C16@ is the incomplete gamma function ratio, α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegaaa@396D@ is a scale parameter and the other positive parameters τ,k,φ and λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iXdqNaaiilaiaadUgacaGGSaGaeqOXdOgeaaaaaaaaa8qacaGGGcWd aiaadggacaWGUbGaamiza8qacaGGGcWdaiabeU7aSbaa@44AC@ are shape parameters.

Next, we report the MLEs and their corresponding standard errors (SEs) in parentheses of the parameters and the values of the Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC) and Bayesian Information Criterion (BIC). The lower the values of these criteria, the better the fit. In each case, the parameters are estimated by maximum likelihood using the NLMixed procedure in SAS.

We compute the MLEs of the model parameters and the AIC, CAIC and BIC statistics for each fitted model to these data. The OLLGG model was fitted and compared with the fits from two sub-models cited before. The results are reported in Table 6. The three information

Figure 7 Some OLLGG density functions at the true parameter values and at the AEs for scenario 1 and censored data.

Figure 8 Some OLLGG density functions at the true parameter values and at the AEs for scenario 2 and censoringed data.

criteria agree on the model’s ranking. The lowest values of these criteria correspond to the OLLGG distribution, which could be preferred in this case.

We perform the LR tests to verify if the extra shape parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeU7aSbaa@39EE@  is really necessary. We provide the histogram of the data and the fitted density functions. Formal tests for the skewness parameter in the generated distribution can be based on LR statistics. The LR statistics for comparing the fitted models are listed in Table 7. We reject the null hypotheses in the two tests in favor of the wider distribution. The rejection is extremely highly significant and it gives clear evidence of the potential need for the shape parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeU7aSbaa@39EE@ when modeling real data. More information is provided by a visual comparison of the histogram of the data and the fitted density functions. The plots of the fitted OLLGG, GG and Weibull densities are displayed in Figure 9a. The estimated OLLGG density provides the closest fit to the histogram of the data.

Model

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiWaju aGqaaaaaaaaaWdbiab=f7aHbaa@3A00@

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiWaju aGqaaaaaaaaaWdbiab=r8a0baa@3A26@

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju aGcaWFRbaaaa@3931@

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiWaju aGqaaaaaaaaaWdbiab=T7aSbaa@3A15@

φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieqaju aGqaaaaaaaaaWdbiaa=z8aaaa@39AD@

AIC

CAIC

BIC

OLLGG

21.2911

13.0661

2.8755

0.2882

1752.1

1752.2

1767.7

(0.0012)

(0.0234)

(0.1095)

(0.0127)

KumGG

25.3965

25.2759

12.8897

0.0243

2.3730

1780.6

1780.7

1800.1

(1.6147)

(3.0850)

(0.6885)

(0.0079)

(2.4887)

EGG

23.8850

22.9475

12.8766

0.0215

1

1777.6

1777.7

1793.2

(2.8175)

(7.7331)

(9.1805)

(0.0019)

GG

26.1868

33.1789

0.1888

1

1777.6

1777.7

1788.3

(0.1877)

(7.5737)

(0.0514)

(-)

Weibull

23.5808

9.4296

1

1

1796.4

1796.5

1804.2

(0.1376)

(0.4038)

(-)

(-)

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeg7aHbaa@39F8@

γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqa aaaaaaaaWdbiabeo7aNbaa@3A00@

a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGHbaaaa@391F@

b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGIbaaaa@3920@

BW

25.0516

25.7636

0.2460

0.6159

1778.1

1778.3

1793.7

(1.3335)

(8.2195)

(0.0858)

(0.4512)

Table 6 MLEs of the model parameters for the temperature data and information criteria

