Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 6 Issue 3

On directed alternatives in linear inference

Donald Jensen

Department of Statistics, Virginia Tech, USA

Correspondence: Donald Jensen, Department of Statistics, Virginia Tech, Blacksburg, VA 24061, USA

Received: October 25, 2016 | Published: October 5, 2017

Citation: Jensen D. On directed alternatives in linear inference. Biom Biostat Int J. 2017;6(3):364-371. DOI: 10.15406/bbij.2017.06.00171

Download PDF

Abstract

Tests for vector hypotheses H 0 :  θ= θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamisamaaBaaabaqcLbmacaaIWaaajuaGbeaacaGG6aGccaGG GcGaaiiOaGGadKqbacba+dG=a4papiGae8hUde3dbiabg2da98Gacq WF4oqCjyaGpeWaaSbaaKqbagaajugWaiaaicdaaKqbagqaaaaa@48B0@ against H 1 :θ θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamisamaaBaaajyaGbaGaaGymaaqcfayabaGaaiOoaGGadaba +dG=a4papiGae8hUde3dbiabgcMi5+GacqWF4oqCpeWaaSbaaKGbag aacaaIWaaajuaGbeaaaaa@4437@ in k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeSyhHeAcga4aaWbaaeqabaGaam4Aaaaaaaa@394A@  typically have powers depending on quadratic forms of type λ=( θ θ 0 )' Ξ 1 ( θ θ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeq4UdWMaeyypa0Zdamaabmaabaaccmaea4pa+dG=a8GacqWF 4oqCpeGaeyOeI0Ydciab=H7aXLGba+qadaWgaaqaaiaaicdaaeqaaa qcfa4daiaawIcacaGLPaaapeGaai4jaGGab8GacqGFEoawjyaGpeWa aWbaaeqabaGaeyOeI0IaaGymaaaajuaGpaWaaeWaaeaapiGae8hUde 3dbiabgkHiT8GacqWF4oqCpeWaaSbaaKGbagaacaaIWaaajuaGbeaa a8aacaGLOaGaayzkaaaaaa@51B5@ . This study examines the case that ( μ μ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba accmaea4pa+dG=a8qacqWF8oqBqaaaaaaaaaWdciabgkHiT8qacqWF 8oqBpiWaaSbaaKGbagaacaaIWaaajuaGbeaaa8aacaGLOaGaayzkaa aaaa@4161@ is restricted to subspaces, for example, ( μ μ 0 )'=c ( 1,1,0,,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba accmaea4pa+dG=a8qacqWF8oqBqaaaaaaaaaWdciabgkHiT8qacqWF 8oqBpiWaaSbaaKGbagaacaaIWaaajuaGbeaaa8aacaGLOaGaayzkaa WdciaacEcacqGH9aqpcaWGJbGaaeiia8aadaqadaqaa8GacaaIXaGa aiilaiaaigdacaGGSaGaaGimaiaacYcacqGHMacVcaGGSaGaaGimaa WdaiaawIcacaGLPaaaaaa@4D9E@ differing only in their first two coordinates. These are called directed alternatives. The spectral decomposition of Ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGabKqbacba+d G=a4papeGae8NNdGfaaa@3ABC@  supports the identification of one–dimensional alternatives least likely and most likely to be discerned, to complement conventional data analysis. Applications are drawn in the use of Hotelling’s Τ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGacKqbacbaaa aaaaaapeGae8hPdqLcdaahaaWcbeqcgayaaiaaikdaaaaaaa@3947@ and of F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOraaaa@3704@ –tests in linear inference. Moreover, it is seen that a given design may be recast so as to reverse the least likely and most likely alternatives. Numerical examples serve to illustrate the findings.

62J05, 62H10 and 62P30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaGOnaiaaikdacaWGkbGaaGimaiaaiwdacaGGSaGaaeiiaiaa iAdacaaIYaGaamisaiaaigdacaaIWaGaaeiiaiaadggacaWGUbGaam izaiaabccacaaI2aGaaGOmaiaadcfacaaIZaGaaGimaaaa@46DE@

Keywords: Linear models; F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOraaaa@3704@ tests; Hotelling's T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamivaOWaaWbaaSqabKGbagaacaaIYaaaaaaa@3894@ tests; Directed alternatives; Reversal designs

Introduction

Power in statistical inference is driven by non–null distributions. For observations in k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeSyhHeAcga4aaWbaaeqabaGaam4Aaaaaaaa@394A@ having dispersion matrix Ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeuONdGfaaa@37BD@ , noncentrality parameters often emerge as the Mahalanobis [1] distance between points ( u,v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba aeaaaaaaaaa8qacaWG1bGaaiilaiaadAhaa8aacaGLOaGaayzkaaaa aa@3A76@ in k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeSyhHeAcga4aaWbaaeqabaGaam4Aaaaaaaa@394A@ , namely,

D Ξ 2 ( u,v )=( uv )' Ξ 1 ( uv ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqacKqbacbaaa aaaaaapeGaa8hraKGbaoaaDaaabaacceGae4NNdGfabaGaaGOmaaaa juaGpaWaaeWaaeaapeGaamyDaiaacYcacaWG2baapaGaayjkaiaawM caa8qacqGH9aqppaWaaeWaaeaapeGaamyDaiabgkHiTiaadAhaa8aa caGLOaGaayzkaaWdbiaacEcacqGFEoawdaahaaqabKGbagaacqGHsi slcaaIXaaaaKqba+aadaqadaqaa8qacaWG1bGaeyOeI0IaamODaaWd aiaawIcacaGLPaaapeGaaiOlaaaa@4F11@              (1)

This specializes to the Euclidean metric for the case that Ξ=c  Ι k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqqHEoawcqGH9aqpcaWGJbGaaeiiaGGadiab=L5ajLGb aoaaBaaabaGaam4Aaaqabaaaaa@3F1A@ , in which case the model is called isotropic. In particular, nonparametric and other statistics often have noncentral chi–squared distributions, either in small samples or asymptotically. In addition, pervasive venues in parametric inference, to be reexamined in some detail, include the following.

Case (i). Hotelling [2] Test: T 2 =n( Y ¯ μ 0 ) S 1 ( Y ¯ μ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGubWaaWbaaeqajyaGbaGaaGOmaaaajuaGcqGH9aqp caWGUbWaaeWaaeaaieWaceWFzbGbaebacqGHsislcqaH8oqBdaWgaa qcgayaaiaaicdaaKqbagqaaaGaayjkaiaawMcaaiaadofadaahaaqa beaacqGHsislcaaIXaaaamaabmaabaGab8xwayaaraGaeyOeI0Iaeq iVd02aaSbaaKGbagaacaaIWaaajuaGbeaaaiaawIcacaGLPaaaaaa@4D95@  where ( Y ¯ , S ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qadaqadaqaaGqadiqa=Lfagaqeaiaa=XcacaWFGaGaa83u aaGaayjkaiaawMcaaaaa@3C97@ are the sample mean and dispersion matrix of n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGUbaaaa@38E1@ Gaussian vectors in k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqWIDesOdaahaaqabKGbagaacaWGRbaaaaaa@3AFF@ having the location–scale parameters (μ,Σ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqa aaaaaaaaWdbiaahIcaieWacaWF8oGaaCilaiaa=n6acaWHPaaaaa@3C7A@ . Then in testing H 0 :μ= μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGibqcga4aaSbaaeaacaaIWaaabeaajuaGcaGG6aGa eqiVd0Maeyypa0JaeqiVd0wcga4aaSbaaeaacaaIWaaabeaaaaa@414D@  against H 1 :μ μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGibqcga4aaSbaaeaacaaIXaaabeaajuaGcaGG6aGa eqiVd0MaeyiyIKRaeqiVd02aaSbaaKGbagaacaaIWaaajuaGbeaaaa a@429D@ , the power function is Ψ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu iQdK1aaeWaaeaaqaaaaaaaaaWdbiabeU7aSbWdaiaawIcacaGLPaaa aaa@3CC9@ with noncentrality λ=n( μ μ 0 )' Σ 1 ( μ μ 0 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaH7oaBcqGH9aqpcaWGUbWdamaabmaabaWdbiabeY7a TjabgkHiTiabeY7aTnaaBaaajyaGbaGaaGimaaqcfayabaaapaGaay jkaiaawMcaa8qacaGGNaGaeu4Odmvcga4aaWbaaeqabaGaeyOeI0Ia aGymaaaajuaGpaWaaeWaaeaapeGaeqiVd0MaeyOeI0IaeqiVd02aaS baaKGbagaacaaIWaaajuaGbeaaa8aacaGLOaGaayzkaaWdbiaac6ca aaa@5193@

Case (ii). The General Linear Model: { Y=Xβ+ε } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aai WaaeaaieWaqaaaaaaaaaWdbiaa=LfacaWF9aGaa8hwaiabek7aIjab gUcaRiabew7aLbWdaiaawUhacaGL9baaaaa@40D5@ with Gaussian errors having zero means and dispersion matrix σ 2 I n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaHdpWCdaahaaqabKGbagaacaaIYaaaaGqadKqbakaa =LeadaWgaaqcgayaaiaad6gaaKqbagqaaaaa@3EB3@ . Then in testing H 0 :β= β o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGibqcga4aaSbaaeaacaaIWaaabeaajuaGcaGG6aGa eqOSdiMaeyypa0JaeqOSdi2aaSbaaKGbagaacaWGVbaajuaGbeaaaa a@41EB@  against H 1 :β β o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGibqcga4aaSbaaeaacaaIXaaabeaajuaGcaGG6aGa eqOSdiMaeyiyIKRaeqOSdi2aaSbaaKGbagaacaWGVbaajuaGbeaaaa a@42AD@  in k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqWIDesOdaahaaqabKGbagaacaWGRbaaaaaa@3AFF@ , the power function is Ψ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu iQdK1aaeWaaeaaqaaaaaaaaaWdbiabeU7aSbWdaiaawIcacaGLPaaa aaa@3CC9@ with noncentrality λ=( β β o )'X'X( β β o )/ σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaH7oaBcqGH9aqppaWaaeWaaeaapeGaeqOSdiMaeyOe I0IaeqOSdiwcga4aaSbaaeaacaWGVbaabeaaaKqba+aacaGLOaGaay zkaaWdbiaacEcaieWacaWFybGaa83jaiaa=HfapaWaaeWaaeaapeGa eqOSdiMaeyOeI0IaeqOSdi2aaSbaaKGbagaacaWGVbaajuaGbeaaa8 aacaGLOaGaayzkaaWdbiaac+cacqaHdpWCjyaGdaahaaqabeaacaaI Yaaaaaaa@51EC@ .

Classical theory allows for any ( μ μ 0 ) k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaaiiWaqaaaaaaaaaWdbiab=X7aTjabgkHiTiab=X7aTnaaBaaa jyaGbaGaaGimaaqcfayabaaapaGaayjkaiaawMcaa8qacqGHiiIZcq WIDesOdaahaaqabKGbagaacaWGRbaaaaaa@447F@  for Case (i), and ( β β o ) k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaaqaaaaaaaaaWdbiabek7aIjabgkHiTiabek7aInaaBaaajyaG baGaam4BaaqcfayabaaapaGaayjkaiaawMcaa8qacqGHiiIZcqWIDe sOdaahaaqabKGbagaacaWGRbaaaaaa@448C@  for Case (ii). On the other hand, alternatives lying in designated subspaces may hold substantive interest per se. For example, taking ( μ μ 0 )'=c ( 1,1,0,,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaaiiWaqaaaaaaaaaWdbiab=X7aTjabgkHiTiab=X7aTnaaBaaa jyaGbaGaaGimaaqcfayabaaapaGaayjkaiaawMcaa8qacaGGNaGaey ypa0Jaam4yaiaabccapaWaaeWaaeaapeGaaGymaiaacYcacaaIXaGa aiilaiaaicdacaGGSaGaeyOjGWRaaiilaiaaicdaa8aacaGLOaGaay zkaaaaaa@4C15@ allows for discrepancies between μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iVd0gaaa@3984@ and μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iVd02aaSbaaeaajugWaiaaicdaaKqbagqaaaaa@3C1B@ in their first two coordinates only, whereas ( μ μ 0 )'=c ( 1,1,,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaaiiWaqaaaaaaaaaWdbiab=X7aTjabgkHiTiab=X7aTnaaBaaa jyaGbaGaaGimaaqcfayabaaapaGaayjkaiaawMcaa8qacaGGNaGaey ypa0Jaam4yaiaabccapaWaaeWaaeaapeGaaGymaiaacYcacaaIXaGa aiilaiabgAci8kaacYcacaaIXaaapaGaayjkaiaawMcaaaaa@4AAC@ allows for deviations along the equiangular line in k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqWIDesOdaahaaqabKGbagaacaWGRbaaaaaa@3AFF@ . Both are one–dimensional; subspaces of dimension greater than one are considered subsequently. Alternatives lying in designated subspaces of k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqWIDesOdaahaaqabKGbagaacaWGRbaaaaaa@3AFF@ are called directed alternatives, and the goal here is to study powers of tests against alternatives of these types.

The present study expands on this as follows. Not only do distinct alternatives differ in importance to users, but so too their probabilities of detection. Here the spectral decomposition of Ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqqHEoawaaa@3972@ , if anisotropic, supports the identification of alternatives least likely and most likely to be discovered, as well as intermediate cases. These serve to bracket the effective range of inferences intrinsic to a given study, and thereby complement conventional options in data analysis. Applications are drawn in the use of Hotelling’s T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGubWaaWbaaeqajyaGbaGaaGOmaaaaaaa@3A34@ in multivariate samples, and of F–tests in the analysis of linear models. Moreover, it is shown that a given design may be modified so as to reverse the least likely and most likely alternatives, in the event that this would better serve the objectives of an experiment.

This study is organized as follows. Supporting developments are given next in Section 2, followed by the principal findings of Section 3. Several examples in Section 4 illustrate the essential results. Collateral materials are deferred for completeness to an Appendix.

Preliminaries

Notation

Spaces include n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqWIDesOdaahaaqabKGbagaacaWGUbaaaaaa@3B02@ as Euclidean n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGUbaaaa@38E1@ -space; + n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqWIDesOjyaGdaqhaaqaamaaCaaabeqaaiabgUcaRaaa aeaacaWGUbaaaaaa@3C06@ as its positive orthant; S n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySL gznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaajuaGcqWFsc=ujyaG qaaaaaaaaaWdbmaaBaaabaGaamOBaaqabaaaaa@458E@  as the real symmetric ( n×n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaaqaaaaaaaaaWdbiaad6gacqGHxdaTcaWGUbaapaGaayjkaiaa wMcaaaaa@3D83@ matrices; S n + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySL gznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaajuaGcqWFsc=ujyaG daqhaaqaaiaad6gaaeaacqGHRaWkaaaaaa@4651@ as their positive definite varieties; F n×k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySL gznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaajuaGcqWFfcVrjyaG daWgaaqaaiaad6gacqGHxdaTcaWGRbaabeaaaaa@485B@ as the real (n×k) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai ikaiaad6gacqGHxdaTcaWGRbGaaiykaaaa@3D21@ matrices of rank kn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai 4AaiabgsMiJkaac6gaaaa@3B64@ ; and O k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFoe=tdaWg aaqcgayaaiaacUgaaKqbagqaaaaa@4558@ as the (k×k) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai ikaiaadUgacqGHxdaTcaWGRbGaaiykaaaa@3D1E@  orthogonal group. Vectors and matrices are set in bold type; the transpose, inverse, trace, and determinant of A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa Oaa8xqaaaa@389C@ are A' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa Oaa8xqaiaacEcaaaa@3947@ , A 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa Oaa8xqaKGbaoaaCaaabeqaaiabgkHiTiaaigdaaaaaaa@3AF5@ , tr( A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWG0bGaamOCa8aadaqadaqaaGqad8qacaWFbbaapaGa ayjkaiaawMcaaaaa@3C63@ , and | A | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaq WaaeaaieWacaWFbbaacaGLhWUaayjcSdaaaa@3BBE@ ; the unit vector in n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqWIDesOdaahaaqabKGbagaacaWGUbaaaaaa@3B02@ is 1 n =[ 1,,1 ]' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFXaWaaSbaaKGbagaacaWGUbaajuaGbeaacqGH 9aqppaWaamWaaeaapeGaaGymaiaacYcacqGHMacVcaGGSaGaaGymaa WdaiaawUfacaGLDbaapeGaai4jaaaa@4322@ ; I n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa Oaa8xsaKGbaoaaBaaajuaGbaacbiqcLbmacaGFUbaajuaGbeaaaaa@3C97@ is the ( n×n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaaqaaaaaaaaaWdbiaad6gacqGHxdaTcaWGUbaapaGaayjkaiaa wMcaaaaa@3D83@ identity; and Diag( A 1 ,, A k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGebGaamyAaiaadggacaWGNbWdamaabmaabaacbmWd biaa=feajyaGdaWgaaqaaiaaigdaaeqaaKqbakaacYcacqGHMacVca GGSaGaa8xqamaaBaaajyaGbaGaam4AaaqcfayabaaapaGaayjkaiaa wMcaaaaa@45D3@ is a block-diagonal array. If B=[ b 1 ,, b k ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFcbGaeyypa0ZdamaadmaabaWdbiaa=jgajyaG daWgaaqaaiaaigdaaeqaaKqbakaacYcacqGHMacVcaGGSaGaa8Nyam aaBaaajyaGbaGaam4AaaqcfayabaaapaGaay5waiaaw2faaaaa@44BE@ is of order ( n×k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaaqaaaaaaaaaWdbiaad6gacqGHxdaTcaWGRbaapaGaayjkaiaa wMcaaaaa@3D80@ and rank k<n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4AaiabgYda8iaad6gaaaa@3AB5@ , then S p ( B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGtbqcga4aaSbaaeaacaWGWbaabeaajuaGpaWaaeWa aeaaieWapeGaa8NqaaWdaiaawIcacaGLPaaaaaa@3D7F@ designates the column span of B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFcbaaaa@38BD@ , i.e., the k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfa ieaaaaaaaaa8qacaWFRbaaaa@38E5@ –dimensional subspace of n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqWIDesOdaahaaqabKGbagaacaWGUbaaaaaa@3B02@ spanned by [ b 1 ,, b k ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aam WaaeaaqaaaaaaaaaWdbiaadkgajyaGdaWgaaqaaiaaigdaaeqaaKqb akaacYcacqGHMacVcaGGSaGaamOyamaaBaaajyaGbaGaam4Aaaqcfa yabaaapaGaay5waiaaw2faaaaa@42D2@ . The ordered eigenvalues of A S n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFbbGaeyicI48efv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiuaacqGFsc=udaWgaaqcgayaaiaad6gaaKqbag qaaaaa@486D@ are { λ i ( A )= α i ; 1in } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aai WaaeaaqaaaaaaaaaWdbiabeU7aSnaaBaaajyaGbaGaamyAaaqcfaya baWdamaabmaabaacbmWdbiaa=feaa8aacaGLOaGaayzkaaWdbiabg2 da9iabeg7aHLGbaoaaBaaabaGaamyAaaqabaqcfaOaai4oaiaabcca caaIXaGaeyizImQaamyAaiabgsMiJkaad6gaa8aacaGL7bGaayzFaa aaaa@4CDC@ with { α 1 α 2 α n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aai WaaeaaqaaaaaaaaaWdbiabeg7aHLGbaoaaBaaabaGaaGymaaqabaqc faOaeyyzImRaeqySde2aaSbaaKGbagaacaaIYaaajuaGbeaacqGHLj YScqGHMacVcqGHLjYScqaHXoqydaWgaaqcgayaaiaad6gaaKqbagqa aaWdaiaawUhacaGL9baaaaa@4C0F@ , and its spectral decomposition is A=P D α P'= Σ i=1 n   α i p i p i ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFbbGaa8xpaiaa=bfacaWFebWaaSbaaKGbagaa cqaHXoqyaKqbagqaaiaa=bfacaGGNaGaeyypa0Jaeu4Odmvcga4aa0 baaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaaaqcfaOaaeiiaiab eg7aHnaaBaaajyaGbaGaamyAaaqcfayabaGaamiCaKGbaoaaBaaaba GaamyAaaqabaqcfaOaamiCamaaBaaajyaGbaGaamyAaaqcfayabaGa ai4jaaaa@522F@ , where P=[ p 1 ,, p n ] O n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFqbGaeyypa0ZdamaadmaabaacbiWdbiaa+bha daWgaaqaaKqzadGaaGymaaqcfayabaGaaiilaiabgAci8kaacYcaca GFWbqcga4aaSbaaeaacaWGUbaabeaaaKqba+aacaGLBbGaayzxaaGc peGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiu aajuaGpaGae0NdX=ucga4dbmaaBaaabaGaamOBaaqabaaaaa@54DC@ and D α =Diag( α 1 ,..., α n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iraKGbaoaaBaaajuaGbaqcLbmacqaHXoqyaKqbagqaaiabg2da9Gqa aiaa=reacaWFPbGaa8xyaiaa=Dgadaqadaqaaiabeg7aHnaaBaaaba qcLbmacaaIXaaajuaGbeaacaGGSaGaaiOlaiaac6cacaGGUaGaaiil aiabeg7aHnaaBaaabaqcLbmacaWGUbaajuaGbeaaaiaawIcacaGLPa aaaaa@4F5D@ . By convention its condition number is C 1 ( A ) = α 1 / α n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4qaKGbaoaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaadaqadaqaaGqa diaa=feaaiaawIcacaGLPaaadaWcgaqaaiabg2da9iabeg7aHnaaBa aabaqcLbmacaaIXaaajuaGbeaaaeaacqaHXoqydaWgaaqaaKqzadGa amOBaaqcfayabaaaaaaa@4864@ . The singular decomposition of B F n×k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFcbGaeyicI48efv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiuaacqGFfcVrkmaaBaaaleaajugWaiaad6gacq GHxdaTcaWGRbaaleqaaaaa@4B8C@ is B=P D δ Q'=  Σ i=1  k δ i p i q i ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGcbGaeyypa0dcbmGaa8huaiaa=reajyaGdaWgaaqc fayaaKqzadGaeqiTdqgajuaGbeaacaWFrbqcLbmacaGGNaqcfaOaey ypa0Jaaeiiaiabfo6atLGbaoaaDaaajuaGbaqcLbmacaWGPbGaeyyp a0JaaGymaiaabccaaKqbagaajugWaiaadUgaaaqcfaOaeqiTdqwcga 4aaSbaaKqbagaajugWaiaadMgaaKqbagqaaiaadchadaWgaaqaaKqz adGaamyAaaqcfayabaGaamyCaKGbaoaaBaaajuaGbaqcLbmacaWGPb aajuaGbeaajugWaiaacEcaaaa@5F5F@ , where the mutually orthogonal columns of P=[ p 1 ,, p k ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFqbGaeyypa0ZdamaadmaabaWdbiaadchajyaG daWgaaqcfayaaKqzadGaaGymaaqcfayabaGaaiilaiabgAci8kaacY cacaWGWbWaaSbaaeaajugWaiaadUgaaKqbagqaaaWdaiaawUfacaGL Dbaaaaa@474B@ comprise the left–singular vectors; D δ =Diag( δ 1 ,, δ k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGebWaaSbaaeaajugWaiabes7aKbqcfayabaGaeyyp a0dcbaGaa8hraiaa=LgacaWFHbGaa83za8aadaqadaqaa8qacqaH0o azdaWgaaqaaKqzadGaaGymaaqcfayabaGaaiilaiabgAci8kaacYca cqaH0oazdaWgaaqaaKqzadGaam4AaaqcfayabaaapaGaayjkaiaawM caaaaa@4E15@ are its singular values; and columns of Q O k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFrbGaeyicI48efv3ySLgznfgDOfdaryqr1ngB PrginfgDObYtUvgaiuaapaGae4NdX=KcpeWaaSbaaSqaaiaadUgaae qaaaaa@46F1@ are the right–singular vectors.

