Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 8 Issue 5

Rainfall probability analysis for crop planning in Bargarh district of Odisha, India

Subudhi CR,1 Sukanya Suryavanshi,2 Nibedita Jena,2 R. Subudhi2

1Associate Professor, Department of SWCE, Orissa University of Agriculture and Technology, India
2Ex. Student, Orissa University of Agriculture and Technology, India

Correspondence: Subudhi CR, Associate Professor (SWCE), CAET, OUAT, BBSR-3, College of Agricultural Engineering and Technology, Orissa University of Agriculture and Technology, Bhubaneswar, 751003, India

Received: July 22, 2019 | Published: November 21, 2019

Citation: Subudhi CR, Suryavanshi S, Jena N,et al. Rainfall probability analysis for crop planning in Bargarh district of Odisha, India. Biom Biostat Int J. 2019;8(5):178-182. DOI: 10.15406/bbij.2019.08.00287

Download PDF

Abstract

This study was under taken in the U.G. thesis work in the Dept. Of SWCE, CAET, OUAT, Bhubaneswar during the year 2018-19. Bargarh district has latitude of 21.3oN and a longitude of 83.6oE. The average rainfall at Bargarh district is around 1337.5 mm, though it receives high amount rainfall but most of the rainfall occurred during kharif. So most of the crops get low yield due to improper crop planning. Thus, this study is proposed to be undertaken with the following objective: Probability analysis of annual, seasonal and monthly rainfall data of Bargarh district. So rainfall data were collected from OUAT, Agril Meteorology Dept. from 2001 to 2017(17 years) monthly, seasonal and annual rainfall were analyzed .Probability analysis have been made and equations were fitted to different distributions and best fitted equations were tested. Monthly, Annual and seasonal probability analysis of rainfall data shows the probability rainfall distribution of Bargarh district in different months, years and seasons. It is observed that rainfall during June to Sep is slightly less than 1000 mm and cropping pattern like paddy(110 days) may be followed by mustard is suitable to this region. Also if the kharif rain can be harvested and it can be reused for another rabi crop by using sprinkler or drip irrigation, which will give benefit to the farmers. Annual rainfall of Bargarh district is 1337.5 mm at 50% probability level.

Keywords: rainfall, probability analysis, crop planning

Introduction

Bargarh district has a total geographical area of 4325 sq. km. Bargarh district has latitude of 21.3oN and a longitude of 83.6o E. The average rainfall at Bargarh district is around 1337.5 mm, most of the rainfall occurred during kharif. Thus, this study is proposed to be undertaken with the following objective: Probability analysis of annual, seasonal and monthly rainfall data of Bargarh district.

Thom1 employed mixed gamma probability distribution for describing skewed rainfall data and employed approximate solution to non-linear equations obtained by differentiating log likelihood function with respect to the parameters of the distribution. Subsequently, this methodology along with variance ratio test as a goodness- of-fit has been widely employed Kar et.al.,2 Jat et.al.,3 Senapati et.al.4 applied incomplete gamma probability distribution for rainfall analysis. In addition to gamma probability distribution, other two-parameter probability distributions (normal, log-normal, Weibull, smallest and largest extreme value), and three-parameter probability distributions (log-normal, gamma, log-logistic and Weibull) have been widely used for studying flood frequency, drought analysis and rainfall probability analysis Senapati et.al.4

Gumbel,5 Chow,6 have applied gamma distribution with two and three parameter, Pearson type-III, extreme value, binomial and Poisson distribution to hydrological data.

Materials and methods

The data were collected from District Collector’s Office, Gajapati district for this study. Rainfall data for 17 years from 2001 to 2017 are collected for the presented study to make rainfall forecasting through different methods.

Probability distribution functions

For seasonal rainfall analysis of Gajapati district, three seasons- kharif (June-September), rabi (October to January) and summer (February to May) are considered.

