Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 6 Issue 2

Flexing and bonding with a trivariate probability density to explain health consequences of hazardous volcanic eruptions

Ramalingam Shanmugam,1 Karan P Singh2

1Honorary Professor of International Studies, School of Health Administration, USA
2Professor and Chair, Department of Epidemiology and Biostatistics, School of Community and Rural Health, UT Health Northeast, USA

Correspondence: Karan P. Singh, Professor and Chair, Department School of Community and Rural Health of Epidemiology and Biostatistics, UT Health Northeast, 11937 U.S. Hwy 271, Tyler, Texas 75708-3154, USA

Received: May 16, 2017 | Published: July 25, 2017

Citation: Shanmugam R, Singh KP. Flexing and bonding with a trivariate probability density to explain health consequences of hazardous volcanic eruptions. Biom Biostat Int J. 2017;6(2):322-327. DOI: 10.15406/bbij.2017.06.00164

Download PDF

Summary

In global healthcare data analysis such as the consequences due to volcanic eruptions, the threee main random variables (ash in proportion, spilled distance in kilo meter, and angle direction of the wind) are seemingly independent but their data indicate correlations otherwise. This apparent conflict requires a careful scruitiny and selection of appropriate underlying model for the data in more realistic sense rather than the analyst’s convenience. For this purpose, a trivariate probability density function (PDF), with a bonding function of the variables and a flexing parameter, is introduced and investigated with its statistical properties in this article. The flexing parameter allows the PDF to explain the so called sampling bias in the collected data. The locations which received more debris have higher chance of being included in the data collection and it is what the statistics literature calls “sampling bias.” The flexing parameter enriches the versatility of the model. Such a novelty based new PDF is named flexing and bonding trivariate distribution (FBTD) in this article. Several expressions for FBTD are derived and illustrated using data about the eruption of Eyjafjallajokull volcano, Iceland on 14th April 2010 as it disrupted flights, voyages, travels, and life itself not only in Europe but also elsewhere.

Keywords: probability, model, parameters, correlation, data analysis, ,maximum likelihood

Motivation

Millions of people suffer due to volcanic gases worldwide. Health hazards in volcanic gases1 like SO2 H2S and CO2 cause fatalities from asphyxiation.2 Chronic exposure to H2S increases respiratory diseases.3,4 Natural hazards like the 14th April 2010 eruption of Eyjafjallajokull volcano, Iceland cause global public health hazards within a radius of distance from its epi-center in several directions of measurable angle due to wind.5,6 The metallic and heavy substances in the ash are trigger illness.4 Learning from such natural calamity data may not help to prevent it but surely assists to reduce health damages.7 Developing an appropriate model for the data is a starting point. Modeling such trivariate volcanic data has been a challenge to those who wish to analyze and interpret data evidence.8 A reason is that the variables are seemingly independent but are correlated otherwise, according to the data (Table 1, Figures 1 and 2). This is a conflict. Such a conflict is not unique to volcanic data analysis but also in tsunami, cyclone, earthquake, and cancer data analysis. In an analogues manner, the breast cancer research comes across a similar scenario. The malignant cells spread in an area of distance at some direction with a varying carcinogenic intensity level. An appropriate model for the collected data of a specific scenario is a necessity to interpret the data evidence. What is model? Model is an abstraction of reality. To echo the reality, the model ought to have appropriate ingredients. How should a data analyst create a model which integrates seemingly independent but rather correlated random variables with a meaningful versatility and interpretability is the aim of this article. To attain this aim, this article innovatively introduces a non-negative bonding function w(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG3bGaaiikaiabew9aMjaacMcaaaa@3C57@  with a flexing parameter ϕ>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHvpGzcqGH+aGpcaaIWaaaaa@3BC4@ . When the flexing parameter ϕ=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHvpGzcqGH9aqpcaaIWaaaaa@3BC2@ , the model exhibits the trivial scenario of mutual independence of the data variables as special cases. In modeling volcanic debris data, the affected distance ( ) and the direction angle ( ) of the wind are seemingly independent random variables. Assume their probability density functions (PDF) are

f(d| α,β)= β α d α1 e d/β /Γ(α);d>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbGaaiikaiaadsgadaabbaqaaiabeg7aHjaacYcacqaHYoGyaiaa wEa7aiaacMcacqGH9aqpcqaHYoGydaahaaqabeaajugWaiabeg7aHb aajuaGcaWGKbWaaWbaaeqabaqcLbmacqaHXoqycqGHsislcaaIXaaa aKqbakaadwgalmaaCaaajuaGbeqaaKqzadGaeyOeI0Iaamizaiaac+ cacqaHYoGyaaqcfaOaai4laiabfo5ahjaacIcacqaHXoqycaGGPaGa ai4oaiaadsgacqGH+aGpcaaIWaaaaa@5D25@ ,
with shape and rate parameters α>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHXoqycqGH+aGpcaaIWaaaaa@3B9B@ and β>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHYoGycqGH+aGpcaaIWaaaaa@3B9D@ f(θ)=1/2π;θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbGaaiikaiabeI7aXjaacMcacqGH9aqpcaaIXaGaai4laiaaikda cqaHapaCcaGG7aGaeqiUdeNaeyOpa4JaaGimaaaa@4558@ .

Day

θ= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCcqGH9aqpaaa@3AF6@ Wind direction in angle

d= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGKbGaeyypa0daaa@3A29@ Distance (in kilo meter) where ashes are found

y= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG5bGaeyypa0daaa@3A3E@ Percent ashes   mass  more than 31 μm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH8oqBcaWGTbaaaa@3AE2@  less than 63 μm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH8oqBcaWGTbaaaa@3AE2@

14 Apr 2010

90

1

21

14 Apr 2010

90

2

24

14 Apr 2010

90

10

13

14 Apr 2010

90

10

17

15 Apr 2010

90

58

44

15 Apr 2010

90

60

56

15 Apr 2010

90

58

70

15 Apr 2010

90

56

65

16 Apr 2010

90

21

26

16 Apr 2010

90

11

47

22 Apr 2010

135

4

7

5 May 2010

135

30

46

8 May 2010

135

13

12

10 May 2010

135

13

12

13 May 2010

135

10

38

13 May 2010

225

14

10

14 May 2010

135

8

42

Average

113.8

22.3

32.3

Variance

1295.4

462.2

407.7

Flexing parameter

ϕ ^ mle =1.57 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHvpGzgaqcaSWaaSbaaKqbagaajugWaiaad2gacaWGSbGaamyzaaqc fayabaGaeyypa0JaaGymaiaac6cacaaI1aGaaG4naaaa@4347@

Table 1 Volcanic eruption of eyjafjallajokull during 14th april - 13th may 2010.5

Figure 1 Box plots of distance and percent ashes at a given wind direction.