Special Distributions

For Y n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFzbGaeyicI4SaeSyhHe6aaWbaaeqabaqcLbma caWGUbaaaaaa@3E0B@ , its distribution, mean, and dispersion matrix are L(Y), E( Y )=μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGfbWdamaabmaabaacbmWdbiaa=Lfaa8aacaGLOaGa ayzkaaWdbiabg2da9iabeY7aTbaa@3E21@  and V( Y )=Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGwbWdamaabmaabaacbmWdbiaa=Lfaa8aacaGLOaGa ayzkaaWdbiabg2da9iabfo6atbaa@3E00@ , say, with variance Var( Y )= σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGwbGaamyyaiaadkhapaWaaeWaaeaapeGaamywaaWd aiaawIcacaGLPaaapeGaeyypa0Jaeq4Wdm3aaWbaaeqabaqcLbmaca aIYaaaaaaa@4220@ on 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqWIDesOdaahaaqabeaajugWaiaaigdaaaaaaa@3B69@ . Specifically, L(Y) = N n ( μ,Σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqGH9aqpcaWGobWaaSbaaeaajugWaiaad6gaaKqbagqa a8aadaqadaqaa8qacqaH8oqBcaGGSaacceGae83OdmfapaGaayjkai aawMcaaaaa@423D@ is Gaussian on n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeS yhHe6aaWbaaeqabaqcLbmacaWGUbaaaaaa@3B81@ with parameters ( μ,Σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaaqaaaaaaaaaWdbiabeY7aTjaacYcaiiqacqWFJoWua8aacaGL OaGaayzkaaaaaa@3D75@ . Distributions on + 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeS yhHeAcga4aa0baaKqbagaajyaGdaahaaqcfayabeaajugWaiabgUca RaaaaKqbagaajugWaiaaigdaaaaaaa@4043@ include the χ2(;ν,λ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaHhpWyjugWaiaaikdajuaGpaGaaiika8qacqGHflY1 caGG7aGaeqyVd4MaaiilaiabeU7aS9aacaGGPaaaaa@44C9@ with ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaH9oGBaaa@39A6@ degrees of freedom and noncentrality parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaH7oaBaaa@39A2@ ; the Snedecor–Fisher F(; ν 1 , ν 2 ,λ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGgbWdaiaacIcapeGaeyyXICTaai4oaiabe27aULGb aoaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaacaGGSaGaeqyVd4wcga 4aaSbaaKqbagaajugWaiaaikdaaKqbagqaaiaacYcacqaH7oaBpaGa aiykaaaa@4B38@ with degrees of freedom ( ν 1 , ν 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaaqaaaaaaaaaWdbiabe27aULGbaoaaBaaajuaGbaqcLbmacaaI XaaajuaGbeaacaGGSaGaeqyVd4wcga4aaSbaaKqbagaajugWaiaaik daaKqbagqaaaWdaiaawIcacaGLPaaaaaa@4511@ and noncentrality λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaH7oaBaaa@39A2@ ; and Hotelling [2] T k 2 (,ν,λ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGubqcga4aa0baaKqbagaajugWaiaadUgaaKqbagaa jugWaiaaikdaaaqcfa4daiaacIcapeGaeyyXICTaaiilaiabe27aUj aacYcacqaH7oaBpaGaaiykaaaa@47C7@ of order k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGRbaaaa@38DE@ having ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaH9oGBaaa@39A6@ degrees of freedom and noncentrality λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaH7oaBaaa@39A2@ . Recall that F(; ν 1 , ν 2 ,λ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGgbWdaiaacIcapeGaeyyXICTaai4oaiabe27aULGb aoaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaacaGGSaGaeqyVd4wcga 4aaSbaaKqbagaajugWaiaaikdaaKqbagqaaiaacYcacqaH7oaBpaGa aiykaaaa@4B38@ increases stochastically with increasing λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaH7oaBaaa@39A2@ with other parameters held fixed. Identify c α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGJbqcga4aaSbaaeaacqaHXoqyaeqaaaaa@3B25@ in context as the upper α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaHXoqyaaa@398D@ –level rejection rule. The power of a test, to be considered as a function of λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaH7oaBaaa@39A2@ , is designated by ψ(λ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iYdKNaaiikaabaaaaaaaaapeGaeq4UdW2daiaacMcaaaa@3CD8@ .

The Principal Findings

Directed alternatives

Our notation encompasses both (i) Hotelling [2] T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam ivamaaCaaabeqaaKqzadGaaGOmaaaaaaa@3B13@ and (ii) General Linear Models, having location–scale parameters ( δ,Ξ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaaiiWaqaaaaaaaaaWdbiab=r7aKjabgYcaSGGabiab+55aybWd aiaawIcacaGLPaaaaaa@3D9F@ . What distinguishes this study are directed alternatives with examples as noted, but expanded to include alternatives { θ j ;1jk } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aai WaaeaaiiWaqaaaaaaaaaWdbiab=H7aXLGbaoaaBaaabaGaamOAaaqa baqcfaOaai4oaiaaigdacqGHKjYOcaWGQbGaeyizImQaam4AaaWdai aawUhacaGL9baaaaa@44DC@ aligned with the orthonormal eigenvectors Q=[ q 1 ,, q k ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFrbGaeyypa0ZdamaadmaabaWdbiaa=fhadaWg aaqaaKqzadGaaGymaaqcfayabaGaaiilaiabgAci8kaacYcacaWFXb WaaSbaaeaajugWaiaadUgaaKqbagqaaaWdaiaawUfacaGLDbaaaaa@4629@ of Ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacceqcfa ieaaaaaaaaa8qacqWFEoawaaa@3977@ , thus standardized to unit lengths. To continue, as Ω= Ξ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcfa ieaaaaaaaaa8qacqWFPoWvcqGH9aqpiiqaqaG=a4pa+dWdciab+55a y9qadaahaaqabeaajugWaiabgkHiTiaaigdaaaaaaa@4231@ assumes a central role, take Ω=  Σ i=1 k   κ i q i q i '=Q D κ Q' S k + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcfa ieaaaaaaaaa8qacqWFPoWvcqGH9aqpcaqGGaGaeu4Odmvcga4aa0ba aKqbagaajugWaiaadMgacqGH9aqpcaaIXaaajuaGbaqcLbmacaWGRb aaaKqbakaabccacqaH6oWAdaWgaaqaaKqzadGaamyAaaqcfayabaac bmGaa4xCaKGbaoaaBaaajuaGbaqcLbmacaWGPbaajuaGbeaacaGFXb qcga4aaSbaaKqbagaajugWaiaadMgaaKqbagqaaKqzadGaai4jaKqb akabg2da9iaa+ffacaGFebqcga4aaSbaaKqbagaajugWaiabeQ7aRb qcfayabaGaa4xuaiaacEcacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3y SLgzG0uy0HgiuD3BaGqbaiab9jj8tLGbaoaaDaaajuaGbaqcLbmaca WGRbaajuaGbaqcLbmacqGHRaWkaaaaaa@7285@ as its spectral decomposition, with { κ 1 κ k >0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aai WaaeaaqaaaaaaaaaWdbiabeQ7aRnaaBaaabaqcLbmacaaIXaaajuaG beaacqGHLjYScqGHMacVcqGHLjYScqaH6oWAjyaGdaWgaaqaaiaadU gaaeqaaKqbakabg6da+iaaicdaa8aacaGL7bGaayzFaaaaaa@4934@ . As in Appendix A.1, undertake the expansions

Ω=  Q 1 D κ 1 Q 1 '+ Q 2 D κ 2 Q 2 '+ Q 3 D κ 3 Q 3 ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqqHPoWvcqGH9aqpcaGGGcacbmGaa8xuaKGbaoaaBaaa juaGbaqcLbmacaaIXaaajuaGbeaacaWFebWaaSbaaeaajugWaiabeQ 7aRLGbaoaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaaaeqaaiaa=ffa daWgaaqaaKqzadGaaGymaaqcfayabaGaai4jaiabgUcaRiaa=ffada WgaaqaaKqzadGaaGOmaaqcfayabaGaa8hraKGbaoaaBaaajuaGbaqc LbmacqaH6oWAjyaGdaWgaaqcfayaaKqzadGaaGOmaaqcfayabaaabe aacaWFrbWaaSbaaeaajugWaiaaikdaaKqbagqaaiaacEcacqGHRaWk caWFrbWaaSbaaeaajugWaiaaiodaaKqbagqaaiaa=reajyaGdaWgaa qcfayaaKqzadGaeqOUdSgajuaGbeaajyaGdaWgaaqcfayaaKGbaoaa BaaajuaGbaqcLbmacaaIZaaajuaGbeaaaeqaaiaa=ffadaWgaaqaaK qzadGaaG4maaqcfayabaGaai4jaaaa@6F90@ (2)

Ω=  Q 1 D κ 1 Q 1 '+ k r Q 2 D κ 2 Q 2 '+ Q 3 D κ 3 Q 3 '; k r  repeateds times MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacceqcfa ieaaaaaaaaa8qacqWFPoWvcqGH9aqpcaGGGcacbmGaa4xuaKGbaoaa BaaajuaGbaqcLbmacaaIXaaajuaGbeaacaGFebWaaSbaaeaajugWai abeQ7aRLGbaoaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaaaeqaaiaa +ffadaWgaaqaaKqzadGaaGymaaqcfayabaGaai4jaiabgUcaRiaadU gadaWgaaqaaKqzadGaamOCaaqcfayabaGaa4xuamaaBaaabaqcLbma caaIYaaajuaGbeaacaGFebqcga4aaSbaaKqbagaajugWaiabeQ7aRL GbaoaaBaaajuaGbaqcLbmacaaIYaaajuaGbeaaaeqaaiaa+ffadaWg aaqaaKqzadGaaGOmaaqcfayabaGaai4jaiabgUcaRiaa+ffadaWgaa qaaKqzadGaaG4maaqcfayabaGaa4hraKGbaoaaBaaajuaGbaqcLbma cqaH6oWAaKqbagqaaKGbaoaaBaaajuaGbaqcga4aaSbaaKqbagaaju gWaiaaiodaaKqbagqaaaqabaGaa4xuamaaBaaabaqcLbmacaaIZaaa juaGbeaacaGGNaGaai4oaiaadUgadaWgaaqaaKqzadGaamOCaaqcfa yabaGaaiiOaiaadkhacaWGLbGaamiCaiaadwgacaWGHbGaamiDaiaa dwgacaWGKbGaaGPaVlaadohacaGGGcGaamiDaiaadMgacaWGTbGaam yzaiaadohaaaa@88CB@ ,          (3)

where elements of Q=[ Q 1 , Q 2 , Q 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju gibiaa=ffacaqG9aGaae4waiaa=ffanmaaBaaajeaqbaqcLbmacaqG XaaaleqaaKqzGeGaaeilaiaa=ffanmaaBaaajeaqbaqcLbmacaqGYa aaleqaaKqzGeGaaeilaiaa=ffanmaaBaaajeaqbaqcLbmacaqGZaaa leqaaKqzGeGaaeyxaaaa@4A5A@ are of orders { ( k×( r1 ) ),( k×s ),( k×d ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaacm aakeaanmaabmaakeaajugibabaaaaaaaaapeGaam4AaiabgEna02Wd amaabmaakeaajugib8qacaWGYbGaeyOeI0IaaGymaaGcpaGaayjkai aawMcaaaGaayjkaiaawMcaaKqzGeWdbiaacYcan8aadaqadaGcbaqc LbsapeGaam4AaiabgEna0kaadohaaOWdaiaawIcacaGLPaaajugib8 qacaGGSaqdpaWaaeWaaOqaaKqzGeWdbiaadUgacqGHxdaTcaWGKbaa k8aacaGLOaGaayzkaaaacaGL7bGaayzFaaaaaa@55BB@ with d=krs+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaamizaiabg2da9iaadUgacqGHsislcaWGYbGaeyOe I0Iaam4CaiabgUcaRiaaigdaaaa@42B0@ , and where D k =Diag( D κ 1 , D κ 2 , D κ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju gibabaaaaaaaaapeGaa8hra0WaaSbaaKazea2=baqcLbmacaWGRbaa oeqaaKqzGeGaeyypa0dcbaGaa4hraiaa+LgacaGFHbGaa43za0Wdam aabmaakeaajugib8qacaWFebqcfa4aaSbaaKqaafaajugWaiabeQ7a Rbqcbauabaqcfa4aaSbaaKqaafaajuaGdaWgaaadbaqcLbmacaaIXa aameqaaaqcbauabaqcLbsacaGGSaGaa8hraKqbaoaaBaaajeaqbaqc LbmacqaH6oWAaKqaafqaaKqbaoaaBaaajeaqbaqcfa4aaSbaaWqaaK qzadGaaGOmaaadbeaaaKqaafqaaKqzGeGaaiilaiaa=reajuaGdaWg aaqcbauaaKqzadGaeqOUdSgajeaqbeaajuaGdaWgaaqcbauaaKqbao aaBaaameaajugWaiaaiodaaWqabaaajeaqbeaaaOWdaiaawIcacaGL Paaaaaa@63F2@ is partitioned conformably. In regard to quadratic forms of type Q( u )=u'Ω u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieGaju gibabaaaaaaaaapeGaa8xua0Wdamaabmaakeaajugib8qacaWF1baa k8aacaGLOaGaayzkaaqcLbsapeGaeyypa0Jaa8xDaiaa=DcacqqHPo WvcaqGGaGaa8xDaaaa@450F@ serving as noncentrality parameters, a principal result is the following.

Theorem 1. Given is a location–scale model with parameters ( δ,Ξ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaabm aakeaaieWajugibabaaaaaaaaapeGaa8hTdiaacYcaieqacaGFEoaa k8aacaGLOaGaayzkaaaaaa@3F43@ , together with a test for H 0 :δ= δ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieGaju gibabaaaaaaaaapeGaa8hsa0WaaSbaaKazea2=baacbaqcLbmacaGF WaaaoeqaaKqzGeGaa4NoaGGadiab9r7aKjaa+1dacqqF0oaznmaaBa aajqgbG9FaaKqzadGaa4hmaaGdbeaaaaa@486B@ against H 1 :δ δ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaamisa0WaaSbaaKazea2=baqcLbmacaaIXaaaoeqa aKqzGeGaaiOoaGGadiab=r7aKjabgcMi5kab=r7aK1WaaSbaaKazea 2=baqcLbmacaaIWaaaoeqaaaaa@4982@ having power Ψ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiQdKvddaqadaGcbaqcLbsacqaH7oaBaOGaayjk aiaawMcaaaaa@3FE7@ increasing monotonically with λ=  D Ξ 2 ( δ, δ 0 )=( δ δ 0 )' Ξ 1 ( δ δ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeq4UdWMaeyypa0JaaeiiaiaadseanmaaDaaajeaq baqcLbmacqqHEoawaKqaafaajugWaiaaikdaaaqdpaWaaeWaaOqaaG GadKqzGeWdbiab=r7aKjaacYcacqWF0oazjuaGdaWgaaqcbauaaKqz adGaaGimaaqcbauabaaak8aacaGLOaGaayzkaaqcLbsapeGaeyypa0 tdpaWaaeWaaOqaaKqzGeWdbiab=r7aKjabgkHiTiab=r7aKLqbaoaa BaaajeaqbaqcLbmacaaIWaaajeaqbeaaaOWdaiaawIcacaGLPaaaju gib8qacaGGNaacceGcqaG=a4pa+dWdciab+55ay1WdbmaaCaaaleqa jeaqbaqcLbmacqGHsislcaaIXaaaa0Wdamaabmaakeaajugib8qacq WF0oazcqGHsislcqWF0oaznmaaBaaajeaqbaqcLbmacaaIWaaaleqa aaGcpaGaayjkaiaawMcaaaaa@6B43@ . Take { ( δ δ 0 )= θ j ;1jk } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaacm aakeaanmaabmaakeaaiiWajugibabaaaaaaaaapeGae8hTdqMaeyOe I0Iae8hTdqwddaWgaaqcKray=haajugWaiaaicdaa4qabaaak8aaca GLOaGaayzkaaqcLbsapeGaeyypa0JaeqiUdexddaWgaaqcKray=haa jugWaiaadQgaa4qabaqcLbsacaGG7aGaaGymaiabgsMiJkaadQgacq GHKjYOcaWGRbaak8aacaGL7bGaayzFaaaaaa@5589@ in succession as the eigenvectors { θ j = q j ;1jk } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaacm aakeaaiiWajugibabaaaaaaaaapeGae8hUdexddaWgaaqcbauaaKqz adGaamOAaaWcbeaajugibiabg2da9Gqadiaa+fhanmaaBaaajeaqba qcLbmacaWGQbaaleqaaKqzGeGaai4oaiaaigdacqGHKjYOcaWGQbGa eyizImQaam4AaaGcpaGaay5Eaiaaw2haaaaa@4DAE@ of Ξ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiqaju gibabaaaaaaaaapeGae8NNdGvddaahaaGdbeqcKray=haajugWaiab gkHiTiaaigdaaaaaaa@40D7@ with eigen values { κ 1 κ k >0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaacm aakeaajugibabaaaaaaaaapeGaeqOUdSwddaWgaaqcbauaaKqzadGa aGymaaWcbeaajugibiabgwMiZkabgAci8kabgwMiZkabeQ7aR1WaaS baaKqaafaajugWaiaadUgaaSqabaqcLbsacqGH+aGpcaaIWaaak8aa caGL7bGaayzFaaaaaa@4D37@ .

  1. Then powers Ψ( λ j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiQdKvddaqadaGcbaqcLbsacqaH7oaBnmaaBaaa jeaqbaqcLbmacaWGQbaaleqaaaGccaGLOaGaayzkaaaaaa@4287@ of the test at alternatives { ( δ δ 0 )= θ j ;1jk } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaacm aakeaanmaabmaakeaaiiWajugibabaaaaaaaaapeGae8hTdqMaeyOe I0Iae8hTdqwddaWgaaqcbauaaKqzadGaaGimaaWcbeaaaOWdaiaawI cacaGLPaaajugib8qacqGH9aqpcqWF4oqCnmaaBaaajeaqbaqcLbma caWGQbaaleqaaKqzGeGaai4oaiaaigdacqGHKjYOcaWGQbGaeyizIm Qaam4AaaGcpaGaay5Eaiaaw2haaaaa@5272@ depend on the noncentrality parameters { λ j = κ j ;1jk } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaacm aakeaajugibabaaaaaaaaapeGaeq4UdWwddaWgaaqcbauaaKqzadGa amOAaaWcbeaajugibiabg2da9iabeQ7aR1WaaSbaaKqaafaajugWai aadQgaaSqabaqcLbsacaGG7aGaaGymaiabgsMiJkaadQgacqGHKjYO caWGRbaak8aacaGL7bGaayzFaaaaaa@4E59@ , respectively.
  2. In particular, the alternatives most likely and least likely to be discerned in terms of power are θ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiWaju gibabaaaaaaaaapeGae8hUdexddaWgaaqcbauaaKqzadGaaGymaaWc beaaaaa@3E95@ and θ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiWaju gibabaaaaaaaaapeGae8hUdexddaWgaaqcbauaaKqzadGaam4AaaWc beaaaaa@3ECA@ having powers Ψ( k 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiQdKvddaqadaGcbaqcLbsacaWGRbqddaWgaaqc bauaaKqzadGaaGymaaWcbeaaaOGaayjkaiaawMcaaaaa@418F@ and Ψ( k k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiQdKvddaqadaGcbaqcLbsacaWGRbqddaWgaaqc bauaaKqzadGaam4AaaWcbeaaaOGaayjkaiaawMcaaaaa@41C4@ , respectively.
  3. Consider alternatives { γ j S p ( Q 2 )} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aacUhaqaaaaaaaaaWdbiabeo7aN1WaaSbaaKqaafaajugWaiaadQga aSqabaqcLbsacqGHiiIZcaWGtbqddaWgaaqcbauaaKqzadGaamiCaa Wcbeaan8aadaqadaGcbaacbmqcLbsapeGaa8xua0WaaSbaaKqaafaa jugWaiaaikdaaSqabaaak8aacaGLOaGaayzkaaqcLbsacaGG9baaaa@4C84@ standardized to unit lengths. Then bounds on powers at these local alternatives are given by
    Ψ( κ r+s ){Ψ( λ j ) for every  γ j S p ( Q 2 )}Ψ( κ r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abfI6az1WaaeWaaOqaaKqzGeaeaaaaaaaaa8qacqaH6oWAnmaaBaaa jeaqbaqcLbmacaWGYbGaey4kaSIaam4CaaWcbeaaaOWdaiaawIcaca GLPaaajugib8qacqGHKjYOpaGaai4EaiabfI6az1WaaeWaaOqaaKqz GeWdbiabeU7aS1WaaSbaaKqaafaajugWaiaadQgaaSqabaaak8aaca GLOaGaayzkaaqcLbsapeGaaeiiaGqaaiaa=zgacaWFVbGaa8NCaiaa =bcacaWFLbGaa8NDaiaa=vgacaWFYbGaa8xEaiaabccacqaHZoWznm aaBaaajeaqbaqcLbmacaWGQbaaleqaaKqzGeGaeyicI4Saam4ua0Wa aSbaaKqaafaajugWaiaadchaaSqabaqdpaWaaeWaaOqaaGqadKqzGe Wdbiaa+ffanmaaBaaaleaanmaaCaaameqabaqcLbmacaaIYaaaaaWc beaaaOWdaiaawIcacaGLPaaajugibiaac2hapeGaeyizImQaeuiQdK vdpaWaaeWaaOqaaKqzGeWdbiabeQ7aR1Waa0baaKqaafaajugWaiaa dkhaaSqaaaaaaOWdaiaawIcacaGLPaaaaaa@7547@
  4. Suppose that k r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaam4Aa0WaaSbaaKqaafaajugWaiaadkhaaSqabaaa aa@3E03@ is repeated s times as in the spectral resolution (2) for Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuyQdCfaaa@3BF9@ . Then for each alternative { γ j = Q 2 a j S p ( Q 2 ), with  a j =[ a j 1 ,, a j s ]} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abgUha7bbaaaaaaaaapeGaeq4SdCwddaWgaaqcbauaaKqzadGaamOA aaWcbeaajugibiabg2da9Gqadiaa=ffanmaaBaaajeaqbaqcLbmaca aIYaaaleqaaKqzGeGaamyya0WaaSbaaKqaafaajugWaiaadQgaaSqa baqcLbsacqGHiiIZcaWGtbqddaWgaaqcbauaaKqzadGaamiCaaWcbe aan8aadaqadaGcbaqcLbsapeGaa8xua0WaaSbaaKqaafaajugWaiaa ikdaaSqabaaak8aacaGLOaGaayzkaaqcLbsapeGaaiilaiaabccaca WG3bGaamyAaiaadshacaWGObGaaeiiaiqadggagaqba0WaaSbaaKqa afaajugWaiaadQgaaSqabaqcLbsacqGH9aqpn8aadaWadaGcbaqcLb sapeGaamyya0WaaSbaaKqaafaajugWaiaadQgaaSqabaqddaWgaaWc baqddaWgaaadbaqcLbmacaaIXaaameqaaaWcbeaajugibiaacYcacq GHMacVcaGGSaGaamyya0WaaSbaaKqaafaajugWaiaadQgaaSqabaqd daWgaaWcbaqddaWgaaadbaqcLbmacaWGZbaameqaaaWcbeaaaOWdai aawUfacaGLDbaajugibiaac2haaaa@73F8@ , the noncentrality parameter is { λ j = κ r   a j a j } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaacm aakeaajugibabaaaaaaaaapeGaeq4UdWwddaWgaaqcbauaaKqzadGa amOAaaWcbeaajugibiabg2da9iabeQ7aR1WaaSbaaKqaafaajugWai aadkhaaSqabaqcLbsacaqGGaGabmyyayaafaqddaWgaaqcbauaaKqz adGaamOAaaWcbeaajugibiaadgganmaaBaaajeaqbaqcLbmacaWGQb aaleqaaaGcpaGaay5Eaiaaw2haaaaa@4FE8@ , with corresponding power { Ψ( λ j ):  γ j S p ( Q 2 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaacm aajuaGbaqcLbsacqqHOoqwnmaabmaajuaGbaqcLbsaqaaaaaaaaaWd biabeU7aSLqbaoaaBaaabaqcLbmacaWGQbaajuaGbeaaa8aacaGLOa GaayzkaaqcLbsapeGaaiOoaiaabccacqaHZoWznmaaBaaajuaGbaqc LbsacaWGQbaajuaGbeaajugibiabgIGiolaadofanmaaBaaajuaGba qcLbmacaWGWbaajuaGbeaan8aadaqadaqcfayaaGqadKqzGeWdbiaa =ffanmaaBaaajuaGbaWaaSbaaeaajugWaiaaikdaaKqbagqaaaqaba aapaGaayjkaiaawMcaaaGaay5Eaiaaw2haaaaa@5A71@ .