The data is fed into the Excel spreadsheet, where it is arranged in a chronological order and the Weibull plotting position formula is then applied. The Weibull plotting position formula is given by

p= m N+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiabg2da9maalaaapaqaa8qacaWGTbaapaqaa8qacaWGobGa ey4kaSIaaGymaaaaaaa@3CDA@

where m=rank number

N=number of years

The recurrence interval is given by

T= 1 p = N+1 m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaWGWbaa aiabg2da9maalaaapaqaa8qacaWGobGaey4kaSIaaGymaaWdaeaape GaamyBaaaaaaa@3FC2@

The values are then subjected to various probability distribution functions namely- normal, log-normal (2-parameter), log-normal (3-parameter), gamma, generalized extreme value, Weibull, generalized Pareto distribution, Pearson, log-Pearson type-III and Gumbel distribution. Some of the probability distribution functions are described as follows:

Normal distribution

The probability density is

p( x )=(1/σ 2π )  e ( xμ ) 2 /2 σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Ja aiikaiaaigdacaGGVaGaeq4Wdm3aaOaaa8aabaWdbiaaikdacqaHap aCaSqabaGccaGGPaGaaiiOaiaadwgapaWaaWbaaSqabeaapeGaeyOe I0YaaeWaa8aabaWdbiaadIhacqGHsislcqaH8oqBaiaawIcacaGLPa aapaWaaWbaaWqabeaapeGaaGOmaaaaliaac+cacaaIYaGaeq4Wdm3d amaaCaaameqabaWdbiaaikdaaaaaaaaa@50F4@

where x is the variate, is the mean value of variateand  is the standard deviation. In this distribution, the mean, mode and median are the same. The cumulative probability of a value being equal to or less than x is

p( x )=1/σ 2π x e ( xμ ) 2 /2 σ 2 dx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaabmaapaqaa8qacaWG4bGaeyizImkacaGLOaGaayzkaaGa eyypa0JaaGymaiaac+cacqaHdpWCdaGcaaWdaeaapeGaaGOmaiabec 8aWbWcbeaakmaawahabeWcpaqaa8qacqGHsislcqGHEisPa8aabaWd biaadIhaa0WdaeaapeGaey4kIipaaOGaamyza8aadaahaaWcbeqaa8 qacqGHsisldaqadaWdaeaapeGaamiEaiabgkHiTiabeY7aTbGaayjk aiaawMcaa8aadaahaaadbeqaa8qacaaIYaaaaSGaai4laiaaikdacq aHdpWCpaWaaWbaaWqabeaapeGaaGOmaaaaaaGccaWGKbGaamiEaaaa @584F@

This represents the area under the curve between the variates of MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaeyOhIukaaa@398D@ and x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382C@ .

Log-normal (2-parameter) distribution

The probability density is

p( x )=(1/ σ y e y 2π ) e ( y μ y ) 2 /2 σ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Ja aiikaiaaigdacaGGVaGaeq4Wdm3damaaBaaaleaapeGaamyEaaWdae qaaOWdbiaadwgapaWaaWbaaSqabeaapeGaamyEaaaakmaakaaapaqa a8qacaaIYaGaeqiWdahaleqaaOGaaiykaiaadwgapaWaaWbaaSqabe aapeGaeyOeI0YaaeWaa8aabaWdbiaadMhacqGHsislcqaH8oqBpaWa aSbaaWqaa8qacaWG5baapaqabaaal8qacaGLOaGaayzkaaWdamaaCa aameqabaWdbiaaikdaaaWccaGGVaGaaGOmaiabeo8aZ9aadaWgaaad baWdbiaadMhaa8aabeaaaaaaaa@5545@

where y =ln x, where x is the variate, μ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaBaaaleaapeGaamyEaaWdaeqaaaaa@3A3D@ is the mean of y and σ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamyEaaWdaeqaaaaa@3A4A@ is the standard deviation of y.

Log-normal (3-parameter) distribution

A random variable X is said to have three-parameter log-normal probability distribution if its probability density function (pdf) is given by:

f( x )={ 1 ( xλ )σ 2π exp{ 1 2 ( log( xλ )μ σ ) 2 },λ x ,μ 0,σ 0 0,otherwise } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Za aiWaa8aabaqbaeqabiqaaaqaa8qadaWcaaWdaeaapeGaaGymaaWdae aapeWaaeWaa8aabaWdbiaadIhacqGHsislcqaH7oaBaiaawIcacaGL PaaacqaHdpWCdaGcaaWdaeaapeGaaGOmaiabec8aWbWcbeaaaaGcca WGLbGaamiEaiaadchadaGadaWdaeaapeGaeyOeI0YaaSaaa8aabaWd biaaigdaa8aabaWdbiaaikdaaaWaaeWaa8aabaWdbmaalaaapaqaa8 qaciGGSbGaai4BaiaacEgadaqadaWdaeaapeGaamiEaiabgkHiTiab eU7aSbGaayjkaiaawMcaaiabgkHiTiabeY7aTbWdaeaapeGaeq4Wdm haaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaGccaGL 7bGaayzFaaGaaiilaiabeU7aSnaaamaapaqaa8qacaWG4bWaaaWaa8 aabaWdbiabg6HiLkaacYcacqaH8oqBaiaawMYicaGLQmcacaaIWaGa aiilaiabeo8aZbGaayzkJiaawQYiaiaaicdaa8aabaWdbiaaicdaca GGSaGaam4BaiaadshacaWGObGaamyzaiaadkhacaWG3bGaamyAaiaa dohacaWGLbaaaaGaay5Eaiaaw2haaaaa@7960@ >