Figure 2 The 3-dimensional inter-relations of y,d,θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG5bGaaiilaiaadsgacaGGSaGaeqiUdehaaa@3D36@ .

The third variable is percent, Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGzbaaaa@3918@ ash mass and it is assumed to follow independently a beta distribution,

f(y| δ,γ)=Γ(δ+γ) y δ1 (1y) γ1 /Γ(δ)Γ(γ);0<y<1; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbGaaiikaiaadMhadaabbaqaaiabes7aKjaacYcacqaHZoWzaiaa wEa7aiaacMcacqGH9aqpcqqHtoWrcaGGOaGaeqiTdqMaey4kaSIaeq 4SdCMaaiykaiaadMhalmaaCaaajuaGbeqaaKqzadGaeqiTdqMaeyOe I0IaaGymaaaajuaGcaGGOaGaaGymaiabgkHiTiaadMhacaGGPaWaaW baaeqabaqcLbmacqaHZoWzcqGHsislcaaIXaaaaKqbakaac+cacqqH toWrcaGGOaGaeqiTdqMaaiykaiabfo5ahjaacIcacqaHZoWzcaGGPa Gaai4oaiaaicdacqGH8aapcaWG5bGaeyipaWJaaGymaiaacUdaaaa@6869@

with parameters δ,γ>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH0oazcaGGSaGaeq4SdCMaeyOpa4JaaGimaaaa@3DF8@ .

The variance of the distance is Var(d| α,β)=βE(d| α,β) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGwbGaamyyaiaadkhacaGGOaGaamizamaaeeaabaGaeqySdeMaaiil aiabek7aIbGaay5bSdGaaiykaiabg2da9iabek7aIjaadweacaGGOa GaamizamaaeeaabaGaeqySdeMaaiilaiabek7aIbGaay5bSdGaaiyk aaaa@4DEF@ , where the expected distance is E(d| α,β)=αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiaadsgadaabbaqaaiabeg7aHjaacYcacqaHYoGyaiaa wEa7aiaacMcacqGH9aqpcqaHXoqycqaHYoGyaaa@4510@ . The parameter β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHYoGyaaa@39DB@ captures the proportionality of the expected amount in variance. Furthermore, the entropy “ Elnf(d| α,β) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq GHsislcaWGfbGaciiBaiaac6gacaWGMbGaaiikaiaadsgadaabbaqa aiabeg7aHjaacYcacqaHYoGyaiaawEa7aiaacMcaaaa@4486@ ” of the distance is minimally “ lnβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGci GGSbGaaiOBaiabek7aIbaa@3BBF@ ” but it increases at a rate α+lnΓ(α)+(1α)ψ(α) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHXoqycqGHRaWkciGGSbGaaiOBaiabfo5ahjaacIcacqaHXoqycaGG PaGaey4kaSIaaiikaiaaigdacqGHsislcqaHXoqycaGGPaGaeqiYdK Naaiikaiabeg7aHjaacMcaaaa@4B47@ , where ψ(α) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHipqEcaGGOaGaeqySdeMaaiykaaaa@3D00@ is the well-known digamma function.The parameter α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXo qyaaa@394B@ portrays the increment.

The variance of the distance is Var(d| α,β)=βE(d| α,β) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGwbGaamyyaiaadkhacaGGOaGaamizamaaeeaabaGaeqySdeMaaiil aiabek7aIbGaay5bSdGaaiykaiabg2da9iabek7aIjaadweacaGGOa GaamizamaaeeaabaGaeqySdeMaaiilaiabek7aIbGaay5bSdGaaiyk aaaa@4DEF@ , where the expected distance is E(d| α,β)=αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiaadsgadaabbaqaaiabeg7aHjaacYcacqaHYoGyaiaa wEa7aiaacMcacqGH9aqpcqaHXoqycqaHYoGyaaa@4510@ . The parameter β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHYoGyaaa@39DB@ captures the proportionality of the expected amount in variance. Furthermore, the entropy “ Elnf(d| α,β) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq GHsislcaWGfbGaciiBaiaac6gacaWGMbGaaiikaiaadsgadaabbaqa aiabeg7aHjaacYcacqaHYoGyaiaawEa7aiaacMcaaaa@4486@ ” of the distance is minimally “ lnβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGci GGSbGaaiOBaiabek7aIbaa@3BBF@ ” but it increases at a rate α+lnΓ(α)+(1α)ψ(α) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHXoqycqGHRaWkciGGSbGaaiOBaiabfo5ahjaacIcacqaHXoqycaGG PaGaey4kaSIaaiikaiaaigdacqGHsislcqaHXoqycaGGPaGaeqiYdK Naaiikaiabeg7aHjaacMcaaaa@4B47@ , where ψ(α) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHipqEcaGGOaGaeqySdeMaaiykaaaa@3D00@ is the well-known digamma function.The parameter α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHXoqyaaa@39D9@ portrays the increment.

The variance of the angle is Var(θ)= {E(θ)} 2 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGwbGaamyyaiaadkhacaGGOaGaeqiUdeNaaiykaiabg2da9maalaaa baGaai4EaiaadweacaGGOaGaeqiUdeNaaiykaiaac2halmaaCaaaju aGbeqaaKqzadGaaGOmaaaaaKqbagaacaaIZaaaaaaa@48E0@ , where the expected angle of the wind direction is E(θ)=π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiabeI7aXjaacMcacqGH9aqpcqaHapaCaaa@3ED6@ . The entropy Elnf(θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq GHsislcaWGfbGaciiBaiaac6gacaWGMbGaaiikaiabeI7aXjaacMca aaa@3FCF@ ” of the angle is “ ln(2π) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGci GGSbGaaiOBaiaacIcacaaIYaGaeqiWdaNaaiykaaaa@3DF0@ ”.

The variance of the percent ash is

Var(y| δ,γ)=E(y| δ,γ){1E(y| δ,γ)}/(δ+γ+1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGwbGaamyyaiaadkhacaGGOaGaamyEamaaeeaabaGaeqiTdqMaaiil aiabeo7aNbGaay5bSdGaaiykaiabg2da9iaadweacaGGOaGaamyEam aaeeaabaGaeqiTdqMaaiilaiabeo7aNbGaay5bSdGaaiykaiaacUha caaIXaGaeyOeI0IaamyraiaacIcacaWG5bWaaqqaaeaacqaH0oazca GGSaGaeq4SdCgacaGLhWoacaGGPaGaaiyFaiaac+cacaGGOaGaeqiT dqMaey4kaSIaeq4SdCMaey4kaSIaaGymaiaacMcaaaa@60C0@ ,

where the expected ash is E(y| δ,γ)= δ (δ+γ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiaadMhadaabbaqaaiabes7aKjaacYcacqaHZoWzaiaa wEa7aiaacMcacqGH9aqpdaWcaaqaaiabes7aKbqaaiaacIcacqaH0o azcqGHRaWkcqaHZoWzcaGGPaaaaaaa@492D@ .

