Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 7 Issue 5

Smoothing parameter estimation for first order discrete time infinite impulse response filters

Livio Fenga

Italian National Institute of Statistics, Italy

Correspondence: Livio Fenga, Italian National Institute of Statistics, Italy, Tel 3906 4673 3222

Received: August 27, 2018 | Published: October 22, 2018

Citation: Fenga L. Smoothing parameter estimation for first order discrete time infinite impulse response filters. Biom Biostat Int J. 2018;7(5):483-489. DOI: 10.15406/bbij.2018.07.00250

Download PDF

Abstrat

Discrete time Infinite Impulse Response low-pass filters are widely used in many fields such as engineering, physics and economics. Once applied to a given time series, they have the ability to pass low frequencies and attenuate high frequencies. As a result, the data are expected to be less noisy. A properly filtered signal, is generally more informative with positive repercussions involving qualitative aspects – e.g. visual inspection and interpretation – as well as quantitative ones, such as its digital processing and mathematical modelling. In order to effectively disentangle signal and noise, the filter smoothing constant, which controls the degree of smoothness in First Order Discrete Time Infinite Impulse Response Filters, has to be carefully selected. The proposed method conditions the estimation of the smoothing parameter to a modified version of the information criterion of the type Hannan - Quinn which in turns is built using the Estimated Log Likelihood Function of a model of the class SARIMA (Seasonal Auto Regressive Moving Average). Theoretical evidences as well as an empirical study conducted on a particularly noisy time series will be presented.

Keywords: big data, discrete time infinite impulse response filters, denoising, hannan quinn information criterion, sarima models, time series

Introduction

Among the many denoising methods and techniques successfully employed for univariate time series – e.g. based on regression,1 Kalman filter,2,3 decomposition,4 wavelet5,6 and non-linear method7– those based on algorithms of the type Infinite Impulse Response (IIR) exponential filters have been massively used, given their satisfactory performances (see, for example,8 and, more recently9). Such methods are useful for their ability to maximize the amount of relevant information that can be extracted from “real life” time series. In fact, regardless the scientific field time dependent data are collected for (e.g. engineering, economics, physics, environmental), they can never be error–free. In spite of all of the efforts and precautions one might take in order to provide clean data – e.g. robust data acquisition methods, reliable routine checks, sophisticated procedures for error correction, fail safe data storage and data communication lines – reality is way too complex for such procedures to be completely reliable.

Noise, in fact, is simply an ubiquitous entity able to affect virtually all the stages a given analysis of a time series can be broken into, showing uncountable expressions that can be only partially controlled, never fully removed nor exactly pinpointed. Many are the fields where noise reduction methods are employed: data mining, satellite data, radio communications, radar, sonar and automatic speech recognition, are just a few of them. Often, the treatment of noisy data is critical, as in the case of bio–medical signals, tracking systems for defense purposes or economics, where the trend or the seasonal patterns of vital economic variables can be obscured or distorted by noise components. However, the type of time series likely to be easily affected by noise – as well as by sudden or unpredictable high frequency variations – can be found in the economic and social fields. A telling example, is the great deal of data generated by web–based services (e.g. Google or Twitter), which are commonly and publicly available, in many instances free of charge. However, statistical estimation procedures based on this type of data can embody many sources of uncertainty and instability. They are related, for example, to technical (computer alphabetization) or psychological (e.g. emotional driven spikes and other form of data perturbations) reasons. Even when data are collected and validated by Official Organisms (e.g. national and super-national statistical offices or central banks), strong psychological components can play a significant role in determining erratic and/or noisy behaviors. This is the case, for instance, of the Economic Sentiment Indicators – provided by many National Institute of Statistics – which are purposely designed to capture the amount of optimism (pessimism) towards the future behavior of a set of economic variables. Being these data able to reflect, at least to some extent, the future decision making strategies of a population of reference, they can show dangerous instabilities and irregularities. In other words, when an opinion is in the process to form or change then many analysts are mostly interested in its future developments; however, this is usually the points in time where the data show complex structures, which are usually hard to capture.

The need to conduct more precise model–based investigations under noisy data structures has been the motivating factor of the proposed method. As it will be seen, it delivers interesting performances and is reasonably fast, the latter characteristic making the proposed method a viable option with high dimensional data sets, e.g. of the type big data. It is also risk–free, i.e. when there are no filtering–related benefit – according to a suitable objective function – the method is designed to simply leave the data unfiltered (the λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@39DF@ –smoothing parameter is set to 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdaaaa@38E6@ ). The paper proceeds as follows: in Section 2 the problem is defined along with the statistical model assumed for the underlying data generating mechanism, whereas in Section 3 the employed low–pass filter is illustrated, with a special focus on its calibration issues. The method is explained in Section 4 and the step-by-step implementation of the algorithm is given in paragraph 4.3. Finally, an empirical experiment, conducted on a time series provided by the search engine Google and recovered in the repository called Google Trends (for Italy the address is https://trends.google.it/trends/?geo=IT), is presented in section 5.

Statement of the problem

Throughout the paper, the time series (also defined as signal) of interest is intended to be a real–valued, uniformly sampled, sequence of data points of length T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfaaaa@3904@ , denoted as:

x t :={ ( x t ) t + T }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamiDaaqabaGccaaI6aGaaGypamaacmaabaGaaGikaiaadIha daWgaaWcbaGaamiDaaqabaGccaaIPaWaa0baaSqaaiaadshacqGHii IZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=rsi AnaaCaaabeqaaiabgUcaRaaaaeaacaWGubaaaaGccaGL7bGaayzFaa GaaGOlaaaa@51B4@     (1)

Each datum x t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamiDaaqabaaaaa@3A4D@ , being observed with an error, say ε t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacaWG0baabeaaaaa@3AF7@ , is called x t o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaqhaa WcbaGaamiDaaqaaiaad+gaaaaaaa@3B42@  in contrast with the “pure’, noise–free, unobservable one x t u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaqhaa WcbaGaamiDaaqaaiaadwhaaaaaaa@3B48@ . Therefore, the formal set up is of the type

x t o = x t u + ε t . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaqhaa WcbaGaamiDaaqaaiaad+gaaaGccaaI9aGaamiEamaaDaaaleaacaWG 0baabaGaamyDaaaakiabgUcaRiabew7aLnaaBaaaleaacaWG0baabe aakiaai6caaaa@43AA@

It is worth stressing that the theoretical framework we are dealing with, does not envision ε t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacaWG0baabeaaaaa@3AF7@  as being the standard 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaicdaaaa@38E5@ –mean constant variance σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaCa aaleqabaGaaGOmaaaaaaa@3AD7@  idiosincratic component. In fact, ε t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacaWG0baabeaaaaa@3AF7@  can also embody all the unpredictable components arising when “real–life” signals come into play and which, in general, are able to generate unwanted phenomena, like sudden outburst of energy (outliers) and noise. As a consequence, at least two detrimental effects are embedded in the signal and can affect its statistical properties: accuracy reduction and generation of heavy noisy components. The former relates to the addiction (subtraction) of significant quantities to (from) x u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamyDaaqabaaaaa@3A4E@ , so that we have x o =k x u ;k1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaahaa Wcbeqaaiaad+gaaaGccaaI9aGaam4AaiaadIhadaahaaWcbeqaaiaa dwhaaaGccaaI7aGaaGzbVlaadUgacqGHGjsUcaaIXaaaaa@43FD@ , while the latter is a subtler, but nonetheless dangerous, disturbing phenomenon. It arises, for example, when in a survey some statistical units are not longer available and must be replaced by “similar” ones. When such a corrupted information set is applied as an input to a mathematical model for any purposes, e.g. simulation or prediction, the related outcomes are likely to be affected.