Models

Hypotheses

Statistic w

p-value

OLLGG vs GG
OLLGG vs Weibull

H 0 :λ=1vs H 1 : H 0 isfalse MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadIealmaaBaaameaacaaIWaaabeaajugibiaacQdacqaH7oaBcqGH 9aqpcaaIXaGaaGPaVlaaykW7caWG2bGaam4CaiaaykW7caWGibWcda WgaaadbaGaaGymaaqabaqcLbsacaaMc8UaaiOoaiaaykW7caaMc8Ua amisaSWaaSbaaWqaaiaaicdaaeqaaSGaaGPaVlaaykW7jugibiaadM gacaWGZbGaaGPaVlaadAgacaWGHbGaamiBaiaadohacaWGLbaaaa@5A81@ H 0 :λ=k=1vs H 1 : H 0 isfalse MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadIealmaaBaaameaacaaIWaaabeaajugibiaacQdacqaH7oaBcqGH 9aqpcaWGRbGaeyypa0JaaGPaVlaaykW7caaIXaGaaGPaVlaaykW7ca WG2bGaam4CaiaaykW7caWGibWcdaWgaaadbaGaaGymaaqabaqcLbsa caaMc8UaaiOoaiaaykW7caaMc8UaamisaSWaaSbaaWqaaiaaicdaae qaaSGaaGPaVlaaykW7jugibiaadMgacaWGZbGaaGPaVlaadAgacaWG HbGaamiBaiaadohacaWGLbaaaa@5F8D@

26.5
48.3

<0.0001
<0.0001

Table 7 LR tests

In order to assess if the model is appropriate, plots of the fitted OLLGG, GG and Weibull cumulative distributions and the empirical cdf are displayed in Figure 9b. They indicate that the OLLGG distribution gives a good fit to these data.

Under a Bayesian approach, we also fit the OLLGG model and some models described above. For each fitted model to these data, the Bayesian estimates of the model parameters and the DIC, EAIC and EBIC statistics are shown in the Tables 8 and 9, respectively. According to the three Bayesian information criteria, the OLLGG model stands out as the best one.

Survival data

Aids is a pathology that mobilizes its sufferers because of the implications for their interpersonal relationships and reproduction. Therapeutic advances have enabled seropositive women to bear children safely. In this respect, the pediatric immunology outpatient service and social service of Hospital das Cl´ınicas have a special program for care of newborns of seropositive mothers to provide orientation and support for antiretroviral therapy to allow these women and their babies to live as normally as possible. Here, we analyze a data set on the time to serum reversal of 148 children exposed to HIV by vertical transmission, born at Hospital das Cl´ınicas (associated with the Ribeirão Preto School of Medicine) from 1995 to 2001, where the mothers were not treated (Silva,30; Perdoná,31). Vertical HIV transmission can occur during gestation in around 35% of cases, during labor and birth itself in some 65% of cases, or during breast feeding, varying from 7% to 22% of cases. Serum reversal or serological reversal can occur in children of HIV-contaminated mothers. It is the process by which HIV antibodies disappear from the blood in an individual who tested positive for HIV infection. As the months pass, the maternal antibodies are eliminated and the child ceases to be HIV positive. The exposed newborns were monitored until definition of their serological condition, after administration of Zidovudin (AZT) in the first 24 hours and for the following 6 weeks. We assume that the lifetimes are independently distributed, and also independent from the censoring mechanism.

Figure 9 (a) Estimated densities of the OLLGG, GG and Weibull models for fibre data. (b) Estimated cumulative functions of the OLLGG, GG and Weibull models and the empirical cdf for temperature data.

Model

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeg7aHbaa@39D9@

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abes8a0baa@39FF@

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadUgaaaa@392A@

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeU7aSbaa@39EE@

φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeA8aQbaa@39F7@

OLLGG

20.5189 (0.7529)

12.6685 (1.2244)

4.3121 (1.2345)

0.2245 (0.0456)

 

 

(18.8963, 21.8643)

(10.2667, 14.8841)

(2.0842, 6.8480)

(0.1573, 0.3168)

 

KumGG

25.4831 (0.1970)

25.7606 (0.2195)

13.3406 (0.1878)

0.0226 (0.00109)

2.3779 (0.1234)

 

(25.1727, 25.8274)

(25.3986, 26.1771)

(13.0556, 13.7286)

(0.0205, 0.0247)

(2.1607, 2.6765)

EGG

24.2333 (0.1250)

23.9107 (0.3303)

9.5727 (0.6326)

0.0278 (0.0022)

 

 

(23.9937, 24.4557)

(23.3771, 24.4652)

(8.6935, 10.9631)

(0.0237, 0.0322)

 

GG

26.1305 (0.2334)

32.4133 (7.9028)

0.2104 (0.0669)

 

 

 

(25.6783, 26.5446)

(18.2675, 48.2415)

(0.0981, 0.3381)

 

 

Weibull

23.5782 (0.1381)

9.3741 (0.4078)

 

 

 

 

(23.3033, 23.8465)

(8.5262, 10.1351)

 

 

 