The entropy Elnf(y| δ,γ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq GHsislcaWGfbGaciiBaiaac6gacaWGMbGaaiikaiaadMhadaabbaqa aiabes7aKjaacYcacqaHZoWzaiaawEa7aiaacMcaaaa@44A7@ ” of the percent ash spread is

lnΓ(δ+γ)lnΓ(δ)lnΓ(γ)(δ1)ψ(δ)(γ1)ψ(γ)+(δ+γ2)ψ(δ+γ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGci GGSbGaaiOBaiabfo5ahjaacIcacqaH0oazcqGHRaWkcqaHZoWzcaGG PaGaeyOeI0IaciiBaiaac6gacqqHtoWrcaGGOaGaeqiTdqMaaiykai abgkHiTiGacYgacaGGUbGaeu4KdCKaaiikaiabeo7aNjaacMcacqGH sislcaGGOaGaeqiTdqMaeyOeI0IaaGymaiaacMcacqaHipqEcaGGOa GaeqiTdqMaaiykaiabgkHiTiaacIcacqaHZoWzcqGHsislcaaIXaGa aiykaiabeI8a5jaacIcacqaHZoWzcaGGPaGaey4kaSIaaiikaiabes 7aKjabgUcaRiabeo7aNjabgkHiTiaaikdacaGGPaGaeqiYdKNaaiik aiabes7aKjabgUcaRiabeo7aNjaacMcaaaa@73A6@ .

In other words, f(y,θ,d)=p(y)q(θ)r(d) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbGaaiikaiaadMhacaGGSaGaeqiUdeNaaiilaiaadsgacaGGPaGa eyypa0JaamiCaiaacIcacaWG5bGaaiykaiaadghacaGGOaGaeqiUde NaaiykaiaadkhacaGGOaGaamizaiaacMcaaaa@4B0B@ , where p(y) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGWbGaaiikaiaadMhacaGGPaaaaa@3B86@ , q(θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGXbGaaiikaiabeI7aXjaacMcaaaa@3C3F@ and r(d) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGYbGaaiikaiaadsgacaGGPaaaaa@3B73@ denote respectively marginal PDF of the data variables y, d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGKbaaaa@3923@ and θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39F0@ . Shanmugam and Chattamvelli9 for derivations and statistical details about beta, gamma and uniform distributions.

On the contrary to a seeming impression that the three random variables y, d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGKbaaaa@3923@ and θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39F0@ are independent, their data (Table 2) exhibit correlated, simply negating the assumption of their independence. Such a data based clue warrants a necessity to derive a realistic trivariate PDF for the collected data. This necessity results in an innovative and realistic model with a bonding function w(ϕ,y,θ,d) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG3bGaaiikaiabew9aMjaacYcacaWG5bGaaiilaiabeI7aXjaacYca caWGKbGaaiykaaaa@4204@ in which ϕ>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHvpGzcqGH+aGpcaaIWaaaaa@3BC4@ is recognized as a flexing parameter for the sake of versatility as it is done in this article.

This trivariate PDF (1) is new to the literature and hence, it is named flexing and bonding trivariate distribution (FBTD). The statistical properties of FBTD are done first in Section 2 and are illustrated later in Section 3. Final comments are made in Section 4.10

Variable MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaK qbakabgkziUcGcbaqcfaOaey4KH8kaaaa@3CB5@

Wind direction (in angle)

Distance (in kilo meter) where ashes are found

Percent ashes  ( mass  more than 31)

Wind direction (in angle)

1

-0.35 (p value = 0.12)

-0.44 (p value = 0.05)

Distance (in kilo meter) where ashes are found

-0.35

1

0.77 (p value = 0.0001)

Percent ashes  ( mass  more than 31)

-0.44

0.77

1

Table 2 Correlation among the three random variables

A new trivariate probability density and its properties

To be realistic, the data collection process is sometimes tilted unevenly in the collection of natural calamities such volcanic eruptions. The tilted sampling process is recognized as length-biased sampling with a weight factor w(d,θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG3bGaaiikaiaadsgacaGGSaGaeqiUdeNaaiykaaaa@3DDE@  in statistics literature. Then, what is an appropriate weight factor in our scenario? A rationality for selecting the weight factor is the following. The area in which the volcanic debris is found is proportional to the circular circumference 2πd MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca aIYaGaeqiWdaNaamizaaaa@3B9C@ with radius distance d>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGKbGaeyOpa4JaaGimaaaa@3AE5@ . Such proportionality is well connected to an angle, θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCcqGH+aGpcaaIWaaaaa@3BB2@ due to wind direction and hence, it is θ 2π (2πd)=θd MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda WcaaqaaiabeI7aXbqaaiaaikdacqaHapaCaaGaaiikaiaaikdacqaH apaCcaWGKbGaaiykaiabg2da9iabeI7aXjaadsgaaaa@44D9@ .

In addition to this proportionality in the weight factor, a flexibility to condense or expand the proportionality is needed and it is done by introducing a finite and non-negative flexible parameter ϕ>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHvpGzcqGH+aGpcaaIWaaaaa@3BC4@  so that the weight function becomes w(ϕ,d,θ)(1+ϕθd) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG3bGaaiikaiabew9aMjaacYcacaWGKbGaaiilaiabeI7aXjaacMca cqGHDisTcaGGOaGaaGymaiabgUcaRiabew9aMjabeI7aXjaadsgaca GGPaaaaa@4933@ to accompany the PDF f(d,θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbGaaiikaiaadsgacaGGSaGaeqiUdeNaaiykaaaa@3DCD@ . Because of the third variable Y, the sampling bias weight function is expanded to w(y,θ,d)=(1+ϕyθd) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG3bGaaiikaiaadMhacaGGSaGaeqiUdeNaaiilaiaadsgacaGGPaGa eyypa0JaaiikaiaaigdacqGHRaWkcqaHvpGzcaWG5bGaeqiUdeNaam izaiaacMcaaaa@48ED@ . In other words, the trivariate PDF of the percent ashes, radius distance, and angle of wind in the collected data is