The data generating process

The observed signal is supposed to be a realization of a statistical model of the class SARIMA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofacaWGbb GaamOuaiaadMeacaWGnbGaamyqaaaa@3D06@  (Seasonal Auto Regressive Integrated Moving Average), which is a generalization of the SARIMA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofacaWGbb GaamOuaiaadMeacaWGnbGaamyqaaaa@3D06@  (Auto Regressive Integrated Moving Average) class proposed by George et.,10 have been introduced to model complex dynamics i.e. of the type stochastic seasonal. It can be expressed as:10,11

ϕ p (B) Φ P ( B S ) S D d X t = θ q (B) Θ Q ( B S ) ε t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMnaaBa aaleaacaWGWbaabeaakiaaiIcacaWGcbGaaGykaiabfA6agnaaBaaa leaacaWGqbaabeaakiaaiIcacaWGcbWaaWbaaSqabeaacaWGtbaaaO GaaGykaiabgEGirpaaDaaaleaacaWGtbaabaGaamiraaaakiabgEGi rpaaCaaaleqabaGaamizaaaakiaadIfadaWgaaWcbaGaamiDaaqaba GccaaI9aGaeqiUde3aaSbaaSqaaiaadghaaeqaaOGaaGikaiaadkea caaIPaGaeuiMde1aaSbaaSqaaiaadgfaaeqaaOGaaGikaiaadkeada ahaaWcbeqaaiaadofaaaGccaaIPaGaeqyTdu2aaSbaaSqaaiaadsha aeqaaaaa@5979@

where B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeaaaa@38F2@  denotes the backward shift operator, d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgaaaa@3914@  and D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseaaaa@38F4@  denote the non – seasonal and seasonal difference operator respectively and:

d =1 B d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgEGirpaaCa aaleqabaGaamizaaaakiaai2dacaaIXaGaeyOeI0IaamOqamaaCaaa leqabaGaamizaaaaaaa@3F1D@ ;

ϕ p (B)=1 ϕ 1 B ϕ 2 B 2 .... ϕ p B p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMnaaBa aaleaacaWGWbaabeaakiaaiIcacaWGcbGaaGykaiaai2dacaaIXaGa eyOeI0Iaeqy1dy2aaSbaaSqaaiaaigdaaeqaaOGaamOqaiabgkHiTi abew9aMnaaBaaaleaacaaIYaaabeaakiaadkeadaahaaWcbeqaaiaa ikdaaaGccqGHsislcaaIUaGaaGOlaiaai6cacaaIUaGaeyOeI0Iaeq y1dy2aaSbaaSqaaiaadchaaeqaaOGaamOqamaaCaaaleqabaGaamiC aaaaaaa@5230@ ;

θ q (B)=1 θ 1 B θ 2 B 2 .... θ q B p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaWGXbaabeaakiaaiIcacaWGcbGaaGykaiaai2dacaaIXaGa eyOeI0IaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGaamOqaiabgkHiTi abeI7aXnaaBaaaleaacaaIYaaabeaakiaadkeadaahaaWcbeqaaiaa ikdaaaGccqGHsislcaaIUaGaaGOlaiaai6cacaaIUaGaeyOeI0Iaeq iUde3aaSbaaSqaaiaadghaaeqaaOGaamOqamaaCaaaleqabaGaamiC aaaaaaa@51EA@ ;

Φ P ( B S )=1 Φ 1 B S Φ 2 B 2S .... Φ P B PS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA6agnaaBa aaleaacaWGqbaabeaakiaaiIcacaWGcbWaaWbaaSqabeaacaWGtbaa aOGaaGykaiaai2dacaaIXaGaeyOeI0IaeuOPdy0aaSbaaSqaaiaaig daaeqaaOGaamOqamaaCaaaleqabaGaam4uaaaakiabgkHiTiabfA6a gnaaBaaaleaacaaIYaaabeaakiaadkeadaahaaWcbeqaaiaaikdaca WGtbaaaOGaeyOeI0IaaGOlaiaai6cacaaIUaGaaGOlaiabgkHiTiab fA6agnaaBaaaleaacaWGqbaabeaakiaadkeadaahaaWcbeqaaiaadc facaWGtbaaaaaa@5466@ ;

Θ Q ( B S )=1 Θ 1 B S Θ 2 B 2S .... Θ q B QPS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfI5arnaaBa aaleaacaWGrbaabeaakiaaiIcacaWGcbWaaWbaaSqabeaacaWGtbaa aOGaaGykaiaai2dacaaIXaGaeyOeI0IaeuiMde1aaSbaaSqaaiaaig daaeqaaOGaamOqamaaCaaaleqabaGaam4uaaaakiabgkHiTiabfI5a rnaaBaaaleaacaaIYaaabeaakiaadkeadaahaaWcbeqaaiaaikdaca WGtbaaaOGaeyOeI0IaaGOlaiaai6cacaaIUaGaaGOlaiabgkHiTiab fI5arnaaBaaaleaacaWGXbaabeaakiaadkeadaahaaWcbeqaaiaadg facaWGqbGaam4uaaaaaaa@5552@ ;

with ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMbaa@39F3@ , θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@39E1@ , Φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA6agbaa@39A5@ , Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfI5arbaa@39A2@ , respectively, the non seasonal autoregressive and moving average parameters and the seasonal autoregressive and moving average parameters. Finally ε t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacaWG0baabeaaaaa@3AF7@  is a 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaicdaaaa@38E5@ -mean and finite variance white noise. The model can be estimate when the stationary and invertibility conditions are meet for both the autoregressive and moving average polynomials respectively, that is ϕ P (B) Φ p (B) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMnaaBa aaleaacaWGqbaabeaakiaaiIcacaWGcbGaaGykaiabfA6agnaaBaaa leaacaWGWbaabeaakiaaiIcacaWGcbGaaGykaaaa@41FB@ =0 and Θ Q (B) θ q (B) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfI5arnaaBa aaleaacaWGrbaabeaakiaaiIcacaWGcbGaaGykaiabeI7aXnaaBaaa leaacaWGXbaabeaakiaaiIcacaWGcbGaaGykaaaa@41E8@ =0 have their root lying outside the unit circle. Generally, this model is abbreviated as SARIMA(p,d,q)(P,D,Q ) S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofacaWGbb GaamOuaiaadMeacaWGnbGaamyqaiaaiIcacaWGWbGaaGilaiaadsga caaISaGaamyCaiaaiMcacaaIOaGaamiuaiaaiYcacaWGebGaaGilai aadgfacaaIPaWaaWbaaSqabeaacaWGtbaaaaaa@48F5@ . When the process is stationary and no seasonal patterns are detected, the model collapses to a pure ARMA(p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacaWGsb GaamytaiaadgeacaaIOaGaamiCaiaaiYcacaWGXbGaaGykaaaa@3F66@  model. The explanation of the ARIMA theory is outside the scope of this paper, therefore the interested reader is referred to Makridakis8 and Stock.12

Under Gaussianity, the SARIMA parameter vector

G( ϕ p , θ q , Φ P , Θ Q , σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaajEeacqGHHj IUcaaIOaGaeqy1dy2aaSbaaSqaaiaadchaaeqaaOGaaGilaiabeI7a XnaaBaaaleaacaWGXbaabeaakiaaiYcacqqHMoGrdaWgaaWcbaGaam iuaaqabaGccaaISaGaeuiMde1aaSbaaSqaaiaadgfaaeqaaOGaaGil aiabeo8aZnaaCaaaleqabaGaaGOmaaaakiaaiMcaaaa@4C96@         (2)

can be estimated via Conditional MLE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacaWGmb Gaamyraaaa@3A98@  (Maximum Likelihood Estimation) method, which:

