Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 11 Issue 3

Longevity evaluation of cattle Curraleiro Pé-Duro breed using the inverse Gaussian frailty model

KMM S Soares,1 VLD Tomazella,2 SCS Júnior,3 GMC Carvalho,4 CMM Lima,1 KR Santos5

1Department of Statistics, Federal University of Piauí, Brazil
2Department of Statistics, Federal University of São Carlos, Brazil
3Department of Zootechnics, Federal University of Piauí, Brazil
4Department of Statistical Methods, Empresa Brasileira de Pesquisa Agropecuária Meio Norte, Brazil
5Department of Medicine, Federal University of the Parnaíba Delta, Parnaiba Campus, Av. São Sebastião, 2819, Parnaíba, Piauí, Brazil

Correspondence: Correspondence:V LD Tomazella, Department of Statistics, Federal University of São Carlos, São Paulo, Brazi

Received: August 22, 2022 | Published: September 9, 2022

Citation: Soares KS, Tomazella V, Júnior S, et al. Longevity evaluation of cattle Curraleiro Pé-Duro breed using the inverse Gaussian frailty model. Biom Biostat Int J. 2022;11(3):111-117. DOI: 10.15406/bbij.2022.11.00363

Download PDF

Abstract

Cattle of the Curraleiro Pé-Duro cattle breed have a great ability to adapt to extreme climatic conditions in a natural environment, providing the minimization of losses in productive and reproductive performance, helping in disease resistance, consequently reducing mortality and increasing longevity when exposed to stressful conditions. The research aimed to use of the survival analysis technique, analyzing the effects of unobserved factors, in a study on the stay ability in the herd of cattle Curraleiro Pé-Duro breed using the model of inverse Gaussian fragility. Data from records of 102 cattle born between 2005 and 2014 in an experimental herd of Embrapa Meio-Norte located in São João do Piauí, in the semiarid region of Piauí, Brazil, were observed. The failure was considered to be the inactivity of the cattle caused by the death or sale and the censorship as the animal remaining active in the herd. The methodology of inverse Gaussian frailty models with log normal basis risk was used. Were considered significant (P < 0.05) the covariates season of birth, sex, weight at 365 days and the interaction weight at 365 days with sex. There was a predominance of birth in the dry season (July to December). It was observed that the cattle that more remained in the herd were born in the dry season and were male. The use of fragility models proved to be efficient to meet the proposed objectives, pointing out the potential of its use to contemplate unobserved heterogeneity, being a great tool for animal breeding. Frailty models allowed incorporating a term for the unobserved heterogeneity that affects the estimation of risk influencing longevity of the bovine. Thus, so these models can be used as a tool to help in animal improvement.

Keywords: Survival, univariate frailty, censorship, failure, inverse Gaussian

Introduction

The permanence of the animal in the herd is linked to aspects of production, reproduction, nutrition and economics. The permanence of the matrix in the herd is influenced by factors such as the characteristics of animal reproduction, considering that the insufficient performance of the animal in terms of reproduction can determine a reduction in the permanence time. The productive characteristics are of fundamental importance for the functional permanence of the matrix in the herd. Maximizing longevity generates profit optimization by decreasing involuntary culling rates, allowing the producer to carry out a higher voluntary culling rate, increasing genetic gain.1,2

Survival Analysis, in turn, is considered the most appropriate statistical methodology to deal with data from time to the occurrence of an event of interest (time of failure), in the presence of censorship,3 which is its main feature. In animal production, we can highlight Bonetti et al.4 who estimated genetic parameters in a genetic evaluation for the longevity of Italian Brown-Swiss bulls, using the Weibull proportional hazards model. The authors considered the method satisfactory for the use and inclusion of bulls in breeding programs. However, Caetano et al.5 proposed the age of the cow at the last calving as a measure to assess the cow's ability to remain in the herd. The authors concluded that the variable is relevant to assess the ability of cows to remain in the herd and that the survival analysis model estimated a greater proportion of genetic variability for the trait studied. A special feature associated with survival data is the possibility that, for some individuals, the complete time until the occurrence of the event of interest is not observed due to various causes. Failure to consider these individuals with incomplete information about their lifetimes can lead to biased or less efficient inferences.3,6 Therefore, one can see the importance of introducing a variable in the analysis that indicates whether survival time was observed.7 This variable is defined in the literature as a variable indicating censorship or simply “censorship”.

In recent studies, there are situations in which the response variable, failure time, may be influenced by unobservable factors, called latent factors. Survival models with latent variables or frailty models are characterized by the inclusion of a random effect, that is, an unobservable random variable, which represents information that cannot or was not observed; such as environmental, genetic or information factors that for some reason were not considered in the planning. One of the ways found to incorporate this random effect, called the fragility variable, is to introduce it in the modeling of the risk function, with the objective of controlling the unobservable heterogeneity of the units under study.8,9. The frailty can be inserted in the model in an additive or multiplicative way, with the objective of evaluating the heterogeneity among the units in the risk function or the dependence for multivariate data. In animal studies, associations appear due to shared genetic or environmental influences, and if ignored, incorrect inferences can be drawn.

The term frailty was introduced by Vaupel et al.10 in survival models with univariate data. Due to the characteristics of frailty in the multiplicative frailty model, the natural candidates for the frailty distribution, supposedly continuous and not dependent on time, are the gamma, log-normal, inverse Gaussian and Weibull distributions. Hougaard11 was one of the first authors to address the impact of using different distributions for the frailty variable.

Curraleiro Pé-Duro was the first bovine breed selected in Brazil from Portuguese breeds brought by colonizers from the 15th century onwards.12 It was introduced in the region of the state of Piauí, from the São Francisco River by Domingos Afonso Mafrense, in the middle of the year 1674, later resulting in the adaptation of the cattle to the environmental conditions of the region.13 It is indicated as a pure breed for the production of semen and embryos for use in reproduction and industrial crosses with specialized breeds for the production of milk and tender meat, marketed with a protected origin designation. The natural resistance to ecto and endoparasites and adaptation to our grasses and legumes are the great weapons of these cattle, which have been naturally selected for centuries to face local adversities. To all this comes the great thermal amplitude in which they can be bred and great longevity, living for more than 20 years. However, the great merit of this breed is to convert low-quality foods into noble foods and enable people to live together in semiarid regions.

In this context, the objective of this work was to analyze the effects of unobserved factors, in a study on the length of stay in the herd, of Curraleiro Pé-Duro cattle using the inverse Gaussian univariate frailty model.

Material and methods

The data for this study were provided by the Curraleiro Pé-duro (CPD) cattle conservation center belonging to Embrapa Meio-Norte, in Teresina-Piauí-Brazil, with an experimental field located on the Otávio Domingues farm, in São João do Piauí (between 8° 26' and 8° 54' South latitude and between 42° 19' and 42° 45' West longitude), in the semiarid region of Piauí belonging to an in-situ conservation herd. The management of these cattle was carried out extensively with the supply of only salt, mineral and water, which justifies their low weight compared to CPD cattle raised in other regions and cattle of other breeds. It is worth highlighting the lack of food supplementation, the increased incidence of environmental effects with the presence of many toxic plants, ticks, babesia, worms, which contribute to the low weight of CPD.

102 cattle (58 males and 44 females) of the CPD breed were evaluated from birth to 550 days. Animal data were collected from 2005 to 2014. To model the survival time (in months), after the beginning of the reproductive life of the cattle until the occurrence of failure (inactivity caused by death or sale), in relation to the cattle remaining active (alive), time was considered as the response variable, and the calf's date of birth was the beginning of the study. The variable T (time) was obtained from the difference between the date of birth and the date of disposal. The date of the last disposal in the herd was considered as the final observation period for animals that had not been disposed yet (August 19, 2016). Failure was defined as cattle inactivity (death or sale), while censorship was defined for cattle that remained alive in the herd. The type of censorship used was the right one. For each animal observed, it was registered a corresponding indicator of censorship, called status (δ=1 if it failed and δ=0 if censored) indicating whether the animal is active or inactive in the herd.