f(y,θ,d,ϕ)= (Γ[δ+γ+1])(1+ϕyθd) d α1 e d/β y δ1 (1y) γ1 β α 2π(γ+[1+ϕπαβ]δ)Γ(δ)Γ(γ)Γ(α) ; 0<y<1;0<θ<2π;d,δ,γ,ϕ,α,β,>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaK qbakaadAgacaGGOaGaamyEaiaacYcacqaH4oqCcaGGSaGaamizaiaa cYcacqaHvpGzcaGGPaGaeyypa0ZaaSaaaeaacaGGOaGaeu4KdCKaai 4waiabes7aKjabgUcaRiabeo7aNjabgUcaRiaaigdacaGGDbGaaiyk aiaacIcacaaIXaGaey4kaSIaeqy1dyMaamyEaiabeI7aXjaadsgaca GGPaGaamizaSWaaWbaaKqbagqabaqcLbmacqaHXoqycqGHsislcaaI XaaaaKqbakaadwgalmaaCaaajuaGbeqaaKqzadGaeyOeI0Iaamizai aac+cacqaHYoGyaaqcfaOaamyEamaaCaaabeqaaKqzadGaeqiTdqMa eyOeI0IaaGymaaaajuaGcaGGOaGaaGymaiabgkHiTiaadMhacaGGPa WcdaahaaqcfayabeaajugWaiabeo7aNjabgkHiTiaaigdaaaaajuaG baGaeqOSdi2aaWbaaeqabaqcLbmacqaHXoqyaaqcfaOaaGOmaiabec 8aWjaacIcacqaHZoWzcqGHRaWkcaGGBbGaaGymaiabgUcaRiabew9a Mjabec8aWjabeg7aHjabek7aIjaac2facqaH0oazcaGGPaGaeu4KdC Kaaiikaiabes7aKjaacMcacqqHtoWrcaGGOaGaeq4SdCMaaiykaiab fo5ahjaacIcacqaHXoqycaGGPaaaaiaacUdaaOqaaKqbakaaicdacq GH8aapcaWG5bGaeyipaWJaaGymaiaacUdacaaIWaGaeyipaWJaeqiU deNaeyipaWJaaGOmaiabec8aWjaacUdacaWGKbGaaiilaiabes7aKj aacYcacqaHZoWzcaGGSaGaeqy1dyMaaiilaiabeg7aHjaacYcacqaH YoGycaGGSaGaeyOpa4JaaGimaaaaaa@B5A4@ (1)

It is straightforward to check out that f(y,θ,d,ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbGaaiikaiaadMhacaGGSaGaeqiUdeNaaiilaiaadsgacaGGSaGa eqy1dyMaaiykaaaa@41F3@ in (1) is a bona fide PDF, since f(y,θ,d,ϕ)0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbGaaiikaiaadMhacaGGSaGaeqiUdeNaaiilaiaadsgacaGGSaGa eqy1dyMaaiykaiabgwMiZkaaicdaaaa@4473@ and

0 1 0 0 2π f(y,θ,d,ϕ)θdy =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda WdXbqaamaapehabaWaa8qCaeaacaWGMbGaaiikaiaadMhacaGGSaGa eqiUdeNaaiilaiaadsgacaGGSaGaeqy1dyMaaiykaiabgkGi2kabeI 7aXjabgkGi2kaadsgacqGHciITcaWG5baabaqcLbmacaaIWaaajuaG baqcLbmacaaIYaGaeqiWdahajuaGcqGHRiI8aaqaaKqzadGaaGimaa qcfayaaKqzadGaeyOhIukajuaGcqGHRiI8aaqaaKqzadGaaGimaaqc fayaaKqzadGaaGymaaqcfaOaey4kIipacqGH9aqpcaaIXaaaaa@63B1@ .

With no flexibility (that is, ϕ=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHvpGzcqGH9aqpcaaIWaaaaa@3BC2@ ), the FBTD (1) precipitates to a product of the three (that is, gamma, circular uniform, and beta) bona fide marginal PDFs, implying that the three data variables (percent volcanic ash Y, D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGebaaaa@3903@ affected distance and wind direction angle θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39F0@ ) are all stochastically mutually independent (as, f(y,θ,d)=f(y)f(θ)f(d) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbGaaiikaiaadMhacaGGSaGaeqiUdeNaaiilaiaadsgacaGGPaGa eyypa0JaamOzaiaacIcacaWG5bGaaiykaiaadAgacaGGOaGaeqiUde NaaiykaiaadAgacaGGOaGaamizaiaacMcaaaa@4AEA@ ). Otherwise (that is, when ϕ0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHvpGzcqGHGjsUcaaIWaaaaa@3C83@ ), the data variables are all mutually and stochastically dependent (that is, f(y,θ,d,ϕ0)f(y)f(θ)f(d) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbGaaiikaiaadMhacaGGSaGaeqiUdeNaaiilaiaadsgacaGGSaGa eqy1dyMaeyiyIKRaaGimaiaacMcacqGHGjsUcaWGMbGaaiikaiaadM hacaGGPaGaamOzaiaacIcacqaH4oqCcaGGPaGaamOzaiaacIcacaWG KbGaaiykaaaa@50A4@ ). The flexing parameter ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHvpGzaaa@3A02@ helps to construct a contour mapping of similarly affected places by volcanic debris. The product moment of the FBTD (1) is