where μ, σ and λ  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0MaaiilaiaacckacqaHdpWCcaGGGcGaaeyyaiaab6gacaqG KbGaaiiOaiabeU7aSjaacckaaaa@4458@ are known as location, scale and threshold parameters, respectively.

Pearson distribution

The general and basic equation to define the probability density of a Pearson distribution

p( x )=e x a+x b 0 + b 1 x+ b 2 x 2 dx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Ja amyzamaawahabeWcpaqaa8qacqGHsislcqGHEisPa8aabaWdbiaadI haa0WdaeaapeGaey4kIipaaOWaaSaaa8aabaWdbiaadggacqGHRaWk caWG4baapaqaa8qacaWGIbWdamaaBaaaleaapeGaaGimaaWdaeqaaO WdbiabgUcaRiaadkgapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa amiEaiabgUcaRiaadkgapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpe GaamiEa8aadaahaaWcbeqaa8qacaaIYaaaaaaakiaadsgacaWG4baa aa@52F7@

where a, b 0 , b 1  and  b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyaiaacYcacaWGIbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWd biaacYcacaWGIbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacc kacaqGHbGaaeOBaiaabsgacaGGGcGaamOya8aadaWgaaWcbaWdbiaa ikdaa8aabeaaaaa@44A1@ are constants.

The criteria for determining types of distribution are β 1 , β 2  and k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacqaH YoGypaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaaiiOaiaabggaca qGUbGaaeizaiaacckacaWGRbaaaa@4374@ where

β 1 = μ 3 2 μ 2 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9maa laaapaqaa8qacqaH8oqBpaWaa0baaSqaa8qacaaIZaaapaqaa8qaca aIYaaaaaGcpaqaa8qacqaH8oqBpaWaa0baaSqaa8qacaaIYaaapaqa a8qacaaIZaaaaaaaaaa@4291@ β 2 = μ 4 μ 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da9maa laaapaqaa8qacqaH8oqBpaWaaSbaaSqaa8qacaaI0aaapaqabaaake aapeGaeqiVd02damaaDaaaleaapeGaaGOmaaWdaeaapeGaaGOmaaaa aaaaaa@41B6@ k= β 1 ( β 2 +3 ) 2 4( 4 β 2 3 β 1 )( 2 β 2 3 β 1 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9maalaaapaqaa8qacqaHYoGypaWaaSbaaSqaa8qa caaIXaaapaqabaGcpeWaaeWaa8aabaWdbiabek7aI9aadaWgaaWcba Wdbiaaikdaa8aabeaak8qacqGHRaWkcaaIZaaacaGLOaGaayzkaaWd amaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaaisdadaqadaWdae aapeGaaGinaiabek7aI9aadaWgaaWcbaWdbiaaikdaa8aabeaak8qa cqGHsislcaaIZaGaeqOSdi2damaaBaaaleaapeGaaGymaaWdaeqaaa GcpeGaayjkaiaawMcaamaabmaapaqaa8qacaaIYaGaeqOSdi2damaa BaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiaaiodacqaHYoGypa WaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyOeI0IaaGOnaaGaayjk aiaawMcaaaaaaaa@5938@

Where μ 2 , μ 3  and  μ 4  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaacYcacqaH 8oqBpaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaaiiOaiaabggaca qGUbGaaeizaiaacckacqaH8oqBpaWaaSbaaSqaa8qacaaI0aGaaiiO aaWdaeqaaaaa@46A1@ are second, third and fourth moments about the mean.