In this study, the covariates considered as possible risk factors in the length of stay of CPD cattle in the herd were: SB: season of birth, S: sex, BW: birth weight, WW: weaning weight, W365: weight at 365 days, W550: weight at 550 days categorized according to the average weight in each phase14 and described according to Table 1.

Variable

          Category

n

Fail (%)

Censors (%)

Birth season

            0 - rainy

35

31(88,6)

 4(11,4)

 

            1 - dry

67

42(62,7)

25(37,3)

Sex

            0 - male

58

48(82,7)

10(17,3)

 

            1 - female

44

25(56,8)

19(43,2)

Birth weight

            0 - < MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyipaWdaaa@3832@  20 kg

56

41(73,2)

15(26,8)

 

         1 - MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyyzImlaaa@38F4@  20 kg

46

32(69,6)

14(30,4)

Weaning weight

            0 - < MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyipaWdaaa@3832@  66 kg

40

29(72,5)

11(27,5)

 

         1 - MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyyzImlaaa@38F4@  66 kg

62

44(71,0)

  18(29,0)

365-days weight

0 - < MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyipaWdaaa@3832@  95 kg

34

29(85,3)

5(14,7)

 

         1 - MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyyzImlaaa@38F4@  95 kg

68

44(64,7)

24(35,3)

  550-days weight

  0 - < MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyipaWdaaa@3832@  131 kg

48

35(72,9)

13(27,1)

 

         1 - MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyyzImlaaa@38F4@  131 kg

54

38(70,4)

16(29,6)

Table 1 Number and percentage of cattle that failed or were censored by variable

Model formulation

To analyze the longevity of cattle in the herd, survival analysis techniques were used. Due to the presence of censors in survival data, they are summarized with estimates of the survival function and the risk function.15 To estimate these functions, the non-parametric method of Kaplan and Meier16 was used. To analyze the influence of covariates on the longevity of cattle in the herd, the univariate frailty model was used, which is an extension of the Cox model. All statistical analyzes were performed using free statistical software17 and the parfm package.18

Univariate frailty model

Frailty models for univariate survival data take into account that the population is non-homogeneous. Heterogeneity can be explained by covariates, but when important covariates are not incorporated into the model, this leads to unobserved heterogeneity.3 The multiplicative frailty model is an extension of the Cox model,19 where individual risk depends on an unobservable, non-negative random variable Z, which acts multiplicatively on the basis risk function. The risk function with the presence of covariates at time t for the ith individual is given by:

h(t|X, z i )= z i h 0 (t)exp{ Χ ' β } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mn0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAaiaacIcadaabcaqaaiaadshaaiaawIa7aiaadIfacaGGSaGa amOEa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGPaGaeyypa0 JaamOEa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaWGObWdamaa BaaaleaapeGaaGimaaWdaeqaaOWdbiaacIcacaWG0bGaaiykaiaadw gacaWG4bGaamiCamaacmaabaaccmGae83Pdm0aaWbaaSqabeaacaGG NaaaaOGae8NSdigacaGL7bGaayzFaaaaaa@50DF@ (1)

where Χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mn0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGadabaaaaaaa aapeGae83Pdmeaaa@38BD@ is the vector of covariates and β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mn0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGadabaaaaaaa aapeGae8NSdigaaa@38E7@ the vector of parameters associated with Χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mn0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGadabaaaaaaa aapeGae83Pdmeaaa@38BD@ . As z i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQhadaWgaa WcbaGaamyAaaqabaaaaa@3927@ represents a value of the unobservable random variable, the individual risk increases when z i >1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQhadaWgaa WcbaGaamyAaaqabaGccqGH+aGpcaaIXaaaaa@3AF4@ , decreases if z i <1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQhadaWgaa WcbaGaamyAaaqabaGccqGH8aapcaaIXaaaaa@3AF0@ and for z i =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQhadaWgaa WcbaGaamyAaaqabaGccqGH9aqpcaaIXaaaaa@3AF2@ the model of frailty(1) reduces to the Cox proportional hazard model.19 The fact that the frailty variable acts in a multiplicative way in the risk function implies, the higher the value of the frailty variable, the greater the z i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQhadaWgaa WcbaGaamyAaaqabaaaaa@3927@ chance of failure. Thus, the greater the , the more “fragile” the observations belonging to individual i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMgaaaa@37FC@ are about to fail, hence the name fragility. Therefore, the event of interest is expected to occur for the most “fragile” individuals.8

An important problem in frailty models is the choice of distribution for the random effect. Due to the way the frailty term acts in the risk function, the candidates for the frailty distribution are supposedly non-negative, usually continuous and not time-dependent, such as gamma, lognormal, inverse Gaussian and weibull distributions.9,20 Distributions traditionally used to represent lifetimes can be attributed to the basis risk function, such as exponential, lognormal, weibull, gamma, among others.21

Inverse Gaussian frailty distribution

The inverse Gaussian distribution was introduced by Hougaard11. Thus, let Z be a random variable that follows an inverse Gaussian frailty distribution with E( Z )=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaqadaqaa8qacaWGAbaapaGaayjkaiaawMcaa8qacqGH 9aqpcaaIXaaaaa@3C5F@ and Var( Z )=θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaiaadggacaWGYbWdamaabmaabaWdbiaadQfaa8aacaGLOaGa ayzkaaWdbiabg2da9iabeI7aXbaa@3F48@ . The probability density function is given by f(z)= 1 2πθ z 3 2 exp( ( z1 ) 2 2θz ,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiaacIcacaWG6bGaaiykaiabg2da9maalaaabaGaaGymaaqa amaakaaabaGaaGOmaiabec8aWjabeI7aXbWcbeaaaaGccaWG6bWdam aaCaaaleqabaGaeyOeI0YaaSaaaeaacaaIZaaabaGaaGOmaaaaaaGc peGaamyzaiaadIhacaWGWbGaaiikaiabgkHiTmaalaaabaWaaeWaae aacaWG6bGaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaaaOqaaiaaikdacqaH4oqCcaWG6baaaiaacYcacqaH4oqCcq GH+aGpcaaIWaaaaa@55A2@

A useful tool for frailty model analysis is the Laplace transform. Given a function g(x), the Laplace transform considered as a real function with argument s is defined by P Hougaard21. L(s)= 0 g( s ) e sx ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamitaiaacIcacaWGZbGaaiykaiabg2da9maapedabaGaam4zamaa bmaabaGaam4CaaGaayjkaiaawMcaaaWcbaGaaGimaaqaaiabg6HiLc qdcqGHRiI8aOGaamyzamaaCaaaleqabaGaeyOeI0Iaam4CaiaadIha aaGccaWGKbGaam4Caaaa@4905@

The reason this is useful in our context is that the Laplace transform has exactly the same shape as the unconditional survival function. The unconditional survival function, integrating the frailty term, is given by: S(t)= 0 [ S 0 (t) ] z g(z)dz= 0 e Η 0 ( t )z g( z )dz=L[ H 0 (t) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uaiaacIcacaWG0bGaaiykaiabg2da9maapedabaGaai4waiaa dofadaWgaaWcbaGaaGimaaqabaaabaGaaGimaaqaaiabg6HiLcqdcq GHRiI8aOGaaiikaiaadshacaGGPaGaaiyxa8aadaahaaWcbeqaa8qa caWG6baaaOGaam4zaiaacIcacaWG6bGaaiykaiaadsgacaWG6bGaey ypa0Zaa8qmaeaacaWGLbaaleaacaaIWaaabaGaeyOhIukaniabgUIi YdGcdaahaaWcbeqaaiabgkHiTiabfE5ainaaBaaameaacaaIWaaabe aalmaabmaabaGaamiDaaGaayjkaiaawMcaaiaadQhaaaGccaWGNbWa aeWaaeaacaWG6baacaGLOaGaayzkaaGaamizaiaadQhacqGH9aqpca WGmbWaamWaaeaacaWGibWaaSbaaSqaaiaaicdaaeqaaOGaaiikaiaa dshacaGGPaaacaGLBbGaayzxaaaaaa@6688@

where g(z) is the probability density function of the frailty variable and L[H0(t)] denotes the Laplace transformation of the function g(z) considering the accumulated risk function, H0(t).