E( y m d n θ p )= 0 1 0 0 2π y m d n θ p f(y,θ,d,ϕ)θdy = 0 1 0 0 2π y m d n θ p (Γ[δ+γ+1])(1+ϕyθd) d α1 e d/β y δ1 (1y) γ1 2π β α (γ+[1+ϕπαβ]δ)Γ(δ)Γ(γ)Γ(α) θdy = (2π) p β n (γ+[1+ϕπαβ]δ) Γ(n+α) Γ(α) Γ(m+δ) Γ(δ) Γ(1+δ+γ) Γ(m+δ+γ) { 1 (p+1) + 2πϕβ(n+α)(m+δ) (p+2)(m+δ+γ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8qkY=wiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaju aGcaWGfbGaaiikaiaadMhajyaGdaahaaqcfayabeaajugWaiaad2ga aaqcfaOaamizamaaCaaabeqcgayaaiaad6gaaaqcfaOaeqiUde3aaW baaeqajyaGbaGaamiCaaaajuaGcaGGPaGaeyypa0Zaa8qCaeaadaWd XbqaamaapehabaGaamyEamaaCaaabeqcgayaaiaad2gaaaqcfaOaam izamaaCaaabeqcgayaaiaad6gaaaqcfaOaeqiUde3aaWbaaeqajyaG baGaamiCaaaajuaGcaWGMbGaaiikaiaadMhacaGGSaGaeqiUdeNaai ilaiaadsgacaGGSaGaeqy1dyMaaiykaiabgkGi2kabeI7aXjabgkGi 2kaadsgacqGHciITcaWG5baajyaGbaGaaGimaaqaaiaaikdacqaHap aCaKqbakabgUIiYdaajyaGbaGaaGimaaqaaiabg6HiLcqcfaOaey4k IipaaKGbagaacaaIWaaabaGaaGymaaqcfaOaey4kIipaaeaacqGH9a qpdaWdXbqaamaapehabaWaa8qCaeaacaWG5bWaaWbaaeqajyaGbaGa amyBaaaajuaGcaWGKbWaaWbaaeqajyaGbaGaamOBaaaajuaGcqaH4o qCdaahaaqabKGbagaacaWGWbaaaKqbaoaalaaabaGaaiikaiabfo5a hjaacUfacqaH0oazcqGHRaWkcqaHZoWzcqGHRaWkcaaIXaGaaiyxai aacMcacaGGOaGaaGymaiabgUcaRiabew9aMjaadMhacqaH4oqCcaWG KbGaaiykaiaadsgajyaGdaahaaqabeaacqaHXoqycqGHsislcaaIXa aaaKqbakaadwgajyaGdaahaaqabeaacqGHsislcaWGKbGaai4laiab ek7aIbaajuaGcaWG5bWaaWbaaeqajyaGbaGaeqiTdqMaeyOeI0IaaG ymaaaajuaGcaGGOaGaaGymaiabgkHiTiaadMhacaGGPaqcga4aaWba aeqabaGaeq4SdCMaeyOeI0IaaGymaaaaaKqbagaacaaIYaGaeqiWda NaeqOSdiwcga4aaWbaaeqabaGaeqySdegaaKqbakaacIcacqaHZoWz cqGHRaWkcaGGBbGaaGymaiabgUcaRiabew9aMjabec8aWjabeg7aHj abek7aIjaac2facqaH0oazcaGGPaGaeu4KdCKaaiikaiabes7aKjaa cMcacqqHtoWrcaGGOaGaeq4SdCMaaiykaiabfo5ahjaacIcacqaHXo qycaGGPaaaaiabgkGi2kabeI7aXjabgkGi2kaadsgacqGHciITcaWG 5baajyaGbaGaaGimaaqaaiaaikdacqaHapaCaKqbakabgUIiYdaajy aGbaGaaGimaaqaaiabg6HiLcqcfaOaey4kIipaaKGbagaacaaIWaaa baGaaGymaaqcfaOaey4kIipaaOqaaKqbakabg2da9maalaaabaGaai ikaiaaikdacqaHapaCcaGGPaWaaWbaaeqajyaGbaGaamiCaaaajuaG cqaHYoGyjyaGdaahaaqabeaacaWGUbaaaaqcfayaaiaacIcacqaHZo WzcqGHRaWkcaGGBbGaaGymaiabgUcaRiabew9aMjabec8aWjabeg7a Hjabek7aIjaac2facqaH0oazcaGGPaaaamaalaaabaGaeu4KdCKaai ikaiaad6gacqGHRaWkcqaHXoqycaGGPaaabaGaeu4KdCKaaiikaiab eg7aHjaacMcaaaWaaSaaaeaacqqHtoWrcaGGOaGaamyBaiabgUcaRi abes7aKjaacMcaaeaacqqHtoWrcaGGOaGaeqiTdqMaaiykaaaadaWc aaqaaiabfo5ahjaacIcacaaIXaGaey4kaSIaeqiTdqMaey4kaSIaeq 4SdCMaaiykaaqaaiabfo5ahjaacIcacaWGTbGaey4kaSIaeqiTdqMa ey4kaSIaeq4SdCMaaiykaaaacaGG7bWaaSaaaeaacaaIXaaabaGaai ikaiaadchacqGHRaWkcaaIXaGaaiykaaaacqGHRaWkdaWcaaqaaiaa ikdacqaHapaCcqaHvpGzcqaHYoGycaGGOaGaamOBaiabgUcaRiabeg 7aHjaacMcacaGGOaGaamyBaiabgUcaRiabes7aKjaacMcaaeaacaGG OaGaamiCaiabgUcaRiaaikdacaGGPaGaaiikaiaad2gacqGHRaWkcq aH0oazcqGHRaWkcqaHZoWzcaGGPaaaaiaac2haaaaa@4D5F@ (2)

Note that, with m=0=n=p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aad2gacqGH9aqpcaaIWaGaeyypa0JaamOBaiabg2da9iaadchaaaa@3EE0@ , the expression (2) is one as it should be. With m=1=n=p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aad2gacqGH9aqpcaaIXaGaeyypa0JaamOBaiabg2da9iaadchaaaa@3EE1@ , the trivariate product moment, E(ydθ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiaadMhacaWGKbGaeqiUdeNaaiykaaaa@3DF9@ is obtained and it is

E(ydθ)=E(y)E(d)E(θ){ 1+ 4ϕE(θ)[β+E(d)](1+δ) 3(1+δ+γ) 1+ϕE(y)E(d)E(θ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiaadMhacaWGKbGaeqiUdeNaaiykaiabg2da9iaadwea caGGOaGaamyEaiaacMcacaWGfbGaaiikaiaadsgacaGGPaGaamyrai aacIcacqaH4oqCcaGGPaGaai4EamaalaaabaGaaGymaiabgUcaRmaa laaabaGaaGinaiabew9aMjaadweacaGGOaGaeqiUdeNaaiykaiaacU facqaHYoGycqGHRaWkcaWGfbGaaiikaiaadsgacaGGPaGaaiyxaiaa cIcacaaIXaGaey4kaSIaeqiTdqMaaiykaaqaaiaaiodacaGGOaGaaG ymaiabgUcaRiabes7aKjabgUcaRiabeo7aNjaacMcaaaaabaGaaGym aiabgUcaRiabew9aMjaadweacaGGOaGaamyEaiaacMcacaWGfbGaai ikaiaadsgacaGGPaGaamyraiaacIcacqaH4oqCcaGGPaaaaiaac2ha aaa@7457@ . (3)