Proof: Conclusion (i) follows directly from λ( θ j )= θ j Ξ 1 θ j = θ j ( i=1 k κ i q i q i ) θ j = κ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeq4UdWwdpaWaaeWaaOqaaGGadKqzGeWdbiab=H7a X1WaaSbaaKqaafaajugWaiaadQgaaSqabaaak8aacaGLOaGaayzkaa qcLbsapeGaeyypa0Jaf8hUdeNbauaanmaaBaaajeaqbaqcLbmacaWG QbaaleqaaGGabKqzGeGae4NNdGvddaahaaWcbeqcbauaaKqzadGaey OeI0IaaGymaaaajugibiab=H7aX1WaaSbaaKqaafaajugWaiaadQga aSqabaqcLbsacqGH9aqpcuWF4oqCgaqba0WaaSbaaKqaafaajugWai aadQgaaSqabaqdpaWaaeWaaOqaa0WdbmaaqadakeaajugibiabeQ7a R1WaaSbaaKazea2=baqcLbmacaWGPbaaoeqaaGqadKqzGeGaa0xCa0 WaaSbaaKazea2=baqcLbmacaWGPbaaoeqaaKqzGeGab0xCayaafaqd daWgaaqceasaaKqzadGaamyAaaGdbeaaaSqaaKqzadGaamyAaiabg2 da9iaaigdaaSqaaKqzadGaam4AaaqcLbsacqGHris5aaGcpaGaayjk aiaawMcaaKqzGeGae8hUdexdpeWaaSbaaKabGeaajugWaiaadQgaa4 qabaqcLbsacqGH9aqpcqaH6oWAnmaaBaaajqaibaqcLbmacaWGQbaa oeqaaaaa@7E71@ since θ j = q j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiWaju gibiab=H7aX1aeaaaaaaaaa8qadaWgaaqcKray=haajugWaiaadQga a4qabaqcLbsacqGH9aqpieWacaGFXbqddaWgaaqcKray=haajugWai aadQgaa4qabaaaaa@470D@ , whereas { q j q i =0;ij } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaacm aakeaaieWajugibabaaaaaaaaapeGab8xCayaafaqddaWgaaqcbaua aKqzadGaamOAaaWcbeaajugibiaa=fhanmaaBaaajeaqbaqcLbmaca WGPbaaleqaaKqzGeGaeyypa0JaaGimaiaacUdacaWGPbGaeyiyIKRa amOAaaGcpaGaay5Eaiaaw2haaaaa@4B48@ and q j q j =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju gibabaaaaaaaaapeGab8xCayaafaqddaWgaaqcbauaaKqzadGaamOA aaWcbeaajugibiaa=fhanmaaBaaajeaqbaqcLbmacaWGQbaaleqaaK qzGeGaeyypa0JaaGymaaaa@4486@ by orthonormality. Conclusion (ii) follows directly from variational properties of Rayleigh quotients as in Lemma A.1(i) of the Appendix. In like manner conclusion (iii) follows from Lemma A.1(ii) as variational properties over subspaces. Conclusion (iv) follows from (iii) since { q j q i =0;ij } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaacm aakeaaieWajugibabaaaaaaaaapeGab8xCayaafaqddaWgaaqcbaua aKqzadGaamOAaaWcbeaajugibiaa=fhanmaaBaaajeaqbaqcLbmaca WGPbaaleqaaKqzGeGaeyypa0JaaGimaiaacUdacaWGPbGaeyiyIKRa amOAaaGcpaGaay5Eaiaaw2haaaaa@4B48@

Remark 1. The directed alternatives δ 1 ' =[ 1,1,0,...,0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiWaju gibabaaaaaaaaapeGae8hTdqwddaqhaaGdbaGaaGymaaqaaiaacEca aaqcLbsacqGH9aqpn8aadaWadaGcbaqcLbsapeGaaGymaiaacYcaca aIXaGaaiilaiaaicdacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaa icdaaOWdaiaawUfacaGLDbaaaaa@49E0@ and δ 2 ' =[ 1,1,...,1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiWaju gibabaaaaaaaaapeGae8hTdqwddaqhaaGdbaGaaGOmaaqaaiaacEca aaqcLbsacqGH9aqpn8aadaWadaGcbaqcLbsapeGaaGymaiaacYcaca aIXaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaaIXaaak8aacaGL BbGaayzxaaaaaa@4878@ were featured earlier as discrepancies in the first two coordinates of ( δ δ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaabm aakeaaiiWajugibabaaaaaaaaapeGae8hTdqMaeyOeI0Iae8hTdqwd daWgaaqcbawaaKqzadGaaGimaaWcbeaaaOWdaiaawIcacaGLPaaaaa a@42E9@ , and as deviations about the equiangular line in k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeSyhHeAddaahaaWcbeqcbauaaGqacKqzadGaa83A aaaaaaa@3E84@ . Let Ξ 1 =[ ξ ij ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiqaqa G=a4pa+dWdbiab=55ay1aeaaaaaaaaa8GadaahaaWcbeqcbauaaKqz adGaeyOeI0IaaGymaaaajugibiabg2da90Wdamaadmaakeaajugib8 GacqaH+oaEnmaaCaaaleqajeaqbaqcLbmacaWGPbGaamOAaaaaaOWd aiaawUfacaGLDbaaaaa@4B92@ . Then powers Ψ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiQdKvddaqadaGcbaqcLbsacqaH7oaBaOGaayjk aiaawMcaaaaa@3FE7@ at these alternatives will depend on λ 1 = i=1 2 j=1 2 ξ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeq4UdWwddaWgaaqcbauaaKqzadGaaGymaaWcbeaa jugibiabg2da90WaaabmaOqaa0WaaabmaOqaaKqzGeGaeqOVdGxdda ahaaWcbeqaceaa+yqddaWgaaadbaqcLbmacaWGPbGaamOAaaadbeaa aaaaleaajugWaiaadQgacqGH9aqpcaaIXaaaleaajugWaiaaikdaaK qzGeGaeyyeIuoaaSqaaKqzadGaamyAaiabg2da9iaaigdaaSqaaKqz adGaaGOmaaqcLbsacqGHris5aaaa@571F@ at δ 1 =[ 1,1,0,...,0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGafqiTdqMbauaanmaaBaaajeaqbaqcLbmacaaIXaaa leqaaKqzGeGaeyypa0tdpaWaamWaaOqaaKqzGeWdbiaaigdacaGGSa GaaGymaiaacYcacaaIWaGaaiilaiaac6cacaGGUaGaaiOlaiaacYca caaIWaaak8aacaGLBbGaayzxaaaaaa@4AAD@ , and on λ 2 = i=1 k j=1 k ξ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeq4UdWwddaWgaaqceasaaKqzadGaaGOmaaGdbeaa jugibiabg2da90WaaabmaOqaa0WaaabmaOqaaKqzGeGaeqOVdGxdda ahaaGdbeqceasaaKqzadGaamyAaiaadQgaaaaaleaajugWaiaadQga cqGH9aqpcaaIXaaaleaajugWaiaadUgaaKqzGeGaeyyeIuoaaSqaaK qzadGaamyAaiabg2da9iaaigdaaSqaaKqzadGaam4AaaqcLbsacqGH ris5aaaa@5711@ at δ 2 =[ 1,1,...,1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGafqiTdqMbauaanmaaBaaajeaybaqcLbmacaaIYaaa leqaaKqzGeGaeyypa0tdpaWaamWaaOqaaKqzGeWdbiaaigdacaGGSa GaaGymaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaaGymaaGcpaGa ay5waiaaw2faaaaa@4965@ .

Corollary 1. On specializing the location–scale parameters ( δ,Ξ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaabm aakeaaiiWajugibabaaaaaaaaapeGae8hTdqMaaiilaGGabiab+55a ybGcpaGaayjkaiaawMcaaaaa@4009@ , Theorem 1 applies verbatim as follows.

(i) Hotelling [2] T 2 : ( δ,Ξ )=( μ,Σ ); L( T 2 )= T k 2 (;n1,λ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaamiva0WaaWbaaSqabKqaGfaajugWaiaaikdaaaqc LbsacaGG6aGaaeiia0WdamaabmaakeaaiiWajugibabapdWZa8mapi Gae8hTdq2dbiaacYcaiiqapiGae4NNdGfak8aacaGLOaGaayzkaaqc LbsapeGaeyypa0tdpaWaaeWaaOqaaKqzGeWdciab=X7aT9qacaGGSa Wdciab+n6atbGcpaGaayjkaiaawMcaaKqzGeWdbiaacUdacaqGGaGa amita0Wdamaabmaakeaajugib8qacaWGubqddaahaaWcbeqcbauaaK qzadGaaGOmaaaaaOWdaiaawIcacaGLPaaajugib8qacqGH9aqpcaWG ubqddaqhaaqcbauaaKqzadGaam4AaaqcbauaaKqzadGaaGOmaaaaju gib8aacaGGOaWdbiabgwSixlaacUdacaWGUbGaeyOeI0IaaGymaiaa cYcaiiGacqqF7oaBpaGaaiykaaaa@6AA5@ , the power Ψ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiQdKvddaqadaGcbaqcLbsacqaH7oaBaOGaayjk aiaawMcaaaaa@3FE7@ depending on λ=n( μ μ 0 )' Σ 1 ( μ μ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeq4UdWMaeyypa0JaamOBa0WdamaabmaakeaaiiWa jugibabapdWZa8mapiGae8hVd02dbiabgkHiT8GacqWF8oqBn8qada WgaaqcbauaaKqzadGaaGimaaWcbeaaaOWdaiaawIcacaGLPaaajugi b8qacaGGNaacceWdciab+n6at1WdbmaaCaaaleqajeaqbaqcLbmacq GHsislcaaIXaaaa0Wdamaabmaakeaajugib8GacqWF8oqBpeGaeyOe I0Ydciab=X7aT1WdbmaaBaaajeaqbaqcLbmacaaIWaaaleqaaaGcpa GaayjkaiaawMcaaaaa@5995@ .

(ii) General Linear Models: ( δ,Ξ )=( β, ( X'X ) 1 ); L( F )=F(;k,nk,λ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaabm aakeaaiiWajugibabapdWZa8mapeGae8hTdqgeaaaaaaaaa8GacaGG SaacceWdbiab+55aybGcpaGaayjkaiaawMcaaKqzGeWdciabg2da90 WdamaabmaakeaaiiGajugib8GacqqFYoGycaGGSaqdpaWaaeWaaOqa aGqadKqzGeWdciaa8HfacaaFNaGaaWhwaaGcpaGaayjkaiaawMcaa0 WdcmaaCaaaleqajeaqbaqcLbmacqGHsislcaaIXaaaaaGcpaGaayjk aiaawMcaaKqzGeWdciaacUdacaqGGaGaamita0Wdamaabmaakeaaju gib8GacaWGgbaak8aacaGLOaGaayzkaaqcLbsapiGaeyypa0JaamOr a8aacaGGOaWdciabgwSixlaacUdacaWGRbGaaiilaiaad6gacqGHsi slcaWGRbGaaiilaiabeU7aS9aacaGGPaaaaa@6517@ , the power Ψ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abfI6az1WaaeWaaOqaaKqzGeGaeq4UdWgakiaawIcacaGLPaaaaaa@3FC7@ depending on λ=( β β o )'X'X( β β o )/ σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeq4UdWMaeyypa0tdpaWaaeWaaOqaaKqzGeWdbiab ek7aIjabgkHiTiabek7aI1WaaSbaaKabGeaajugWaiaad+gaa4qaba aak8aacaGLOaGaayzkaaqcLbsapeGaai4jaGqadiaa=HfacaWFNaGa a8hwa0Wdamaabmaakeaajugib8qacqaHYoGycqGHsislcqaHYoGynm aaBaaajqaibaqcLbmacaWGVbaaoeqaaaGcpaGaayjkaiaawMcaaKqz GeWdbiaac+cacqaHdpWCnmaaCaaaoeqajqaibaqcLbmacaaIYaaaaa aa@5880@ ,

Proof: The noncentral distribution F(;k,nk,λ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaamOra8aacaGGOaWdbiabgwSixlaacUdacaWGRbGa aiilaiaad6gacqGHsislcaWGRbGaaiilaiabeU7aS9aacaGGPaaaaa@469A@ clearly satisfies the assumptions of Theorem 1 on identifying ( δ,Ξ )=( β, ( X'X ) 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaabm aakeaaiiWajugibabaaaaaaaaapeGae8hTdqMaaiilaGGabiab+55a ybGcpaGaayjkaiaawMcaaKqzGeWdbiabg2da90Wdamaabmaakeaaju gib8qacqWFYoGycaGGSaqdpaWaaeWaaOqaaGqadKqzGeWdbiaa9Hfa caqFNaGaa0hwaaGcpaGaayjkaiaawMcaa0WdbmaaCaaaoeqajqaiba qcLbmacqGHsislcaaIXaaaaaGcpaGaayjkaiaawMcaaaaa@4E78@ as claimed. Similarly in testing H 0 :μ= μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba bapdWZa8mapeGaamisa0aeaaaaaaaaa8GadaWgaaqceasaaKqzadGa aGimaaGdbeaajugibiaacQdaiiWapeGae8hVd02dciabg2da98qacq WF8oqBn8GadaWgaaqceasaaKqzadGaaGimaaGdbeaaaaa@486C@ against Η 1 :μ μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiGaju gibabapdWZa8mapeGae83LdGucfaieaaaaaaaaa8GadaWgaaqceasa aKqzadGaaGymaaqceasabaqcLbsacaGG6aaccmWdbiab+X7aT9Gacq GHGjsUpeGae4hVd0wcfa4dcmaaBaaajqaibaqcLbmacaaIWaaajqai beaaaaa@4B12@ , Hotelling’s T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaamiva0WaaWbaaSqabKqaafaajugWaiaaikdaaaaa aa@3DB2@ inherits these properties through the conversion L( ( νk+1 ) T 2 kν )=F(;k,νk+1,λ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaamita0WdamaabmaakeaanmaalaaabaWaaeWaaeaa jugib8qacqaH9oGBcqGHsislcaWGRbGaey4kaSIaaGymaaqdpaGaay jkaiaawMcaaKqzGeGaamiva0WaaWbaa4qabKabGeaajugWaiaaikda aaaaneaajugib8qacaWGRbGaeqyVd4gaaaGcpaGaayjkaiaawMcaaK qzGeWdbiabg2da9iaadAeapaGaaiika8qacqGHflY1caGG7aGaam4A aiaacYcacqaH9oGBcqGHsislcaWGRbGaey4kaSIaaGymaiaacYcacq aH7oaBpaGaaiykaaaa@5BDD@ . With λ=n( μ μ 0 )' Σ 1 ( μ μ 0 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeq4UdWMaeyypa0JaamOBa0WdamaabmaakeaaiiWa jugibabapdWZa8mapiGae8hVd02dbiabgkHiT8GacqWF8oqBn8qada WgaaqceasaaKqzadGaaGimaaGdbeaaaOWdaiaawIcacaGLPaaajugi b8qacaGGNaacceWdciab+n6at1WdbmaaCaaaleqajeaqbaqcLbmacq GHsislcaaIXaaaa0Wdamaabmaakeaajugib8GacqWF8oqBpeGaeyOe I0Ydciab=X7aT1WdbmaaBaaajqaibaqcLbmacaaIWaaaoeqaaaGcpa GaayjkaiaawMcaaKqzGeWdbiaac6caaaa@5AB2@

Remark 2. Note that alternatives { θ j = q j ;1jk } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaacm aakeaaiiWajugibabapdWZa8mapeGae8hUdexdqaaaaaaaaaWdcmaa BaaajeaqbaqcLbmacaWGQbaaleqaaKqzGeGaeyypa0dcbmGaa4xCa0 WaaSbaaKqaafaajugWaiaadQgaaSqabaqcLbsacaGG7aGaaGymaiab gsMiJkaadQgacqGHKjYOcaWGRbaak8aacaGL7bGaayzFaaaaaa@503C@ of unit lengths give noncentrality parameters { κ j ;1jk } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaacm aakeaanabaaaaaaaaapeGaeqOUdS2aaSbaaKqaafaajugWaiaadQga aSqabaqcLbsacaGG7aGaaGymaiabgsMiJkaadQgacqGHKjYOcaWGRb aak8aacaGL7bGaayzFaaaaaa@47E1@ . If instead the directed alternatives are { θ j = c j q i ;1jk } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaacm aakeaaiiWajugibabapdWZa8mapeGae8hUdexdqaaaaaaaaaWdcmaa BaaajeaqbaqcLbmacaWGQbaaleqaaKqzGeGaeyypa0Jaam4ya0WaaS baaKqaafaajugWaiaadQgaaSqabaacbmqcLbsacaGFXbqddaWgaaqc bauaaKqzadGaamyAaaWcbeaajugibiaacUdacaaIXaGaeyizImQaam OAaiabgsMiJkaadUgaaOWdaiaawUhacaGL9baaaaa@5452@ , then the noncentrality parameters will be { c j 2 κ j ;1jk } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaacm aakeaajugibabaaaaaaaaapeGaam4ya0Waa0baaKabGeaajugWaiaa dQgaaKabGeaajugWaiaaikdaaaqdcqaH6oWAdaWgaaqceasaaKqzad GaamOAaaGdbeaajugibiaacUdacaaIXaGaeyizImQaamOAaiabgsMi JkaadUgaaOWdaiaawUhacaGL9baaaaa@4DCE@ .

Remark 3 Note that the foregoing developments are for the general case that Ω=Q D κ Q' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiaaju gibabaaaaaaaaapeGae8xQdCLaeyypa0dcbmGaa4xuaiaa+reanmaa BaaajeaqbaqcLbmacqaH6oWAaSqabaqcLbsacaGFrbGaa43jaaaa@440E@ is anisotropic with { κ 1 κ k >0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaacm aakeaanabaaaaaaaaapeGaeqOUdS2aaSbaaKabGeaajugWaiaaigda a4qabaqcLbsacqGHLjYScqGHMacVcqGHLjYScqaH6oWAnmaaBaaajq aibaGaam4AaaGdbeaajugibiabg6da+iaaicdaaOWdaiaawUhacaGL 9baaaaa@4B46@ . If isotropic, then the following applies.

Definition 1. The model Ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiqaju gibabaaaaaaaaapeGae8NNdGfaaa@3BF4@ is called isotropic if and only if Ξ=d I k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiqaju gibabaaaaaaaaapeGae8NNdGLaeyypa0JaamizaGqadiaa+Leanmaa BaaajqaibaqcLbmacaWGRbaaoeqaaaaa@413F@ , in which case power functions are directionally invariant, not depending on directions of alternatives in k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abl2riH2WaaWbaaSqabKqaafaajugWaiaadUgaaaaaaa@3E5D@ . Add: Bounds on ARLs from restricted variation.

Sphericity

The density for Ν k ( μ,Σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiaaju gibabaaaaaaaaapeGae8xNd4uddaWgaaqcbauaaKqzadGaam4AaaWc beaan8aadaqadaGcbaaccmqcLbsapeGae4hVd0MaaiilaGGabiab9n 6atbGcpaGaayjkaiaawMcaaaaa@44E4@ has spherical contours for the case that Σ=d I k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiqaju gibabaaaaaaaaapeGae83OdmLaeyypa0JaamizaGqadiaa+Leanmaa BaaajqaibaqcLbmacaWGRbaaoeqaaaaa@413F@ , i.e., the model is isotropic. Sample evidence regarding the isotropy of T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaamiva0WaaWbaaSqabKqaafaajugWaiaaikdaaaaa aa@3DB2@ is available. Mauchly [3] derived the Likelihood Ratio test for sphericity, namely, Η 0 :Σ=d I k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiaaju gibabapdWZa8mapeGae83LdGudqaaaaaaaaaWdcmaaBaaajeaqbaqc LbmacaaIWaaaleqaaKqzGeGaaiOoaGGab8qacqGFJoWupiGaeyypa0 JaamizaGqadiaa9LeanmaaBaaajeaqbaqcLbmacaWGRbaaleqaaaaa @492F@ against Η 1 :Σd I k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiaaju gibabapdWZa8mapeGae83LdGudqaaaaaaaaaWdcmaaBaaajuaibaqc LbmacaaIXaaajuaGbeaajugibiaacQdaiiqapeGae43Odm1dciab+b Mi5kaadsgaieWacaqFjbqddaWgaaqceasaaKqzadGaam4AaaGdbeaa aaa@4A36@ . A contemporary test utilizes the modified statistic

L R M = ( ν 2 k 2 +k+2 6k ) ln [ k k | S | ( trS ) k ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaamitaiaadkfanmaaBaaaoeaajugWaiaad2eaa4qa baqcLbsacqGH9aqpcqGHsislcaqGGaqddaqadaqaaKqzGeGaeqyVd4 MaeyOeI0sddaWcaaqaaKqzGeGaaGOmaiaadUganmaaCaaaoeqajqai baqcLbmacaaIYaaaaKqzGeGaey4kaSIaam4AaiabgUcaRiaaikdaa0 qaaKqzGeGaaGOnaiaadUgaaaaaniaawIcacaGLPaaajugibiaabcca caWGSbGaamOBaiaabccanmaadmaabaWaaSaaaeaacaWGRbWaaWbaa4 qabKabGeaajugWaiaadUgaaaqdpaWaaqWaaeaaieWajugib8qacaWF tbaan8aacaGLhWUaayjcSdaapeqaa8aadaqadaqaaKqzGeWdbiaads hacaWGYbGaa83uaaqdpaGaayjkaiaawMcaa8qadaahaaGdbeqceasa aKqzadGaam4AaaaaaaaaniaawUfacaGLDbaaaaa@671B@ (4)

taking S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju gibiaa=nfaaaa@3B2B@ as the sample dispersion matrix from n observations, rejecting at level α for L R M > c α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaamitaiaadkfanmaaBaaajqaibaqcLbmacaWGnbaa oeqaaKqzGeGaeyOpa4Jaam4ya0WaaSbaaKabGeaajugWaiabeg7aHb Gdbeaaaaa@4431@ with v=n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaamODaiabg2da9iaad6gacqGHsislcaaIXaaaaa@3F07@ and with c α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaam4ya0WaaSbaaKabGeaajugWaiabeg7aHbGdbeaa aaa@3E89@ as the upper percentile of the central distribution χ 2 ( k( k+1 )/21,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeq4XdmwddaahaaGdbeqceasaaKqzadGaaGOmaaaa n8aadaqadaGcbaqcLbsapeGaam4Aa0Wdamaabmaakeaajugib8qaca WGRbGaey4kaSIaaGymaaGcpaGaayjkaiaawMcaaKqzGeWdbiaac+ca caaIYaGaeyOeI0IaaGymaiaacYcacaaIWaaak8aacaGLOaGaayzkaa aaaa@4BE1@ . See, for example, Rencher [4].

Design Reversals

Developments thus far are predicated in part on the desirability to identify alternatives having varying powers of discernment. These include the most likely and least likely as in Theorem 1(ii). If the least likely is deemed to be of greatest interest, it remains to ask whether it might serve instead as the most likely alternative. In the context of designed experiments the answer is affirmative, as the intrinsic structure offers a venue for modifying a given design so as to achieve these ends. Details follow.