Consequently, the Laplace transform of the inverse Gaussian distribution is given by L( z )=exp[ 1 θ ( 1 1+2θz ) ],z0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaqada qaaiaadQhaaiaawIcacaGLPaaacqGH9aqpciGGLbGaaiiEaiaaccha daWadaqaamaalaaabaGaaGymaaqaaiabeI7aXbaadaqadaqaaiaaig dacqGHsisldaGcaaqaaiaaigdacqGHRaWkcaaIYaGaeqiUdeNaamOE aaWcbeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaiaacYcacaWG6b GaeyyzImRaaGimaaaa@4F4E@

The risk function and unconditional survival function of the inverse Gaussian frailty variable are given, respectively, by

h(t)= h 0 (t) ( 1+2 σ 2 Η 0 (t) ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAaiaacIcacaWG0bGaaiykaiabg2da9maalaaabaGaamiAamaa BaaaleaacaaIWaaabeaakiaacIcacaWG0bGaaiykaaqaamaabmaaba GaaGymaiabgUcaRiaaikdacqaHdpWCdaahaaWcbeqaaiaaikdaaaGc cqqHxoasdaWgaaWcbaGaaGimaaqabaGccaGGOaGaamiDaiaacMcaai aawIcacaGLPaaadaahaaWcbeqaamaaliaabaGaaGymaaqaaiaaikda aaaaaaaaaaa@4CAF@ and S(t)=exp[ 1 σ 2 ( 1 1+2 σ 2 Η 0 ( t ) ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uaiaacIcacaWG0bGaaiykaiabg2da9iaadwgacaWG4bGaamiC amaadmaabaWaaSaaaeaacaaIXaaabaGaeq4Wdm3aaWbaaSqabeaaca aIYaaaaaaakmaabmaabaGaaGymaiabgkHiTmaakaaabaGaaGymaiab gUcaRiaaikdacqaHdpWCdaahaaWcbeqaaiaaikdaaaGccqqHxoasda WgaaWcbaGaaGimaaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaa aSqabaaakiaawIcacaGLPaaaaiaawUfacaGLDbaaaaa@50F1@

where h 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@392F@ and H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@390F@ are the basis risk and basis accumulated risk functions.


In the presence of covariates, the risk and unconditional survival functions are given, respectively, by:

h(t,X)= h 0 (t) e βΧ ' (1+2 σ 2 Η 0 ( t ) e β 'Χ ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAaiaacIcacaWG0bGaaiilaiaadIfacaGGPaGaeyypa0ZaaSaa aeaacaWGObWaaSbaaSqaaiaaicdaaeqaaOGaaiikaiaadshacaGGPa GaamyzamaaCaaaleqabaaccmGae8NSdiMae83PdmeaaOWaaWbaaSqa beaacaGGNaaaaaGcbaGaaiikaiaaigdacqGHRaWkcaaIYaGaeq4Wdm 3aaWbaaSqabeaacaaIYaaaaOGae83LdG0aaSbaaSqaaiaaicdaaeqa aOWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaamyzamaaCaaaleqaba Gae8NSdigaaOWaaWbaaSqabeaacaGGNaGae83PdmeaaOGaaiykamaa CaaaleqabaWaaSGaaeaacaaIXaaabaGaaGOmaaaaaaaaaaaa@5865@ (2) and

S(t,X)=exp[ 1 σ 2 ( 1 1+2 σ 2 Η 0 ( t ) e β ' Χ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uaiaacIcacaWG0bGaaiilaiaadIfacaGGPaGaeyypa0Jaamyz aiaadIhacaWGWbWaamWaaeaadaWcaaqaaiaaigdaaeaacqaHdpWCda ahaaWcbeqaaiaaikdaaaaaaOWaaeWaaeaacaaIXaGaeyOeI0YaaOaa aeaacaaIXaGaey4kaSIaaGOmaiabeo8aZnaaCaaaleqabaGaaGOmaa aaiiWakiab=D5ainaaBaaaleaacaaIWaaabeaakmaabmaabaGaamiD aaGaayjkaiaawMcaaaWcbeaakiaadwgadaahaaWcbeqaaiab=j7aIb aakmaaCaaaleqabaWaaWbaaWqabeaacaGGNaaaaSGae83PdmeaaaGc caGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@57CF@ (3)

where Χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGadiab=D6adb aa@388D@ is the vector of covariates and β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mn0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGadabaaaaaaa aapeGae8NSdigaaa@38E7@ the vector of parameters associated with Χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGadiab=D6adb aa@388D@ .

LogNormal Inverse Gaussian fragility model

Different parametric forms can be assumed for the basis risk function h 0 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAamaaBaaaleaacaaIWaaabeaakmaabmaabaGaamiDaaGaayjk aiaawMcaaaaa@3B8D@ for example: Lognormal, Log-logistic, Gompertz and so on. Table 2 shows the probability density functions and the basis risk and survival functions for these distributions.

Distribution

f( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWHMbWaaeWaa8aabaWdbiaahshaaiaawIcacaGLPaaaaaa@39AB@

h o ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmaeaaaaaa aaa8qacaWFObWdamaaBaaaleaapeGaa83BaaWdaeqaaOWdbmaabmaa paqaa8qacaWF0baacaGLOaGaayzkaaaaaa@3B0D@

S 0 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmaeaaaaaa aaa8qacaWFtbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbmaabmaa paqaa8qacaWF0baacaGLOaGaayzkaaaaaa@3AC2@

lognormal

1 2Π tθ exp[ 1 2 ( log( t )μ σ ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaamaakaaabaGaaGOmaiabfc6aqbWcbeaakiaadshacqaH4oqC aaGaciyzaiaacIhacaGGWbWaamWaaeaacqGHsisldaWcaaqaaiaaig daaeaacaaIYaaaamaabmaabaWaaSaaaeaaciGGSbGaai4BaiaacEga daqadaqaaiaadshaaiaawIcacaGLPaaacqGHsislcqaH8oqBaeaacq aHdpWCaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGL BbGaayzxaaaaaa@506C@

1 2Π tθ exp[ 1 2 ( log( t )μ σ ) 2 ] ϕ( log( t )+μ σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaWaaS aaaeaacaaIXaaabaWaaOaaaeaacaaIYaGaeuiOdafaleqaaOGaamiD aiabeI7aXbaaciGGLbGaaiiEaiaacchadaWadaqaaiabgkHiTmaala aabaGaaGymaaqaaiaaikdaaaWaaeWaaeaadaWcaaqaaiGacYgacaGG VbGaai4zamaabmaabaGaamiDaaGaayjkaiaawMcaaiabgkHiTiabeY 7aTbqaaiabeo8aZbaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikda aaaakiaawUfacaGLDbaaaeaacqaHvpGzdaqadaqaamaalaaabaGaey OeI0IaciiBaiaac+gacaGGNbWaaeWaaeaacaWG0baacaGLOaGaayzk aaGaey4kaSIaeqiVd0gabaGaeq4WdmhaaaGaayjkaiaawMcaaaaaaa a@5E77@