In the absence of flexibility or equivalently referring independence among the three random variables (that is, ϕ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHvpGzcqGH9aqpcaaIWaaaaa@3BC1@ ), the product moment (3) breaks up to a product E(y)E(d)E(θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfb GaaiikaiaadMhacaGGPaGaamyraiaacIcacaWGKbGaaiykaiaadwea caGGOaGaeqiUdeNaaiykaaaa@41B1@ of their marginal moments. The expected amount, E(ydθ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiaadMhacaWGKbGaeqiUdeNaaiykaaaa@3DF9@ in (3) is at its base E(y)E(d)E(θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiaadMhacaGGPaGaamyraiaacIcacaWGKbGaaiykaiaa dweacaGGOaGaeqiUdeNaaiykaaaa@423F@ when ϕ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHvpGzcqGH9aqpcaaIWaaaaa@3BC1@

and later increases at a rate { 1+ 4ϕE(θ)[β+E(d)](1+δ) 3(1+δ+γ) 1+ϕE(y)E(d)E(θ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca GG7bWaaSaaaeaacaaIXaGaey4kaSYaaSaaaeaacaaI0aGaeqy1dyMa amyraiaacIcacqaH4oqCcaGGPaGaai4waiabek7aIjabgUcaRiaadw eacaGGOaGaamizaiaacMcacaGGDbGaaiikaiaaigdacqGHRaWkcqaH 0oazcaGGPaaabaGaaG4maiaacIcacaaIXaGaey4kaSIaeqiTdqMaey 4kaSIaeq4SdCMaaiykaaaaaeaacaaIXaGaey4kaSIaeqy1dyMaamyr aiaacIcacaWG5bGaaiykaiaadweacaGGOaGaamizaiaacMcacaWGfb GaaiikaiabeI7aXjaacMcaaaGaaiyFaaaa@638B@ ,

when ϕ0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHvpGzcqGHGjsUcaaIWaaaaa@3C82@ . We define, in this article, the trivariate product variance Var(ydθ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGwbGaamyyaiaadkhacaGGOaGaamyEaiaadsgacqaH4oqCcaGGPaaa aa@3FE7@ as Var(ydθ)=E( y 2 d 2 θ 2 ) {E(ydθ)} 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGwbGaamyyaiaadkhacaGGOaGaamyEaiaadsgacqaH4oqCcaGGPaGa eyypa0JaamyraiaacIcacaWG5bWaaWbaaeqabaqcLbmacaaIYaaaaK qbakaadsgalmaaCaaajuaGbeqaaKqzadGaaGOmaaaajuaGcqaH4oqC lmaaCaaajuaGbeqaaKqzadGaaGOmaaaajuaGcaGGPaGaeyOeI0Iaai 4EaiaadweacaGGOaGaamyEaiaadsgacqaH4oqCcaGGPaGaaiyFaSWa aWbaaKqbagqabaqcLbmacaaIYaaaaaaa@5AFF@ . Using (2) and (3), we obtain that

Var(ydθ)4π2β2αδ(γ+[1+ϕπαβ]δ){(1+α)(1+δ)(1+γ+δ)[13+ϕπβ(2+α)(2+δ)2(2+γ+δ)]αδ(γ+[1+ϕπαβ]δ)[12+2ϕπβ(α+1)(δ+1)3(1+γ+δ)]2} (4.a)

The variance Var(ydθ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGwbGaamyyaiaadkhacaGGOaGaamyEaiaadsgacqaH4oqCcaGGPaaa aa@3FE7@ in (4.a) is at its base

Var(ydθ) 4 π 2 β 2 αδ (γ+δ) { (1+α)(1+δ) 3(1+γ+δ) αδ 4(γ+1)δ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeGabaan4K qbakaadAfacaWGHbGaamOCaiaacIcacaWG5bGaamizaiabeI7aXjaa cMcacqGHijYUdaWcaaqaaiaaisdacqaHapaCdaahaaqabeaajugWai aaikdaaaqcfaOaeqOSdi2cdaahaaqcfayabeaajugWaiaaikdaaaqc faOaeqySdeMaeqiTdqgabaGaaiikaiabeo7aNjabgUcaRiabes7aKj aacMcaaaGaai4EamaalaaabaGaaiikaiaaigdacqGHRaWkcqaHXoqy caGGPaGaaiikaiaaigdacqGHRaWkcqaH0oazcaGGPaaabaGaaG4mai aacIcacaaIXaGaey4kaSIaeq4SdCMaey4kaSIaeqiTdqMaaiykaaaa cqGHsisldaWcaaqaaiabeg7aHjabes7aKbqaaiaaisdacaGGOaGaeq 4SdCMaey4kaSIaaGymaiaacMcacqaH0oazaaGaaiyFaaaa@732D@ (4.b)

when ϕ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHvpGzcqGH9aqpcaaIWaaaaa@3BC1@ and it later changes when ϕ0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHvpGzcqGHGjsUcaaIWaaaaa@3C82@ . The predictability becomes less precise when the variance is more and vice versa.

Of interest to healthcare researchers is of course the ability to predict one among the three data variables: y,d,θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG5bGaaiilaiaadsgacaGGSaGaeqiUdehaaa@3D36@  based on patterns in the other two variables. This requires configuring their conditional PDFs. Suppose a healthcare researcher at a known distance from the epi-center of a volcanic with an observable wind direction Θ=θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq qHyoqucqGH9aqpcqaH4oqCaaa@3C6C@ wonders about receiving an average amount of ash. For this purpose, the conditional PDF, f(y| θ,d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbGaaiikaiaadMhadaabbaqaaiabeI7aXjaacYcacaWGKbaacaGL hWoacaGGPaaaaa@405E@ is needed. That is,

f(y|θ,d)=f(y,θ,d)f(θ,d)=Γ(γ+δ+1)(1+ϕyθd)Γ(γ)Γ(δ)(γ+[1+ϕθd]δ)yδ1 (1y)γ1;0<y<1,γ,δ,θ,d>0