Table 8 Posterior mean (standard deviation) and 95% Highest Posterior Density (HPD) interval of the model parameters

Model

DIC

EAIC

EBIC

OLLGG

1746.344

1752.546

1768.146

KumGG

1775.319

1783.009

1802.508

EGG

1773.724

1779.722

1795.322

GG

1774.657

1779.718

1791.418

Weibull

1796.501

1798.483

1806.283

Table 9 Bayesian information criteria

Tables 10-12 list, respectively, the MLEs and their corresponding SEs in paren¬theses and posterior mean (standard deviation) and 95% highest posterior density (HPD) interval for the parameters and the values of the model selection statistics. These results indicate that the OLLGG model has the lowest AIC, BIC, CAIC, DIC, EAIC e EBIC values among those of all fitted models, and hence it could be chosen as the best model.

Note that the KumGG model is competitive with the model OLLGG. However, the model KumGG has two disadvantages:

It does not model bimodal data.

It has five parameters, i.e. is less parsimonious.

Model

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeg7aHbaa@39D9@

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abes8a0baa@39FF@

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadUgaaaa@392A@

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeU7aSbaa@39EE@

φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeA8aQbaa@39F7@

AIC

BIC

CAIC

OLLGG

352.0

46.9706

0.1043

0.4468

 

771.1

783.6

771.9

 

(1.0590)

(1.4847)

(0.0324)

(0.0881)

 

 

 

 

KumGG

350.05

49.8303

0.2176

0.1282

0.3424

770.7

785.7

771.1

 

(1.5707)

(5.8895)

(0.0073)

(0.0236)

(0.0522)

 

 

 

EGG

350.45

22.2991

1.0741

0.1072

1

798.1

810.1

798.3

 

(2.4187)

(0.0375)

(0.0004)

(0.0113)

 

 

 

 

GG

379.40

24.5312

0.0974

1

1

783.7

792.7

783.9

 

(8.8211)

(10.3258)

(0.0402)

 

 

 

 

 

Weibull

307.62

3.1132

1

1

1

808.0

814.0

808.1

 

(12.3523)

(0.3250)

 

 

 

 

 

 

 

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeg7aHbaa@39D9@

γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaHZoWzaaa@3995@

a

b

 

 

 

 

BW

349.99

6.3895

0.3944

0.9273

 

797.9

809.9

798.2

 

(23.0923)

(0.7657)

(0.0468)

(0.3361)

 

 

 

 

Table 10 MLEs of the model parameters for the serum reversal data, the corresponding SEs (given in parentheses) and the AIC, BIC and CAIC statistics

A comparison of the proposed distribution with some of its sub-models using LR statis¬tics is performed in Table 13. The figures in this table, specially the p-values, suggest that the OLLGG model yields a better fit to these data than the other three distributions. In order to assess if the model is appropriate, plots of the estimated survival functions of the KumGG, EGG, GG, Weibull and BW distributions and the empirical survival function are given in Figure 10. We conclude that the OLLGG distribution provides a good fit for these data.

Model

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeg7aHbaa@39D9@

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abes8a0baa@39FF@

k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadUgaaaa@392A@

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeU7aSbaa@39EE@

φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeA8aQbaa@39F7@

OLLGG

348.9 (11.5813)

47.7542 (22.7428)

0.1741 (0.1443)

0.4342 (0.1619)

 

 

(324.1, 366.5)

(15.3289, 98.0374)

(0.0230, 0.4910)

(0.1331, 0.7222)

 

KumGG

351 (1.0623)

42.8395 (1.4827)

0.0114 (0.00383)

3.0697 (0.5911)

0.3601 (0.0550)

 

(349.0, 353.1)

(39.7113, 45.1984)

(0.0058, 0.0191)

(1.7862, 4.0205)

(0.2678, 0.4790)

EGG

348.6 (0.8519)

19.7657 (1.1290)

4.3776 (1.0638)

0.0309 (0.0097)

 

 

(347.3, 350.4)

(18.3590, 22.5768)

(2.5525, 6.0764)

(0.0177, 0.0505)

 

GG

376.3 (6.7347)

44.2185 (16.2531)

0.0652 (0.0341)

 

 

 

(364.5, 389.9)

(15.9226, 71.1764)

(0.0279, 0.1302)

 

 

Weibull

307.5 (12.6278)

3.0864 (0.3237)

 

 

 

 

(283.7, 333.4)

(2.4619, 3.7203)