ϕ( log( t )+μ σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMnaabm aabaWaaSaaaeaacqGHsislciGGSbGaai4BaiaacEgadaqadaqaaiaa dshaaiaawIcacaGLPaaacqGHRaWkcqaH8oqBaeaacqaHdpWCaaaaca GLOaGaayzkaaaaaa@4509@

log-logístic

      γ λ γ t γ1 ( 1+ ( t λ ) γ ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq 4SdCgabaGaeq4UdW2aaWbaaSqabeaacqaHZoWzaaaaaOGaamiDamaa CaaaleqabaGaeq4SdCMaeyOeI0IaaGymaaaakmaabmaabaGaaGymai abgUcaRmaabmaabaWaaSaaaeaacaWG0baabaGaeq4UdWgaaaGaayjk aiaawMcaamaaCaaaleqabaGaeq4SdCgaaaGccaGLOaGaayzkaaWaaW baaSqabeaacqGHsislcaaIYaaaaaaa@4BF6@

        γ ( t λ ) γ1 λ[ 1+ ( t λ ) γ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq 4SdC2aaeWaaeaadaWcaaqaaiaadshaaeaacqaH7oaBaaaacaGLOaGa ayzkaaWaaWbaaSqabeaacqaHZoWzcqGHsislcaaIXaaaaaGcbaGaeq 4UdW2aamWaaeaacaaIXaGaey4kaSYaaeWaaeaadaWcaaqaaiaadsha aeaacqaH7oaBaaaacaGLOaGaayzkaaWaaWbaaSqabeaacqaHZoWzaa aakiaawUfacaGLDbaaaaaaaa@4BF8@

1 [ 1+ ( t λ ) γ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaamaadmaabaGaaGymaiabgUcaRmaabmaabaWaaSaaaeaacaWG 0baabaGaeq4UdWgaaaGaayjkaiaawMcaamaaCaaaleqabaGaeq4SdC gaaaGccaGLBbGaayzxaaaaaaaa@418C@

 

Gompertz

 

λexp( γt )exp{ ( λ γ )( e γt 1 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSjGacw gacaGG4bGaaiiCamaabmaabaGaeq4SdCMaamiDaaGaayjkaiaawMca aiGacwgacaGG4bGaaiiCamaacmaabaGaeyOeI0YaaeWaaeaadaWcaa qaaiabeU7aSbqaaiabeo7aNbaaaiaawIcacaGLPaaadaqadaqaaiaa dwgadaahaaWcbeqaaiabeo7aNjaadshaaaGccqGHsislcaaIXaaaca GLOaGaayzkaaaacaGL7bGaayzFaaaaaa@51A5@

 

           λexp( γt ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSjGacw gacaGG4bGaaiiCamaabmaabaGaeq4SdCMaamiDaaGaayjkaiaawMca aaaa@3FC6@                                                                  

 
exp{ ( λ γ )( e γt 1 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacwgacaGG4b GaaiiCamaacmaabaGaeyOeI0YaaeWaaeaadaWcaaqaaiabeU7aSbqa aiabeo7aNbaaaiaawIcacaGLPaaadaqadaqaaiaadwgadaahaaWcbe qaaiabeo7aNjaadshaaaGccqGHsislcaaIXaaacaGLOaGaayzkaaaa caGL7bGaayzFaaaaaa@48ED@

Table 2 Functions of density f(t), survival S0 (t) and risk ho(t)of the lognormal, log-logistic and Gompertz distributions

In this study, the parametric approach was considered for the univariate inverse Gaussian frailty model, where the lifetimes of cattle at risk follow lognormal distribution. Thus, substituting the basis risk functions h 0 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAamaaBaaaleaacaaIWaaabeaakmaabmaabaGaamiDaaGaayjk aiaawMcaaaaa@3B8D@ , survival basis S 0 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uamaaBaaaleaacaaIWaaabeaakmaabmaabaGaamiDaaGaayjk aiaawMcaaaaa@3B78@ , and cumulative basis risk H 0 =log( S 0 (t) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpcqGH sislcaWGSbGaam4BaiaadEgapaWaaeWaaeaapeGaam4ua8aadaWgaa WcbaWdbiaaicdaa8aabeaakiaacIcapeGaamiDa8aacaGGPaaacaGL OaGaayzkaaaaaa@43FC@ , from the lognormal distribution, respectively in (2) and (3) , with the presence of covariates, the lognormal inverse Gaussian univariate frailty model with unconditioned survival and risk function given, respectively, by:

S( t,X )=exp[ 1 σ 2 ( 1 12 σ 2 log{ ϕ ( log( t )+μ σ ) } e β ' Χ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaqada qaaiaadshacaGGSaGaamiwaaGaayjkaiaawMcaaiabg2da9iGacwga caGG4bGaaiiCamaadmaabaWaaSaaaeaacaaIXaaabaGaeq4Wdm3aaW baaSqabeaacaaIYaaaaaaakmaabmaabaGaaGymaiabgkHiTmaakaaa baGaaGymaiabgkHiTiaaikdacqaHdpWCdaahaaWcbeqaaiaaikdaaa GcciGGSbGaai4BaiaacEgadaGabaqaaiabew9aMnaaciaabaWaaeWa aeaadaWcaaqaaiabgkHiTiGacYgacaGGVbGaai4zamaabmaabaGaam iDaaGaayjkaiaawMcaaiabgUcaRiabeY7aTbqaaiabeo8aZbaaaiaa wIcacaGLPaaaaiaaw2haaiaadwgadaahaaWcbeqaaGGadiab=j7aIn aaCaaameqabaGaai4jaaaaliab=D6adbaaaOGaay5EaaaaleqaaaGc caGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@65DB@ (4)

                                           and

h( t,X )=[ 1 2Π tσ exp[ 1 2 ( log( t )μ σ ) 2 ] ϕ( log( t )+μ σ ) e β ' Χ ].[ 1 12 σ 2 log ( ϕ( log( t )+μ σ ) e β ' Χ ) 1 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadshacaGGSaGaamiwaaGaayjkaiaawMcaaiabg2da9maadmaa baWaaSaaaeaadaWcaaqaaiaaigdaaeaadaGcaaqaaiaaikdacqqHGo auaSqabaGccaWG0bGaeq4WdmhaaiGacwgacaGG4bGaaiiCamaadmaa baGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaamaala aabaGaciiBaiaac+gacaGGNbWaaeWaaeaacaWG0baacaGLOaGaayzk aaGaeyOeI0IaeqiVd0gabaGaeq4WdmhaaaGaayjkaiaawMcaamaaCa aaleqabaGaaGOmaaaaaOGaay5waiaaw2faaaqaaiabew9aMnaabmaa baWaaSaaaeaacqGHsislciGGSbGaai4BaiaacEgadaqadaqaaiaads haaiaawIcacaGLPaaacqGHRaWkcqaH8oqBaeaacqaHdpWCaaaacaGL OaGaayzkaaaaaiaadwgadaahaaWcbeqaaGGadiab=j7aInaaCaaame qabaGaai4jaaaaliab=D6adbaaaOGaay5waiaaw2faaiaac6cadaWa daqaamaalaaabaGaaGymaaqaaiaaigdacqGHsislcaaIYaGaeq4Wdm 3aaWbaaSqabeaacaaIYaaaaOGaciiBaiaac+gacaGGNbWaaeWaaeaa cqaHvpGzdaqadaqaamaalaaabaGaeyOeI0IaciiBaiaac+gacaGGNb WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaey4kaSIaeqiVd0gabaGa eq4WdmhaaaGaayjkaiaawMcaaiaadwgadaahaaWcbeqaaiab=j7aIn aaCaaameqabaGaai4jaaaaliab=D6adbaaaOGaayjkaiaawMcaamaa CaaaleqabaWaaSGaaeaacaaIXaaabaGaaGOmaaaaaaaaaaGccaGLBb Gaayzxaaaaaa@8D48@ (5)

where Φ(.) is the cumulative distribution function of a standard normal.