The expected ash amount, E(y| θ,d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiaadMhadaabbaqaaiabeI7aXjaacYcacaWGKbaacaGL hWoacaGGPaaaaa@403D@ starts a base value E(y)= δ (γ+δ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiaadMhacaGGPaGaeyypa0ZaaSaaaeaacqaH0oazaeaa caGGOaGaeq4SdCMaey4kaSIaeqiTdqMaaiykaaaaaaa@439C@ and increases at a

rate= E(y| θ,d) E(y) = (1+ ϕθd[δ+1][γ+δ] [γ+δ+1] ) (1+ ϕθdδ [γ+δ] ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGYbGaamyyaiaadshacaWGLbGaeyypa0ZaaSaaaeaacaWGfbGaaiik aiaadMhadaabbaqaaiabeI7aXjaacYcacaWGKbaacaGLhWoacaGGPa aabaGaamyraiaacIcacaWG5bGaaiykaaaacqGH9aqpdaWcaaqaaiaa cIcacaaIXaGaey4kaSYaaSaaaeaacqaHvpGzcqaH4oqCcaWGKbGaai 4waiabes7aKjabgUcaRiaaigdacaGGDbGaai4waiabeo7aNjabgUca Riabes7aKjaac2faaeaacaGGBbGaeq4SdCMaey4kaSIaeqiTdqMaey 4kaSIaaGymaiaac2faaaGaaiykaaqaaiaacIcacaaIXaGaey4kaSYa aSaaaeaacqaHvpGzcqaH4oqCcaWGKbGaeqiTdqgabaGaai4waiabeo 7aNjabgUcaRiabes7aKjaac2faaaGaaiykaaaaaaa@7232@

depending on the wind direction and distance. The rate is greater than one, meaning that E(y| θ,d)>E(y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiaadMhadaabbaqaaiabeI7aXjaacYcacaWGKbaacaGL hWoacaGGPaGaeyOpa4JaamyraiaacIcacaWG5bGaaiykaaaa@4466@ . What does it imply? The conditional average predictive percent, E(y| θ,d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiaadMhadaabbaqaaiabeI7aXjaacYcacaWGKbaacaGL hWoacaGGPaaaaa@403D@ of the ashes based on known wind direction angle, θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@ and the distance, d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGKbaaaa@3922@ is more than the unconditional average predictive percent, E(y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiaadMhacaGGPaaaaa@3B5A@ of ashes without knowing wind direction and location distance. Likewise, we notice that Var(y| θ,d)Var(y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGwbGaamyyaiaadkhacaGGOaGaamyEamaaeeaabaGaeqiUdeNaaiil aiaadsgaaiaawEa7aiaacMcacqGHKjYOcaWGwbGaamyyaiaadkhaca GGOaGaamyEaiaacMcaaaa@48EF@ . The implication is that the conditional average predictive percent of the ashes based on known wind direction angle, θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@ and the distance, d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGKbaaaa@3922@ is more precise (because lesser variance means more precise) than the unconditional average predictive percent of the ashes without knowing the wind direction and location distance.

Agencies responsible to protect the public healthcare often want to project the expected distance, E(d| θ,y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiaadsgadaabbaqaaiabeI7aXjaacYcacaWG5baacaGL hWoacaGGPaaaaa@403D@ based on knowing the angle, θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@ of the wind direction and the percent y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG5baaaa@3937@ of spreading ashes. This requires configuring the conditional PDF, f(d| θ,y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbGaaiikaiaadsgadaabbaqaaiabeI7aXjaacYcacaWG5baacaGL hWoacaGGPaaaaa@405E@ of the distance D=d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGebGaeyypa0Jaamizaaaa@3AF1@ from the epi-center of a volcanic with an observable wind direction Θ=θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq qHyoqucqGH9aqpcqaH4oqCaaa@3C6C@ and measurable percent of the volcanic ash, Y=y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGzbGaeyypa0JaamyEaaaa@3B1B@ and it is,

  f(d| θ,y)= f(y,θ,d) f(θ,y) = (1+ϕyθd) β α (1+ϕyαβθ)Γ(α) e d β d α1 ; 0<d<1;y,θ,α,β>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaK qbakaadAgacaGGOaGaamizamaaeeaabaGaeqiUdeNaaiilaiaadMha aiaawEa7aiaacMcacqGH9aqpdaWcaaqaaiaadAgacaGGOaGaamyEai aacYcacqaH4oqCcaGGSaGaamizaiaacMcaaeaacaWGMbGaaiikaiab eI7aXjaacYcacaWG5bGaaiykaaaacqGH9aqpdaWcaaqaaiaacIcaca aIXaGaey4kaSIaeqy1dyMaamyEaiabeI7aXjaadsgacaGGPaaabaGa eqOSdi2aaWbaaeqabaqcLbmacqaHXoqyaaqcfaOaaiikaiaaigdacq GHRaWkcqaHvpGzcaWG5bGaeqySdeMaeqOSdiMaeqiUdeNaaiykaiab fo5ahjaacIcacqaHXoqycaGGPaaaaiaadwgalmaaCaaajuaGbeqaaK qzadGaeyOeI0YcdaWcaaqcfayaaKqzadGaamizaaqcfayaaKqzadGa eqOSdigaaaaajuaGcaWGKbWcdaahaaqcfayabeaajugWaiabeg7aHj abgkHiTiaaigdaaaqcfaOaai4oaaGcbaqcfaOaaGimaiabgYda8iaa dsgacqGH8aapcaaIXaGaai4oaiaadMhacaGGSaGaeqiUdeNaaiilai abeg7aHjaacYcacqaHYoGycqGH+aGpcaaIWaaaaaa@8D59@

The expected distance, E(d| θ,y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiaadsgadaabbaqaaiabeI7aXjaacYcacaWG5baacaGL hWoacaGGPaaaaa@403D@ starts at a baseline E(y)=αβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiaadMhacaGGPaGaeyypa0JaeqySdeMaeqOSdigaaa@3FA0@ and it increases at a

rate= E(d| θ,y) E(d) = (1+ϕyβθ[α+1]) (1+ϕyβθα) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGYbGaamyyaiaadshacaWGLbGaeyypa0ZaaSaaaeaacaWGfbGaaiik aiaadsgadaabbaqaaiabeI7aXjaacYcacaWG5baacaGLhWoacaGGPa aabaGaamyraiaacIcacaWGKbGaaiykaaaacqGH9aqpdaWcaaqaaiaa cIcacaaIXaGaey4kaSIaeqy1dyMaamyEaiabek7aIjabeI7aXjaacU facqaHXoqycqGHRaWkcaaIXaGaaiyxaiaacMcaaeaacaGGOaGaaGym aiabgUcaRiabew9aMjaadMhacqaHYoGycqaH4oqCcqaHXoqycaGGPa aaaaaa@61F6@

which is greater than one. It means that E(d| θ,y)>E(d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiaadsgadaabbaqaaiabeI7aXjaacYcacaWG5baacaGL hWoacaGGPaGaeyOpa4JaamyraiaacIcacaWGKbGaaiykaaaa@4451@ . What does it imply? The conditional average predicted distance, E(d| θ,y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiaadsgadaabbaqaaiabeI7aXjaacYcacaWG5baacaGL hWoacaGGPaaaaa@403D@ for the ashes based on the known wind direction angle, θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@ and the perceived percent, y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG5baaaa@3937@ of ashes is more than the unconditional average predictive distance, E(d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiaadsgacaGGPaaaaa@3B45@ of the ashes without knowing wind direction and the percent of ashes spreading. Likewise, we notice that