 

 

 

Table 11 Posterior means (Stantard Deviations) and 95% HPD intervals for the model parameters in the serum reversal data

Model

DIC

EAIC

EBIC

OLLGG

752.017

775.385

787.3738

KumGG

764.746

772.79

787.776

EGG

781.475

788.53

800.519

GG

776.599

783.425

792.417

Weibull

807.984

809.989

815.983

Table 12 Bayesian information criterion

Model

Hypotheses

Statistic w

p-value

OLLGG vs GG
OLLGG vs Weibull

H 0 :λ=1vs H 1 : H 0 isfalse MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadIealmaaBaaameaacaaIWaaabeaajugibiaacQdacqaH7oaBcqGH 9aqpcaaIXaGaaGPaVlaaykW7caWG2bGaam4CaiaaykW7caWGibWcda WgaaadbaGaaGymaaqabaqcLbsacaaMc8UaaiOoaiaaykW7caaMc8Ua amisaSWaaSbaaWqaaiaaicdaaeqaaSGaaGPaVlaaykW7jugibiaadM gacaWGZbGaaGPaVlaadAgacaWGHbGaamiBaiaadohacaWGLbaaaa@5A81@ H 0 :φ=λ=k=1vs H 1 : H 0 isfalse MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadIealmaaBaaameaacaaIWaaabeaajugibiaacQdacaaMc8Ecfaie aaaaaaaaa8qacqaHgpGAcqGH9aqpcqaH7oaBjugib8aacqGH9aqpca WGRbGaeyypa0JaaGPaVlaaykW7caaIXaGaaGPaVlaaykW7caWG2bGa am4CaiaaykW7caWGibWcdaWgaaadbaGaaGymaaqabaqcLbsacaaMc8 UaaiOoaiaaykW7caaMc8UaamisaSWaaSbaaWqaaiaaicdaaeqaaSGa aGPaVlaaykW7jugibiaadMgacaWGZbGaaGPaVlaadAgacaWGHbGaam iBaiaadohacaWGLbaaaa@6527@

13.0
40.3

0.00031
<0.0001

Table 13 LR statistics for the serum reversal data

Concluding remarks

The odd log-logistic generalized gamma (OLLGG) distribution provides a rather general and flexible framework for statistical analysis of positive data. It unifies some previously known distributions and yields a general overview of these distributions for theoretical studies. It also represents a rather flexible mechanism for fitting a wide spectrum of real world data sets. The OLLGG distribution is motivated by the wide use of the generalized gamma (GG) distribution in practice, and also for the fact that the generalization provides more flexibility to analyze skewed data. This extension provides a continuous cross over to other cases with different shapes (e.g. a particular combination of skewness and kurtosis). We derive an expansion for the density function as a linear combination of GG density functions. We obtain explicit expressions for the moments and moment generating function. The estimation of parameters is approached by the maximum likelihood method and a Bayesian approach, where the Gibbs algorithms along with metropolis steps are used to obtain the posterior summaries of interest for survival data with right censoring. Two applications of the OLLGG distribution to real data show that it could provide a better fit than other statistical models frequently used in lifetime data analysis.

Figure 10 Estimated survival function by fitting the OLLGG distribution and some other models and the empirical survival for the serum reversal data. (a) OLLGG vs KGG and GG. (b) OLLGG vs BW and Weibull.

Acknowledgments

None.

Conflicts of interest

None.