Estimation of model parameters

In survival analysis, the most widely used method to estimate the vector of parameters τ= ( θ,µ,σ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGadabaaaaaaa aapeGae8hXdqNaeyypa0Jaaeiia8aadaqadaqaa8qacqaH4oqCcaGG SaGaamyTaiaacYcacqaHdpWCcaGGSaGaeqOSdigapaGaayjkaiaawM caaaaa@44BF@

of the model (5) is the maximum likelihood method, since it can incorporate censored data. Assuming that the data are independent and identically distributed, the unconditional likelihood function, with censored data, is given by:

L(τ)= Π i=1 n [ h i (t)] δ i S i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamitaiaacIcaiiWacqWFepaDcaGGPaGaeyypa0JaeuiOda1damaa DaaaleaapeGaamyAaiabg2da9iaaigdaa8aabaWdbiaad6gaaaGcca GGBbGaamiAa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGOaGa amiDaiaacMcacaGGDbWaaWbaaSqabeaacqaH0oazdaWgaaadbaGaam yAaaqabaaaaOGaam4uamaaBaaaleaacaWGPbaabeaakmaabmaabaGa amiDaaGaayjkaiaawMcaaaaa@4F96@ (6)

where  is the censorship indicator, hi and Si is the risk and survival function of the frailty distribution. Substituting (2) and (3) into (6), we have the non-conditional likelihood function of inverse Gaussian frailty given by:

L( τ )= i=1 n [ h 0 (t) e β ' Χ (1+2 σ 2 Η 0 ( t ) e β ' Χ ) 1 2 ] δ i exp[ 1 σ 2 ( 1 12 σ 2 Η 0 (t) e β ' Χ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaqada qaaGGadiab=r8a0bGaayjkaiaawMcaaiabg2da9maaradabaWaamWa aeaadaWcaaqaaiaadIgadaWgaaWcbaGaaGimaaqabaGccaGGOaGaam iDaiaacMcacaWGLbWaaWbaaSqabeaacqWFYoGydaahaaadbeqaaiaa cEcaaaWccqWFNoWqaaaakeaacaGGOaGaaGymaiabgUcaRiaaikdacq aHdpWCdaahaaWcbeqaaiaaikdaaaGccqWFxoasdaWgaaWcbaGaaGim aaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacaWGLbWaaWbaaS qabeaacqWFYoGydaahaaadbeqaaiaacEcaaaWccqWFNoWqaaGccaGG PaWaaWbaaSqabeaadaWccaqaaiaaigdaaeaacaaIYaaaaaaaaaaaki aawUfacaGLDbaadaahaaWcbeqaaiabes7aKnaaBaaameaacaWGPbaa beaaaaGcciGGLbGaaiiEaiaacchadaWadaqaamaalaaabaGaaGymaa qaaiabeo8aZnaaCaaaleqabaGaaGOmaaaaaaGcdaqadaqaaiaaigda cqGHsisldaGcaaqaaiaaigdacqGHsislcaaIYaGaeq4Wdm3aaWbaaS qabeaacaaIYaaaaOGae83LdG0aaSbaaSqaaiaaicdaaeqaaOGaaiik aiaadshacaGGPaGaamyzamaaCaaaleqabaWaaWbaaWqabeaacqWFYo GydaahaaqabeaacaGGNaaaaiab=D6adbaaaaaaleqaaaGccaGLOaGa ayzkaaaacaGLBbGaayzxaaaaleaacaWGPbGaeyypa0JaaGymaaqaai aad6gaa0Gaey4dIunaaaa@7CA4@ (7)

Consequently, substituting (4) and (5) in (7), we have for the inverse Gaussian frailty model with log normal basis risk with parameters , the non-conditional likelihood function given by

L( τ )= i=1 n [ [ 1 2Π tσ exp[ 1 2 ( log( t )μ σ ) 2 ] ϕ( log( t )+μ σ ) e β ' Χ ][ 1 12θlog ( ϕ( log( t )+μ σ ) e β ' Χ ) 1 2 ] ] δ i ×exp[ 1 σ 2 ( 1 12θlog( ϕ( log( t )+μ σ ) e β ' Χ ) ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaqada qaaGGadabaaaaaaaaapeGae8hXdqhapaGaayjkaiaawMcaaiabg2da 9maarahabaWaamWaaeaadaWadaqaamaalaaabaWaaSaaaeaacaaIXa aabaWaaOaaaeaacaaIYaGaeuiOdafaleqaaOGaamiDaiabeo8aZbaa ciGGLbGaaiiEaiaacchadaWadaqaaiabgkHiTmaalaaabaGaaGymaa qaaiaaikdaaaWaaeWaaeaadaWcaaqaaiGacYgacaGGVbGaai4zamaa bmaabaGaamiDaaGaayjkaiaawMcaaiabgkHiTiabeY7aTbqaaiabeo 8aZbaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawUfa caGLDbaaaeaacqaHvpGzdaqadaqaamaalaaabaGaeyOeI0IaciiBai aac+gacaGGNbWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaey4kaSIa eqiVd0gabaGaeq4WdmhaaaGaayjkaiaawMcaaaaacaWGLbWaaWbaaS qabeaadaahaaadbeqaaiab=j7aInaaCaaabeqaaiaacEcaaaGae83P dmeaaaaaaOGaay5waiaaw2faamaadmaabaWaaSaaaeaacaaIXaaaba GaaGymaiabgkHiTiaaikdacqaH4oqCciGGSbGaai4BaiaacEgadaqa daqaaiabew9aMnaabmaabaWaaSaaaeaacqGHsislciGGSbGaai4Bai aacEgadaqadaqaaiaadshaaiaawIcacaGLPaaacqGHRaWkcqaH8oqB aeaacqaHdpWCaaaacaGLOaGaayzkaaGaamyzamaaCaaaleqabaWaaW baaWqabeaacqWFYoGydaahaaqabeaacaGGNaaaaiab=D6adbaaaaaa kiaawIcacaGLPaaadaahaaWcbeqaamaaliaabaGaaGymaaqaaiaaik daaaaaaaaaaOGaay5waiaaw2faaaGaay5waiaaw2faaaWcbaGaamyA aiabg2da9iaaigdaaeaacaWGUbaaniabg+GivdGcdaahaaWcbeqaai abes7aKnaaBaaameaacaWGPbaabeaaaaGccqGHxdaTciGGLbGaaiiE aiaacchadaWadaqaamaalaaabaGaaGymaaqaaiabeo8aZnaaCaaale qabaGaaGOmaaaaaaGcdaqadaqaaiaaigdacqGHsisldaGcaaqaaiaa igdacqGHsislcaaIYaGaeqiUdeNaciiBaiaac+gacaGGNbWaaeWaae aacqaHvpGzdaqadaqaamaalaaabaGaeyOeI0IaciiBaiaac+gacaGG NbWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaey4kaSIaeqiVd0gaba Gaeq4WdmhaaaGaayjkaiaawMcaaiaadwgadaahaaWcbeqaamaaCaaa meqabaGae8NSdi2aaWbaaeqabaGaai4jaaaacqWFNoWqaaaaaaGcca GLOaGaayzkaaaaleqaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaaa aa@BF2A@ (8)