  1. In the version employed to run the empirical experiment (Section 5), uses the joint probability density function for ε 1 ,, ε T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacaaIXaaabeaakiaaiYcacqWIMaYscaaISaGaeqyTdu2aaSba aSqaaiaadsfaaeqaaaaa@3FFD@ , i.e.
  2. f( ε 1 ,, ε T |G=(2π σ 2 ) T/2 exp{ 1 2 σ 2 t=1 T ε 2 }; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaaIOa GaeqyTdu2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiablAciljaaiYca cqaH1oqzdaWgaaWcbaGaamivaaqabaGccaaI8bGaaK4raiaai2daca aIOaGaaGOmaiabec8aWjabeo8aZnaaCaaaleqabaGaaGOmaaaakiaa iMcadaahaaWcbeqaaiabgkHiTiaadsfacaaIVaGaaGOmaaaakiGacw gacaGG4bGaaiiCaiaaiUhacqGHsisldaWcaaqaaiaaigdaaeaacaaI YaGaeq4Wdm3aaWbaaSqabeaacaaIYaaaaaaakmaaqahabeWcbaGaam iDaiaai2dacaaIXaaabaGaamivaaqdcqGHris5aOGaeqyTdu2aaWba aSqabeaacaaIYaaaaOGaaGyFaiaaiUdaaaa@615A@

and

  1. Maximizes the function given by

logf(x| ε 0 =0;G)= T 2 log2π σ 2 1 2 σ 2 t=1 T ε t 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGVb Gaai4zaiaadAgacaaIOaGaamiEaiaaiYhacqaH1oqzdaWgaaWcbaGa aGimaaqabaGccaaI9aGaaGimaiaaiUdacaqIhbGaaGykaiaai2dacq GHsisldaWcaaqaaiaadsfaaeaacaaIYaaaaiGacYgacaGGVbGaai4z aiaaikdacqaHapaCcqaHdpWCdaahaaWcbeqaaiaaikdaaaGccqGHsi sldaWcaaqaaiaaigdaaeaacaaIYaGaeq4Wdm3aaWbaaSqabeaacaaI YaaaaaaakmaaqahabeWcbaGaamiDaiaai2dacaaIXaaabaGaamivaa qdcqGHris5aOGaeqyTdu2aa0baaSqaaiaadshaaeaacaaIYaaaaOGa aGilaaaa@5F69@

with [ ε t ;t=1,,T] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiUfacqaH1o qzdaWgaaWcbaGaamiDaaqabaGccaaI7aGaaGzbVlaadshacaaI9aGa aGymaiaaiYcacqWIMaYscaaISaGaamivaiaai2faaaa@4502@  being recursively estimated using

ε t = x t G ε t1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacaWG0baabeaakiaai2dacaWG4bWaaSbaaSqaaiaadshaaeqa aOGaeyOeI0IaaK4raiabew7aLnaaBaaaleaacaWG0bGaeyOeI0IaaG ymaaqabaGccaaIUaaaaa@44E9@        (3)

Equation (3) holds by equating the first (P+Q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcacaWGqb Gaey4kaSIaamyuaiaaiMcaaaa@3C1D@  observations to 0, i.e. y 0 , y 1 ,, y (P+Q) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhadaWgaa WcbaGaaGimaaqabaGccaaISaGaamyEamaaBaaaleaacqGHsislcaaI XaaabeaakiaaiYcacqWIMaYscaaISaGaamyEamaaBaaaleaacqGHsi slcaaIOaGaamiuaiabgUcaRiaadgfacaaIPaaabeaakiaai2dacaaI Waaaaa@47CD@  and setting the first Q1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfacqGHsi slcaaIXaaaaa@3AA9@  innovations to 0: ε 0 , ε 1 , ε (Q1) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacaaIWaaabeaakiaaiYcacqaH1oqzdaWgaaWcbaGaeyOeI0Ia aGymaaqabaGccqWIMaYscaaISaGaeqyTdu2aaSbaaSqaaiabgkHiTi aaiIcacaWGrbGaeyOeI0IaaGymaiaaiMcaaeqaaOGaaGypaiaaicda aaa@4903@ .

The employed filter

By the Central Limit Theorem, by “properly” averaging sub-sequences of a noisy signal, a better approximation of the “true” ones is obtained as a result.13 Consistently, one strategy for noise control relies on a filter of the type discrete time Infinite Impulse Reponse.14 This class of filters is a powerful tool for handling noise in many fields: in15 its performances has been compared with many other methods on environmental data (other than simulated ones) whereas its application for standard control-chart procedures is documented in Layth et al.,16 and Stuart Hunter.17 Its usefulness for interactive systems and information extraction for complex turbulent flows has been discussed respectively in Casiez18 and Adrien Cahuzac,19 whereas the effectiveness of smoothing–driven approaches in economic time series forecasting is documented in the excellent book from Hyndman et al.,20 and in Codrut.21

IIR filters envision the level of the stochastic process (1) at a given time t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshaaaa@3924@ , say ξ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0baabeaaaaa@3B13@  to be dependent to the present and past observations according to

ξ t =λ x t +λ(1λ) x t1 +λ (1λ) 2 x t2 +=λ j=0 (1λ) j x tj . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0baabeaakiaai2dacqaH7oaBcaWG4bWaaSbaaSqaaiaa dshaaeqaaOGaey4kaSIaeq4UdWMaaGikaiaaigdacqGHsislcqaH7o aBcaaIPaGaamiEamaaBaaaleaacaWG0bGaeyOeI0IaaGymaaqabaGc cqGHRaWkcqaH7oaBcaaIOaGaaGymaiabgkHiTiabeU7aSjaaiMcada ahaaWcbeqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaadshacqGHsisl caaIYaaabeaakiabgUcaRiablAciljaai2dacqaH7oaBdaaeWbqabS qaaiaadQgacaaI9aGaaGimaaqaaiabg6HiLcqdcqGHris5aOGaaGik aiaaigdacqGHsislcqaH7oaBcaaIPaWaaWbaaSqabeaacaWGQbaaaO GaamiEamaaBaaaleaacaWG0bGaeyOeI0IaamOAaaqabaGccaaIUaaa aa@6C62@

Using the lag operator L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@38FC@ , such that L k x t = x tk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaahaa WcbeqaaiaadUgaaaGccaWG4bWaaSbaaSqaaiaadshaaeqaaOGaaGyp aiaadIhadaWgaaWcbaGaamiDaiabgkHiTiaadUgaaeqaaaaa@4115@ , (4) can be re-expressed as

ξ t =λ[1+(1λ)B+ (1λ) 2 B 2 +)=[1(1λ)B ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0baabeaakiaai2dacqaH7oaBcaaIBbGaaGymaiabgUca RiaaiIcacaaIXaGaeyOeI0Iaeq4UdWMaaGykaiaadkeacqGHRaWkca aIOaGaaGymaiabgkHiTiabeU7aSjaaiMcadaahaaWcbeqaaiaaikda aaGccaWGcbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeSOjGSKaaG ykaiaai2dacaaIBbGaaGymaiabgkHiTiaaiIcacaaIXaGaeyOeI0Ia eq4UdWMaaGykaiaadkeacaaIDbWaaWbaaSqabeaacqGHsislcaaIXa aaaaaa@5C41@         (4)

and rewritten as

ξ t =[1(1λ)B] ξ t =λ x t . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0baabeaakiaai2dacaaIBbGaaGymaiabgkHiTiaaiIca caaIXaGaeyOeI0Iaeq4UdWMaaGykaiaadkeacaaIDbGaeqOVdG3aaS baaSqaaiaadshaaeqaaOGaaGypaiabeU7aSjaadIhadaWgaaWcbaGa amiDaaqabaGccaaIUaaaaa@4D31@     (5)

From (5) it is evident that ξ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0baabeaaaaa@3B13@  is a weighted average of x t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamiDaaqabaaaaa@3A4D@  (current datum) and the previous level ξ t1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0bGaeyOeI0IaaGymaaqabaaaaa@3CBB@ , whose weight sequence is determined by the smoothing parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@39DF@ . Finally, (4) can be expressed, by skipping the lag operator, in a recurrence form as

ξ t =λ x t +(1λ) ξ t1 ; ξ 0 = x 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0baabeaakiaai2dacqaH7oaBcaWG4bWaaSbaaSqaaiaa dshaaeqaaOGaey4kaSIaaGikaiaaigdacqGHsislcqaH7oaBcaaIPa GaeqOVdG3aaSbaaSqaaiaadshacqGHsislcaaIXaaabeaakiaaiUda caaMf8UaaGzbVlabe67a4naaBaaaleaacaaIWaaabeaakiaai2daca WG4bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaaaa@53FF@         (6)

or in a error correction form, i.e. determined by the equation e t =( x t λ t1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgadaWgaa WcbaGaamiDaaqabaGccaaI9aGaaGikaiaadIhadaWgaaWcbaGaamiD aaqabaGccqGHsislcqaH7oaBdaWgaaWcbaGaamiDaiabgkHiTiaaig daaeqaaOGaaGykaaaa@4414@ , as follows:

ξ t = ξ t1 +λ e t . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0baabeaakiaai2dacqaH+oaEdaWgaaWcbaGaamiDaiab gkHiTiaaigdaaeqaaOGaey4kaSIaeq4UdWMaamyzamaaBaaaleaaca WG0baabeaakiaai6caaaa@45E5@

The form (6) is the one used in the sequel. Here, the first term represents the contribution added by each and every datum updating our time series whereas the second one accounts for the inertia from the previous observations. Therefore, the amount of noise left in the signal as well as the system lag (the responsiveness of the system output to changes in the input) are both proportional to λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@39DF@ .