Consider the model { Y=[ 1 n , X ][ α,β' ]'+ε } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaacm aakeaaieWajugibabaaaaaaaaapeGaa8xwaiabg2da90Wdamaadmaa keaaieqajugib8qacaGFXaqddaWgaaqcbauaaKqzadGaamOBaaWcbe aajugibiaacYcakiaacckajugibiaa=HfaaOWdaiaawUfacaGLDbaa nmaadmaakeaajugib8qacqaHXoqycaGGSaGaeqOSdiMaai4jaaGcpa Gaay5waiaaw2faaKqzGeWdbiaacEcacqGHRaWkiiWaqaWZa8mapdWd ciab9v7aLbGcpaGaay5Eaiaaw2haaaaa@567F@ with X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju gibabaaaaaaaaapeGaa8hwaaaa@3B50@ centered such that 1 n X=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieqaju gibabaaaaaaaaapeGab8xmayaafaqddaWgaaqcbauaaKqzadGaamOB aaWcbeaaieWajugibiaa+HfacqGH9aqpcaaIWaaaaa@410A@ , where location–scale parameters for β ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiWaju gibabapdWZa8mapeGaf8NSdiMbaKaaaaa@3E91@ are ( β,Ξ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaabm aakeaajugibabaaaaaaaaapeGaeqOSdiMaaiilaGGabiab=55aybGc paGaayjkaiaawMcaaaaa@3FFE@ with Ξ= ( X'X ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiqaju gibabaaaaaaaaapeGae8NNdGLaeyypa0tdpaWaaeWaaOqaaGqadKqz GeWdbiaa+HfacaGFNaGaa4hwaaGcpaGaayjkaiaawMcaa0WdbmaaCa aaleqajeaqbaqcLbmacqGHsislcaaIXaaaaaaa@452E@ as in Corollary 1(ii). In particular, the test for Η 0 :β= β o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiGaju gibabapdWZa8mapeGae83LdGudqaaaaaaaaaWdcmaaBaaajqgbG9Fa aKqzadGaaGimaaGdbeaajugibiaacQdacqaHYoGycqGH9aqpcqaHYo GynmaaBaaajqgbG9FaaKqzadGaam4BaaGdbeaaaaa@4C23@ against Η 1 :β β o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiGaju gibabapdWZa8mapeGae83LdGudqaaaaaaaaaWdcmaaBaaajqaibaqc LbmacaaIXaaaoeqaaKqzGeGaaiOoaiabek7aIjabgcMi5kabek7aI1 WaaSbaaKabGeaajugWaiaad+gaa4qabaaaaa@499F@ utilizes F=( β ^ β o )'X'X( β ^ β o )/k S 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaamOraiabg2da90Wdamaabmaakeaajugib8qacuaH YoGygaqcaiabgkHiTiabek7aI1WaaSbaaKabGeaajugWaiaad+gaa4 qabaaak8aacaGLOaGaayzkaaqcLbsapeGaai4jaGqadiaa=HfacaWF NaGaa8hwa0Wdamaabmaakeaajugib8qacuaHYoGygaqcaiabgkHiTi abek7aI1WaaSbaaKabGeaajugWaiaad+gaa4qabaaak8aacaGLOaGa ayzkaaqcLbsapeGaai4laiaadUgacaWGtbqddaahaaGdbeqceasaaK qzadGaaGOmaaaaaaa@57BC@ with S 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaam4ua0WaaWbaa4qabKazea2=baqcLbmacaaIYaaa aaaa@3F3A@ as the residual mean square and with noncentrality λ=( β β o )'X'X( β β o )/ σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiWaju gibabaaaaaaaaapeGae83UdWMaeyypa0tdpaWaaeWaaOqaaKqzGeWd biabek7aIjabgkHiTiabek7aI1WaaSbaaKabGeaajugWaiaad+gaa4 qabaaak8aacaGLOaGaayzkaaqcLbsapeGaai4jaGqadiaa+HfacaGF NaGaa4hwa0Wdamaabmaakeaajugib8qacqaHYoGycqGHsislcqaHYo GynmaaBaaajqaibaqcLbmacaWGVbaaoeqaaaGcpaGaayjkaiaawMca aKqzGeWdbiaac+caiiGacqqFdpWCnmaaCaaaoeqajqaibaqcLbmaca aIYaaaaaaa@588A@ , where it often suffices to take σ 2 =1.0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiGaju gibabaaaaaaaaapeGae83WdmxddaahaaGdbeqceasaaKqzadGaaGOm aaaajugibiabg2da9iaaigdacaGGUaGaaGimaaaa@4245@ . For X F n×k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju gibabaaaaaaaaapeGaa8hwaiabgIGioprr1ngBPrwtHrhAYaqeguuD JXwAKbstHrhAGq1DVbacfiGae4xHWBuddaWgaaqceasaaKqzadGaam OBaiabgEna0kaadUgaa4qabaaaaa@4E49@ its singular decomposition, followed by X'X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju gibabaaaaaaaaapeGaa8hwaiaa=DcacaWFybaaaa@3CD1@ , is

X=P D δ Q'=  i=1 k δ i p i q i ,X'X=Q D κ Q' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju gibabaaaaaaaaapeGaa8hwaiabg2da9iaa=bfacaWFebqddaWgaaqc easaaKqzadGaeqiTdqgaoeqaaGqabKqzGeGaa4xuaiaa+DcacqGH9a qpcaqGGaqddaaeWbqaaKqzGeGaeqiTdqwddaWgaaqcKray=haajugW aiaadMgaa4qabaqcLbsacaWFWbqddaWgaaqcKray=haajugWaiaadM gaa4qabaqcLbsaceWFXbGbauaanmaaBaaajqgbG9FaaKqzadGaamyA aaGdbeaaaeaajugibiaadMgacqGH9aqpcaaIXaaaoeaajugibiaadU gaaiabggHiLdGaaiilaiaa=HfacaWFNaGaa8hwaiabg2da9iaa=ffa caWFebqddaWgaaqcKraG=haajugWaiabeQ7aRbGdbeaajugibiaa=f facaGGNaaaaa@6A5C@ (5)

with P=[ p 1 ,, p k ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju gibabaaaaaaaaapeGaa8huaiabg2da90Wdamaadmaakeaajugib8qa caWGWbqddaWgaaqceasaaKqzadGaaGymaaGdbeaajugibiaacYcacq GHMacVcaGGSaGaamiCa0WaaSbaaKabGeaajugWaiaadUgaa4qabaaa k8aacaGLBbGaayzxaaaaaa@495E@ as its left–singular vectors, D δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju gibabaaaaaaaaapeGaa8hra0WaaSbaaKabGeaajugWaiabes7aKbGd beaaaaa@3E78@ as its singular values, and columns of Q O k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFrbGaeyicI48efv3ySLgznfgDOfdaryqr1ngB PrginfgDObYtUvgaiuaapaGae4NdX=ucga4dbmaaBaaabaGaam4Aaa qabaaaaa@476B@ as its right–singular vectors. Clearly { κ j = δ i 2 ;1iκ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaacm aakeaaiiGajugibabapdWZa8mapeGae8NUdSwdqaaaaaaaaaWdcmaa BaaajqaibaqcLbmacaWGQbaaoeqaaKqzGeGaeyypa0dccmWdbiab+r 7aK1WdcmaaDaaajqaibaqcLbmacaWGPbaajqaibaqcLbmacaaIYaaa aKqzGeGaai4oaiaaigdacqGHKjYOkiaadMgajugibiabgsMiJ+qacq WF6oWAaOWdaiaawUhacaGL9baaaaa@5441@ . Our principal reconstruction is articulated in the following.

Theorem 2. Let π( δ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiGaju gibabaaaaaaaaapeGae8hWdaxdpaWaaeWaaOqaaGGadKqzGeWdbiab +r7aKbGcpaGaayjkaiaawMcaaaaa@4042@ be a permutation operator reversing the ordered array [ δ 1 δ k ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaadm aakeaaiiGajugibabapdWZa8mapeGae8hTdqwdqaaaaaaaaaWdcmaa BaaajqaibaqcLbmacaaIXaaaoeqaaKqzGeGaeyyzImRaeyOjGWRaey yzIm7dbiab=r7aK1WdcmaaBaaajqaibaqcLbmacaWGRbaaoeqaaaGc paGaay5waiaaw2faaaaa@4D0A@ to { δ k { δ 2 ,, δ k2 } δ 1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaacm aakeaaiiGajugibabapdWZa8mapeGae8hTdqwdqaaaaaaaaaWdcmaa BaaajqaibaqcLbmacaWGRbaaoeqaaKqzGeGaeyizImAdpaWaaiWaaO qaaKqzGeWdbiab=r7aK1WdcmaaBaaajqaibaqcLbmacaaIYaaaoeqa aKqzGeGaaiilaiabgAci8kaacYcapeGae8hTdqwdpiWaaSbaaKabGe aajugWaiaadUgacqGHsislcaaIYaaaoeqaaaGcpaGaay5Eaiaaw2ha aKqzGeWdciabgsMiJ+qacqWF0oazn8GadaWgaaqceasaaKqzadGaaG ymaaGdbeaaaOWdaiaawUhacaGL9baaaaa@5CBA@ , and let D π =Diag( δ k , δ 2 ,, δ k2 , δ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieqaju gibabapdWZa8mapeGaa8hra0aeaaaaaaaaa8GadaWgaaqceasaaKqz adGaeqiWdahaoeqaaKqzGeGaeyypa0dcbaGaa4hraiaa+LgacaGFHb Gaa43za0WdamaabmaakeaaiiGajugib8qacqqF0oazn8GadaWgaaqc easaaKqzadGaam4AaaGdbeaajugibiaacYcapeGae0hTdqwdpiWaaS baaKabGeaajugWaiaaikdaa4qabaqcLbsacaGGSaGaeyOjGWRaaiil a8qacqqF0oazn8GadaWgaaqceasaaKqzadGaam4AaiabgkHiTiaaik daa4qabaqcLbsacaGGSaWdbiab9r7aK1WdcmaaBaaajqaibaqcLbma caaIXaaaoeqaaaGcpaGaayjkaiaawMcaaaaa@60E5@ . Next construct

X π =P D π Q'= δ k p 1 q 1 +  i=2 k1 δ i p i q i + δ 1 p k q k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju gibabaaaaaaaaapeGaa8hwa0WaaSbaaKabGeaajugWaiabec8aWbGd beaajugibiabg2da9iaa=bfacaWFebqddaWgaaqceasaaKqzadGaeq iWdahaoeqaaKqzGeGaa8xuaiaacEcacqGH9aqpiiGaqaWZa8mapdWd ciab+r7aK1WdbmaaBaaajqaibaqcLbmacaWGRbaaoeqaaKqzGeGaa8 hCa0WaaSbaaKabGeaajugWaiaaigdaa4qabaqcLbsaceWFXbGbauaa nmaaBaaajqaibaqcLbmacaaIXaaaoeqaaKqzGeGaey4kaSIaaeiia0 Waaabmaeaajugib8GacqGF0oazn8qadaWgaaqceasaaKqzadGaamyA aaGdbeaajugibiaa=bhanmaaBaaajqaibaqcLbmacaWGPbaaoeqaaK qzGeGab8xCayaafaqddaWgaaqceasaaKqzadGaamyAaaGdbeaaaeaa jugibiaadMgacqGH9aqpcaaIYaaaoeaajugibiaadUgacqGHsislca aIXaaacqGHris5aiabgUcaR8GacqGF0oazn8qadaWgaaqcKray=haa jugWaiaaigdaa4qabaqcLbsacaWFWbqddaWgaaqcKray=haajugWai aadUgaa4qabaqcLbsaceWFXbGbauaanmaaBaaajqgbG9FaaKqzadGa am4AaaGdbeaaaaa@8018@

such that pairs ( δ k , q 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaabm aakeaaiiGajugibabapdWZa8mapeGae8hTdqwdqaaaaaaaaaWdcmaa BaaajqaibaqcLbmacaWGRbaaoeqaaKqzGeGaaiilaGqadiaa+fhanm aaBaaajqaibaqcLbmacaaIXaaaoeqaaaGcpaGaayjkaiaawMcaaaaa @4773@ and ( δ 1 , q k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaabm aakeaaiiGajugibabapdWZa8mapeGae8hTdqwdqaaaaaaaaaWdcmaa BaaajeaqbaqcLbmacaaIXaaaleqaaKqzGeGaaiilaGqadiaa+fhanm aaBaaajeaqbaqcLbmacaWGRbaaleqaaaGcpaGaayjkaiaawMcaaaaa @47A7@ are realigned.

Conclusion: The most likely and least likely alternatives for design X π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju gibabaaaaaaaaapeGaa8hwa0WaaSbaaKqaafaajugWaiabec8aWbWc beaaaaa@3EBE@ are reversed from those of X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju gibabaaaaaaaaapeGaa8hwaaaa@3B50@ , so that θ 1 = q k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiWaju gibabaaaaaaaaapeGae8hUdexddaWgaaqcbauaaKqzadGaaGymaaWc beaajugibiabg2da9Gqadiaa+fhanmaaBaaajeaqbaqcLbmacaWGRb aaleqaaaaa@43C8@ now is most likely with power Ψ( κ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiqaju gibabapdWZa8mapeGae8hQdKvdqaaaaaaaaaWdcmaabmaabaGaeqOU dS2aaSbaaKabGeaajugWaiaaigdaa4qabaaaniaawIcacaGLPaaaaa a@4427@ depending on κ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiGaju gibabapdWZa8mapeGae8NUdSwcfaieaaaaaaaaa8GadaWgaaqcbaua aKqzadGaaGymaaqcbauabaaaaa@41DE@ , and θ k = q 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiWaju gibabaaaaaaaaapeGae8hUdexddaWgaaqcbauaaKqzadGaam4AaaWc beaajugibiabg2da9Gqadiaa+fhanmaaBaaajeaqbaqcLbmacaaIXa aaleqaaaaa@43C8@ least likely with power Ψ( κ k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiqaju gibabapdWZa8mapeGae8hQdKvdqaaaaaaaaaWdcmaabmaakeaajugi biabeQ7aR1WaaSbaaKqaafaajugWaiaadUgaaSqabaaakiaawIcaca GLPaaaaaa@4519@ depending on κ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeQ7aR1WaaSbaaKqaafaajugWaiaadUgaaSqabaaaaa@3E9E@ .

Proof: Clearly the conventional reordering of eigenvalues gives

X π X π = κ 1 q k q k + i=2 k1 κ i q i q i + κ k q 1 q 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju gibabaaaaaaaaapeGab8hwayaafaqddaWgaaqceasaaKqzadGaeqiW dahaoeqaaKqzGeGaa8hwa0WaaSbaaKabGeaajugWaiabec8aWbGdbe aajugibiabg2da9iabeQ7aR1WaaSbaaKabGeaajugWaiaaigdaa4qa baqcLbsacaWFXbqddaWgaaqceasaaKqzadGaam4AaaGdbeaajugibi qa=fhagaqba0WaaSbaaKabGeaajugWaiaadUgaa4qabaqcLbsacqGH RaWknmaaqahabaqcLbsacqaH6oWAnmaaBaaajqaibaqcLbmacaWGPb aaoeqaaKqzGeGaa8xCa0WaaSbaaKabGeaajugWaiaadMgaa4qabaqc LbsaceWFXbGbauaanmaaBaaajqaibaqcLbmacaWGPbaaoeqaaaqaaK qzGeGaamyAaiabg2da9iaaikdaa4qaaKqzGeGaam4AaiabgkHiTiaa igdaaiabggHiLdGaae4kaiabeQ7aR1WaaSbaaKabGeaajugWaiaadU gaa4qabaqcLbsacaWFXbqddaWgaaqceasaaKqzadGaaGymaaGdbeaa jugibiqa=fhagaqba0WaaSbaaKabGeaajugWaiaaigdaa4qabaaaaa@74B4@ (6)

and the conclusion follows on applying Theorem 1(ii) in the context of Corollary 1(ii).

Remark 4. Variations on X π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju gibabaaaaaaaaapeGaa8hwa0WaaSbaaKqaafaajugWaiabec8aWbWc beaaaaa@3EBE@ are apparent. Any permutation of { δ 2 ,, δ κ1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaacm aakeaaiiGajugibabapdWZa8mapeGae8hTdqwdqaaaaaaaaaWdcmaa BaaajeaqbaqcLbmacaaIYaaaleqaaKqzGeGaaiilaiabgAci8kaacY capeGae8hTdqwdpiWaaSbaaKqaafaaiiWajugWaiab+P7aRjabgkHi TiaaigdaaSqabaaak8aacaGL7bGaayzFaaaaaa@4DC3@ gives the same conclusion. In addition, any pairs { ( δ i , q i ),( δ j , q j ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaacm aakeaanmaabmaakeaaiiGajugibabapdWZa8mapeGae8hTdqwdqaaa aaaaaaWdcmaaBaaajqaibaqcLbmacaWGPbaaoeqaaKqzGeGaaiilaG qadiaa+fhanmaaBaaajqaibaqcLbmacaGFPbaaoeqaaaGcpaGaayjk aiaawMcaaKqzGeWdciaacYcan8aadaqadaGcbaqcLbsapeGae8hTdq wdpiWaaSbaaKabGeaajugWaiaadQgaa4qabaqcLbsacaGGSaGaa4xC a0WaaSbaaKabGeaajugWaiaadQgaa4qabaaak8aacaGLOaGaayzkaa aacaGL7bGaayzFaaaaaa@568B@  may be selected in like manner as most likely and least likely to be discerned. Note, however, that these tools are available in the case of first–order designs.

Case Studies

Studies in Hotelling [2] T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaamiva0WaaWbaa4qabKabGeaajugWaiaaikdaaaaa aa@3D98@ and second–order response models are given, to illustrate Theorem 1 and Corollary 1. Moreover, an example design serves to illustrates the Theorem 2 reversal of most likely and least likely alternatives.

Hotelling’s T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam ivamaaCaaabeqaaKqzadGaaGOmaaaaaaa@3B13@ Tests

We reexamine the role of calcium in the growth of turnip greens, using data as reported in Kramer et al. [5]. In each of 29 experimental plots the plant calcium ( Y 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam ywamaaBaaabaqcLbmacaaIXaaajuaGbeaaaaa@3BA4@ ) was determined, and the soil calcium was assayed as available ( Y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam ywamaaBaaabaqcLbmacaaIYaaajuaGbeaaaaa@3BA5@ ) and exchangeable ( Y 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam ywamaaBaaabaqcLbmacaaIZaaajuaGbeaaaaa@3BA6@ ) calcium. The units all are milliequivalents per hundred grams. Horticultural specialists expect these to run at about 15.00, 6.00 and 2.85 units, respectively. The sample means are Y ¯  '=[ 17.97, 4.39, 2.46 ]; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0 aaaeaaieWacaWFzbaaaabaaaaaaaaapeGaaiiOaiaacEcacqGH9aqp daWadaqaceaa8JGaaGymaiaaiEdacaGGUaGaaGyoaiaaiEdacaGGSa GaaiiOaiaaisdacaGGUaGaaG4maiaaiMdacaGGSaGaaiiOaiaaikda caGGUaGaaGinaiaaiAdaaiaawUfacaGLDbaacaGG7aaaaa@4D08@ and the sample dispersion matrix is S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbeqcfa Oaa83uaaaa@390C@ with inverse S (1)  =  Q D k Q' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLb qacaWFtbWcdaahaaqcfayabeaajugabiaacIcacqGHsislcaaIXaGa aiykaaaatCvAUfeBSn0BKvguHDwzZbqegauqYLwySbsvUL2yVrwzG0 0uaGqbbabaaaaaaaaapeGaa4hOaiabg2da9iaacckacaGGGcacbeGa a0xuaiaa=realmaaBaaajuaibaqcLbqacaWGRbaajuaGbeaajugabi aa9ffacaGGNaaaaa@5332@ in spectral form, as listed in

Q=[ 0.01024 0.22479 -0.97435 0.05973 -0.97280   0.22381 -0.99816   0.05591   0.02339 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGrbGaeyypa0ZaamWaaqaabeqaaiaaicdacaGGUaGa aGimaiaaigdacaaIWaGaaGOmaiaaisdacaWLjaGaaGimaiaac6caca aIYaGaaGOmaiaaisdacaaI3aGaaGyoaiaaxMaaieaacaWFTaGaa8hm aiaa=5cacaWF5aGaa83naiaa=rdacaWFZaGaa8xnaaqaaiaaicdaca GGUaGaaGimaiaaiwdacaaI5aGaaG4naiaaiodacaWLjaGaa8xlaiaa =bdacaWFUaGaa8xoaiaa=DdacaWFYaGaa8hoaiaa=bdacaWLjaGaai iOaiaacckacqGHsislcaaIWaGaaiOlaiaaikdacaaIYaGaaG4maiaa iIdacaaIXaaabaGaa8xlaiaa=bdacaWFUaGaa8xoaiaa=LdacaWF4a Gaa8xmaiaa=zdacaWLjaGaaiiOaiaacckacqGHsislcaaIWaGaaiOl aiaaicdacaaI1aGaaGynaiaaiMdacaaIXaGaaiiOaiaacckacaGGGc GaeyOeI0IaaGimaiaac6cacaaIWaGaaGOmaiaaiodacaaIZaGaaGyo aaaacaGLBbGaayzxaaaaaa@79BA@

where D k  =  Diag (5.61102,  0.04857, 0.00416) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFebWaaSbaaeaajugWaiaadUgaaKqbagqaaiaa cckacqGH9aqpcaGGGcGaaiiOaGqaaiaa+reacaGFPbGaa4xyaiaa+D gacaGGGcGaaiikaiaaiwdacaGGUaGaaGOnaiaaigdacaaIXaGaaGim aiaaikdacaGGSaGaaiiOaiaacckacaaIWaGaaiOlaiaaicdacaaI0a GaaGioaiaaiwdacaaI3aGaaiilaiaacckacaaIWaGaaiOlaiaaicda caaIWaGaaGinaiaaigdacaaI2aGaaiykaaaa@5A81@ The data are ill–conditioned, with condition number

c 1 ( S )=1,348.80 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGJbGcdaWgaaWcbaqcLbmacaaIXaaaleqaaKqba+aa daqadaqaaGqab8qacaWFtbaapaGaayjkaiaawMcaa8qacqGH9aqpca aIXaGaaiilaiaaiodacaaI0aGaaGioaiaac6cacaaI4aGaaGimaaaa @450F@ :