Log-pearson type III distribution

In this the variate is first transformed into logarithmic form (base 10) and the transformed data is then analyzed. If X is the variate of a random hydrologic series, then the series of Z variates where

z=logx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaiabg2da9iaadYgacaWGVbGaam4zaiaadIhaaaa@3D02@

are first obtained. For this z series, for any recurrence interval T and the coefficient of skew C s , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadohaa8aabeaak8qacaGGSaaaaa@3A13@

σ z = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamOEaaWdaeqaaOWdbiabg2da9aaa @3B6B@ Standard deviation of the Z variate sample

   = ( Z Z ¯ ) 2 /( N1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaOaaa8aabaWaaubiaeqaleqabaGaaGzaVdqdbaWdbiabggHiLdaa k8aadaqadaqaaiaadQfacqGHsisldaqdaaqaaiaadQfaaaaacaGLOa GaayzkaaWaaWbaaSqabeaacaaIYaaaaOWdbiaac+cadaqadaqaaiaa d6eacqGHsislcaaIXaaacaGLOaGaayzkaaaaleqaaaaa@4505@

And C s = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadohaa8aabeaak8qacqGH9aqpaaa@3A69@ coefficient of skew of variate Z

       = N ( Z Z ¯ ) 3 ( N1 )( N2 ) σ z 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaad6eapaWaaubiaeqaleqabaGaaGzaVdqdbaWd biabggHiLdaak8aadaqadaqaaiaadQfacqGHsisldaqdaaqaaiaadQ faaaaacaGLOaGaayzkaaWaaWbaaSqabeaapeGaaG4maaaaaOWdaeaa peWaaeWaa8aabaWdbiaad6eacqGHsislcaaIXaaacaGLOaGaayzkaa WaaeWaa8aabaWdbiaad6eacqGHsislcaaIYaaacaGLOaGaayzkaaGa eq4Wdm3damaaBaaaleaapeGaamOEaaWdaeqaaOWaaWbaaSqabeaape GaaG4maaaaaaaaaa@4DBC@

Z ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam Owaaaaaaa@37FF@ = mean of z values

N= sample size = number of years of record

Generalized pareto distribution

The family of generalized Pareto distributions (GPD) has three parameters μ,σ and ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabeo8aZjaacckacaqGHbGaaeOBaiaabsgacaGG GcGaeqOVdGhaaa@421E@ .

The cumulative distribution function is

F ( ε,μ,σ ) ( x )={ 1( 1+ ξ( xμ ) σ )   1 ξ  for ξ0 1exp( xμ σ )      for ξ=0 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbmaabmaapaqaa8qacqaH1oqzcaGGSaGa eqiVd0Maaiilaiabeo8aZbGaayjkaiaawMcaaaWdaeqaaOWdbmaabm aapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaiWaa8aabaqb aeqabiqaaaqaa8qacaaIXaGaeyOeI0YaaeWaa8aabaWdbiaaigdacq GHRaWkdaWcaaWdaeaapeGaeqOVdG3aaeWaa8aabaWdbiaadIhacqGH sislcqaH8oqBaiaawIcacaGLPaaaa8aabaWdbiabeo8aZbaaaiaawI cacaGLPaaacaGGGcWdamaaCaaaleqabaWdbmaalaaapaqaa8qacqGH sislcaaIXaaapaqaa8qacqaH+oaEaaaaaOGaaiiOaiaadAgacaWGVb GaamOCaiaacckacqaH+oaEcqGHGjsUcaaIWaaapaqaa8qacaaIXaGa eyOeI0IaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbiabgkHiTmaala aapaqaa8qacaWG4bGaeyOeI0IaeqiVd0gapaqaa8qacqaHdpWCaaaa caGLOaGaayzkaaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaamOzaiaad+gacaWGYbGaaiiOaiabe67a4jabg2da9iaaicdaaaaa caGL7bGaayzFaaaaaa@7E79@

for xμ  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabgwMiZkabeY7aTjaacckaaaa@3CCB@ when ξ0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdGNaeyyzImRaaGimaaaa@3B71@ and xμ σ ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabgsMiJkabeY7aTjabgkHiTmaalaaapaqaa8qacqaHdpWC a8aabaWdbiabe67a4baaaaa@4057@ when ξ<0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdGNaeyipaWJaaGimaiaacYcaaaa@3B5F@ where μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0MaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiuaacqWFDeIuaaa@4520@ is the location parameter, σ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4WdmNaeyOpa4JaaGimaaaa@3AB3@ the scale parameter and ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdGNaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiuaacqWFDeIuaaa@452D@ the shape parameter.