It is worth emphasizing that the order of a low–pass filter reflects the amount of strength it uses to attenuate a predetermined frequency band. First order filters of the type (4) reduce the signal amplitude by half for each frequency doubling while higher order filters amplify this effect proportionally with their order. For the purpose pursued here, the order 1 appeared to be appropriate since the filter is:
[(a)]

  1. “Only” required to denoise (e.g. no forecasting purposes are pursued);
  2. Easier to tune;
  3. More interpretable.

However, properly tuning the constant parameter is not a trivial task nor something that – at least in general – can be left to subjective judgment. In fact, a too high λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@39DF@  can leave significant amount of idiosincratic components in the signal while too low values determine the speed at which the older data are dampened to be too slow (over smoothing).

The smoothing constant and the objective function

As already pointed out, the smoothing parameter (also called smoothing factor or smoothing constant), controls the amount of past information contributing to the formation of the present signal level. Formally, a point in time distant (t+1)k=m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcacaWG0b Gaey4kaSIaaGymaiaaiMcacqGHsislcaWGRbGaaGypaiaad2gaaaa@3FBC@  lags influences the level of the signal at time t+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGHRa WkcaaIXaaaaa@3AC1@  by an amount given by ξ t+1 =λ (1λ) t+1m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0bGaey4kaSIaaGymaaqabaGccaaI9aGaeq4UdWMaaGik aiaaigdacqGHsislcqaH7oaBcaaIPaWaaWbaaSqabeaacaWG0bGaey 4kaSIaaGymaiabgkHiTiaad2gaaaaaaa@4898@ . Even though the proposed method is designed to provide an estimate of λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@39DF@ , it might be interesting to investigate the frequency property of the filter, in order to obtain meaningful information from the selected λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@39DF@ . The related cut–off frequency can be derived15,22 by z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQhaaaa@392A@ –transorming (6), i.e.

ξ ^ (z)= λ 1(1λ) z 1 x ^ (z), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbe67a4zaaja GaaGikaiaadQhacaaIPaGaaGypamaalaaabaGaeq4UdWgabaGaaGym aiabgkHiTiaaiIcacaaIXaGaeyOeI0Iaeq4UdWMaaGykaiaadQhada ahaaWcbeqaaiabgkHiTiaaigdaaaaaaOGabmiEayaajaGaaGikaiaa dQhacaaIPaGaaGilaaaa@4C5B@

which can be regarded as the digital version of the analog filter (6). By defining Δ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aenaaBa aaleaacaWG0baabeaaaaa@3AB6@  as the sampling period and equating z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQhaaaa@392A@  to the frequency ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3baa@39F8@ , i.e. z= e (iω Δ t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQhacaaI9a GaamyzamaaCaaaleqabaGaaGikaiaadMgacqaHjpWDcqqHuoardaWg aaqaaiaadshaaeqaaiaaiMcaaaaaaa@41A8@ ; i= ( 1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMgacaaI9a WaaOaaaeaacaaIOaaaleqaaOGaeyOeI0IaaGymaiaaiMcaaaa@3D12@ , the power spectra of ξ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0baabeaaaaa@3B13@  and x t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamiDaaqabaaaaa@3A4D@ , respectively called | ξ ^ (ω )| 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiYhacuaH+o aEgaqcaiaaiIcacqaHjpWDcaaIPaGaaGiFamaaCaaaleqabaGaaGOm aaaaaaa@4025@  and | x ^ (ω )| 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiYhaceWG4b GbaKaacaaIOaGaeqyYdCNaaGykaiaaiYhadaahaaWcbeqaaiaaikda aaaaaa@3F5F@  are related to each other through

| ξ ^ (ω )| 2 = λ 2 | e (iω Δ t ) (1λ )| 2 | x ^ (ω )| 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiYhacuaH+o aEgaqcaiaaiIcacqaHjpWDcaaIPaGaaGiFamaaCaaaleqabaGaaGOm aaaakiaai2dadaWcaaqaaiabeU7aSnaaCaaaleqabaGaaGOmaaaaaO qaaiaaiYhacaWGLbWaaWbaaSqabeaacaaIOaGaamyAaiabeM8a3jab fs5aenaaBaaabaGaamiDaaqabaGaaGykaaaakiabgkHiTiaaiIcaca aIXaGaeyOeI0Iaeq4UdWMaaGykaiaaiYhadaahaaWcbeqaaiaaikda aaaaaOGaaGiFaiqadIhagaqcaiaaiIcacqaHjpWDcaaIPaGaaGiFam aaCaaaleqabaGaaGOmaaaakiaai6caaaa@5C11@    (7)

By equating the first term in (7) to 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaikdaaaaaaa@39B2@ , the cut–off frequency at which the amplitude is reduced by a factor of 2, say F ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadAeagaacaa aa@3905@ , is found, i.e.

λ= 1 3 6(1cos( w ˜ Δ t )+(1cos ( w ˜ Δ t ) 2 (1cos( w ˜ Δ t )) 2π F ˜ Δ t 3 3.62579 F ˜ Δ t . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSjaai2 dadaWcaaqaaiaaigdaaeaacaaIZaaaamaakaaabaGaaGOnaiaaiIca caaIXaGaeyOeI0Iaci4yaiaac+gacaGGZbGaaGikaiqadEhagaacai abfs5aenaaBaaaleaacaWG0baabeaakiaaiMcacqGHRaWkcaaIOaGa aGymaiabgkHiTiGacogacaGGVbGaai4CaiaaiIcaceWG3bGbaGaacq qHuoardaWgaaWcbaGaamiDaaqabaGccaaIPaWaaWbaaSqabeaacaaI YaaaaOGaeyOeI0IaaGikaiaaigdacqGHsislciGGJbGaai4Baiaaco hacaaIOaGabm4DayaaiaGaeuiLdq0aaSbaaSqaaiaadshaaeqaaOGa aGykaiaaiMcaaSqabaGccaaMf8UaeyisIS7aaSaaaeaacaaIYaGaeq iWdaNabmOrayaaiaGaeuiLdq0aaSbaaSqaaiaadshaaeqaaaGcbaWa aOaaaeaacaaIZaaaleqaaaaakiabgIKi7kaaiodacaaIUaGaaGOnai aaikdacaaI1aGaaG4naiaaiMdaceWGgbGbaGaacqqHuoardaWgaaWc baGaamiDaaqabaGccaaIUaaaaa@7443@

and therefore

λ= 1 3 6(1cos( w ˜ Δ t )+(1cos ( w ˜ Δ t ) 2 (1cos( w ˜ Δ t )) 2π F ˜ Δ t 3 3.62579 F ˜ Δ t . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSjaai2 dadaWcaaqaaiaaigdaaeaacaaIZaaaamaakaaabaGaaGOnaiaaiIca caaIXaGaeyOeI0Iaci4yaiaac+gacaGGZbGaaGikaiqadEhagaacai abfs5aenaaBaaaleaacaWG0baabeaakiaaiMcacqGHRaWkcaaIOaGa aGymaiabgkHiTiGacogacaGGVbGaai4CaiaaiIcaceWG3bGbaGaacq qHuoardaWgaaWcbaGaamiDaaqabaGccaaIPaWaaWbaaSqabeaacaaI YaaaaOGaeyOeI0IaaGikaiaaigdacqGHsislciGGJbGaai4Baiaaco hacaaIOaGabm4DayaaiaGaeuiLdq0aaSbaaSqaaiaadshaaeqaaOGa aGykaiaaiMcaaSqabaGccaaMf8UaeyisIS7aaSaaaeaacaaIYaGaeq iWdaNabmOrayaaiaGaeuiLdq0aaSbaaSqaaiaadshaaeqaaaGcbaWa aOaaaeaacaaIZaaaleqaaaaakiabgIKi7kaaiodacaaIUaGaaGOnai aaikdacaaI1aGaaG4naiaaiMdaceWGgbGbaGaacqqHuoardaWgaaWc baGaamiDaaqabaGccaaIUaaaaa@7443@