The maximum likelihood estimates are obtained by numerically maximizing the log-likelihood function described in (8). To estimate the parameters, the parfm package18 of the R software17 was used. The construction of confidence intervals for the model parameters are based on the asymptotic normality properties of the maximum likelihood estimators. If  denotes the maximum likelihood estimators of τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0baa@38D3@ then the distribution of τ ^  τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqiXdqNbaKaacaGGGcGaeyOeI0IaeqiXdqhaaa@3CD9@ is approximated by a q-varied normal distribution with zero mean and covariance matrix where is the observed information matrix I (1) ( τ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamysa8aadaahaaWcbeqaa8qacaGGOaGaeyOeI0IaaGymaiaacMca aaGccaGGOaGafqiXdqNbaKaacaGGPaaaaa@3E81@ . Thus, an asymptotic confidence interval with 100( 1  α% ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaaicdacaaIWaWdamaabmaabaWdbiaaigdacaqGGaGaeyOe I0Iaaeiiaiabeg7aHjaacwcaa8aacaGLOaGaayzkaaaaaa@404A@ for each parameter is: τ ^ ± z a 2 Var ^ ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbes8a0zaaja GaeyySaeRaamOEamaaBaaaleaadaWccaqaaiaadggaaeaacaaIYaaa aaqabaGcdaGcaaqaamaaHaaabaGaamOvaiaadggacaWGYbaacaGLcm aadaqadaqaaiabes8a0bGaayjkaiaawMcaaaWcbeaaaaa@449D@

where τ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbes8a0zaaja aaaa@38E3@ is the element of the main diagonal of I 1 ( τ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamysa8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaOGaaiikaiqb es8a0zaajaGaaiykaaaa@3D28@ corresponding to each parameter z α /2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEa8aadaWgaaWcbaWdbiabeg7aHbWdaeqaaOWaaSbaaSqaa8qa caGGVaGaaGOmaaWdaeqaaaaa@3BEA@ and z α /2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEa8aadaWgaaWcbaWdbiabeg7aHbWdaeqaaOWaaSbaaSqaa8qa caGGVaGaaGOmaaWdaeqaaaaa@3BEA@ is the quantile of the ( 1  α% ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaaIXaGaaeiiaiabgkHiTiaabccacqaHXoqycaGGLaaa paGaayjkaiaawMcaaaaa@3DFC@ standard normal distribution.

To test hypotheses related to the parameters (θ,µ,σ,β) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcaqaaaaa aaaaWdbiabeI7aXjaacYcacaWG1cGaaiilaiabeo8aZjaacYcaiiWa cqWFYoGypaGaaiykaaaa@4102@ three tests were used: the Wald, the Likelihood Ratio and the Score.3 Model selection criteria such as the Akaike information criterion (AIC) proposed by Akaike22 and the Bayesian information criterion (BIC), proposed by Schwarz et al.23, are often used to select models in different areas. The best models are considered those with lower AIC and BIC values. For the adequacy of the model, several methods are available in the literature and they are essentially based on Cox-Snell residues, which help to examine the global adjustment of the model, Schoenfeld's, which has a time-dependent coefficient, the one of martingale, which is given by the difference between the observed number of events for an individual and the expected one given the adjusted model, and the deviance, which facilitate the detection of atypical points (outliers).

Results

In this study, the herd consists of 102 cattle, where 57% is made up of males and 43% of females, of the CPD breed born in the period from 2005 to 2014. When considering the survival of these animals in the herd, it was found that 28% (29) were censored, that is, they remained alive until the final observation period, and 72% (73) failed, that is, died or were sold. It was observed for SB, a greater predominance (65%) of the dry period, where there is a lower incidence of rain. Regarding standard weights (birth, weaning, 365 days and 550 days), a frequency greater than 50% was found in relation to the average weight for weaning, at 365 days and at 550 days.

Table 1 shows the number and percentage of cattle that failed or were censored by variable. Regarding the SB covariate, there was a higher percentage of failures (88.6%) in calves born in the rainy season. In relation to S, male calves failed more (82.7%) compared to females (56.8%). Regarding the variables BW, WW, W365 and W550 all had a higher percentage of failures, for weights below the average.

The estimates for the parameters of the inverse Gaussian-lognormal univariate frailty model are described in Table 3, where only the estimates of the parameters of the covariates that were significant when considering p-value less than 5% were presented.

Parameters

EMV

EP

     CI (95%)

p-valor

FRR

 θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiabeI7aXbaa@3A08@

0.155

0.593

-

 

-

-

μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0gaaa@38E4@

3.924

0.187

-

 

-

-

σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdmhaaa@38F1@

0.544

0.134

-

 

-

-

β 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2aaSbaaSqaaiaaigdaaeqaaaaa@39B6@  (SB)

-1.310

0.319

[0.144;  0.504]

 

<0,001

0.269

β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2aaSbaaSqaaiaaikdaaeqaaaaa@39B7@  (S)

1.677

0.527

[1.904;15.028]

 

 0,001

5.349

β 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2aaSbaaSqaaiaaiodaaeqaaaaa@39B8@  (W365)

0.775

0.373

[1.044;  4.515]

 

0,038

2.170

β 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2aaSbaaSqaaiaaisdaaeqaaaaa@39B9@  (S*W365)

 -3.204

0.738

[0.010;  0.173]

 

<0,001

0.040

Table 3 Estimates of maximum likelihood (EMV), standard error (SE), confidence interval (CI 95%), p-value and failure rate ratio (FRR) for the parameters of the lognormal inverse Gaussian univariate frailty model

Among the analyzed variables (SB, S, BW, WW, W365 and W550) significance was observed in the variables SB, S, W365 and the interaction of S with W365 ( pvalue<0.05 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGWbGaeyOeI0IaamODaiaadggacaWGSbGaamyDaiaa dwgacqGH8aapcaaIWaGaaiOlaiaaicdacaaI1aaapaGaayjkaiaawM caa8qacaGGUaaaaa@4409@ The failure rate in dry SB was exp( 1.310 )=0.269 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzaiaadIhacaWGWbWdamaabmaabaWdbiabgkHiTiaaigdacaGG UaGaaG4maiaaigdacaaIWaaapaGaayjkaiaawMcaa8qacqGH9aqpca aIWaGaaiOlaiaaikdacaaI2aGaaGyoaaaa@450E@ times compared to the rainy one, indicating that there is a decrease in the risk of cattle failing (death or sale), among those that manage to stay alive, demonstrating a cattle adaptability in the herd. For variable S, the failure rate for females was exp( 1.677 )=5.349 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzaiaadIhacaWGWbWdamaabmaabaWdbiaaigdacaGGUaGaaGOn aiaaiEdacaaI3aaapaGaayjkaiaawMcaa8qacqGH9aqpcaaI1aGaai OlaiaaiodacaaI0aGaaGyoaaaa@4435@ times the failure rate for males, that is, female calves are 5.349 times more likely to fail (death or sale) than male calves. For variable W365, the failure rate was exp( 0.775 )=2.170 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzaiaadIhacaWGWbWdamaabmaabaWdbiaaicdacaGGUaGaaG4n aiaaiEdacaaI1aaapaGaayjkaiaawMcaa8qacqGH9aqpcaaIYaGaai OlaiaaigdacaaI3aGaaGimaaaa@4428@ times for animals weighing 95 kg or more. For the interaction of variable S with W365, a failure rate of exp( 3.204 )=0.040 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzaiaadIhacaWGWbWdamaabmaabaWdbiabgkHiTiaaiodacaGG UaGaaGOmaiaaicdacaaI0aaapaGaayjkaiaawMcaa8qacqGH9aqpca aIWaGaaiOlaiaaicdacaaI0aGaaGimaaaa@4505@ was observed, indicating a decrease in the risk of cattle failing, that is, dying or leaving for sale. As for the estimated variance for θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdehaaa@38E4@ frailty, it is equal to 0.155, revealing the presence of unobserved heterogeneity, such as genetic or environmental factors.