The probability density function is

f ( ξ,μ,σ ) ( x )= 1 σ ( 1+ ξ( xμ ) σ ) ( 1 ξ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbmaabmaapaqaa8qacqaH+oaEcaGGSaGa eqiVd0Maaiilaiabeo8aZbGaayjkaiaawMcaaaWdaeqaaOWdbmaabm aapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aabaWd biaaigdaa8aabaWdbiabeo8aZbaadaqadaWdaeaapeGaaGymaiabgU caRmaalaaapaqaa8qacqaH+oaEdaqadaWdaeaapeGaamiEaiabgkHi TiabeY7aTbGaayjkaiaawMcaaaWdaeaapeGaeq4WdmhaaaGaayjkai aawMcaa8aadaahaaWcbeqaa8qadaqadaWdaeaapeGaeyOeI0YaaSaa a8aabaWdbiaaigdaa8aabaWdbiabe67a4baacqGHsislcaaIXaaaca GLOaGaayzkaaaaaaaa@5AFE@

Or
f ( ξ,μ,σ ) ( x )= σ 1 ξ ( σ+ξ( xμ ) ) ( 1 ξ +1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbmaabmaapaqaa8qacqaH+oaEcaGGSaGa eqiVd0Maaiilaiabeo8aZbGaayjkaiaawMcaaaWdaeqaaOWdbmaabm aapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aabaWd biabeo8aZ9aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaGymaaWdae aapeGaeqOVdGhaaaaaaOWdaeaapeWaaeWaa8aabaWdbiabeo8aZjab gUcaRiabe67a4naabmaapaqaa8qacaWG4bGaeyOeI0IaeqiVd0gaca GLOaGaayzkaaaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbmaabmaa paqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaeqOVdGhaaiabgU caRiaaigdaaiaawIcacaGLPaaaaaaaaaaa@5B64@
again, for xμ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabgwMiZkabeY7aTbaa@3BA7@ , and xμ σ ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabgsMiJkabeY7aTjabgkHiTmaalaaapaqaa8qacqaHdpWC a8aabaWdbiabe67a4baaaaa@4057@ when ξ<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdGNaeyipaWJaaGimaaaa@3AAF@

Result and discussion

The various parameters like mean, standard deviation, RMSE value were obtained and noted for different distributions. The rainfall at 90%,75%,50%,25% and 10% probability levels are determined. The distribution “best” fitted to the data is noted down in a tabulated form in Table 1.

Months

Best-fit Distribution

RMSE Value

Rainfall at probability levels

90%

75%

50%

25%

10%

January

Log-normal

0.07683

-

-

-

5.46

31.32

February

GEV

0.04701

-

-

-

22.06

31.38

March

Pareto

0.0364

-

-

-

11.55

48.59

April

Gamma

0.0571

-

-

-

11.9

39.14

May

Pareto

0.03027

-

-

15.17

40.7

63.62

June

Ln (3-P)

0.03107

80.68

137.19

218.36

314.97

411.85

July

Weibull

0.05611

180.67

251.28

362.57

523.20

728.02

August

Ln (3-P)

0.03107

179.11

238.68

328.25

451.33

601.15

September

Normal

0.05611

57.05

130.78

212.73

294.70

368.54

October

Pareto

0.04727

-

12.14

32.89

67.78

112.76

November

Gamma

0.07268

-

-

-

4.85

26.96

December

Pareto

0.08277

-

-

-

-

22.88

Annual

Pareto

0.03024

979.21

1110.60

1337.5

1579.98

1740.39

Kharif  (june-sept)

 

Pareto

0.05472

904.97

997.77

1177.7

1415.67

1631.67

Rabi      (oct-jan)

 

Pareto

0.03717

-

16.4

53.1

106.38

161.89

Summer (feb-may)

 

Ln (3-P)

0.03541

-

13.61

47.4

80.93

116.22

Table 1 Rainfall analysis of Bargarh Block at different probability levels for different months and seasons

In the present study, the parameters of distribution for the different distributions have been estimated by FLOOD-flood frequency analysis software. The rainfall data is the input to the software programme. The best fitted distribution of different month and season and annual were presented in Table 1. The annual rainfall in 50% probability was found to be 1337.5 mm for Bargarh district of Odisha. During Kharif at 50 % probability level, the rainfall is 1177.7 mm where as only 53.1 mm and 47.4 mm was received during rabi and summer respectively.