The above approximation is possible being in practice w ˜ Δ t <<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadEhagaacai abfs5aenaaBaaaleaacaWG0baabeaakiaaiYdacaaI8aGaaGymaaaa @3E12@ , for the temporal integration to be possible.

The Hannan–Quinn information criterion

As it will be outlined in the sequel, the smoothing constant is the minimiser of a penalized Log-Likelihood function, estimated on a model of the class SARIMA applied to both the original and filtered time series ξ ^ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbe67a4zaaja WaaSbaaSqaaiaadshaaeqaaaaa@3B23@ . The objective function chosen belongs to the class of the information criterion, i.e. the Hannan-Quinncriterion.23 This order selector has been constructed from the law of iterated algorithm and shows a penalty function growing at a very slow rate, as the samples size increases. It is defined as follows:

HQc=logL( G ^ | X t )+2klog(log(T)), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeacaWGrb Gaam4yaiaai2daciGGSbGaai4BaiaacEgacaWGmbGaaGikaiqajEea gaqcaiaaiYhacaWGybWaaSbaaSqaaiaadshaaeqaaOGaaGykaiabgU caRiaaikdacaWGRbGaciiBaiaac+gacaGGNbGaaGikaiGacYgacaGG VbGaai4zaiaaiIcacaWGubGaaGykaiaaiMcacaaISaaaaa@50FE@

being G ^ (f,F,q,Q,σ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqajEeagaqcai abggMi6kaaiIcacaGIMbGaaGilaiaajAeacaaISaGaaOyCaiaaiYca caqIrbGaaGilaiabeo8aZjaaiMcaaaa@4472@  the vector of the estimated SARIMA parameters of (??) whereas L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@38FC@  is the Likelihood function.

By estimating the log–likelihood function logL( G ^ | X t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGVb Gaai4zaiaadYeacaaIOaGabK4rayaajaGaaGiFaiaadIfadaWgaaWc baGaamiDaaqabaGccaaIPaaaaa@4125@  with ( σ ^ 2 | G ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcacuaHdp WCgaqcamaaCaaaleqabaGaaGOmaaaakiaaiYhaceqIhbGbaKaacaaI Paaaaa@3E3E@  and writing the penalty term as ρ=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaai2 dacaaIYaaaaa@3B6E@ k log(log(T)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGVb Gaai4zaiaaiIcaciGGSbGaai4BaiaacEgacaaIOaGaamivaiaaiMca caaIPaaaaa@416E@ , the Hannan Quinn information criterion can be written as

HQc=f( σ ^ o 2 ,ρ(G))| X t o ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeacaWGrb Gaam4yaiaai2dacaWGMbGaaGikaiqbeo8aZzaajaWaa0baaSqaaiaa d+gaaeaacaaIYaaaaOGaaGilaiabeg8aYjaaiIcacaqIhbGaaGykai aaiMcacaaI8bGaamiwamaaDaaaleaacaWG0baabaGaam4Baaaakiaa iMcacaaISaaaaa@4BA4@

where also the subscript ( o ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcacaaMe8 UaaGjbVpaaBaaaleaacaWGVbaabeaakiaaiMcaaaa@3DD4@ , stands for “observed”.

The standard identification procedure for the selection of the best SARIMA model order under this information criterion, follows the general rule as the other Information Criteria and is denoted as Minimum Information Criterion Estimation ( MICE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacaWGjb Gaam4qaiaadweaaaa@3B5D@ ). In essence, it is based on the minimization of the information criterion itself. Here, the model M 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaaGimaaqabaaaaa@39E3@  minimizing the HQ criterion, is the winning one, that is:

M 0 o :( G ^ )=arg min G ^ f( σ ^ 2 ,G| X t o ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaqhaa WcbaGaaGimaaqaaiaad+gaaaGccaaI6aGaaGikaiqajEeagaqcaiaa iMcacaaI9aGaciyyaiaackhacaGGNbWaaybuaeqaleaaceqIhbGbaK aaaeqakeaaciGGTbGaaiyAaiaac6gaaaGaamOzaiaaiIcacuaHdpWC gaqcamaaCaaaleqabaGaaGOmaaaakiaaiYcacaqIhbGaaGiFaiaadI fadaqhaaWcbaGaamiDaaqaaiaad+gaaaGccaaIPaGaaGilaaaa@510F@            (8)

with Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfo5ahbaa@3993@  as defined in (2).

The method

The proposed method can be regarded as an optimal averaging procedure under a penalized log–likelihood function. “Properly” averaging a signal as a noise reduction method is consistent to the principle that, if repeated measures are conducted many times on a given signal, part will tend to accumulate but the noise will be irregular and tend to cancel itself. This result is connected to the fact that the mean standard deviation of N measurements is smaller by a factor of N than the standard deviation of a single measurement. Practically, if one compute the average of “many” samples of a noisy signal the noise–induced random fluctuations tend to die out and the signal is therefore stronger.

In more details, when one records the signal x t o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaqhaa WcbaGaamiDaaqaaiaad+gaaaaaaa@3B42@  (1) t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshaaaa@3924@  times (the sampling rate) over a predefined time interval, say τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0baa@39F0@ , being τT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0jabgs MiJkaadsfaaaa@3C7E@ , he can compute l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgaaaa@391C@  averages each of length l τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam iBaaqaaiabes8a0baaaaa@3AF1@ . Two critical points arise at this time, i.e. how many data points should be averaged and in which manner. The latter question has been already answered (Section 3) whereas the former – which is strictly related with the smoothing parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@379F@  – controls the number of observations of x t o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaqhaa WcbaGaamiDaaqaaiaad+gaaaaaaa@3902@  to be averaged (and to what extent), so that the noise which randomly fluctuate with equal probability above or below the “true” level x t u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaqhaa WcbaGaamiDaaqaaiaadwhaaaaaaa@3908@  tends to cancel out while the signal builds up.

The λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@39DF@  parameter is chosen as the minimizer of (8) once a “great” number of candidates λ j ;j=1,,Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGQbaabeaakiaaiUdacaaMf8UaamOAaiaai2dacaaIXaGa aGilaiablAciljaaiYcacqqHBoataaa@43CB@  is tried. Therefore, (8) is modified as

M 0 ξ =( G ^ , λ ^ )=arg min G ^ , λ ^ f( σ ^ 2 ( ε o ),G| ξ t (λ)), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaqhaa WcbaGaaGimaaqaaiabe67a4baakiaai2dacaaIOaGabK4rayaajaGa aGilaiqbeU7aSzaajaGaaGykaiaai2daciGGHbGaaiOCaiaacEgada GfqbqabSqaaiqajEeagaqcaiaaiYcacuaH7oaBgaqcaaqabOqaaiGa c2gacaGGPbGaaiOBaaaacaWGMbGaaGikaiqbeo8aZzaajaWaaWbaaS qabeaacaaIYaaaaOGaaGikaiabew7aLnaaCaaaleqabaGaam4Baaaa kiaaiMcacaaISaGaaK4raiaaiYhacqaH+oaEdaWgaaWcbaGaamiDaa qabaGccaaIOaGaeq4UdWMaaGykaiaaiMcacaaISaaaaa@5E16@           (9)

being ξ t =f( x o (λ)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0baabeaakiaai2dacaWGMbGaaGikaiaadIhadaahaaWc beqaaiaad+gaaaGccaaIOaGaeq4UdWMaaGykaiaaiMcaaaa@4375@ .