The statistic reported is T 2  = n ( Y ¯   μ 0 ) '   S 1 ( Y ¯   μ 0 )  = 24.97 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam ivamaaCaaabeqaaKqzadGaaGOmaaaajuaGqaaaaaaaaaWdbiaaccka cqGH9aqpcaGGGcGaamOBaiaacckacaGGOaWaa0aaaeaaieWacaWFzb aaaiabgkHiTiaacckaiiWacqGF8oqBdaWgaaqaaKqzadGaaGimaaqc fayabaGaaiykaiaacckacaGGNaGaaiiOaiaacckacaWFtbWaaWbaae qabaqcLbmacqGHsislcaaIXaaaaKqbakaacIcadaqdaaqaaiaa=Lfa aaGaaiiOaiabgkHiTiab+X7aTnaaBaaabaqcLbmacaaIWaaajuaGbe aacaGGPaGaaiiOaiaacckacqGH9aqpcaGGGcGaaGOmaiaaisdacaGG UaGaaGyoaiaaiEdaaaa@630A@ with μ 0 = 15.00, 6.00, 2.85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcfa ieaaaaaaaaa8qacqWF8oqBdaWgaaqaaKqzadGaaGimaaqcfayabaWa aWbaaeqabaGamaiYgkdiIcaacqGH9aqpcaGGGcGaaGymaiaaiwdaca GGUaGaaGimaiaaicdacaGGSaGaaiiOaiaaiAdacaGGUaGaaGimaiaa icdacaGGSaGaaiiOaiaaikdacaGGUaGaaGioaiaaiwdaaaa@4EDC@ , rejecting at level α = 0.01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegeaaaaaaaaa8qacaGGGcGaeyypa0JaaiiOaiaaicdacaGGUaGa aGimaiaaigdaaaa@401C@ the hypothesis H 0 : μ= μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcfa Oaa8hsamaaBaaabaqcLbmacaaIWaaajuaGbeaacaGG6aaeaaaaaaaa a8qacaGGGcaccmGae4hVd0Maeyypa0Jae4hVd02aaSbaaeaajugWai aaicdaaKqbagqaaaaa@44A3@ in favor of some H 1 : μ μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcfa Oaa8hsamaaBaaabaqcLbmacaaIXaaajuaGbeaacaGG6aaeaaaaaaaa a8qacaGGGcaccmGae4hVd0MaeyiyIKRae4hVd02aaSbaaeaajugWai aaicdaaKqbagqaaaaa@4565@ . Indeed, the p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGWbaaaa@38E3@ –value is P( T 2 > 24.97 |  H 0 )  = 0.000751 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iuaiaacIcacaWGubWaaWbaaeqabaqcLbmacaaIYaaaaKqbakabg6da +abaaaaaaaaapeGaaiiOa8aacaaIYaGaaGinaiaac6cacaaI5aGaaG 4na8qacaGGGcWdaiaacYhapeGaaiiOa8aacaGGibWaaSbaaeaajugW aiaaicdaaKqbagqaaiaacMcapeGaaiiOaiaacckacqGH9aqpcaGGGc GaaGimaiaac6cacaaIWaGaaGimaiaaicdacaaI3aGaaGynaiaaigda aaa@551A@ with C α  = [14.980] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4qamaaBaaabaGaeqySdegabeaaqaaaaaaaaaWdbiaacckacqGH9aqp caGGGcGaai4waiaaigdacaaI0aGaaiOlaiaaiMdacaaI4aGaaGimai aac2faaaa@444E@ . On applying Corollary 1(i) with S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFtbaaaa@38CE@ in lieu of Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacceqcfa Oae83Odmfaaa@39B7@ , the columns of Q= [ q 1 ,  q 2 ,   q 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa Oaa8xuaiabg2da9abaaaaaaaaapeGaaiiOamaadmaabaGaa8xCaSWa aSbaaKqbagaalmaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaaaeqaai aacYcacaGGGcGaa8xCamaaBaaabaWcdaWgaaqcfayaaKqzadGaaGOm aaqcfayabaGaaiilaaqabaGaaiiOaiaa=fhadaWgaaqaamaaBaaaba qcLbmacaaIZaaajuaGbeaaaeqaaaGaay5waiaaw2faaaaa@4DBF@ are taken as successive alternatives to ( μ   μ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qadaqadaqaaGGad8aacqWF8oqBpeGaaiiOaiabgkHiTiaa cckapaGae8hVd02dbmaaBaaabaWaaSbaaeaajugWaiaaicdaaKqbag qaaaqabaaacaGLOaGaayzkaaaaaa@4371@ , namely

[ μ 1  15.00 μ 2  6.00 μ 3  2.85 ]   [ 0.01024 0.22479 -0.97435 0.05973 -0.97280   0.22381 -0.99816   0.05591   0.02339 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qadaWadaabaeqabaGaeqiVd02aaSbaaeaalmaaBaaajuaG baqcLbmacaaIXaaajuaGbeaacqGHsislcaGGGcGaaGymaiaaiwdaca GGUaGaaGimaiaaicdaaeqaaaqaaiabeY7aTnaaBaaabaqcLbmacaaI YaaajuaGbeaacqGHsislcaGGGcGaaGOnaiaac6cacaaIWaGaaGimaa qaaiabeY7aTnaaBaaabaqcLbmacaaIZaqcfaOaaiiOaiabgkHiTiaa cckacaaIYaGaaiOlaiaaiIdacaaI1aaabeaaaaGaay5waiaaw2faai aacckaiiaacqWFiiIZcaGGGcGaaiiOamaadmaaeaqabeaacaaIWaGa aiOlaiaaicdacaaIXaGaaGimaiaaikdacaaI0aGaaCzcaiaaicdaca GGUaGaaGOmaiaaikdacaaI0aGaaG4naiaaiMdacaWLjaacbeGaa4xl aiaa+bdacaGFUaGaa4xoaiaa+DdacaGF0aGaa43maiaa+vdaaeaaca aIWaGaaiOlaiaaicdacaaI1aGaaGyoaiaaiEdacaaIZaGaaCzcaiaa +1cacaGFWaGaa4Nlaiaa+LdacaGF3aGaa4Nmaiaa+HdacaGFWaGaaC zcaiaacckacaGGGcGaeyOeI0IaaGimaiaac6cacaaIYaGaaGOmaiaa iodacaaI4aGaaGymaaqaaiaa+1cacaGFWaGaa4Nlaiaa+LdacaGF5a Gaa4hoaiaa+fdacaGF2aGaaCzcaiaacckacaGGGcGaeyOeI0IaaGim aiaac6cacaaIWaGaaGynaiaaiwdacaaI5aGaaGymaiaacckacaGGGc GaaiiOaiabgkHiTiaaicdacaGGUaGaaGimaiaaikdacaaIZaGaaG4m aiaaiMdaaaGaay5waiaaw2faaaaa@9D27@

where the dominant terms are in bold type. The noncentrality parameters { λ i  =n κ i ; 1 i  3} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai 4EaGGaciab=T7aSnaaBaaabaqcLbmacaWGPbaajuaGbeaaqaaaaaaa aaWdbiaacckacqGH9aqpcaWGUbGaeqOUdS2aaSbaaeaajugWaiaadM gaaKqbagqaaiaacUdacaGGGcGaaGymaiabgsMiJkaacckacaWGPbGa aiiOaiabgsMiJkaacckacaaIZaGaaiyFaaaa@518D@ are {162.720, 1.409, 0.121}, and taking α=0.05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacciqcfa ieaaaaaaaaa8qacqWFXoqycqGH9aqpcaaIWaGaaiOlaiaaicdacaaI 1aaaaa@3D7F@ and C α =9.612, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4qamaaBaaabaqcLbmacqaHXoqyaKqbagqaaiabg2da9iaaiMdacaGG UaGaaGOnaiaaigdacaaIYaGaaiilaaaa@41D4@ powers at these alternatives are

P(( T 2 | λ 1 )>9.612= 1.0000,P(( T 2 | λ 2 )>9.612=0.1316,  P(( T 2 | λ 3 )>9.612) = 0.0562. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iuaiaacIcacaGGOaGaaiivamaaCaaabeqaaKqzadGaaGOmaaaajuaG caGG8bacciGae83UdW2cdaWgaaqcfayaaKqzadGaaGymaaqcfayaba Gaaiykaiabg6da+iaaiMdacaGGUaGaaGOnaiaaigdacaaIYaGaeyyp a0deaaaaaaaaa8qacaGGGcGaaGymaiaac6cacaaIWaGaaGimaiaaic dacaaIWaGaaiila8aacaWGqbGaaiikaiaacIcacaGGubWaaWbaaeqa baqcLbmacaaIYaaaaKqbakaacYhacqaH7oaBlmaaBaaajuaGbaqcLb macaaIYaaajuaGbeaacaGGPaGaeyOpa4JaaGyoaiaac6cacaaI2aGa aGymaiaaikdacqGH9aqppeGaaGimaiaac6cacaaIXaGaaG4maiaaig dacaaI2aGaaiilaiaacckacaGGGcGaamiuaiaacIcacaGGOaGaamiv amaaCaaabeqaaKqzadGaaGOmaaaajuaGcaGG8bWdaiabeU7aSnaaBa aabaqcLbmacaaIZaaajuaGbeaacaGGPaGaeyOpa4JaaGyoaiaac6ca caaI2aGaaGymaiaaikdacaGGPaWdbiaacckacqGH9aqpcaGGGcGaaG imaiaac6cacaaIWaGaaGynaiaaiAdacaaIYaGaaiOlaaaa@8347@

Accordingly, T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai ivamaaCaaabeqaaKqzadGaaGOmaaaaaaa@3B12@ has essentially unit power to distinguish the hypothetical deviation ( μ 3  2.85) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai ikaiabeY7aTnaaBaaabaqcLbmacaaIZaaajuaGbeaacqGHsislqaaa aaaaaaWdbiaacckacaaIYaGaaiOlaiaaiIdacaaI1aGaaiykaaaa@42F7@ from -0.99816, since the discrepancies 0.01024 for ( μ 1  15.00) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai ikaiabeY7aTnaaBaaabaqcLbmacaaIXaaajuaGbeaacqGHsislqaaa aaaaaaWdbiaacckacaaIXaGaaGynaiaac6cacaaIWaGaaGimaiaacM caaaa@43A6@ and 0.05973 for ( μ 2  6.00) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai ikaiabeY7aTnaaBaaabaqcLbmacaaIYaaajuaGbeaacqGHsislqaaa aaaaaaWdbiaacckacaaI2aGaaiOlaiaaicdacaaIWaGaaiykaaaa@42ED@ in q 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yCamaaBaaabaqcLbmacaaIXaaajuaGbeaaaaa@3BBC@ are negligible. Similarly, T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam ivaSWaaSbaaWqaamaaBaaabaGaaGOmaaqabaaabeaaaaa@3A1C@ is marginally able to distinguish [( μ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iVd02aaSbaaeaajugWaiaaigdaaKqbagqaaaaa@3C7C@ −15.00), ( μ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iVd02aaSbaaeaajugWaiaaikdaaKqbagqaaaaa@3C7D@ −6.00)] from [0.22479, −0.97280] with power 0.1316, but is virtually unable to separate [( μ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iVd02aaSbaaeaajugWaiaaigdaaKqbagqaaaaa@3C7C@ −15.00), ( μ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iVd02aaSbaaeaajugWaiaaikdaaKqbagqaaaaa@3C7D@ −6.00)] from [−0.97435, −0.22381] with negligible power of 0.0562. In short, the latter suggests [14.03, 5.78] to be plausible values for [ μ 1 , μ 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai 4waiabeY7aTnaaBaaabaqcLbmacaaIXaaajuaGbeaacaGGSaGaeqiV d02aaSbaaeaajugWaiaaikdaaKqbagqaaiaac2faaaa@433B@ .

This is an example, as seen subsequently also, where elements of Q= [ q 1 ,  q 2 ,   q 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa Oaa8xuaiabg2da9abaaaaaaaaapeGaaiiOamaadmaabaGaa8xCaSWa aSbaaKqbagaalmaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaaaeqaai aacYcacaGGGcGaa8xCamaaBaaabaWcdaWgaaqcfayaaKqzadGaaGOm aaqcfayabaGaaiilaaqabaGaaiiOaiaa=fhadaWgaaqaamaaBaaaba qcLbmacaaIZaaajuaGbeaaaeqaaaGaay5waiaaw2faaaaa@4DBF@ , especially q 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFXbWcdaWgaaqcfayaaSWaaSbaaKqbagaajugW aiaaigdaaKqbagqaaaqabaaaaa@3D37@ , convey useful information in regard to the objectives of the study. In summary, details regarding directed alternatives, enabled here by Theorem 1 and Corollary 1(i), go beyond conventional useage for T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfa Oaa8hvamaaCaaabeqaaKqzadGaaGOmaaaaaaa@3B1A@ .

Hotelling’s T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfa Oaa8hvamaaCaaabeqaaKqzadGaaGOmaaaaaaa@3B1A@ Charts.

Multivariate diagnostics figure prominently in Statistical Process Control (SPC), as reviewed subsequently. In monitoring the manufacture of bomb sights during World War II, Hotelling [6] devised T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfa Oaa8hvamaaCaaabeqaaKqzadGaaGOmaaaaaaa@3B1A@ charts for multivariate means in {R}^{K} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaGG7bGaamOuaiaac2hapaGaaKOxa8qacaGG7bGaam4s aiaac2haaaa@3EFD@ . Here successive values { T i 2 ; i = 1, 2,...} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai 4EaiaadsfadaqhaaqaaKqzadGaamyAaaqcfayaaKqzadGaaGOmaaaa juaGcaGG7aaeaaaaaaaaa8qacaGGGcGaamyAaiaacckacqGH9aqpca GGGcGaaGymaiaacYcacaGGGcGaaGOmaiaacYcacaGGUaGaaiOlaiaa c6cacaGG9baaaa@4C9B@ are charted against time, where the chart signals the process to be out–of–control at level α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacciqcfa ieaaaaaaaaa8qacqWFXoqyaaa@39F4@  whenever T i 2 >  C α . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam ivamaaDaaabaqcLbmacaWGPbaajuaGbaqcLbmacaaIYaaaaKqbakab g6da+abaaaaaaaaapeGaaiiOaiaacoeadaWgaaqaaKqzadGaeqySde gajuaGbeaacaGGUaaaaa@458C@ Moreover, with power ψ(λ) = P (( T i 2 |λ) >  C α ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iYdKNaaiikaiabeU7aSjaacMcaqaaaaaaaaaWdbiaacckapaGaeyyp a0ZdbiaacckacaGGqbGaaiiOaiaacIcacaGGOaGaamivamaaDaaaba qcLbmacaWGPbaajuaGbaqcLbmacaaIYaaaaKqbakaacYhacqaH7oaB caGGPaGaaiiOaiabg6da+iaacckacaWGdbWaaSbaaeaaiiGajugWai ab=f7aHbqcfayabaGaaiykaiaacYcaaaa@565C@ the Average Run Length (ARL) of time–to–signal is ARL =  1/ψ(λ)  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yqaiaadkfacaWGmbaeaaaaaaaaa8qacaGGGcGaeyypa0JaaiiOaiaa cckacaaIXaGaai4la8aacqaHipqEcaGGOaGaeq4UdWMaaiyka8qaca GGGcaaaa@46BA@ . To monitor the mean μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcfa ieaaaaaaaaa8qacqWF8oqBaaa@3A0C@ against its target value μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcfa ieaaaaaaaaa8qacqWF8oqBdaWgaaqaaKqzadGaaGimaaqcfayabaaa aa@3CA3@ , successive samples of size n yield ( Y i ¯ ,  S i  ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qadaqadaqaa8aadaqdaaqaaGqadiaa=LfadaWgaaqaaiaa dMgaaeqaaaaacaGGSaWdbiaacckacaWFtbWaaSbaaeaacaWGPbGaai iOaaqabaaacaGLOaGaayzkaaaaaa@40D7@ , together with T i 2 =n( Y i ¯ μ 0 )   S i 1 ( Y i ¯ μ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam ivamaaDaaabaqcLbmacaWGPbaajuaGbaqcLbmacaaIYaaaaKqbakab g2da9iaad6gacaGGOaWaa0aaaeaaieWacaWFzbWaaSbaaeaajugWai aadMgaaKqbagqaaaaacqGHsisliiWacqGF8oqBdaWgaaqaaKqzadGa aGimaaqcfayabaGabiykayaafaaeaaaaaaaaa8qacaGGGcGaa83uam aaDaaabaqcLbmacaWGPbaajuaGbaqcLbmacqGHsislcaaIXaaaaKqb akaacIcadaqdaaqaaiaa=LfadaWgaaqaaKqzadGaamyAaaqcfayaba aaaiabgkHiTiab+X7aTnaaBaaabaqcLbmacaaIWaaajuaGbeaacaGG Paaaaa@5D37@ having the T k 2 (n1,λ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam ivamaaDaaabaqcLbmacaWGRbaajuaGbaqcLbmacaaIYaaaaKqbakaa cIcacqGH0icxcaWGUbGaeyOeI0IaaGymaiaacYcacqaH7oaBcaGGPa aaaa@45E3@ distribution with λ= n ( μ μ 0 )' Σ 1 ( μ μ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq 4UdWMaeyypa0deaaaaaaaaa8qacaGGGcWdaiaad6gapeGaaiiOamaa bmaabaaccmWdaiab=X7aTjabgkHiTiab=X7aTnaaBaaabaqcLbmaca aIWaaajuaGbeaaa8qacaGLOaGaayzkaaGaai4jaGGabiab+n6atnaa CaaabeqaaKqzadGaeyOeI0IaaGymaaaajuaGdaqadaqaa8aacqWF8o qBcqGHsislcqWF8oqBdaWgaaqaaKqzadGaaGimaaqcfayabaaapeGa ayjkaiaawMcaaaaa@5544@ . Phase I in SPC is set to establish base line process capabilities, to include parameter estimation, followed in Phase II by implementing the control charts themselves.

To continue, consider the data of Quesenberry [7] to be in Phase I, comprising n=30 records of 11 quality characteristics indexed in time–order of production. Following Williams et al. [8], dimensions are reduced on selecting the first k=5 quality characteristics, namely, [ Y 1 ,..., Y 5 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai 4waiaadMfadaWgaaqaaKqzadGaaGymaaqcfayabaGccaGGSaGaaiOl aiaac6cacaGGUaGaaiilaKqbakaadMfadaWgaaqaaKqzadGaaGynaa qcfayabaGaaiyxaaaa@44EC@ having means [ μ 1 ,..., μ 5 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai 4waiabeY7aTnaaBaaabaqcLbmacaaIXaaajuaGbeaacaGGSaGaaiOl aiaac6cacaGGUaGaaiilaiabeY7aTnaaBaaabaqcLbmacaaI1aaaju aGbeaacaGGDbaaaa@4604@ , respectively. As in Section Hotelling’s T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam ivamaaCaaabeqaaKqzadGaaGOmaaaaaaa@3B13@ Tests we take S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFtbaaaa@392E@ in lieu of MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey yeIuoaaa@39D2@ , finding the spectral resolution S 1  =  Q D κ Q' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa Oaa83uamaaCaaabeqaaKqzadGaeyOeI0IaaGymaaaajuaGqaaaaaaa aaWdbiaacckacqGH9aqpcaGGGcGaaiiOaiaa=ffacaWFebWaaSbaae aajugWaiabeQ7aRbqcfayabaGaa8xuaiaacEcaaaa@47C9@ as reported in Table 1. The data are seen to be highly ill–conditioned, with condition number c 1 ( S )=3,945.64 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGJbWaaSbaaeaajugWaiaaigdaaKqbagqaa8aadaqa daqaaGqad8qacaWFtbaapaGaayjkaiaawMcaa8qacqGH9aqpcaaIZa GaaiilaiaaiMdacaaI0aGaaGynaiaac6cacaaI2aGaaGinaaaa@44F8@ . In keeping with Corollary 1(i), five directed alternatives comprise the columns of Q = [ q 1 ,..., q 5 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa Oaa8xuaabaaaaaaaaapeGaaiiOaiabg2da9iaacckacaGGBbGaa8xC amaaBaaabaqcLbmacaaIXaaajuaGbeaacaGGSaGaaiOlaiaac6caca GGUaGaaiilaiaa=fhadaWgaaqaaKqzadGaaGynaaqcfayabaGaaiyx aaaa@48C8@ in Table 1, where dominant elements again are in bold type. In particular, this example shows { q 1 ,..., q 5 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qadaGadaqaaGqadiaa=fhajyaGdaWgaaqcfayaaKqzadGa aGymaaqcfayabaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWFXb qcga4aaSbaaKqbagaajugWaiaaiwdaaKqbagqaaaGaay5Eaiaaw2ha aaaa@46F3@ to be separately informative per se, as each corresponds essentially to deviations in ( μ i μ i0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaaqaaaaaaaaaWdbiabeY7aTLGbaoaaBaaajuaGbaqcLbmacaWG PbaajuaGbeaacqGHsislcqaH8oqBdaWgaaqaaKqzadGaamyAaiaaic daaKqbagqaaaWdaiaawIcacaGLPaaaaaa@454C@ for observations { Y 1 , Y 3 , Y 5 , Y 2 , Y 4 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aai WaaeaaqaaaaaaaaaWdbiaadMfadaWgaaqaaKqzadGaaGymaaqcfaya baGaaiilaiaadMfadaWgaaqaaKqzadGaaG4maaqcfayabaGaaiilai aadMfadaWgaaqaaKqzadGaaGynaaqcfayabaGaaiilaiaadMfadaWg aaqaaKqzadGaaGOmaaqcfayabaGaaiilaiaadMfadaWgaaqaaKqzad GaaGinaaqcfayabaaapaGaay5Eaiaaw2haaaaa@4E46@ , respectively, since values other than those in bold type are negligible.

 Eigenvalues

  κ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacciqcLb sacqWF6oWAkmaaBaaaleaajugWaiaaigdaaSqabaaaaa@3BB2@

520.4304

κ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq OUdSMcdaWgaaWcbaqcLbmacaaIYaaaleqaaaaa@3BAB@

11.9529

κ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq OUdSMcdaWgaaWcbaqcLbmacaaIZaaaleqaaaaa@3BAC@

1.1404

κ 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq OUdSMcdaWgaaWcbaqcLbmacaaI0aaaleqaaaaa@3BAD@

1.0843

κ 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq OUdSMcdaWgaaWcbaqcLbmacaaI1aaaleqaaaaa@3BAE@

0.1319

 Eigenvectors

q 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa Oaa8xCaOWaaSbaaSqaaKqzadGaaGymaaWcbeaaaaa@3AF6@

q 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa Oaa8xCaOWaaSbaaSqaaKqzadGaaGOmaaWcbeaaaaa@3AF7@

q 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqiaie WajuaGcaWFXbGcdaWgaaWcbaqcLbmacaaIZaaaleqaaaaa@3B7F@

q 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa Oaa8xCaOWaaSbaaSqaaKqzadGaaGinaaWcbeaaaaa@3AF9@

q 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa Oaa8xCaOWaaSbaaSqaaKqzadGaaGynaaWcbeaaaaa@3AFA@

    0.99893

−0.00607

    0.04535

−0.00396

−0.00505

−0.04553

−0.00445

    0.99863

−0.01681

−0.01907

    0.00490

    0.14300

    0.01937

−0.02275

    0.98926

    0.00543

      0.98712

    0.00322

    0.07515

  −0.14105

    0.00291

−0.07126

    0.01722

     0.99676

    0.03287

 Power at α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaHXoqyaaa@398D@  =0.05 and n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGUbaaaa@38E1@  =30

 1.0000

1.0000

0.9914

0.9882

0.2367

 Power at α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaHXoqyaaa@398D@ =0.05 and n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGUbaaaa@38E1@  =8

 1.0000

1.0000

0.1848

0.1779

0.0645

 ARLs at α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaHXoqyaaa@398D@ =0.05 and n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGUbaaaa@38E1@  =8

 1.0000

1.0000

5.41

5.62

15.50

 Table 1: Spectral values for S 1 =Q D κ Q' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFtbqcga4aaWbaaKqbagqabaqcLbmacqGHsisl caaIXaaaaiabg2da9Kqbakaa=ffacaWFebqcga4aaSbaaKqbagaaju gWaiabeQ7aRbqcfayabaGaa8xuaiaacEcaaaa@4637@  for the data of Quesenberry (2001) of order (30×5).