In the present study, the parameters of distribution for the different distributions have been estimated by FLOOD-flood frequency analysis software. The rainfall data is the input to the software programme. The best fitted distribution of different month and season and annual were presented in Table 1. The annual rainfall in 50% probability was found to be 1243.8 mm for Bargarh district of Odisha. During Kharif at 50 % probability level, the rainfall is 1177.7 mm where as only 53.1 mm and 47.4 mm was received during rabi and summer respectively, so water harvesting structures may be made to grow crops during rabi and summer to utilize the water from the water harvesting structures to increase the cropping intensity of the area. It is also observed that at 75 % probability level the June ,July , Aug and Sept received more than 100 mm, so farmers of these area can grow crops in upland areas suitably paddy can be grown followed by any rabi crop in rabi season like mustard or kulthi in upland areas. In Figure 1 the plot between different months and amount of rainfall in different probabilities were shown, It is observed that September month gets highest amount of rainfall compared to other months. Figure 2 shows the different cropping pattern in Bargarh district as per the rainfall available in different weeks.7-17

      Figure 1 Rainfall at different probabilities of monthly, seasonal and annual at Bargarh block.

Figure 2 Different cropping patterns for Bargarh district.

Conclusion

Forecasting of rainfall is essential for proper planning of crop production. About 70% of cultivable land of Odisha depends on rainfall for crop production. Prediction of rainfall in advance helps to accomplish the agricultural operations in time. It can be concluded that, excess runoff should be harvested for irrigating post-monsoon crops. It becomes highly necessary to provide the farmers with high-yielding variety of crops and such varieties which require less water and are early-maturing in Gajapati district of Hirakud command area of Odisha. It is also observed that at 75 % probability level the June, July, Aug and Sept received more than 100 mm, so farmers of these area can grow crops in upland areas suitably paddy can be grown followed by any rabi crop in rabi season like mustard or kulthi in upland areas. Annual rainfall of Bargarh district is 1337.5 mm at 50% probability level. It is observed that September month gets highest amount of rainfall compared to other months. Different cropping pattern selected may be may be practiced in this district.

Acknowledgments

None.

Conflicts of interest

The author declares that there are no conflicts of interest.

Funding

None.

References

  1. Thom HCS. Some methods of climatological analysis. WMO Tech. Note. No. 81. 1996.
  2. Kar G, Singh R, Verma HN. Alternative cropping strategies for assured and efficient crop production in upland rain fed rice areas of eastern India based on rainfall analysis. 2004;67(1):47–62.
  3. Jat ML, Singh RV, Balyan JK, et al. Analysis of weekly rainfall for Sorghum based crop planning in Udaipur region. Indian J Dryland Agric Res Dev. 2006;21(2):114–122.
  4. Senapati SC, Sahu AP, Sharma SD. Analysis of meteorological events for crop planning in rain fed uplands. Indian J Soil Cons. 2009;37(2):85–90.
  5. Gumbel EJ. Statistical theory of droughts. Proceedings of ASCE. 1954;80(439):1–19.
  6. Chow VT. Hand book of Applied Hydrology McGraw Hill Book Co., New York. 1964;8–28.
  7. Biswas BC. Forecasting for agricultural application. Mausam. 1990;41(2):329–334.
  8. Das MK. Analysis of agrometerological data of Bhubaneswar for crop planning. M.Tech. thesis. C.A.E.T., OUAT. 1992.
  9. Gumbel EJ. Statistics of extremes. Columbia University Press, New York. 1958.
  10. Harshfield DM, Kohlar MA. An empirical appraisal of the Gumbel extreme procedure. J of Geophysics Research, 1960;65:1737–1746.
  11. Panigrahi B. Probability analysis of short duration rainfall for crop planning in coastal Orissa. Indian J Soil Cons. 1998;26(2):178–182.
  12. Reddy SR. Principles of Agronomy. 1st edition. Kalyani publication. 1999.
  13. Sadhab P. Study of rainfall distributions and determination of drainage coefficient: A case study for coastal belt of Orissa. M. Tech. thesis. C.A.E.T., OUAT. 2002.
  14. Sharda VN, Das PK. Modeling weekly rainfall data for crop planning in a sub–humid climate of India.  Agricultural water management. 2005. 76(2):120–138.
  15. Subramanya K. Engineering Hydrology. 23rd reprint. Tata Mc–graw Hill Publishing Company Ltd. 1990.
  16. Subudhi CR. Probability analysis for prediction of annual maximum daily rainfall of Chakapada block of Kandhamal district of Orissa. Indian J Soil Cons. 2007;35(1):84–85.
  17. Weibull W. A statistical distribution functions of wide applicability. J Appl Mech. Tran. ASME. 1951;18(3):293–297.
Creative Commons Attribution License

©2019 Subudhi, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.