What presented in (9) is a slightly modified version of the Hannan Quinn criterion, called here mHQ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacaWGib Gaamyuaaaa@3AC0@  (which will be justified below), whose minimum value delivers the optimal smoothing parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaCa aaleqabaGaey4fIOcaaaaa@3AFB@ .

From the last equation, it is clear that both the optimal model and the optimal λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@39DF@  are simultaneously estimated. However, while the ML MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacaWGmb aaaa@39CE@  parameters’ estimation is conducted on the filtered versions ξ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0baabeaaaaa@3B13@  of the observed signal, the variance parameter is estimated using the observed data x o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaahaa Wcbeqaaiaad+gaaaaaaa@3A49@ . Such an operation is possible assuming E[ ε t ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8hHWxKaaG4waiabew7a LnaaBaaaleaacaWG0baabeaakiaai2facaaI9aGaaGimaaaa@4A2F@  and serves the purpose to “force” the filtered output to be “not too far” from the observed signal x t o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaqhaa WcbaGaamiDaaqaaiaad+gaaaaaaa@3B42@ . In practice, the Information Criterion selects an “optimal” model – built on a λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaCa aaleqabaGaey4fIOcaaaaa@3AFB@ –filtered version of the data (which therefore are used to build the ML estimations of the SARIMA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofacaWGbb GaamOuaiaadMeacaWGnbGaamyqaaaa@3D06@  parameters) whose goodness of fit is computed with respect the observed (noisy) signal x t o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaqhaa WcbaGaamiDaaqaaiaad+gaaaaaaa@3B42@ . In other words, mHQ criterion has a stronger penalty than the standard one. Such an additional weight (the penalty associated with the residual variance computed on x o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaahaa Wcbeqaaiaad+gaaaaaaa@3A49@ ) is proportional to | σ o 2 σ 2 ( ξ t )| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiYhacqaHdp WCdaqhaaWcbaGaam4BaaqaaiaaikdaaaGccqGHsislcqaHdpWCdaah aaWcbeqaaiaaikdaaaGccaaIOaGaeqOVdG3aaSbaaSqaaiaadshaae qaaOGaaGykaiaaiYhaaaa@45DB@  and serves the purpose to prevent the H-Q criterion from choosing λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@39DF@  values that can lead to over smoothing. In fact, the greater the value of λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@39DF@  the greater the distance between x t o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaqhaa WcbaGaamiDaaqaaiaad+gaaaaaaa@3B42@  and ξ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0baabeaaaaa@3B13@  and therefore the greater the absolute values of the difference | σ o 2 σ 2 ( ξ t )| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiYhacqaHdp WCdaqhaaWcbaGaam4BaaqaaiaaikdaaaGccqGHsislcqaHdpWCdaah aaWcbeqaaiaaikdaaaGccaaIOaGaeqOVdG3aaSbaaSqaaiaadshaae qaaOGaaGykaiaaiYhaaaa@45DB@ . When no benefit can be obtained by applying the filter, we have M ξ (HQ) M 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaahaa Wcbeqaaiabe67a4baakiaaiIcacaWGibGaamyuaiaaiMcacqGHLjYS caWGnbWaaSbaaSqaaiaaicdaaeqaaaaa@417D@  therefore x o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaahaa Wcbeqaaiaad+gaaaaaaa@3A49@  and ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4baa@39EE@  coincide and | σ o 2 σ 2 ( ξ t )|=0 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiYhacqaHdp WCdaqhaaWcbaGaam4BaaqaaiaaikdaaaGccqGHsislcqaHdpWCdaah aaWcbeqaaiaaikdaaaGccaaIOaGaeqOVdG3aaSbaaSqaaiaadshaae qaaOGaaGykaiaaiYhacaaI9aGaaGimamaaBaaaleaacaWG0baabeaa aaa@4881@ , i.e. the best SARIMA model is built on x t o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaqhaa WcbaGaamiDaaqaaiaad+gaaaaaaa@3B42@  and its order selection follows the MICE rule according to equation (8). On the contrary, when a benefit from filtering is detected – i.e. mHQ<HQ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacaWGib GaamyuaiaaiYdacaWGibGaamyuaaaa@3D29@  – therefore the best model is the one built on the filtered time series according to a λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@39DF@  value ( λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaCa aaleqabaGaey4fIOcaaaaa@3AFB@ ) at which the information criterion (9) is minimized and its order selection follows the MICE rule. Again, such a conclusion is justified as the error term is “average out” by the filter. At this point, we have two different SARIMA models fitting x o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaahaa Wcbeqaaiaad+gaaaaaaa@3A49@  and ξ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0baabeaaaaa@3B13@  and generating two error vectors. Recalling (3), and consistently with the notation so far used, it will be

ε t o = x t o G o ε t1 ; x o =1,,T; ε 0 =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaDa aaleaacaWG0baabaGaam4Baaaakiaai2dacaWG4bWaa0baaSqaaiaa dshaaeaacaWGVbaaaOGaeyOeI0IaaK4ramaaCaaaleqabaGaam4Baa aakiabew7aLnaaBaaaleaacaWG0bGaeyOeI0IaaGymaaqabaGccaaI 7aGaaGzbVlaadIhadaahaaWcbeqaaiaad+gaaaGccaaI9aGaaGymai aaiYcacqWIMaYscaaISaGaamivaiaaiUdacaaMf8UaeqyTdu2aaSba aSqaaiaaicdaaeqaaOGaaGypaiaaicdacaaIUaaaaa@57CD@               (10)

and ε ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaCa aaleqabaGaeqOVdGhaaaaa@3BC2@  found in a similar way, replacing the superscript identified by the letter o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad+gaaaa@391F@  with the Greek letter ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4baa@39EE@ .

Moreover, by virtue of Granger theorem,24 it is always possible for an estimated SARIMA model order to depart from the “true” one when the input is affected by white noise components. In such a case, the CSS estimates resulting from the function logLik( Γ ^ | x o ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGVb Gaai4zaiaadYeacaWGPbGaam4AaiaaiIcacuqHtoWrgaqcaiaaiYha caWG4bWaaWbaaSqabeaacaWGVbaaaOGaaGykaaaa@43B5@  can be regarded as converging to the pseudo–true value of the parameters’ vector and therefore the order detected by means of the mHQ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacaWGib Gaamyuaaaa@3AC0@  – which employs the function logLik( Γ ^ |x i t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGVb Gaai4zaiaadYeacaWGPbGaam4AaiaaiIcacuqHtoWrgaqcaiaaiYha caaMe8UaamiEaiaadMgadaWgaaWcbaGaamiDaaqabaGccaaIPaaaaa@4634@  for the estimation of the parameters – criterion will be closer to the “true” model order.

Signal improvement assessment
At this point, it is clear that for Γ 0 =Γ(ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfo5ahnaaCa aaleqabaGaaGimaaaakiaai2dacqqHtoWrcaaIOaGaeqOVdGNaaGyk aaaa@3FDB@  the lower bound in the gain delivered by the procedure is attained (i.e. no gain and λ=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSjaai2 dacaaIXaaaaa@3B61@ ). In this section, a simple way for assessing the performances of the filter (if delivered) is presented. At this point it might be worthwhile emphasizing that the method presented in this paper is not designed to improve the forecasting performance of SARIMA models. In fact, the observations coming from the future, under an unchanged data generation mechanism, will be affected, in average, by the same noise components affecting the previous observations. However, projecting the filtered observations into the future is a useful exercise for at least two reasons: i) to verify that the forecasting performances delivered by the two SARIMA models are “not too far” from each other (meaning that the ξ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0baabeaaaaa@3B13@  is a “bona fide” version of the original one; ii) in many cases, improvements in the forecasting performances have been observed. This can be explained by the fact that the order selection and estimation procedures tend to work better under less noisy signals.