Taking { λ i  = n  κ i ; 1  i  5} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai 4EaiabeU7aSnaaBaaabaqcLbmacaWGPbaajuaGbeaaqaaaaaaaaaWd biaacckacqGH9aqpcaGGGcGaamOBaiaacckacqaH6oWAdaWgaaqaaK qzadGaamyAaaqcfayabaGaai4oaiaacckacaaIXaGaaiiOaiabgsMi JkaacckacaWGPbGaaiiOaiabgsMiJkaacckacaaI1aGaaiyFaaaa@54F4@ with n=30, α=0.05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGUbGaeyypa0JaaG4maiaaicdacaGGSaGaaeiiaiab eg7aHjabg2da9iaaicdacaGGUaGaaGimaiaaiwdaaaa@423B@ , and critical value C α  = 15.097 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4qaOWaaSbaaSqaaKqzadGaeqySdegaleqaaKqbacbaaaaaaaaapeGa aiiOaiabg2da9iaacckacaaIXaGaaGynaiaac6cacaaIWaGaaGyoai aaiEdaaaa@446A@ , powers against these directed alternatives are listed in Table 1. These show that deviations in the directions of { μ 1 , μ 2 , μ 3 , μ 5 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai 4EaiabeY7aTnaaBaaajuaibaqcLbmacaaIXaaajuaGbeaacaGGSaGa eqiVd02aaSbaaeaajugWaiaaikdaaKqbagqaaiaacYcacqaH8oqBda WgaaqaaKqzadGaaG4maaqcfayabaGaaiilaiabeY7aTnaaBaaabaqc LbmacaaI1aaajuaGbeaacaGG9baaaa@4DAB@ essentially would be discerned with power at least 0.9882, whereas power in the direction of μ 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iVd02aaSbaaeaajugWaiaaisdaaKqbagqaaaaa@3C7F@ would be diminished to 0.2367. Note, however, that these values are inflated by the value n=30 in Phase I. Samples much smaller in size ordinarily would be taken in Phase II, say n=8 in this example. Then the powers corresponding to { λ i = 8  k i ; 1  i  5} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai 4EaiabeU7aSnaaBaaabaqcLbmacaWGPbaajuaGbeaacqGH9aqpqaaa aaaaaaWdbiaacckapaGaaGioa8qacaGGGcGaam4AamaaBaaabaqcLb macaWGPbaajuaGbeaacaGG7aGaaiiOaiaaigdacaGGGcGaeyizImQa aiiOaiaadMgacaGGGcGaeyizImQaaiiOaiaaiwdacaGG9baaaa@52FC@  at α=0.05 are given subsequently in Table 1. In short, with ARL=1/ψ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGbbGaamOuaiaadYeacqGH9aqpcaaIXaGaai4laiab eI8a59aadaqadaqaa8qacqaH7oaBa8aacaGLOaGaayzkaaaaaa@4209@ as in the final row of Table 1 with samples of size n=8, these charts would detect changes in μ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaH8oqBdaWgaaqcfasaaiabggdaXaqcfayabaaaaa@3BCF@ and μ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaH8oqBdaWgaaqaaKqzadGaaG4maaqcfayabaaaaa@3C9E@ immediately on average, but less responsive otherwise with ARLs of ( 5.41, 5.62, 15.50 ) for ( μ 5 ,  μ 2 ,  μ 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGbbGaamOuaiaadYeacaWGZbGaaeiiaiaad+gacaWG MbGaaeiia8aadaqadaqaa8qacaaI1aGaaiOlaiaaisdacaaIXaGaai ilaiaacckacaaI1aGaaiOlaiaaiAdacaaIYaGaaiilaiaacckacaaI XaGaaGynaiaac6cacaaI1aGaaGimaaWdaiaawIcacaGLPaaapeGaae iiaiaadAgacaWGVbGaamOCaiaabccapaWaaeWaaeaapeGaeqiVd02a aSbaaeaajugWaiaaiwdaaKqbagqaaiaacYcacaGGGcGaeqiVd0wcga 4aaSbaaKqbagaajugWaiaaikdaaKqbagqaaiaacYcacaGGGcGaeqiV d0wcga4aaSbaaKqbagaajugWaiaaisdaaKqbagqaaaWdaiaawIcaca GLPaaaaaa@660B@ , respectively.

Remark 5. This example goes beyond conventional uses of T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam ivamaaCaaabeqaaKqzadGaaGOmaaaaaaa@3AB3@ charts, in demonstrating that the capacity of a given chart to detect alternatives may differ widely across alternatives in 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeS yhHe6aaWbaaeqabaqcLbmacaaI1aaaaaaa@3B4D@ of compelling practical interest. In short, each of five ARLs pertains here to an informative one–dimensional alternative.

Second–Order Designs

Second–order models of type

{ Y i =   β 0  +  β 1   X 1i +  β 2 X 2i + β 11 X 1i 2 + β 22 X 2i 2 + β 12 X 1i X 2i +  ε i;  1  in} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai 4EaiaacMfadaWgaaqaaKqzadGaamyAaaqcfayabaGaeyypa0deaaaa aaaaa8qacaGGGcGaaiiOaiabek7aInaaBaaabaqcLbmacaaIWaaaju aGbeaacaGGGcGaey4kaSIaaiiOaiabek7aInaaBaaabaqcLbmacaaI XaaajuaGbeaacaGGGcGaaiiwamaaBaaabaqcLbmacaaIXaGaamyAaa qcfayabaGaey4kaSIaaiiOaiabek7aInaaBaaabaqcLbmacaaIYaaa juaGbeaacaGGybWaaSbaaeaajugWaiaaikdacaWGPbaajuaGbeaacq GHRaWkcqaHYoGydaWgaaqaaKqzadGaaGymaiaaigdaaKqbagqaaiaa cIfadaqhaaqaaKqzadGaaGymaiaadMgaaKqbagaajugWaiaaikdaaa qcfaOaey4kaSIaeqOSdi2aaSbaaeaajugWaiaaikdacaaIYaaajuaG beaacaGGybWaa0baaeaajugWaiaaikdacaWGPbaajuaGbaqcLbmaca aIYaaaaKqbakabgUcaRiabek7aInaaBaaabaqcLbmacaaIXaGaaGOm aaqcfayabaGaaiiwamaaBaaabaqcLbmacaaIXaGaamyAaaqcfayaba GaaiiwamaaBaaabaqcLbmacaaIYaGaamyAaaqcfayabaGaey4kaSIa aiiOaiabew7aLnaaBaaabaqcLbmacaWGPbqcfaOaai4oaaqabaGaai iOaiaaigdacaGGGcGaeyizImQaaiiOaiaacMgacqGHKjYOcaGGUbGa aiyFaaaa@95B0@ (8)

are considered having zero mean, uncorrelated errors with variance σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq 4Wdm3aaWbaaeqabaqcLbmacaaIYaaaaaaa@3BFD@ . In a typical setting the yield ( Y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam ywamaaBaaabaqcLbmacaWGPbaajuaGbeaaaaa@3BD7@ ) of a chemical process is examined at specified reaction time ( X 1i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai ikaiaadIfadaWgaaqaaKqzadGaaGymaiaadMgaaKqbagqaaiaacMca aaa@3DEA@ and temperature ( X 2i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai ikaiaadIfadaWgaaqaaKqzadGaaGOmaiaadMgaaKqbagqaaiaacMca aaa@3DEB@ . Small designs of historical consequence are the Central Composite (CCD) designs of Box et al. [9], having design points as listed in Table 2.

X' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFybGaa83jaaaa@397B@

-1.00

-1.00

-1.00

1.00

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqGHsislcqaHXoqyaaa@3A7A@

0.00

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaHXoqyaaa@398D@

0.00

0.00

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqGHsislcqaHXoqyaaa@3A7A@

0.00

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaHXoqyaaa@398D@

1.00

-1.00

1.00

1.00

0.00

0.00

Table 2:  Regressor vectors for the CCD design X' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFybGaa83jaaaa@397B@  of order (2×9), where α= 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaHXoqyieWacaWF9aWaaOaaaeaacaaIYaaabeaaaaa@3B23@ .

Proceeding as in Corollary 1(ii), we seek spectral values for the Fisher Information Matrix X X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa Oab8hwayaafaGaa8hwaaaa@3998@ , specifically, the eigenvalues and eigenvectors as listed in Table 3, with dominant terms again in bold type. Powers at these directed alternatives follow on taking μ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaH8oqBdaWgaaqaaKqzadGaaG4maaqcfayabaaaaa@3C9E@ as surrogates in the noncentrality parameters for F =  ( β β o ) X X ( β    β o )/ k S 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OraabaaaaaaaaapeGaaiiOaiabg2da9iaacckacaGGGcGaaiikaiqb ek7aIzaataGaeyOeI0IaeqOSdi2aaSbaaeaajugWaiaad+gaaKqbag qaaiqacMcagaqbaGqadiqa=Hfagaqbaiaa=HfacaGGGcGaaiikaiqb ek7aIzaataGaaiiOaiabgkHiTiaacckacqaHYoGydaWgaaqaaKqzad Gaam4BaaqcfayabaGaaiykaiaac+cacaGGGcGaam4Aaiaadofadaah aaqabeaajugWaiaaikdaaaaaaa@595E@ with k=6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGRbGaeyypa0JaaGOnaaaa@3B04@ and S 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGtbWaaWbaaeqabaqcLbmacaaIYaaaaaaa@3B32@ as the residual mean square. Owing to only two degrees of freedom for error, computations replaced S i 2  by  σ 2  = 1.0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGtbWaa0baaeaajugWaiaadMgaaKqbagaajugWaiaa ikdaaaqcfaOaaiiOaiaadkgacaWG5bGaaiiOaiabeo8aZnaaCaaabe qaaKqzadGaaGOmaaaajuaGcaGGGcGaeyypa0JaaiiOaiaaigdacaGG UaGaaGimaiaacYcaaaa@4D19@ then powers were determined from scaled noncentral X 2 (6, κ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwamaaCaaabeqaaKqzadGaaGOmaaaajuaGcaGGOaGaaGOnaiaacYca cqaH6oWAdaWgaaqaaKqzadGaamyAaaqcfayabaGaaiykaaaa@42EB@ distributions with noncentrality parameters as listed in Table 3.

 Eigenvalues

  κ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq OUdSMcdaWgaaWcbaqcLbmacaaIXaaaleqaaaaa@3BAA@

24.3427

κ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq OUdSMcdaWgaaWcbaqcLbmacaaIYaaaleqaaaaa@3BAB@

8.0000

κ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq OUdSMcdaWgaaWcbaqcLbmacaaIZaaaleqaaaaa@3BAC@

8.0000

κ 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq OUdSMcdaWgaaWcbaqcLbmacaaI0aaaleqaaaaa@3BAD@

8.0000

κ 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq OUdSMcdaWgaaWcbaqcLbmacaaI1aaaleqaaaaa@3BAE@

4.0000

κ 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq OUdSMcdaWgaaWcbaqcLbmacaaI2aaaleqaaaaa@3BAF@

0.6573

 Eigenvectors

q 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCam aaBaaaleaajugWaiaaigdaaSqabaaaaa@3A56@

q 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCam aaBaaaleaajugWaiaaikdaaSqabaaaaa@3A57@

q 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCam aaBaaaleaajugWaiaaiodaaSqabaaaaa@3A58@

q 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCam aaBaaaleaajugWaiaaisdaaSqabaaaaa@3A59@

q 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWlbca WGXbWaaSbaaSqaaKqzadGaaGynaaWcbeaaaaa@3B1D@

q 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCam aaBaaaleaajugWaiaaiAdaaSqabaaaaa@3A5B@

  0.59349

0.00000

0.00000

0.56911

0.56911

0.00000

0.00000

0.00000

0.00000

0.70711

-0.70711

0.00000

0.00000

1.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

-1.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

1.00000

0.80484

0.00000

0.00000

-0.41966

-0.41966

0.00000

 Power at α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaHXoqyaaa@398D@ =0.05

 0.9765

0.5307

0.5307

0.5307

0.2698

0.0775

Table 3: Spectral values for the Fisher Information Matrix X'X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFybGaa83jaiaa=Hfaaaa@3A54@  for the CCD design.

Arranged in decreasing order of their powers, these are q 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLb saqaaaaaaaaaWdbiaa=fhajuaGdaWgaaqcfasaaKqzadGaaGymaaqc fayabaaaaa@3C41@ with power 0.9765; { q 2 , q 3 , q 4 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca GG7bacbmGaa8xCaKqbaoaaBaaajuaibaqcLbmacaaIYaaajuaGbeaa jugibiaacYcacaWFXbqcfa4aaSbaaKqbGeaajugWaiaaiodaaKqbag qaaKqzGeGaaiilaiaa=fhajuaGdaWgaaqcfasaaKqzadGaaGinaaqc fayabaqcLbsacaGG9baaaa@4A20@ each with power 0.5307; and q 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLb saqaaaaaaaaaWdbiaa=fhajuaGdaWgaaqcfasaaKqzadGaaGynaaqc fayabaaaaa@3C45@ and q 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLb saqaaaaaaaaaWdbiaa=fhajuaGdaWgaaqcfasaaKqzadGaaGOnaaqc fayabaaaaa@3C46@ as alternatives with powers 0.2698 and 0.0775. Here elements of Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLb saqaaaaaaaaaWdbiaa=ffaaaa@38CD@ are separately informative: q 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLb saqaaaaaaaaaWdbiaa=fhajuaGdaWgaaqcfasaaKqzadGaaGOmaaqc fayabaaaaa@3C42@ for discrepancies between ( β 11 , β 22 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaTaju aGcaGGOaGaeqOSdi2aaSbaaeaajugWaiaaigdacaaIXaaajuaGbeaa caGGSaGaeqOSdi2aaSbaaeaajugWaiaaikdacaaIYaaajuaGbeaaca GGPaaaaa@44F6@ and their hypothetical values; and ( q 3 , q 4 , q 5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaTaju gibiaacIcaieWacaWFXbqcfa4aaSbaaKGaGeaajugWaiaaiodaaWqa baqcLbsacaGGSaGaa8xCaKqbaoaaBaaajiaibaqcLbmacaaI0aaame qaaKqzGeGaaiilaiaa=fhajuaGdaWgaaqcfasaaKqzadGaaGynaaqc fayabaqcLbsacaGGPaaaaa@4947@ for discrepancies between ( β 1 ,  β 2 , β 12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaajugibabaaaaaaaaapeGaeqOSdiwcfa4aaSbaaKqbGeaajugW aiaaigdaaKqbagqaaKqzGeGaaiilaiaabccacqaHYoGyjuaGdaWgaa qcfasaaKqzadGaaGOmaaqcfayabaqcLbsacaGGSaGaeqOSdiwcfa4a aSbaaKqbGeaajugWaiaaigdacaaIYaaajuaGbeaaa8aacaGLOaGaay zkaaaaaa@4CD2@ and their hypothetical values, respectively. To continue, observe that the eigenvalue κ 2 =8.0000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaTaju gibiabeQ7aRLqbaoaaBaaajuaibiqaaunajugWaiaaikdaaKqbagqa aKqzGeGaeyypa0JaaGioaiaac6cacaaIWaGaaGimaiaaicdacaaIWa aaaa@44D4@ is repeated three times. On applying Theorem 1(iv) in the context of Corollary 1(ii), we see that all standardized elements in S p ( q 2 , q 3 , q 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLb saqaaaaaaaaaWdbiaa=nfajuaGdaWgaaqcfasaaKqzadGaamiCaaqc fayabaWdamaabmaabaacbmqcLbsapeGaa4xCaKqbaoaaBaaajuaiba qcLbmacaaIYaaajuaGbeaajugibiaacYcacaGFXbqcfa4aaSbaaKqb GeaajugWaiaaiodaaKqbagqaaKqzGeGaaiilaiaa+fhajuaGdaWgaa qcfasaaKqzadGaaGinaaqcfayabaaapaGaayjkaiaawMcaaaaa@4E01@ have power 0.5307. These include, in addition to q 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLb saqaaaaaaaaaWdbiaa=fhajuaGdaWgaaqcfasaaKqzadGaaG4maaqc fayabaaaaa@3C43@ for β 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqa aaaaaaaaWdbiabek7aILqbaoaaBaaajuaibaqcLbmacaaIXaaajuaG beaaaaa@3CE4@ and q 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLb saqaaaaaaaaaWdbiaa=fhajuaGdaWgaaqcfasaaKqzadGaaGinaaqc fayabaaaaa@3C44@ for β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqa aaaaaaaaWdbiabek7aILqbaoaaBaaajuaibaqcLbmacaaIYaaajuaG beaaaaa@3CE5@ , the standardized sums

θ 1  =  ( q 3 + q 4 )/ 2  = [0,  1, 1, 0,0,0 ] / 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaTaie Wajugibiaa=H7ajuaGdaWgaaqcfasaaKqzadGaaGymaaqcfayabaqc LbsaqaaaaaaaaaWdbiaacckacqGH9aqpcaGGGcGaaiiOaiaacIcaca WFXbqcfa4aaSbaaKqbGeaajugWaiaaiodaaKqbagqaaKqzGeGaey4k aSIaa8xCaKqbaoaaBaaajuaibaqcLbmacaaI0aaajuaGbeaajugibi aacMcacaGGVaqcfa4aaOaaaeaajugibiaaikdacaGGGcaajuaGbeaa jugibiabg2da9iaacckacaGGBbGaaGimaiaacYcacaGGGcGaaiiOai aaigdacaGGSaGaaiiOaiabgkHiTiaaigdacaGGSaGaaiiOaiaaicda caGGSaGaaGimaiaacYcacaaIWaGabiyxayaafaGaai4laKqbaoaaka aabaqcLbsacaaIYaaajuaGbeaaaaa@67F3@ (9)

θ 2  =  ( q 2 +  q 3  +  q 4 )/ 3  = [0,  1, 1, 0,7071, 0.7071, 0 ] / 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaTaie Wajugibiaa=H7akmaaBaaaleaajugWaiaaikdaaSqabaqcLbsaqaaa aaaaaaWdbiaacckacqGH9aqpcaGGGcGaaiiOaiaacIcacaWFXbqcfa 4aaSbaaKqbGeaajugWaiaaikdaaKqbagqaaKqzGeGaey4kaSIaaiiO aiaa=fhajuaGdaWgaaqcfasaaKqzadGaaG4maaqcfayabaqcLbsaca GGGcGaey4kaSIaaiiOaiaa=fhajuaGdaWgaaqcfasaaKqzadGaaGin aaqcfayabaqcLbsacaGGPaGaai4laKqbaoaakaaabaqcLbsacaaIZa GaaiiOaaqcfayabaqcLbsacqGH9aqpcaGGGcGaai4waiaaicdacaGG SaGaaiiOaiaacckacaaIXaGaaiilaiaacckacqGHsislcaaIXaGaai ilaiaacckacaaIWaGaaiilaiaaiEdacaaIWaGaaG4naiaaigdacaGG SaGaaiiOaiabgkHiTiaaicdacaGGUaGaaG4naiaaicdacaaI3aGaaG ymaiaacYcacaGGGcGaaGimaiqac2fagaqbaiaac+cajuaGdaGcaaqa aKqzGeGaaG4maaqcfayabaaaaa@7A75@ (10)

for example, with θ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUde3cdaWgaaqcfayaaKqzadGaaGymaaqcfayabaaaaa@3D15@ for the discrepancy between [ ( β 1   β 10 ),  ( β 2   β 20 )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca GGBbaeaaaaaaaaa8qacaGGGcGaaiikaiabek7aILqbaoaaBaaajuai baqcLbmacaaIXaaajuaGbeaajugibiabgkHiTiaacckacqaHYoGyju aGdaWgaaqcfasaaKqzadGaaGymaiaaicdaaKqbagqaaKqzGeGaaiyk aiaacYcacaGGGcGaaiiOaiaacIcacqaHYoGyjuaGdaWgaaqcfasaaK qzadGaaGOmaaqcfayabaqcLbsacqGHsislcaGGGcGaeqOSdiwcfa4a aSbaaKqbGeaajugWaiaaikdacaaIWaaajuaGbeaajugibiaacMcaca GGDbaaaa@5C85@ and [ 1, 1] / 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca GGBbaeaaaaaaaaa8qacaGGGcGaaGymaiaacYcacaGGGcGaeyOeI0Ia aGymaiaac2facaGGGcGaai4laKqbaoaakaaabaqcLbsacaaIYaaaju aGbeaaaaa@43B8@ .

In summary, the directed second–order alternatives treated here are innovations not found in classical linear inference. Instead, these are enabled by Theorem 1 and Corollary 1(ii). Again the elements of Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju gibabaaaaaaaaapeGaa8xuaaaa@3B49@ , especially { q 2 ,....,   q 5 }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca GG7bacbmGaa8xCaKqbaoaaBaaajuaibaqcLbmacaaIYaaajuaGbeaa jugibiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiilaabaaaaaaa aapeGaaiiOaiaacckacaWFXbqcfa4aaSbaaKqbGeaajugWaiaaiwda aKqbagqaaKqzGeGaaiyFaiaacYcaaaa@4B2A@ are separately informative about coefficients of the model (4.2). Their simple and revealing structure may be attributed to the symmetry and balance of CCD designs.

Design Reversals

Begin with { Y = [ 1 n,  X][ β 0  , β ] +ε} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca GG7baeaaaaaaaaa8qacaGGGcacbmGaa8xwaiaacckacqGH9aqpcaGG GcGaai4waGqabiaa+fdajuaGdaWgaaqcKvaq=haajugWaiaad6gaca GGSaaajuaGbeaajugibiaacckacaWFybGaaiyxaiaacUfacqaHYoGy juaGdaWgaaqcKvaq=haajugWaiaaicdacaGGGcaajuaGbeaaieGaju gibiaa9XcaceWFYoGbauaaceGGDbGbauaacqGHRaWkcqaH1oqzcaGG 9baaaa@58E4@ with X 0 =[ 1 n ,X ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFybWaaSbaaKqbGeaacaaIWaaabeaajuaGcqGH 9aqppaWaamWaaeaaieqapeGaa4xmamaaBaaajuaibaGaamOBaaqaba qcfaOaaiilaiaa=Hfaa8aacaGLBbGaayzxaaaaaa@41A4@ and X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju gibabaaaaaaaaapeGaa8hwaaaa@3B50@ in centered form as in Section 3.2, with β  =  [ β 1 , β 2 , β 3 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLb saqaaaaaaaaaWdbiqa=j7agaqbaiaacckacqGH9aqpcaGGGcGaaiiO aiaacUfacqaHYoGyjuaGdaWgaaqcKvaq=hGabaawbKqzadGaaGymaa qcfayabaqcLbsacaGGSaGaeqOSdiwcfa4aaSbaaKazfa0=baqcLbma caaIYaaajuaGbeaajugibiaacYcacqaHYoGyjuaGdaWgaaqcKvaq=h aajugWaiaaiodaaKqbagqaaKqzGeGaaiyxaiaacYcaaaa@5753@ having the design X =  PDiag ( δ 1 , δ 2 , δ 3 )  Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLb sacaWFybaeaaaaaaaaa8qacaGGGcGaeyypa0JaaiiOaiaacckacaWF qbacbaGaa4hraiaa+LgacaGFHbGaa43zaiaacckacaGGOaGaeqiTdq wcfa4aaSbaaKqbGeaajugWaiaaigdaaKqbagqaaKqzGeGaaiilaiab es7aKLqbaoaaBaaajuaibaqcLbmacaaIYaaajuaGbeaajugibiaacY cacqaH0oazjuaGdaWgaaqcfasaceaaKjqcLbmacaaIZaaajuaGbeaa jugibiaacMcacaGGGcGab8xuayaafaaaaa@58D8@ as listed in Table 4. Construct X 1  =  PDiag ( δ 3 , δ 2 , δ 1 ) Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLb sacaWFybqcfa4aaSbaaKqbGeaajugWaiaaigdaaKqbagqaaKqzGeae aaaaaaaaa8qacaGGGcGaeyypa0JaaiiOaiaacckacaWFqbacbaGaa4 hraiaa+LgacaGFHbGaa43zaiaacckacaGGOaGaeqiTdqwcfa4aaSba aKqbGeaajugWaiaaiodaaKqbagqaaKqzGeGaaiilaiabes7aKLqbao aaBaaajuaqbaqcLboacaaIYaaajuaGbeaajugibiaacYcacqaH0oaz juaGdaWgaaqcfasaaKqzadGaaGymaaqcfayabaqcLbsacaGGPaGab8 xuayaafaaaaa@5B6E@ on permuting singular values, but retaining the left and right singular vectors.