The survival (4) and unconditioned risk (5) functions of the inverse Gaussian frailty model with log-normal basis risk are given, respectively, by:

S( t,Χ )=exp[ 1 0,155 ( 1 10,31log{ ϕ ( log( t )+3,924 0,544 ) }g( β ' Χ ιj ) ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaqada qaaiaadshacaGGSaacciGae83PdmeacaGLOaGaayzkaaGaeyypa0Ja ciyzaiaacIhacaGGWbWaamWaaeaadaWcaaqaaiaaigdaaeaacaaIWa GaaiilaiaaigdacaaI1aGaaGynaaaadaqadaqaaiaaigdacqGHsisl daGcaaqaaiaaigdacqGHsislcaaIWaGaaiilaiaaiodacaaIXaGaci iBaiaac+gacaGGNbWaaiqaaeaacqaHvpGzdaGacaqaamaabmaabaWa aSaaaeaacqGHsislciGGSbGaai4BaiaacEgadaqadaqaaiaadshaai aawIcacaGLPaaacqGHRaWkcaaIZaGaaiilaiaaiMdacaaIYaGaaGin aaqaaiaaicdacaGGSaGaaGynaiaaisdacaaI0aaaaaGaayjkaiaawM caaaGaayzFaaGaam4zamaabmaabaaccmGae4NSdi2aaWbaaSqabeaa caGGNaaaaOGae43Pdm0aaSbaaSqaaiab+L7aPjaadQgaaeqaaaGcca GLOaGaayzkaaaacaGL7baaaSqabaaakiaawIcacaGLPaaaaiaawUfa caGLDbaaaaa@6ECD@

and

h( t,X )=[ 1 0,155 2Π t exp[ 1 2 ( log( t )3,924 0,544 ) 2 ] ϕ( log( t )+3.924 0,544 ) g( β ' Χ ij ) ].[ 1 10,31log ( ϕ( log( t )+3,924 0,544 )g( β ' Χ ij ) ) 1 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadshacaGGSaGaamiwaaGaayjkaiaawMcaaiabg2da9maadmaa baWaaSaaaeaadaWcaaqaaiaaigdaaeaacaaIWaGaaiilaiaaigdaca aI1aGaaGynamaakaaabaGaaGOmaiabfc6aqbWcbeaakiaadshaaaGa ciyzaiaacIhacaGGWbWaamWaaeaacqGHsisldaWcaaqaaiaaigdaae aacaaIYaaaamaabmaabaWaaSaaaeaaciGGSbGaai4BaiaacEgadaqa daqaaiaadshaaiaawIcacaGLPaaacqGHsislcaaIZaGaaiilaiaaiM dacaaIYaGaaGinaaqaaiaaicdacaGGSaGaaGynaiaaisdacaaI0aaa aaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2 faaaqaaiabew9aMnaabmaabaWaaSaaaeaacqGHsislciGGSbGaai4B aiaacEgadaqadaqaaiaadshaaiaawIcacaGLPaaacqGHRaWkcaaIZa GaaiOlaiaaiMdacaaIYaGaaGinaaqaaiaaicdacaGGSaGaaGynaiaa isdacaaI0aaaaaGaayjkaiaawMcaaaaacaWGNbWaaeWaaeaaiiWacq WFYoGydaahaaWcbeqaaiaacEcaaaGccqWFNoWqdaWgaaWcbaGaamyA aiaadQgaaeqaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaGaaiOlam aadmaabaWaaSaaaeaacaaIXaaabaGaaGymaiabgkHiTiaaicdacaGG SaGaaG4maiaaigdaciGGSbGaai4BaiaacEgadaqadaqaaiabew9aMn aabmaabaWaaSaaaeaacqGHsislciGGSbGaai4BaiaacEgadaqadaqa aiaadshaaiaawIcacaGLPaaacqGHRaWkcaaIZaGaaiilaiaaiMdaca aIYaGaaGinaaqaaiaaicdacaGGSaGaaGynaiaaisdacaaI0aaaaaGa ayjkaiaawMcaaiaadEgadaqadaqaaiab=j7aInaaCaaaleqabaGaai 4jaaaakiab=D6adnaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIca caGLPaaaaiaawIcacaGLPaaadaahaaWcbeqaamaaliaabaGaaGymaa qaaiaaikdaaaaaaaaaaOGaay5waiaaw2faaaaa@A0E6@

where g(β' X ij )=exp{1.310×ΕΝ+1.677×S+0.775×P3653.204×(SP365)} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4zaiaacIcacqaHYoGycaGGNaGaamiwa8aadaWgaaWcbaWdbiaa dMgacaWGQbaapaqabaGcpeGaaiykaiabg2da9iaadwgacaWG4bGaam iCaiaacUhacqGHsislcaaIXaGaaiOlaiaaiodacaaIXaGaaGimaiab gEna0IGaaiab=v5afjab=15aojabgUcaRiaaigdacaGGUaGaaGOnai aaiEdacaaI3aGaey41aqRaam4uaiabgUcaRiaaicdacaGGUaGaaG4n aiaaiEdacaaI1aGaey41aqRaamiuaiaaiodacaaI2aGaaGynaiabgk HiTiaaiodacaGGUaGaaGOmaiaaicdacaaI0aGaey41aqRaaiikaiaa dofacqGHxiIkcaWGqbGaaG4maiaaiAdacaaI1aGaaiykaiaac2haaa a@6C60@ .

According to Figure1, it was possible to observe that 50% of the calves had frailty varying between  and 50% ranging from , indicating the presence of relatively high unobserved heterogeneity in half of the herd.

To assess the goodness of fit of the model, in Figure 2 are graphs of Cox-Snell residuals, Martingale residuals and Deviance residuals. In panels (a) and (b), it is observed that the Cox-Snell residuals approximately follow a standard exponential distribution, which indicates an acceptable global goodness-of-fit of the model. Panels (c) and (d) do not suggest the existence of outlier points.

A comparative study of the inverse Gaussian frailty model was carried out using the lognormal and log-logistic basis risk functions, described in Table 4, where the Akaike criterion (AIC) and Bayesian information criterion (BIC) were used for the selection of models, showing that the inverse Gaussian-lognormal frailty model is the most suitable for presenting the lowest value of AIC and BIC.

 

lognormal

log-logistic

Parameters

 Estimates          Standard error

Estimates

Standard error

 θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiabeI7aXbaa@3A08@

        0.155                    0.593  

0.014

0.322

μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0gaaa@38E4@

        3.924                    0.187

-

   -

σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdmhaaa@38F1@

        0.544                    0.134

-

   -

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdegaaa@38CD@

             -                            -

       -11.617

2.082

γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdCgaaa@38D5@

             -                            -

2.962

0.581

β 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2aaSbaaSqaaiaaigdaaeqaaaaa@39B6@  (SB)

      -1.310                     0.319

       -1.264

0.289

β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2aaSbaaSqaaiaaikdaaeqaaaaa@39B7@  (S)

        1.677                    0.527

1.513

0.493

β 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2aaSbaaSqaaiaaiodaaeqaaaaa@39B8@  (W365)

        0.775                    0.373

0.695

0.355

β 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2aaSbaaSqaaiaaisdaaeqaaaaa@39B9@  (S*W365)

      -3.204                    0.738

-2.978

0.687

Log-Veross

                     -372.94

                             -374.79

AIC

                     759.88

763.59

BIC

                     778.25

781.97

Table 4 Estimates for the parameters of the lognormal inverse Gaussian and log-logistic inverse Gaussian fragility models