References

  1. Gleaton JU, Lynch JD. On the distribution of the breaking strain of a bundle of brittle elastic fibers. Advances in Applied Probability. 2006;36(1):98–115.
  2. Braga AS, Cordeiro GM, Ortega EMM, et al. The odd log-logistic normal distribution: Theory and applications in analysis of experiments. Journal of Statistical Theory and Practice. 2016;10(2):311–335.
  3. da Cruz JN, Ortega EMM, Cordeiro GM. The log-odd log-logistic Weibull re-gression model: Modelling, estimation, influence diagnostics and residual analysis. Journal of Statistical Computation and Simulatio. 2016;86(8):1516–1538.
  4. Cordeiro GM, Ortega EMM, Silva GO. The exponentiated generalized gamma distribution with application to lifetime data. Journal of Statistical Computation and Simulation. 2011;81(7):827–842.
  5. Pascoa MAR, Ortega EMM, Cordeiro GM. The Kumaraswamy generalized gamma distribution with application in survival analysis. Statistical Methodology. 2011;8(5):411–433.
  6. Ortega EMM, Cordeiro GM, Pascoa MAR. The generalized gamma geometric distribution. Journal of Statistical Theory and Applications. 2011;10(3):433–454.
  7. Cordeiro GM, Castellares F, Montenegro LC, de Castro M. The beta generalized gamma distribution. Statistics. 2013;47(4):888–900.
  8. Lucena SEF, Silva AH, Cordeiro GM. The transmuted generalized gamma distribution: Properties and application. Journal of Data Science. 2015;13(1):409–420.
  9. Silva RB, Bourguignon M, Cordeiro GM. A new compounding family of dis- tributions: The generalized gamma power series distributions. Journal of Computational and Applied Mathematics. 2016;303(C):119–139.
  10. http://www.tandfonline.com/doi/abs/10.1081/STA-120003130
  11. Stacy EW. A generalization of the gamma distribution. Annals of Mathematical Statistics. 1962;33(3):1187–1192.
  12. Stacy EW, Mihram GA. Parameter estimation for a generalized gamma distri- bution. Technometrics. 1965;7(3):349–358.
  13. Lawless JF. Statistical Models and Methods for Lifetime Data. 2nd ed. New York, USA;2003.
  14. Mudholkar GS, Srivastava DK. Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Transactions on Reliability. 1993;42(2):299–302.
  15. Mudholkar GS, Srivastava DK, Freimer M. The exponentiated Weibull family: A reanalysis of the bus-motor-failure data. Technometrics. 1995;37(4):436–445.
  16. Nadarajah S. The exponentiated Gumbel distribution with climate application. Environmetrics. 2005;17(1):13–23.
  17. Shirke DT, Kakade CS. On exponentiated lognormal distribution. International Journal of Agricultural and Statistical Sciences. 2006;2:319–326.
  18. Nadarajah S, Gupta AK. The exponentiated gamma distribution with application to drought data. Calcutta Statistical Association Bulletin. 2007;59:29–54.
  19. Nadarajah S, Kotz S. The exponetiated type distributions. Acta Applicandae Mathematicae. 2006;92(2):97–111.
  20. Gradshteyn and Ryzhik's Table of Integrals, Series, and Products. 6th edn. Alan Jeffrey and Daniel Zwillinger; 2000.
  21. Nadarajah S. Generalized gamma variables with drought application. Journal of the Korean Statistical Society. 2008;37(1):37–45.
  22. Murphy JA. Handbook of hypergeometric integrals-theory, application, tables, computer programs, by Harold Exton, Ellis Horwood Limited, Chichester, 1978. No. of pages: 316, price £15. International Journal for Numerical Methods in Engineering. 1979;14(1):1–155.
  23. Aarts RM. Lauricella functions. From MathWorld, A Wolfram Web Resource, created by Eric W Weisstein. 2000.
  24. http://www.emeraldinsight.com/doi/pdfplus/10.1108/10610420610679593
  25. Spiegelhalter DJ, Best NG, Carlin BP, et al. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society Series. 2002;B64(4):583–639.
  26. Brooks SP, Jim Smith, Aki Vehtari, et al. Discussion on the paper by Spiegelhalter, Best, Carlin, and van der Linde. Journal of the Royal Statistical Society. Series B: Statistical Methodology. 2002;64(4):616–639.
  27. Carlim BP, Louis TA. Bayes and empirical bayes methods for data analysis. 2nd edn. In: Chapman and Hall. Boca Raton, Florida, USA. 2001;85(503): 381-383.
  28. Cordeiro GM, Alizadeh M, Tahir MH, et al. The beta odd log-logistic generalized family of distributions. Hacettepe Journal of Mathematics and Statistics. 2016;45: 1–28.
  29. Famoye F, Lee C, Olumolade O. The beta-Weibull distribution. Journal of Statistical Theory and Applications. 2005;4:121–136.
  30. Silva ANF. Estudo evolutivo das criancas expostas ao HIV enotificadas pelo nucleo de vigilancia epidemiologica do HCFMRP-USP. M.Sc. Thesis. University of Sao Paulo, Brazil. 2004.
  31. Perdona GSC. Modelos de riscos aplicadosa analise de sobrevivencia. Doctoral Thesis, Institute of Computer Science and Mathematics, University of Sao Paulo, Brasil. 2006.
Creative Commons Attribution License

©2017 Prataviera,, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.