With that said, the signal-to-noise ratio (SNR) has been used as an indicator of the quality of the filtered signal. It is defined as the ratio of the power of the signal (the meaningful information) to the power of the noise (the unwanted portion of the signal). In its “pure” form it is SNR= P signal P noise MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofacaWGob GaamOuaiaai2dadaWcaaqaaiaadcfadaWgaaWcbaGaam4CaiaadMga caWGNbGaamOBaiaadggacaWGSbaabeaaaOqaaiaadcfadaWgaaWcba GaamOBaiaad+gacaWGPbGaam4Caiaadwgaaeqaaaaaaaa@47E3@ , P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfaaaa@3900@  being the average power. In the framework at hand, both the power levels are estimated by their respective variances σ ^ x t 2 σ ^ ε t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGafq 4WdmNbaKaadaqhaaWcbaGaamiEamaaBaaabaGaamiDaaqabaaabaGa aGOmaaaaaOqaaiqbeo8aZzaajaWaa0baaSqaaiabew7aLnaaBaaaba GaamiDaaqabaaabaGaaGOmaaaaaaaaaa@4295@ , being the error terms obtained using (10). Practically, by comparing SN R o = σ ^ x t o 2 σ ^ ε t o 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofacaWGob GaamOuamaaCaaaleqabaGaam4Baaaakiaai2dadaWcaaqaaiqbeo8a ZzaajaWaa0baaSqaaiaadIhadaqhaaqaaiaadshaaeaacaWGVbaaaa qaaiaaikdaaaaakeaacuaHdpWCgaqcamaaDaaaleaacqaH1oqzdaqh aaqaaiaadshaaeaacaWGVbaaaaqaaiaaikdaaaaaaaaa@48F3@  with SN R ξ = σ ^ ξ t 2 σ ^ ε t ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofacaWGob GaamOuamaaCaaaleqabaGaeqOVdGhaaOGaaGypamaalaaabaGafq4W dmNbaKaadaqhaaWcbaGaeqOVdG3aaSbaaeaacaWG0baabeaaaeaaca aIYaaaaaGcbaGafq4WdmNbaKaadaqhaaWcbaGaeqyTdu2aa0baaeaa caWG0baabaGaeqOVdGhaaaqaaiaaikdaaaaaaaaa@4A62@ , one is able to assess how much of the unwanted components has been removed under λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaCa aaleqabaGaey4fIOcaaaaa@3AFB@

The algorithm

In what follows, the method is presented in the form of a step–by–step algorithm. In particular, steps 2-6 are conducted on the training set whereas the remaining 7–8 use the test set.

  1. The time series under investigation is split in two sets: training and test;
  2. A grid of tentative smoothing constant λ j ;j=1,ΛL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGQbaabeaakiaaiUdacaWGQbGaaGypaiaaigdacaaISaGa eSOjGSKaeu4MdWKaeyicI48efv3ySLgzgjxyRrxDYbqeguuDJXwAKb IrYf2A0vNCaGqbaiab=Ta8mbaa@4F98@  is built;
  3. A SARIMA model is estimated on the original time series x o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaahaa Wcbeqaaiaad+gaaaaaaa@3A49@  using the H–Q criterion;
  4. Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfU5ambaa@39A0@  SARIMA models are estimated on Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfU5ambaa@39A0@  filtered time series ξ j (λ) = x o ( λ j );j=1,,Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaDa aaleaacaWGQbaabaGaaGikaiabeU7aSjaaiMcaaaGccaaI9aGaamiE amaaCaaaleqabaGaam4BaaaakiaaiIcacqaH7oaBdaWgaaWcbaGaam OAaaqabaGccaaIPaGaaG4oaiaadQgacaaI9aGaaGymaiaaiYcacqWI MaYscaaISaGaeu4MdWeaaa@4C93@ ;
  5. If mHQHQ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacaWGib GaamyuaiabgwMiZkaadIeacaWGrbaaaa@3E29@  stop and use the unfiltered time series otherwise proceed;
  6. The λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaCa aaleqabaGaey4fIOcaaaaa@3AFB@  smoothing constant associated with the winner model (according to the modified H–Q criterion mHQ) is then chosen;
  7. Horizon h;h=1,,H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgacaaI7a GaaGzbVlaadIgacaaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamis aaaa@4135@  forecast mean square errors are computed for both the filtered and unfiltered series;
  8. Both the statistics are compared for consistency.

Clearly, if one is not interested in forecast comparison – e.g. to speed up the computations and have faster outcomes – then steps 1, 7 and 8 can be skipped.

Empirical experiment

The experiment presented in this paragraph is aimed at showing the capabilities of the proposed method. A time series – collected by the popular search engine Google and recovered in an “ad hoc” repository called Google Trends – will be employed. It refers to the relative number of Italian Internet users which inputted the keyword “caviar” (caviale, in Italian) into the search engine Google, between January 2004 and June 2018. The data have been download on June 6th 2018 (h 03:29 PM GMT). Time series length is 174, split in training set – ending in December 2014 (132 data) – and test set (42 data), ending in June 2018. The last datum has been purposely left in the data set, for it is an even more unstable one (in fact, it is supported only by a small portion of the month of reference). A visual inspection of the series, depicted in Figure 1, shows many irregularities, a pronounced, non stationary seasonality as well as a non stationary trend. Eteroschedasticity is also an issue. Such a behavior might be considered typical for a luxury good especially when observed, as in the present case, for a long period of time.

Figure 1 Relative number of the keyword “caviar” searched by the Italian Internet users. Training set (continuous line) and test set (dashed line).

The whiteness of the residuals has been tested using a test of the type “Portmanteau’, i.e. the Ljung-Box test,25 which is designed to account for the sum of the autocorrelations (denoted by the Greek letter ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYbaa@39EB@ ) until a predetermined, arbitrary lag K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeaaaa@38FB@ , i.e.
Publication

Q=T(T+2) k=1 K ρ ^ k 2 TK H 0 χ (K) 2 ; Q rej > χ (1α,K) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfacaaI9a GaamivaiaaiIcacaWGubGaey4kaSIaaGOmaiaaiMcadaaeWbqabSqa aiaadUgacaaI9aGaaGymaaqaaiaadUeaa0GaeyyeIuoakmaalaaaba GafqyWdiNbaKaadaWgaaWcbaGaam4AaaqabaGcdaahaaWcbeqaaiaa ikdaaaaakeaacaWGubGaeyOeI0Iaam4saaaadaWfGaqaaebbfv3ySL gzGueE0jxyaGqbaiab=XJi6aWcbeqaaiaadIeadaWgaaqaaiaaicda aeqaaaaakiabeE8aJnaaDaaaleaacaaIOaGaam4saiaaiMcaaeaaca aIYaaaaOGaaG4oaiaaywW7caaMf8UaamyuamaaCaaaleqabaGaamOC aiaadwgacaWGQbaaaOGaaGOpaiabeE8aJnaaDaaaleaacaaIOaGaaG ymaiabgkHiTiabeg7aHjaaiYcacaWGlbGaaGykaaqaaiaaikdaaaGc caaIUaaaaa@6948@

Here Q rej MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfadaahaa WcbeqaaiaadkhacaWGLbGaamOAaaaaaaa@3BFE@  is, for significance level α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@39CA@ , the critical region for rejection of the hypothesis of randomness under the χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@3ACB@  distribution.