Discussion

Adaptability, or ability to adapt, can be assessed by the animal's ability to adjust to average environmental conditions as well as to climatic extremes. Well-adapted animals are characterized by maintenance or minimal reduction in productive performance, high reproductive efficiency, resistance to diseases, longevity and low mortality rate during exposure to stress.24

The small size of CPD cattle is the main reason alleged to nearly drive them to extinction. However, the extreme conditions to which animals of this breed are subjected are rarely mentioned. Improved breeds, adapted to good pastures, if kept in the same conditions offered to CPD cattle, will soon have their weight reduced and their reproductive performance negatively affected. Furthermore, it is important to add that the production capacity of a breed does not depend only on the individual weight of the animals, the birth and mortality rates being fundamental. A herd of heavier animals, but less prolific and with a higher percentage of deaths, results in less meat production. In addition, the same pasture can guarantee the feeding of a greater number of smaller animals. Therefore, a more adequate index to evaluate the performance of a cattle breed in pasture is its annual productivity per unit of area.25

The perspective addressed in this research was supported by the longevity of cattle and the departure from the herd caused by death or sale. There was a predominance of 66% of calves born in the dry season, indicating that more than half of the calves were born in a favorable period for their development, caused by the reduction of diseases in the environment and mortality of the calves, in addition to the supply of nutrients in the pasture in the pregnant season for the mother. That is, the calf born during the dry season, the mother during pregnancy had more pasture available, therefore more milk and consequently a fatter calf. Regarding the standard weights (birth, weaning, 365 days and 550 days), a higher frequency of cattle with weight above the average was found, indicating a better genetic concentration and good adaptability.

The univariate inverse Gaussian frailty model with lognormal basis risk was used, where the following covariates were significant (p-value < 5%) and the interaction of S with W365, as shown in Table 3. It was still observed through the failure rate ratio, that for the covariate SB, there was a decrease in the failure rate (death or sale) for cattle born in the dry season, which can be explained by having less diseases for the calves, in addition to the supply of nutrients in the pasture at the time of pregnancy for the mother, demonstrating greater longevity for the cattle. For variable S, a higher failure rate was found for females than that for males, which can be explained by the fact that as females give birth annually, in the absence of supplementation, their organism directs calcium from the bones to the milk during the breastfeeding, making the cow leaner and more subject to mortality. For variable W365, a higher failure rate was found for cattle weighing 95kg or more, which can be explained by heavier cattle leaving the herd for sale, slaughter or reproduction.

The methodology used in this study proved to be promising, with interesting results in the study to assess the permanence of animals in the herd, as it can be seen in Figure 1, where weaknesses inherent to environmental and genetic factors were detected, and in Figure 2 where the adjustment tests of models for effects of genetic nature as random were carried out, which include the indication of adequacy of the frailty model to meet the objectives proposed by the Cox-Snell, Martingale and Deviance tests.

Figure 1 Univariate inverse Gaussian frailty with lognormal baseline risk.

Figure 2 Residues of Cox-Snell, Martingale and Deviance from the lognormal inverse Gaussian fragility model for data from cattle of the Curraleiro Pé-Duro breed.

In this study, modeling the length of stay of the calf in the herd with the inverse Gaussian - lognormal univariate frailty model, where the random effect was associated with each animal, the estimated variance for frailty, , indicating the presence of unobserved heterogeneity, caused by genetic or environmental factors, which is related to factors such as: coat color, fur color, maternal ability, thermoneutrality zone, rearing condition, type of pasture, type of food, among others.26

Conclusion

The main conclusion of this article is that the use of frailty models proved to be an adequate selection criterion for the proposed situations. It also allowed incorporating a term for the unobserved heterogeneity that affects the estimation of risk, where it was possible to observe for the univariate frailty model, the statistical significance in the covariates SB, S, W365 and the interaction of S with W365 affecting longevity of the bovine. In this sense, frailty models can be used as a tool to help in animal improvement.

Acknowledgments

None.

Conflicts of interest

The authors declare no conflicts of interest.

References

  1. Van Arendonk, JAM. Economic importance and possibilities for improvement of dairy cow herd life. In:World congress of genetic applied to livestock production’. Lincoln;1986.
  2. Ferreira WJ. Estudo de tendência genética e de medidas de longevidade em bovinos da raça Holandesa no estado de Minas Gerais. 2003.
  3. Colosimo EA, Giolo SR.  Applied survival analysis. Editora Edgard Blucher. São Paulo, 2006.
  4. Bonetti O, A Rossoni C, e Nicoletti. Genetic parameters estimation and genetic evaluation for longevity in italian brown swiss bulls. Italian Journal of Animal Science. 2009;8:30–32.
  5. Caetano , Rosa G, Savegnago R, et al. Characterization of the variable cow’s age at last calving as a measurement of longevity by using the kaplan–meier estimator and the cox model. Animal. 2013;7:540–546.
  6. Bolfarine HRJAJ. ‘Análise de Sobrevivência’. 2ª Escola de Modelos de Regressão, Rio de Janeiro,1991.
  7. Louzada Neto F, Pereira BdB. Modelos em análise de sobrevivência. Caderno de saúde coletiva, Rio Janeiro. 2000;9–26.
  8. Tomazella VLD. Recurring event data modeling via Poisson process with frailty term. Universidade de São Paulo;2003.
  9. Calsavara VF. Fractional cure survival models using a generalized modified Weibull frailty and lifespan term. 2011.
  10. Vaupel JW, Manton KG, Stallard E. The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography. 1979;16:439–454.
  11. Hougaard P. Life table methods for heterogeneous populations: distributions describing the heterogeneity. Biometrika.1984;71:75–83.
  12. Salles P, Medeiros G, Costa RG, et al. Conservation and breeding program of brazilian curraleiro (pé duro) cattle breed. AICA-Actas Iberoamericana de Conservacion animal. 2011;1:453–456.
  13. Azevedo DMRR, Alves AA, Feitosa FS. Adaptability of Pé-duro cattle to the climatic conditions of the semi-arid region of the State of Piauí.. Arch Zootec. 2008;57:5-11.
  14. Carvalho GMC, Lima Neto A, Da Frota MNL, et al. The use of “curraleiro pé-duro” cattle in crossbreeding for the production of good quality meat in the hot tropics-phase 1. In 'Embrapa Meio Norte-Article in congress proceedings (ALICE)’. Northeastern Congress of Animal Production; 2015.
  15. Moore DF. Applied survival analysis using R. Springer;2016.
  16. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. Journal of the American statistical association. 1958; 53: 457–481.
  17. R Core Team 2016. R: a language and environment for statistical computing. Retrieved on 9 Septembre 2019.
  18. Munda M, Rotolo F. Parfm: Parametric Frailty Models in R. Journal of Statistical Software. 2012;51(11).
  19. Cox DR. Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological). 1972;34:187–202.
  20. Hougaard P. Frailty models for survival data. Lifetime data analysis. 1995;1(3):255–273.
  21. Wienke A. Frailty models in survival analysis. 1st ed. Chapman and Hall/CRC;2010.
  22. Akaike H. A new look at the statistical model identification. IEEE transactions on automatic control. 1974;19:716–723.
  23. Schwarz G. et al. Estimating the dimension of a model. The annals of statistics. 1978;6(2):461–464.
  24. Azevêdo DMMR, Alves AA. Bioclimatology applied to dairy cattle production in the tropics. Teresina: Embrapa Mid-North, 2009.
  25. Carvalho JH. Economic potential of the hard-footed bovine. Embrapa Meio-Norte. Infoteca-e. 2002.
  26. Carvalho GMC, Almeida MDO, Azevêdo DMMR, et al. Origin, formation and conservation of the Pé-Duro cattle, the bovine of the Brazilian Northeast. Embrapa Meio-Norte. Infoteca-e; 2010.
Creative Commons Attribution License

©2022 Soares, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.