Design X'=[ PDiag( δ 1 , δ 2 , δ 3 )Q' ]' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGybGaai4jaiabg2da98aadaWadaqaaGqad8qacaWF qbacbaGaa4hraiaa+LgacaGFHbGaa43za8aadaqadaqaa8qacqaH0o azjyaGdaWgaaqcfayaaKqzadGaaGymaaqcfayabaGaaiilaiabes7a KnaaBaaabaqcLbmacaaIYaaajuaGbeaacaGGSaGaeqiTdq2aaSbaae aajugWaiaaiodaaKqbagqaaaWdaiaawIcacaGLPaaapeGaa8xuaiaa cEcaa8aacaGLBbGaayzxaaWdbiaacEcaaaa@542D@

X' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFybGaa83jaaaa@397B@

                -1.0000  1.0000   -1.4142  1.4142   -1.0000  1.0000   0.0000   0.0000

                0.0000   0.0000   1.0000   1.0000   0.0000   0.0000   -1.0000  -1.0000

                -0.8000  0.6000   -0.8000  2.0000   -0.8000  0.6000   -0.8000  0.0000

Design X 1 ' =[ PDiag( δ 3 , δ 2 , δ 1 )Q' ]' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGybqcga4aa0baaKqbagaajugWaiaaigdaaKqbagaa jugWaiaacEcaaaqcfaOaeyypa0ZdamaadmaabaacbmWdbiaa=bfaie aacaGFebGaa4xAaiaa+fgacaGFNbWdamaabmaabaWdbiabes7aKLGb aoaaBaaajuaGbaqcLbmacaaIZaaajuaGbeaacaGGSaGaeqiTdq2aaS baaeaajugWaiaaikdaaKqbagqaaiaacYcacqaH0oazdaWgaaqaaKqz adGaaGymaaqcfayabaaapaGaayjkaiaawMcaa8qacaWFrbGaai4jaa WdaiaawUfacaGLDbaapeGaai4jaaaa@599F@

X 1 ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFybqcga4aa0baaKqbagaajugWaiaaigdaaKqb agaajugWaiaacEcaaaaaaa@3E62@

                0.4279   -1.0391  0.2809   0.7126   0.4279   -1.0391  -1.1080  1.3370

              -0.0193    -0.3197  -1.3211  -0.3556  -0.0193  -0.3197  0.4993   1.8556

                -0.1811  0.8999   0.2484   -1.1704  -0.1811  0.8999   1.1798   -1.6954

Left–Singular Vectors P' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFqbGaai4jaaaa@3976@

P' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFqbGaa83jaaaa@3973@

                -0.3308  0.2946  -0.3736  0.6594   -0.3308  0.2946   -0.1792  -0.0342

                0.0960   -0.1138  0.6024  0.3785   0.0960  -0.1138  -0.5082  -0.4372

                0.0996   -0.3618  -0.1302  0.2927   0.0996  -0.3618  -0.3435  0.7055

Right–Singular Vectors [ θ 1 , θ 2 , θ 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qadaWadaqaaGqadiaa=H7ajyaGdaWgaaqcfayaaKqzadGa aGymaaqcfayabaGaaiilaiaa=H7ajyaGdaWgaaqcfayaaKqzadGaaG OmaaqcfayabaGaaiilaiaa=H7ajyaGdaWgaaqcfayaaKqzadGaaG4m aaqcfayabaaacaGLBbGaayzxaaaaaa@4A22@

Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFrbaaaa@38CC@

                                                -0.7099  -0.1307  -0.6921                                 

                                                0.3508   -0.9177  -0.1865                                 

                                                0.6108   0.3752   -0.6973                                 

Detection Probabilities: Design X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGybaaaa@38CB@

 

                                                0.4947   0.1828   0.0577                                  

Table 4: Design matrix X=P D δ Q' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFybGaeyypa0Jaa8huaiaa=readaWgaaqaaKqz adGaeqiTdqgajuaGbeaacaWFrbGaai4jaaaa@406E@  and the modified X 1 =[ PDiag( δ 3 , δ 2 , δ 1 )Q' ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFybqcga4aaSbaaKqbagaajugWaiaaigdaaKqb agqaaiabg2da98aadaWadaqaa8qacaWFqbacbaGaa4hraiaa+Lgaca GFHbGaa43za8aadaqadaqaa8qacqaH0oazjyaGdaWgaaqcfayaaKqz adGaaG4maaqcfayabaGaaiilaiabes7aKnaaBaaabaqcLbmacaaIYa aajuaGbeaacaGGSaGaeqiTdq2aaSbaaeaajugWaiaaigdaaKqbagqa aaWdaiaawIcacaGLPaaapeGaa8xuaiaacEcaa8aacaGLBbGaayzxaa aaaa@5678@  the left ( P' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFqbGaai4jaaaa@3976@ ) and right ( Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFrbaaaa@38CC@ ) singular vectors; and the singular values δ'=[  3.8198,  2.0992,  0.5318  ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaH0oazcaGGNaGaeyypa0ZdamaadmaabaWdbiaaccka caaIZaGaaiOlaiaaiIdacaaIXaGaaGyoaiaaiIdacaGGSaGaaiiOai aacckacaaIYaGaaiOlaiaaicdacaaI5aGaaGyoaiaaikdacaGGSaGa aiiOaiaacckacaaIWaGaaiOlaiaaiwdacaaIZaGaaGymaiaaiIdaca GGGcaapaGaay5waiaaw2faa8qacaGGUaaaaa@539E@

To continue, take the right–singular vectors, now Q = [ θ 1 ,  θ 2 ,  θ 3 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW7bie Wajugibiaa=ffaqaaaaaaaaaWdbiaacckacqGH9aqpcaGGGcGaai4w aGGadiab+H7aXLqbaoaaBaaajuaibaqcLbmacaaIXaaajuaGbeaaju gibiaacYcacaGGGcGae4hUdexcfa4aaSbaaKqbGeGabaaocKqzadGa aGOmaaqcfayabaqcLbsacaGGSaGaaiiOaiab+H7aXLqbaoaaBaaaju aibaqcLbmacaaIZaaajuaGbeaajugibiaac2facaGGSaaaaa@545F@ as directed alternatives to (β   β o )  = [( β 1 β 10 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW7bju gibiaacIcaiiWacqWFYoGyqaaaaaaaaaWdbiaacckacqGHsislcaGG GcGae8NSdiwcfa4aaSbaaKqbGeaajugWaiaad+gaaKqbagqaaKqzGe GabiykayaafaGaaiiOaiabg2da9iaacckacaGGBbGaaiikaiabek7a ILqbaoaaBaaajuaibaqcLbmacaaIXaaajuaGbeaajugibiabgkHiTi abek7aILqbaoaaBaaajuaibiqaaOxajugWaiaaigdacaaIWaaajuaG beaajugibiaacMcacaGGSaaaaa@5873@ ( β 2    β 20 ), ( β 3 β 30 )], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW7bju gibiaacIcacqaHYoGyjuaGdaWgaaqcfasaaKqzadGaaGOmaaqcfaya baqcLbsaqaaaaaaaaaWdbiaacckacqGHsislcaGGGcGaeqOSdiwcfa 4aaSbaaKqbGeaajugWaiaaikdacaaIWaaajuaGbeaajugibiaacMca caGGSaGaaiiOaiaacIcacqaHYoGyjuaGdaWgaaqcfasaaKqzadGaaG 4maaqcfayabaqcLbsacqGHsislcqaHYoGyjuaGdaWgaaqcfasaaKqz adGaaG4maiaaicdaaKqbagqaaKqzGeGaaiykaiaac2facaGGSaaaaa@5AD8@ together with k  = [14.5909, 4. 4066,  0.2828] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW7bie Wajugibiqa=TgagaqbaabaaaaaaaaapeGaaiiOaiabg2da9iaaccka caGGBbGaaGymaiaaisdacaGGUaGaaGynaiaaiMdacaaIWaGaaGyoai aacYcacaGGGcGaaGinaiaac6cacaGGGcGaaGinaiaaicdacaaI2aGa aGOnaiaacYcacaGGGcGaaiiOaiaaicdacaGGUaGaaGOmaiaaiIdaca aIYaGaaGioaiaac2faaaa@5311@ as {  κ i  =  δ i 2 ; 1  i  3} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW7bju gibiaacUhaqaaaaaaaaaWdbiaacckajuaGpaGaeqOUdS2dbmaaBaaa juaibaqcLbmacaWGPbaajuaGbeaajugibiaacckacqGH9aqpcaGGGc GaeqiTdqwcfa4aa0baaKqbGeaajugWaiaadMgaaKqbGeaajugWaiaa ikdaaaqcLbsacaGG7aGaaiiOaiaaigdacaGGGcGaeyizImQaaiiOai aadMgacaGGGcGaeyizImQaaiiOaiaaiodacaGG9baaaa@58F7@ . Here the level 0.05 critical value is 6.5914; then powers are determined in turn from F ( 3, 4,  κ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW7bju gibiaadAeaqaaaaaaaaaWdbiaacckacaGGOaGaeyinIWLaaiiOaiaa iodacaGGSaGaaiiOaiaaisdacaGGSaGaaiiOaiabeQ7aRLqbaoaaBa aajuaibaqcLbmacaWGPbaajuaGbeaajugibiaacMcaaaa@49AA@ together with the power functions { ψ (λ) = P(F > 6.5914|  κ i ); 1  i  3} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW7bju gibiaacUhaqaaaaaaaaaWdbiaacckacqaHipqEcaGGGcGaaiikaGqa aiaa=T7acaGGPaGaaiiOaiabg2da9iaacckacaWGqbGaaiikaiaadA eacaGGGcGaeyOpa4JaaiiOaiaaiAdacaGGUaGaaGynaiaaiMdacaaI XaGaaGinaiaacYhacaGGGcqcfaOaeqOUdS2aaSbaaKazfa0=baqcLb macaWGPbaajuaGbeaajugibiaacMcacaGG7aGaaiiOaiaaigdacaGG GcGaeyizImQaaiiOaiaadMgacaGGGcGaeyizImQaaiiOaiaaiodaca GG9baaaa@6582@ having values listed in the final row of Table 4.

In particular, discovering alternatives (β β o ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW7bju gibiaacIcaiiWaqaG=a4pa+dWdbiab=j7aI9aacqGHsislpeGae8NS diwcfa4damaaBaaajuaibiqaaOybjugWaiaad+gaaKqbagqaaKqzGe Gabiykayaafaaaaa@4682@ in the direction θ 3  = [0.6921,  0.1865, 0.6973] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW7bii Wajugibaba+dG=a4papeGae8hUdexcfa4damaaBaaajuaibaqcLbma caaIZaaajuaGbeaajugibabaaaaaaaaapiGaaiiOaiabg2da9iaacc kacqGHsislcaGGBbGaaGimaiaac6cacaaI2aGaaGyoaiaaikdacaaI XaGaaiilaiaacckacaGGGcGaaGimaiaac6cacaaIXaGaaGioaiaaiA dacaaI1aGaaiilaiaacckacaaIWaGaaiOlaiaaiAdacaaI5aGaaG4n aiaaiodacaGGDbaaaa@59E4@ is seen to be unlikely, with power 0.0577. On the other hand, suppose instead that it is critical in context to discover alternatives in the negative orthant of 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW7bju gibiabl2riHMqbaoaaCaaabeqcfasaaKqzadGaaG4maaaaaaa@3D2E@ . Then the design X 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW7bie Wajugibiaa=HfajuaGdaWgaaqcfasaaKqzadGaaGymaaqcfayabaaa aa@3D2E@ serves to reverse these so that alternatives in the directions of {  θ 3 ,  θ 2 ,  θ 1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW7bju gibiaacUhaqaaaaaaaaaWdbiaacckaiiWaqaG=a4pa+dWdciab=H7a XLqba+qadaWgaaqcfasaaKqzadGaaG4maaqcfayabaqcLbsacaGGSa GaaiiOa8GacqWF4oqCjuaGpeWaaSbaaKGaGeaajugWaiaaikdaaWqa baqcLbsacaGGSaGaaiiOa8GacqWF4oqCjuaGpeWaaSbaaKqbGeaaju gWaiaaigdaaKqbagqaaKqzGeGaaiyFaaaa@5395@ are now detected with probabilities [ 0.4947, 0.1828, 0.0577 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aam WaaeaaqaaaaaaaaaWdbiaaicdacaGGUaGaaGinaiaaiMdacaaI0aGa aG4naiaacYcacaGGGcGaaGimaiaac6cacaaIXaGaaGioaiaaikdaca aI4aGaaiilaiaacckacaaIWaGaaiOlaiaaicdacaaI1aGaaG4naiaa iEdaa8aacaGLBbGaayzxaaaaaa@4AD1@ , respectively.

Further properties of the design X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju gibabaaaaaaaaapeGaa8hwaaaa@3B50@ and its reversal X 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaju gibabaaaaaaaaapeGaa8hwa0WaaSbaaKabGeaajugWaiaaigdaa4qa baaaaa@3DA2@ deserve mention. Observe that X 0 X 0  =Diag (n,  X X), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW7bie Wajugibiqa=HfagaqbaKqbaoaaBaaajuaibaqcLbmacaaIWaaajuaG beaajugibiaa=HfajuaGdaWgaaqcfasaaKqzadGaaGimaaqcfayaba qcLbsaqaaaaaaaaaWdbiaacckacqGH9aqpcaGGebGaaiyAaiaacgga caGGNbGaaiiOaiaacIcacaWGUbGaaiilaiaacckaceWFybGbauaaca WFybGaaiykaiaacYcaaaa@5004@ whereas X X =  Q Diag( κ 1 , κ 2 , κ 3 ) Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW7bie WajugibabaaaaaaaaapeGab8hwayaafaGaa8hwaiaacckacqGH9aqp caGGGcGaaiiOaiaa=ffacaGGGcacbaGaa4hraiaa+LgacaGFHbGaa4 3zaiaacIcacqaH6oWAjuaGdaWgaaqcfasaaKqzadGaaGymaaqcfaya baqcLbsacaGGSaGaeqOUdSwcfa4aaSbaaKqbGeaajugWaiaaikdaaK qbagqaaKqzGeGaaiilaiabeQ7aRLqbaoaaBaaajuaibaqcLbmacaaI ZaaajuaGbeaajugibiaacMcaceWFrbGbauaaaaa@591E@ and X 1   X 1  =  Q R  Diag( κ 1 , κ 2 , κ 3 ) Q R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW7bie WajugibabaaaaaaaaapeGab8hwayaafaqcfa4aaSbaaKqbGeaajugW aiaaigdaaKqbagqaaKqzGeGaaiiOaiaa=HfajuaGdaWgaaqcfasaaK qzadGaaGymaaqcfayabaqcLbsacaGGGcGaeyypa0JaaiiOaiaa=ffa juaGdaWgaaqcfasaaKqzadGaamOuaaqcfayabaqcLbsacaGGGcacba Gaa4hraiaa+LgacaGFHbGaa43zaiaacIcacqaH6oWAjuaGdaWgaaqc fasaceaabiqcLbmacaaIXaaajuaGbeaajugibiaacYcacqaH6oWAju aGdaWgaaqcfasaaKqzadGaaGOmaaqcfayabaqcLbsacaGGSaGaeqOU dSwcfa4aaSbaaKqbGeaajugWaiaaiodaaKqbagqaaKqzGeGaaiykai qa=ffagaqbaKqbaoaaBaaajuaibaqcLbmacaWGsbaajuaGbeaaaaa@6859@ , where now Q R  = [ q 3 , q 2 , q 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW7bie Wajugibiaa=ffajuaGdaWgaaqcfasaaKqzadGaamOuaaqcfayabaqc LbsaqaaaaaaaaaWdbiaacckacqGH9aqpcaGGGcGaai4waiaa=fhaju aGdaWgaaqcfasaaKqzadGaaG4maaqcfayabaqcLbsacaWFSaGaa8xC aKqbaoaaBaaajuaibaqcLbmacaaIYaaajuaGbeaajugibiaa=Xcaca WFXbqcfa4aaSbaaKqbGeaajugWaiaaigdaaKqbagqaaKqzGeGaaiyx aaaa@52DC@ following the convention that { κ 1    κ 2    κ 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW7bju gibiaacUhacqaH6oWAjuaGdaWgaaqcfasaaKqzadGaaGymaaqcfaya baqcLbsaqaaaaaaaaaWdbiaacckacqGHLjYScaGGGcGaeqOUdSwcfa 4aaSbaaKqbGeaajugWaiaaikdacaGGGcaajuaGbeaajugibiabgwMi ZkaacckacqaH6oWAjuaGdaWgaaqcfasaaKqzadGaaG4maaqcfayaba qcLbsacaGG9baaaa@53F3@ remain ordered. Clearly V( β |X)  =  σ 2 ( X X) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLb sacaWFwbGaaiikaGGadaba+dG=a4papeGaf4NSdiMbambapaGaaiiF aiaa=HfacaGGPaaeaaaaaaaaa8GacaGGGcGaaiiOaiabg2da9iaacc kacqaHdpWCjuaGdaahaaqabKqbGeaajugWaiaaikdaaaqcLbsacaGG OaGab8hwayaafaGaa8hwaiaacMcajuaGdaahaaqabKqbGeaajugWai abgkHiTiaaigdaaaaaaa@51A7@ and V( β | X 1 )  =  σ 2 ( X 1 X 1 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLb sacaWFwbGaaiikaGGadaba+dG=a4papeGaf4NSdiMbambapaGaaiiF aiaa=HfajuaGdaWgaaqcfasaaKqzadGaaGymaaqcfayabaqcLbsaca GGPaaeaaaaaaaaa8GacaGGGcGaaiiOaiabg2da9iaacckacqaHdpWC juaGdaahaaqabKqbGeaajugWaiaaikdaaaqcLbsacaGGOaGab8hway aafaqcfa4aaSbaaKqbGeaajugWaiaaigdaaKqbagqaaKqzGeGaa8hw aKqbaoaaBaaajuaibaqcLbmacaaIXaaajuaGbeaajugibiaacMcaju aGdaahaaqabKqbGeaajugWaiabgkHiTiaaigdaaaaaaa@5D50@ differ, where their diagonal elements are listed as variances in Table 5. However, their eigenvalues are identical by construction, as are their {A,D,E} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca GG7bGaamyqaiaacYcacaWGebGaaiilaiaadweacaGG9baaaa@3DE8@ efficiency indices as the trace, determinant, and largest eigenvalues of ( X 0 X 0 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca GGOaacbmGab8hwayaafaqcfa4aaSbaaKqbGeGabaGC=NqzadGaaGim aaqcfayabaqcLbsacaWFybqcfa4aaSbaaKqbGeaajugWaiaaicdaaK qbagqaaKqzGeGaaiykaKqbaoaaCaaabeqcfasaaKqzadGaeyOeI0Ia aGymaaaaaaa@483E@ under both designs X and  X 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLb sacaWFybaeaaaaaaaaa8qacaGGGcacbaGaa4xyaiaa+5gacaGFKbGa aiiOaiaa=HfajuaGdaWgaaqcfasaaKqzadGaaGymaaqcfayabaaaaa@4265@ .

 Design Characteristics

 Design

X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFybaaaa@38D3@

X 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFybqcga4aaSbaaKqbagaajugWaiaaigdaaKqb agqaaaaa@3C88@

X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFybaaaa@38D3@

X 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfa ieaaaaaaaaa8qacaWFybqcga4aaSbaaKqbagaajugWaiaaigdaaKqb agqaaaaa@3C88@

 Estimates

Variances

Eigenvalues of

β 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacuaHYoGygaWeaKGbaoaaBaaajuaGbaacbaqcLbmacaWF WaaajuaGbeaaaaa@3D5D@

β 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacuaHYoGygaWeaKGbaoaaBaaajuaGbaacbaqcLbmacaWF XaaajuaGbeaaaaa@3D5E@

β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacuaHYoGygaWeaKGbaoaaBaaajuaGbaacbaqcLbmacaWF YaaajuaGbeaaaaa@3D5F@

β 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacuaHYoGygaWeaKGbaoaaBaaajuaGbaacbaqcLbmacaWF ZaaajuaGbeaaaaa@3D60@

0.12500

1.38170

0.69002

1.76012

0.12500

1.83546

0.26120

1.73518

3.53636

0.22694

0.12500

0.06854

3.53636

0.22694

0.12500

0.06854

Diagnostic

A

D

E

Σ 0 , Ξ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacceqcfa ieaaaaaaaaa8qacqWFJoWujyaGdaWgaaqaaiaaicdaaeqaaiaacYca juaGcqqHEoawjyaGdaWgaaqaaiaaicdaaeqaaaaa@3F0D@

3.95684

0.00688

3.53636

Table 5: Variances of OLS solutions; eigenvalues of the dispersion matrix Γ{ Σ 0 , Ξ 0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacceqcfa ieaaaaaaaaa8qacqWFtoWrpaGaeyicI4Saai4EaGqab8qacaGFJoqc ga4aaSbaaKqbagaajugWaiaaicdaaKqbagqaaiaacYcacaGFEoWaaS baaeaajugWaiaaicdaaKqbagqaaiaac2haaaa@464A@ as ( X 0 ' X 0 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qadaqadaqaaGqadiaa=HfajyaGdaqhaaqcfayaaKqzadGa aGimaaqcfayaaKqzadGaai4jaaaajuaGcaWFybqcga4aaSbaaKqbag aajugWaiaaicdaaKqbagqaaaGaayjkaiaawMcaaKGbaoaaCaaajuaG beqaaKqzadGaeyOeI0IaaGymaaaaaaa@491A@  for the designs { X, X 1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qadaGadaqaaGqadiaa=HfacaGGSaGaa8hwaKGbaoaaBaaa juaGbaqcLbmacaaIXaaajuaGbeaaaiaawUhacaGL9baaaaa@4042@ ; and A,D, and E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacaWGbbGaaiilaiaadseacaGGSaGaaeiiaiaadggacaWG UbGaamizaiaacckacaWGfbaaaa@4030@ efficiencies for these designs.

Summary and Discussion

This study reexamines the concept of directional invariance, or isotropy, for distributions on k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq WIDesOjuaGdaahaaqabKqbGeaajugWaiaadUgaaaaaaa@3C9B@ having location–scale parameters (δ, Ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca GGOaaccmGae8hTdqMaaiilaabaaaaaaaaapeGaaiiOaGGabKqbacba +dG=a4papiGae4NNdGvcLbsapeGaaiykaaaa@42F9@ . Powers of tests for H 0 :  δ =  δ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfa Oaa8hsamaaBaaajuaibiqaaGkcjugWaiaaicdaaKqbagqaaKqzGeGa aiOoaabaaaaaaaaapeGaaiiOaiaacckaiiWaqaG=a4pa+dWdciab+r 7aK9qacaGGGcGaeyypa0JaaiiOa8GacqGF0oazjuaGpeWaaSbaaKqb GeaajugWaiaaicdaaKqbagqaaaaa@4D67@ against H 0 :  δ  δ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGibqcfa4aaSbaaKqbGeGabaaQiKqzadGaaGimaaqcfayabaqcLbsa caGG6aaeaaaaaaaaa8qacaGGGcGaaiiOaGGadaba+dG=a4papiGae8 hTdq2dbiabgcMi5kaacckapiGae8hTdqwcfa4dbmaaBaaajuaibaqc LbmacaaIWaaajuaGbeaaaaa@4D8E@ often depend on noncentrality parameters of type λ=  (δ  δ 0 ) Ξ 1 (δ   δ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacciqcLb sacqWF7oaBcqGH9aqpqaaaaaaaaaWdbiaacckacaGGGcGaaiikaGGa daba+dG=a4papiGae4hTdq2dbiabgkHiTiaacckapiGae4hTdqwcfa 4dbmaaBaaajqwba9FaaKqzadGaaGimaaqcfayabaqcLbsaceGGPaGb auaaiiqajuaGpiGae0NNdG1dbmaaCaaabeqcfasaaKqzadGaeyOeI0 IaaGymaaaajugibiaacIcapiGae4hTdq2dbiaacckacqGHsislcaGG GcWdciab+r7aKLqba+qadaWgaaqcKvaq=haajugWaiaaicdaaKqbag qaaKqzGeGaaiykaaaa@6028@ . The spectral decomposition of Ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacceqcfa iea4pa+dG=a8qacqWFEoawaaa@3C71@ supports the identification of directed alternatives in directions determined by the eigenvectors of Ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacceqcfa iea4pa+dG=a8qacqWFEoawaaa@3C71@ , to encompass the alternatives most likely and least likely in a given study. Powers of these types are independent of direction if and only if Ξ=  σ 2 Ι k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacceqcfa iea4pa+dG=a8qacqWFEoawjugibabaaaaaaaaapiGaeyypa0JaaiiO aiabeo8aZLqbaoaaCaaabeqcKvaq=haajugWaiaaikdaaaaccmqcLb sacqGFzoqsjuaGdaWgaaqcKvaq=haajugWaiaadUgaaKqbagqaaaaa @4CCA@ . Applications are drawn in the use of Hotelling [2] T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGubqcfa4aaWbaaeqajuaibaqcLbmacaaIYaaaaaaa@3BD0@ in multivariate samples, and of F-tests in linear models. Case studies are given where this approach leads to the discovery of further insight regarding the natural parameters of a problem.

One concept of directional invariance figures prominently in the SPC literature. The following is excerpted from Linna et al. [10].