The estimated SARIMA order in the case of x o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaahaa Wcbeqaaiaad+gaaaaaaa@3809@  is (1,1,0)×(2,0,0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcacaaIXa GaaGilaiaaigdacaaISaGaaGimaiaaiMcacqGHxdaTcaaIOaGaaGOm aiaaiYcacaaIWaGaaGilaiaaicdacaaIPaaaaa@4444@  with an HQ criterion of 4.97. In the case of ξ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0baabeaaaaa@3B13@ , the estimated SARIMA order is (0,0,1)×(0,1,1,) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcacaaIWa GaaGilaiaaicdacaaISaGaaGymaiaaiMcacqGHxdaTcaaIOaGaaGim aiaaiYcacaaIXaGaaGilaiaaigdacaaISaGaaGykaaaa@44F9@ , for a modified HQ criterion equal to 4.05. Therefore, the filter is applied. The effects of its application are presented in Figure 2, where a more regular signal can be noticed. Such an impression is confirmed by looking at the SNRs, which is equal to 6.88 and 7.06 respectively for the unfiltered and filtered time series. The optimal smoothing constant λ =.805 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaCa aaleqabaGaey4fIOcaaOGaaGypaiaai6cacaaI4aGaaGimaiaaiwda aaa@3EBF@ , has been obtained at iteration number 82 (see Figure 3), using a grid of 121 λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@39DF@  values (equally spaced from 0.400 to 1; incremental step= 0.005). The residuals (computed in both the cases on the original time series) pass the ‘Portmanteau’ test (computed for the lags 1–24) only in the case of ξ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0baabeaaaaa@3B13@  (p value =0.382 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaai2dacaaIWa GaaGOlaiaaiodacaaI4aGaaGOmaaaa@3C9F@ ), whereas for the raw signal we have p value 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIKi7kaaic daaaa@3A96@ . Such a conclusion is consistent with the patterns shown by the empirical autocorrelation functions (see Figure 4) for x 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaahaa Wcbeqaaiaaicdaaaaaaa@3A0F@  (graph a) and ξ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0baabeaaaaa@3B13@  (graph b). In the same graph, the residual density distributions for x 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaahaa Wcbeqaaiaaicdaaaaaaa@3A0F@  (graph c) and ξ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0baabeaaaaa@3B13@  (graph d) confirm a better behavior when the proposed method is applied. Finally, in Figure 5, the prediction performances obtained using ξ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0baabeaaaaa@3B13@  appears to be slightly better until lag 8.

Figure 2 Unfiltered (continuous line) and filtered (dashed line) time series.

Figure 3 Values of the modified Hanna–Quinn information criterion for each iteration (attempted λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4UdW gaaa@382E@  value). The vertical line shows the iteration number at which the minimum mHQ value is found.

Figure 4 Autocorrelation functions for x t o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaqhaa WcbaGaamiDaaqaaiaad+gaaaaaaa@3B42@  (graph a), ξ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqOVdG 3cdaWgaaqcbasaaKqzadGaamiDaaqcbasabaaaaa@3AE4@  (graph b) and residual density for x t o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaqhaa WcbaGaamiDaaqaaiaad+gaaaaaaa@3B42@  (graph c) and ξ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqOVdG 3cdaWgaaqcbasaaKqzadGaamiDaaqcbasabaaaaa@3AE4@  (graph d).

Figure 5 Mean Absolute Error of the predictions obtained from the two SARIMA models applied on the raw time series (continuous line) and the filtered time series (dashed line). Time horizon 1–12.

Conclusion

One effective way to reduce noise components affecting our time series is to use a First Order Discrete Time Infinite Impulse Response Filter. As it is well known, its filtering performances are critically dependent on the smoothing constant, which therefore has to be carefully fine–tuned. The method proposed in this paper provides the practitioner with a useful – and reasonably fast – tool to filter out such unwanted components. However, that the objective function used – based on the Hannan Quinn information criterion – has given good results, does not imply that is the best possible one. For example, with small data set it could be worth considering different information criteria, specifically designed for such a case, e.g. the second-order AIC.26 Finally, different stochastic models can be always considered, according to the underlying data generating process. For instance, whenever the time series shows memory characteristics of the type long range, the proposed procedure can be associated to a suitable model (e.g. of the class Autorgressive Fractional Integrated Moving Average).

Acknowledgements

None.

Conflict of interest

Author declares that there is no conflict of interest.

References

  1. Richard T O'Connell, Anne B Koehler. Forecasting, time series, and regression: An applied approach, volume 4. USA: South–Western Pub; 2005.
  2. Ruey S Tsay. Analysis of Financial time series. Volume 543. USA: John Wiley & Sons; 2005.
  3. Harold Wayne Sorenson. Kalman ltering: theory and application. IEEE. 1985.
  4. Phillip G Gould, Anne B Koehler, J Keith Ord, et al. Forecasting time series with multiple seasonal patterns. European Journal of Operational Research. 2008;191(1):207–222.
  5. David L Donoho. De–noising by soft–thresholding. IEEE transactions on information theory. 1995;41(3):613–627.
  6. Albert Cohen, Ingrid Daubechies, Bjorn Jawerth, et al. Multiresolution analysis, wavelets and fast algorithms on an interval.  Comptes Rendus de l Académie des Sciences. 1993;316(5):417–421.
  7. Holger Kantz, Thomas Schreiber. Nonlinear time series analysis, volume 7. USA: Cambridge university press; 2004.
  8. S Makridakis. Forecasting: Methods and applications. 1998.
  9. Torsten kohler, Dirk Lorenz. A comparison of denoising methods for one dimensional time series. Bremen: Germany, University of Bremen; 2005.
  10. George EP Box, Gwilym M Jenkins, Gregory C Reinsel, et al. Time series analysis: forecasting and control. USA: John Wiley & Sons; 2015.
  11. Peter J Brockwell, Richard A Davis. Time series: theory and methods. Springer Science & Business Media. 2013.
  12. JH Stock, MW Watson. Introduction to econometrics. Boston: Addison–wesley; 2003.
  13. MJ Evanich, AO Newberry, LD Partridge. Some limitations on the removal of periodic noise by averaging. Journal of Applied Physiology. 33(4):536–541;1972.
  14. CC Holt. Forecasting trends and seasonals by exponentially weighted averages. carnegie institute of technology. Technical report, Pittsburgh ONR memorandum. 1957.
  15. Adrien Cahuzac, Jerome Boudet, Pierre Borgnat, et al. Smoothing algorithms for mean–ow extraction in large–eddy simulation of complex turbulent ows. Physics of uids. 2010;22(12):125104.
  16. Layth C Alwan, Harry V Roberts. Time series modelling for statistical process control. Statistical Process Control in Automated Manufacturing. 1988;15:45–65.
  17. J Stuart Hunter. The exponentially weighted moving average. Journal of quality technology. 1986;18(4):203–210.
  18. Gery Casiez, Nicolas Roussel, Daniel Vogel. 1 euro Filter: a simple speed–based low–pass Filter for noisy input in interactive systems. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM. 2012;2527–2530.
  19. Adrien Cahuzac, Jerome Boudet, Pierre Borgnat, et al. Smoothing algorithms for mean–ow extraction in large–eddy simulation of complex turbulent ows. Physics of uids. 2010;22(12):125104.
  20. Rob Hyndman, Anne B Koehler, J Keith Ord, et al. Forecasting with exponential smoothing: the state space approach. Springer Science & Business Media. 2008.
  21. Fat Codrut, A Maria, Dezsi Eva, et al. Exchange–rates forecasting: Exponential smoothing techniques and arima models. Annals of Faculty of Economics. 2011;1(1):499–508.
  22. Athanasios Papoulis. Signal analysis. volume 191. New York: McGraw–Hill; 1977.
  23. Edward J Hannan, Barry G Quinn. The determination of the order of an autoregression. Journal of the Royal Statistical Society. Series B (Methodological). 1979; 190–195.
  24. Clive WJ Granger. Essays in econometrics: collected papers of Clive WJ Granger. Volume 32. USA: Cambridge University Press; 2001.
  25. Greta M Ljung, George EP Box. On a measure of lack of t in time series models. Biometrika. 1978;65(2):297–303.
  26. Kenneth P Burnham, David R Anderson. Model selection and multimodel infer–ence: a practical information–theoretic approach. Springer Science & Business Media. 2003.
Creative Commons Attribution License

©2018 Fenga. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.