“It is well known that the ARL performance of multivariate SPC procedures depends heavily on the covariance structure of the observed data. See, for example, Mason et al. [11]. Further, it has been noted by Pignatiello et al. [12] that many multivariate procedures, including the χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeq4XdmwddaahaaGdbeqceasaaKqzadGaeyOmaida aaaa@3EAA@ chart, Hotellings T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaamiva0WaaWbaaSqabKqaafaajugWaiaaikdaaaaa aa@3DB2@ chart, and most of the multivariate CUSUM charts, are directionally invariant. The performance of the multivariate EWMA chart proposed in Lowry et al. [13] is also directionally invariant. Lowry et al. [14] and others also note the directional invariance of many of these multivariate control charting methods. Directional invariance means that the performance of a procedure does not depend on the specific direction in p-space of a shift in the mean vector of the process variables being monitored. Instead, performance of a directionally invariant procedure depends only on the statistical (or Mahalanobis) distance between the in-control mean vector μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcLb saqaG=a4pa+dWdbiab=X7aTLqba+aadaWgaaqcbasaaGqaaKqzadae aaaaaaaaa8GacaGFWaaal8aabeaaaaa@3FB1@ and the out-of-control mean vector under consideration, μ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcLb saqaG=a4pa+dWdbiab=X7aTLqba+aadaWgaaqcbasaaGqaaKqzadae aaaaaaaaa8GacaGFXaaal8aabeaaaaa@3FB2@ .” (Italics supplied.) That is, D Ξ 2 ( μ 0 ,  μ 1 )  =  ( μ 0   μ 1 ) Ξ 1 ( μ 0 μ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGebqcfa4aa0baaKqbGeaaiiqajugWaiab=55aybqcfasaaKqzadGa aGOmaaaajugibiaacIcaiiWaqaG=a4pa+dWdbiab+X7aTLqba+aada WgaaqcfasaaKqzadGaaGimaaqcfayabaqcLbsacaGGSaaeaaaaaaaa a8GacaGGGcWdbiab+X7aTLqba+GadaWgaaqcfasaaKqzadGaaGymaa qcfayabaqcLbsacaGGPaGaaiiOaiaacckacqGH9aqpcaGGGcGaaiiO aiaacIcapeGae4hVd0wcfa4dcmaaBaaajuaibiqaa4sajugWaiaaic daaKqbagqaaKqzGeGaeyOeI0IaaiiOa8qacqGF8oqBjuaGpiWaaSba aKqbGeaajugWaiaaigdaaKqbagqaaKqzGeGabiykayaafaqcfa4dbi ab=55ay9GadaahaaqabKqbGeaajugWaiabgkHiTiaaigdaaaqcLbsa caGGOaWdbiab+X7aTLqba+GadaWgaaqcfasaaKqzadGaaGimaaqcfa yabaqcLbsacqGHsislpeGae4hVd0wcfa4dcmaaBaaajuaibaqcLbma caaIXaaajuaGbeaajugibiaacMcaaaa@7932@ .

Unfortunately, this notion of directional invariance is grossly misleading, is antithetical to the very concept of invariance as in our Definition 1, at best is a misnomer, and in any event deserves to be clarified in the SPC literature. In fact, such essentials as power functions and ARLs do indeed depend on directions of alternatives, as seen in Section 4.2 as counter examples, unless the model is isotropic.

On the other hand, a disclaimer of Tsui et al. [15] should be noted: “There is no reason in practice, however, for a shift to μ = μ* MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcLb saqaG=a4pa+dWdbiab=X7aTbbaaaaaaaaapiGaaiiOaiabg2da9iaa cckapeGae8hVd02dciaacQcaaaa@42F6@ to be always considered as important as a shift to μ = μ** MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcLb saqaG=a4pa+dWdbiab=X7aTbbaaaaaaaaapiGaaiiOaiabg2da9iaa cckapeGae8hVd02dciaacQcacaGGQaaaaa@43A4@ just because the corresponding values of the noncentrality parameters are equal.” Our study represents a substantial elaboration on this point.

A Appendix

Rayleigh Quotients.

At issue are variational properties of quadratic forms of type Q(υ) =  υ  Ω υ/ υ  υ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGrbGaaiikaGGadaba+dG=a4papeGae8xXdu3daiaacMcaqaaaaaaa aaWdciaacckacqGH9aqpcaGGGcWdbiqb=v8a1zaafaWdciaacckaii aacqGFPoWvcaGGGcWdbiab=v8a19GacaGGVaWdbiqb=v8a1zaafaWd ciaacckapeGae8xXdu3dciaacYcaaaa@50C9@ known as Rayleigh Quotients; see Bellman [16]. Write Ω  =   Σ i=1 k   κ i q i q i  = Q D k Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLb saqaaaaaaaaaWdbiab=L6axjaacckacaGGGcGaeyypa0JaaiiOaiaa cckacqqHJoWujuaGdaqhaaqaaKqzGeGaamyAaiabg2da9iaaigdaaK qbagaajugibiaadUgaaaGaaiiOaiabeQ7aRLqbaoaaBaaajuaibaqc LbmacaWGPbaajuaGbeaaieWajugibiaa+fhajuaGdaWgaaqcfasace aanfqcLbmacaWGPbaajuaGbeaajugibiqa+fhagaqbaKqbaoaaBaaa juaibaqcLbmacaWGPbaajuaGbeaajugibiaacckacqGH9aqpcaGGGc Gaa4xuaiaa+reajuaGdaWgaaqcfasaaKqzadGaam4Aaaqcfayabaqc LbsaceGFrbGbauaaaaa@6231@ in its spectral form with Q   O k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLb sacaWFrbaeaaaaaaaaa8qacaGGGcGaeyicI4SaaiiOamrr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae4NdX=ucfa4aaSbaaK qbGeaajugWaiaadUgaaKqbagqaaaaa@4BDE@ so that { q i Ω   q i  =   κ i ;  1    i    k} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca GG7bacbmGab8xCayaafaqcfa4aaSbaaKqbGeaajugWaiaadMgaaKqb agqaaGGaaKqzGeGae4xQdCfeaaaaaaaaa8qacaGGGcGaaiiOaiaa=f hajuaGdaWgaaqcfasaaKqzadGaamyAaiaacckaaKqbagqaaKqzGeGa eyypa0JaaiiOaiaacckacqaH6oWAjuaGdaWgaaqcfasaaKqzadGaam yAaaqcfayabaqcLbsacaGG7aGaaiiOaiaacckacaaIXaGaaiiOaiaa cckacqGHKjYOcaGGGcGaaiiOaiaadMgacaGGGcGaaiiOaiabgsMiJk aacckacaGGGcGaam4Aaiaac2haaaa@64B4@ . Further partition Q  =  [ Q 1 , Q 2 , Q 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLb sacaWFrbaeaaaaaaaaa8qacaGGGcGaaiiOaiabg2da9iaacckacaGG GcGaai4waiaa=ffajuaGdaWgaaqcfasaaKqzadGaaGymaaqcfayaba qcLbsacaWFSaGaa8xuaKqbaoaaBaaajuaibiqaaOmajugWaiaaikda aKqbagqaaKqzGeGaa8hlaiaa=ffajuaGdaWgaaqcfasaaKqzadGaaG 4maaqcfayabaqcLbsacaGGDbaaaa@50CC@ of orders { (k× (r1)), (k×s) (k × d)} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca GG7baeaaaaaaaaa8qacaGGGcGaaiikaiaadUgacqGHxdaTcaGGGcGa aiikaiaadkhacqGHsislcaaIXaGaaiykaiaacMcacaGGSaGccaGGGc qcLbsacaGGOaGaam4AaiabgEna0kaadohacaGGPaGccaGGGcqcLbsa caGGOaGaam4AaiaacckacqGHxdaTcaGGGcGaamizaiaacMcacaGG9b aaaa@5602@ with d = k  rs + 1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGKbaeaaaaaaaaa8qacaGGGcGaeyypa0JaaiiOaiaadUgacaGGGcGa eyOeI0IaaiiOaiaadkhacqGHsislcaWGZbGaaiiOaiabgUcaRiaacc kacaaIXaGaaiilaaaa@481C@ and partition D κ  = Diag( D κ 1 , D κ 2 , D κ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLb sacaWFebqcfa4aaSbaaKqbGeaajugWaiabeQ7aRbqcfayabaqcLbsa qaaaaaaaaaWdbiaacckacqGH9aqpcaGGGcacbaGaa4hraiaa+Lgaca GFHbGaa43zaiaacIcacaWFebqcfa4aaSbaaKqbGeaajugWaiabeQ7a RTWaaSbaaKGaGeaajugWaiaaigdaaKGaGeqaaaqcfayabaqcLbsaca GGSaGaa8hraKqbaoaaBaaajuaibaqcLbmacqaH6oWAlmaaBaaajiai baqcLbmacaaIYaaajiaibeaaaKqbagqaaKqzGeGaa8hlaiaa=reaju aGdaWgaaqcfasaaKqzadGaeqOUdS2cdaWgaaqccasaaKqzadGaaG4m aaqccasabaaajuaGbeaajugibiaacMcaaaa@5F9D@ conformably. Then

Ω=  Q 1 D κ 1 Q 1  +  Q 2 D κ 2 Q 2  +  Q 3 D κ 3 Q 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacceqcLb sacqWFPoWvqaaaaaaaaaWdbiabg2da9iaacckaieWacaGFrbqcfa4a aSbaaKqbGeaajugWaiaaigdaaKqbagqaaKqzGeGaa4hraKqbaoaaBa aajuaibaqcLbmacqaH6oWAlmaaBaaajuaibaqcLbmacaaIXaaajuai beaaaKqbagqaaKqzGeGab4xuayaafaqcfa4aaSbaaKqbGeaajugWai aaigdaaKqbagqaaKqzGeGaaiiOaiabgUcaRiaacckacaGFrbqcfa4a aSbaaKqbGeaajugWaiaaikdaaKqbagqaaKqzGeGaa4hraKqbaoaaBa aajuaibaqcLbmacqaH6oWAlmaaBaaajuaibaqcLbmacaaIYaaajuai beaaaKqbagqaaKqzGeGab4xuayaafaqcfa4aaSbaaKqbGeaajugWai aaikdaaKqbagqaaKqzGeGaaiiOaiabgUcaRiaacckacaGFrbqcfa4a aSbaaKqbGeaajugWaiaaiodaaKqbagqaaKqzGeGaa4hraKqbaoaaBa aajuaibaqcLbmacqaH6oWAlmaaBaaajuaibaqcLbmacaaIZaaajuai beaaaKqbagqaaKqzGeGab4xuayaafaqcfa4aaSbaaKqbGeaajugWai aaiodaaKqbagqaaaaa@766F@ (11)

where, in particular, Q 2  = [ q r ,..., q r+s ] and  D k 2  = Diag ( κ r ,..., κ r+s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLb sacaWFrbqcfa4aaSbaaKazfa0=baqcLbmacaaIYaaajuaGbeaajugi babaaaaaaaaapeGaaiiOaiabg2da9iaacckacaGGBbGaa8xCaKqbao aaBaaajqwba9FaceaaU=FcLbmacaWGYbaajuaGbeaajugibiaacYca caGGUaGaaiOlaiaac6cacaGGSaGaa8xCaKqbaoaaBaaajqwba9FaaK qzadGaamOCaiabgUcaRiaadohaaKqbagqaaKqzGeGaaiyxaiaaccka ieaacaGFHbGaa4NBaiaa+rgacaGGGcGaa8hraKqbaoaaBaaajuaiba qcLbmacaWGRbWcdaWgaaqcfasaaKqzadGaaGOmaaqcfasabaaajuaG beaajugibiaacckacqGH9aqpcaGGGcGaa4hraiaa+LgacaGFHbGaa4 3zaiaacckacaGGOaGaeqOUdSwcfa4aaSbaaKqbGeaajugWaiaadkha aKqbagqaaKqzGeGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacqaH6o WAjuaGdaWgaaqcfasaaKqzadGaamOCaiabgUcaRiaadohaaKqbagqa aKqzGeGaaiykaaaa@7E8F@ . Essentials follow.

Lemma A.1 Consider the positive definite form υ Ωυ/ υ  υ with Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcLb saqaG=a4pa+dWdbiqb=v8a1zaafaaccaWdaiab+L6ax9qacqWFfpqD paGaai4la8qacuWFfpqDgaqbaabaaaaaaaaapiGaaiiOa8qacqWFfp qDk8GacaGGGcacbaqcLbsacaqF3bGaa0xAaiaa9rhacaqFObGaaiiO a8aacqGFPoWvaaa@4E96@ as in expression (11).

(i) Variational properties of Q(υ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGrbGaaiikaGGadiab=v8a1jaacMcaaaa@3C2D@ as u varies over k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq WIDesOjuaGdaahaaqabKqbGeaajugWaiaadUgaaaaaaa@3C9B@ are

κ k   υ Ωυ υ υ    κ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH6oWAjuaGdaWgaaqcfasaceaaPhqcLbmacaWGRbaajuaGbeaajugi biabgsMiJcbaaaaaaaaapeGaaiiOaKqbaoaalaaabaaccmqcLbsaqa G=a4pa+dWdciqb=v8a1zaafaaccaWdbiab+L6ax9GacqWFfpqDaKqb agaajugibiqb=v8a1zaafaGae8xXduhaa8qacaGGGcGaeyizImQaai iOaiabeQ7aRLqbaoaaBaaajuaibaqcLbmacaaIXaaajuaGbeaaaaa@5936@ (12)

where the lower and upper limits are attained at υ =  q k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcLb sacqWFfpqDqaaaaaaaaaWdbiaacckacqGH9aqpcaGGGcacbmGaa4xC aKqbaoaaBaaajuaibaqcLbmacaWGRbaajuaGbeaaaaa@41F2@ and υ=  q 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcLb saqaaaaaaaaaWdbiab=v8a1jabg2da9iaacckaieWacaGFXbqcfa4a aSbaaKqbGeaajugWaiaaigdaaKqbagqaaaaa@4099@ , respectively.

(ii) Variational properties of Q(υ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGrbGaaiikaGGadiab=v8a1jaacMcaaaa@3C2D@ as u varies over S p ( Q 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGtbqcfa4aaSbaaKqbGeaajugWaiaadchaaKqbagqaaKqzGeGaaiik aGqadiaa=ffajuaGdaWgaaqcfasaaKqzadGaaGOmaaqcfayabaqcLb sacaGGPaaaaa@433F@ are

κ r+s    υ Ωυ υ υ    κ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH6oWAjuaGdaWgaaqcfasaceaa5gqcLbmacaWGYbGaey4kaSIaam4C aabaaaaaaaaapeGaaiiOaaqcfa4daeqaaKqzGeWdbiabgsMiJkaacc kajuaGdaWcaaqaaGGadKqzGeaea4pa+dG=a8GacuWFfpqDgaqbaGGa a8qacqGFPoWvpiGae8xXduhajuaGbaqcLbsacuWFfpqDgaqbaiab=v 8a1baapeGaaiiOaiabgsMiJkaacckacqaH6oWAjuaGdaWgaaqcfasa aKqzadGaamOCaaqcfayabaaaaa@5C66@ (13)

where the lower and upper limits are attained at υ =  q r+s  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcLb sacqWFfpqDqaaaaaaaaaWdbiaacckacqGH9aqpcaGGGcacbmWdaiaa +fhajuaGdaWgaaqcfasaceaa5gqcLbmacaWGYbGaey4kaSIaam4Ca8 qacaGGGcaajuaGpaqabaaaaa@45E2@ and υ=  q r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcLb sacqWFfpqDqaaaaaaaaaWdbiabg2da9iaacckaieWapaGaa4xCaKqb aoaaBaaajuaibiqaaKBajugWaiaadkhaaKqbagqaaaaa@41A1@ , respectively.

Proof: Conclusion (i) is given in Bellman [16], where the limits are attained as given since κ k =  q k  Ω  q k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqa aaaaaaaaWdbiabeQ7aRLqbaoaaBaaajuaibaacbiqcLbmacaWFRbaa juaGbeaajugibiabg2da9iaacckaieWaceGFXbGbauaajuaGdaWgaa qcfasaaKqzadGaam4AaiaacckaaKqbagqaaGGaaKqzGeGae0xQdCLa aiiOaiaa+fhajuaGdaWgaaqcfasaaKqzadGaam4Aaaqcfayabaaaaa@4DBD@ and κ 1  =  q 1 Ω  q 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH6oWAjuaGdaWgaaqcfasaaKqzadGaaGymaaqcfayabaqcLbsaqaaa aaaaaaWdbiaacckacqGH9aqpcaGGGcacbmGab8xCayaafaqcfa4aaS baaKqbGeaajugWaiaaigdaaKqbagqaaGGaaKqzGeGae4xQdCLaaiiO aiaa=fhajuaGdaWgaaqcfasaaKqzadGaaGymaaqcfayabaaaaa@4D1A@ . To see conclusion (ii), υ  S p  ( Q 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcLb sacqWFfpqDqaaaaaaaaaWdbiabgIGiolaacckacaWGtbqcfa4aaSba aKqbGeaajugWaiaadchaaKqbagqaaKqzGeGaaiiOaiaacIcaieWaca GFrbqcfa4aaSbaaKqbGeaajugWaiaaikdaaKqbagqaaKqzGeGaaiyk aaaa@48F9@ may be represented as υ=   Q 2  a with  a  = [ a r ,...,  a r+s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcLb sacqWFfpqDcqGH9aqpqaaaaaaaaaWdbiaacckacaGGGcacbmGaa4xu aKqbaoaaBaaajuaibaqcLbmacaaIYaaajuaGbeaajugibiaacckaca GFHbGaaiiOaGqaaiaa9DhacaqFPbGaa0hDaiaa9HgacaGGGcGab4xy ayaafaGaaiiOaiabg2da9iaacckacaGGBbGaamyyaKqbaoaaBaaaju aibaqcLbmacaWGYbaajuaGbeaajugibiaacYcacaGGUaGaaiOlaiaa c6cacaGGSaGaaiiOaiaacggajuaGdaWgaaqcfasaaKqzadGaamOCai abgUcaRiaadohaaKqbagqaaKqzGeGaaiyxaaaa@60B3@ . Then for υ    S p  ( Q 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcLb sacqWFfpqDqaaaaaaaaaWdbiaacckacaGGGcGaeyicI4SaaiiOaiaa dofajuaGdaWgaaqcfasaaKqzadGaamiCaaqcfayabaqcLbsacaGGGc GaaiikaGqadiaa+ffajuaGdaWgaaqcfasaaKqzadGaaGOmaaqcfaya baqcLbsacaGGPaaaaa@4B41@ , (A.1) gives υ Ωυ =   a Q 2 Q 2 D κ 2 Q 2 Q 2 a =  Σ i=r r+s   κ i a i 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcLb sacuWFfpqDgaqbaGGaaabaaaaaaaaapeGae4xQdC1daiab=v8a19qa caGGGcGaeyypa0JaaiiOaiaacckaieWaceqFHbGbauaaceqFrbGbau aajuaGdaWgaaqcfasaaKqzadGaaGOmaaqcfayabaqcLbsacaqFrbqc fa4aaSbaaKqbGeaajugWaiaaikdaaKqbagqaaKqzGeGaa0hraKqbao aaBaaajuaibaqcLbmacqaH6oWAlmaaBaaajiaibaqcLbmacaaIYaaa jiaibeaaaKqbagqaaKqzGeGab0xuayaafaqcfa4aaSbaaKqbGeaaju gWaiaaikdaaKqbagqaaKqzGeGaa0xuaKqbaoaaBaaajuaibaqcLbma caaIYaaajuaGbeaajugibiaa9fgacaGGGcGaeyypa0JaaiiOaiabfo 6atLqbaoaaDaaabaqcLbsacaWGPbGaeyypa0JaamOCaaqcfayaaKqz GeGaamOCaiabgUcaRiaadohaaaGaaiiOaiabeQ7aRLqbaoaaBaaaju aibaqcLbmacaWGPbaajuaGbeaajugibiaadggajuaGdaqhaaqcfasa aKqzadGaamyAaaqcfasaaKqzadGaaGOmaaaaaaa@78A5@ . The lower and upper limits for υ   S p  ( Q 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcLb sacqWFfpqDqaaaaaaaaaWdbiaacckacqGHiiIZcaGGGcGaam4uaKqb aoaaBaaajuaibaqcLbmacaWGWbaajuaGbeaajugibiaacckacaGGOa acbmGaa4xuaKqbaoaaBaaajuaibaqcLbmacaaIYaaajuaGbeaajugi biaacMcaaaa@4A1D@ follow as in conclusion (i) for υ  k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcLb sacqWFfpqDqaaaaaaaaaWdbiabgIGiolaacckacqWIDesOjuaGdaah aaqabKqbGeaajugWaiaadUgaaaaaaa@4132@ , except that now these are attained as given since q r+s Ω q r+s  =  κ r+s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLb saceWFXbGbauaajuaGdaWgaaqcfasaaKqzadGaamOCaiabgUcaRiaa dohaaKqbagqaaGGaaKqzGeaeaaaaaaaaa8qacqGFPoWvpaGaa8xCaK qbaoaaBaaajuaibaqcLbmacaWGYbGaey4kaSIaam4Caaqcfayabaqc LbsapeGaaiiOaiabg2da9iaacckacqaH6oWAjuaGdaWgaaqcfasaaK qzadGaamOCaiabgUcaRiaadohaaKqbagqaaaaa@5257@ and q r  Ω q r =  κ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0= OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLb saceWFXbGbauaajuaGdaWgaaqcfasaaKqzadGaamOCaaqcfayabaqc LbsaqaaaaaaaaaWdbiaacckaiiaacqGFPoWvpaGaa8xCaKqbaoaaBa aajuaibaqcLbmacaWGYbaajuaGbeaajugib8qacqGH9aqpcaGGGcGa eqOUdSwcfa4aaSbaaKqbGeaajugWaiaadkhaaKqbagqaaaaa@4CC9@ .

Acknowledgement

The author is indebted to Professor Donald E. Ramirez for substantial contributions, including computations using the MINITAB and MAPLE software packages.

References

  1. Mahalanobis PC (1936) On the generalised distance in statistics. Proceedings National Institute of Science India 2(1): 49-55.
  2. Hotelling H (1931) The generalization of Student’s ratio. Ann Math Statist 2: 360-378.
  3. Mauchly JW (1940) Significance test for sphericity of a normal n-variate distribution. Ann Math Statist 11(2): 204-209.
  4. Rencher AC (2002) Methods of Multivariate Analysis, (2nd edn), Wiley, New York, USA.
  5. Kramer CY, Jensen DR (1969) Fundamentals of Multivariate Analysis, Part I. Inference about Means. J Quality Technology 1: 120-133.
  6. Hotelling H (1947) Multivariate quality control. In: Eisenhart C, et al. (Eds.) Techniques of Statistical Analysis, McGraw-Hill, New York, USA. pp. 111-184.
  7. Quesenberry CP (2001) The multivariate short-run snapshot Q chart. Quality Engineering 13(4): 679-683.
  8. Williams JD, Woodall WH, Birch JB, Sullivan JH (2005) Distribution of Hotelling’s T2 statistic based on sucessive differences covariance matrix estimator. J Quality Technology 38: 217-229.
  9. Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J Royal Statist Soc Ser B 13(1): 1-45.
  10. Linna KW, Woodall WH, Busby KL (2001) Performance of multivariate control charts in the presence of measurement error. J Quality Technology 33: 349-355.
  11. Mason RL, Champ CW, Tracy ND, Wierda SJ, Young JC (1997) Assessment of multivariate process control techniques. J Quality Technology 29: 140-143.
  12. Pignatiello JJ, Runger GC (1990) Comparisons of multivariate CUSUM charts. J Quality Technology 22(3): 173-186.
  13. Lowry CA, Woodall WH, Champ CW, Rigdon SE (1992) A multivariate exponentially weighted moving average control chart. Technometrics 34(1): 46-53.
  14. Lowry CA, Montgomery DC (1995) A review of multivariate control charts. IIE Transactions 27(6): 800-810.
  15. Tsui KL, Woodall WH (1993) Multivariate control charts based on loss functions. Sequential Analysis 12(1): 79-92.
  16. Bellman R (1960) Introduction to Matrix Analysis. McGraw-Hill, New York, USA.
Creative Commons Attribution License

©2017 Jensen. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.