Var(d| θ,y)=Var(d)[ 1+ϕyαβθ{1+(α+1)(α+1+ϕyβθ)} (1+ϕyαβθ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGwbGaamyyaiaadkhacaGGOaGaamizamaaeeaabaGaeqiUdeNaaiil aiaadMhaaiaawEa7aiaacMcacqGH9aqpcaWGwbGaamyyaiaadkhaca GGOaGaamizaiaacMcacaGGBbWaaSaaaeaacaaIXaGaey4kaSIaeqy1 dyMaamyEaiabeg7aHjabek7aIjabeI7aXjaacUhacaaIXaGaey4kaS Iaaiikaiabeg7aHjabgUcaRiaaigdacaGGPaGaaiikaiabeg7aHjab gUcaRiaaigdacqGHRaWkcqaHvpGzcaWG5bGaeqOSdiMaeqiUdeNaai ykaiaac2haaeaacaGGOaGaaGymaiabgUcaRiabew9aMjaadMhacqaH XoqycqaHYoGycqaH4oqCcaGGPaWaaWbaaeqabaqcLbmacaaIYaaaaa aajuaGcaGGDbaaaa@7466@

Implying Var(y| θ,d)Var(y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGwbGaamyyaiaadkhacaGGOaGaamyEamaaeeaabaGaeqiUdeNaaiil aiaadsgaaiaawEa7aiaacMcacqGHLjYScaWGwbGaamyyaiaadkhaca GGOaGaamyEaiaacMcaaaa@4900@ . The conditional average projected distance to receive ashes based on known wind direction angle, θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@ and the percent of spreading ashes, y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG5baaaa@3937@ is less precise (because more variance means lesser precision) than the unconditional average projected distance to receive ashes without knowing wind direction angle, θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@ and the percent of spreading ashes, y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG5baaaa@3937@ .

Proceeding likewise, having already observed a percent, y of the volcanic ashes at a known distance, d from the epi-center of the volcano, an environmental researcher could have done an educated guess of the angle of wind direction on the eruption day. For this purpose, the conditional PDF, f(θ| y,d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbGaaiikaiabeI7aXnaaeeaabaGaamyEaiaacYcacaWGKbaacaGL hWoacaGGPaaaaa@405E@ of the angle is needed and it is

f(θ| y,d)= f(y,θ,d) f(y,d) = (1+ϕyθd) 2π(1+ϕydπ) ; 0<θ<2π;y,d,π>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaK qbakaadAgacaGGOaGaeqiUde3aaqqaaeaacaWG5bGaaiilaiaadsga aiaawEa7aiaacMcacqGH9aqpdaWcaaqaaiaadAgacaGGOaGaamyEai aacYcacqaH4oqCcaGGSaGaamizaiaacMcaaeaacaWGMbGaaiikaiaa dMhacaGGSaGaamizaiaacMcaaaGaeyypa0ZaaSaaaeaacaGGOaGaaG ymaiabgUcaRiabew9aMjaadMhacqaH4oqCcaWGKbGaaiykaaqaaiaa ikdacqaHapaCcaGGOaGaaGymaiabgUcaRiabew9aMjaadMhacaWGKb GaeqiWdaNaaiykaaaacaGG7aaakeaajuaGcaaIWaGaeyipaWJaeqiU deNaeyipaWJaaGOmaiabec8aWjaacUdacaWG5bGaaiilaiaadsgaca GGSaGaeqiWdaNaeyOpa4JaaGimaaaaaa@71B0@

The educated guess, E(θ| y,d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiabeI7aXnaaeeaabaGaamyEaiaacYcacaWGKbaacaGL hWoacaGGPaaaaa@403D@ of the angle of the wind direction starts at a baseline E(y)=π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiaadMhacaGGPaGaeyypa0JaeqiWdahaaa@3E1D@ with an adjustment= E(θ| y,d) E(θ) = (1+ 4ϕydπ 3 ) (1+ϕydπ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGHbGaamizaiaadQgacaWG1bGaam4CaiaadshacaWGTbGaamyzaiaa d6gacaWG0bGaeyypa0ZaaSaaaeaacaWGfbGaaiikaiabeI7aXnaaee aabaGaamyEaiaacYcacaWGKbaacaGLhWoacaGGPaaabaGaamyraiaa cIcacqaH4oqCcaGGPaaaaiabg2da9maalaaabaGaaiikaiaaigdacq GHRaWkdaWcaaqaaiaaisdacqaHvpGzcaWG5bGaamizaiabec8aWbqa aiaaiodaaaGaaiykaaqaaiaacIcacaaIXaGaey4kaSIaeqy1dyMaam yEaiaadsgacqaHapaCcaGGPaaaaaaa@6202@ which is greater than one, meaning that E(θ| y,d)>E(θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiabeI7aXnaaeeaabaGaamyEaiaacYcacaWGKbaacaGL hWoacaGGPaGaeyOpa4JaamyraiaacIcacqaH4oqCcaGGPaaaaa@451E@ . What does it imply? The educated conditional average guess, E(θ| y,d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiabeI7aXnaaeeaabaGaamyEaiaacYcacaWGKbaacaGL hWoacaGGPaaaaa@403D@ of the angle based on known percent ashes, y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG5baaaa@3937@ at location distance, d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGKbaaaa@3922@ is more than the unconditional average guess angle, E(θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGfbGaaiikaiabeI7aXjaacMcaaaa@3C12@ of wind direction without knowing percent of ashes at a location distance, d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGKbaaaa@3922@ . Furthermore, we notice that

  Var(θ| y,d)Var(θ){ 1+2ϕydπ(1+ ϕydπ 3 ) (1+ϕydπ) 2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGwbGaamyyaiaadkhacaGGOaGaeqiUde3aaqqaaeaacaWG5bGaaiil aiaadsgaaiaawEa7aiaacMcacqGHijYUcaWGwbGaamyyaiaadkhaca GGOaGaeqiUdeNaaiykaiaacUhadaWcaaqaaiaaigdacqGHRaWkcaaI YaGaeqy1dyMaamyEaiaadsgacqaHapaCcaGGOaGaaGymaiabgUcaRm aalaaabaGaeqy1dyMaamyEaiaadsgacqaHapaCaeaacaaIZaaaaiaa cMcaaeaacaGGOaGaaGymaiabgUcaRiabew9aMjaadMhacaWGKbGaeq iWdaNaaiykamaaCaaabeqaaKqzadGaaGOmaaaaaaqcfaOaaiyFaaaa @67A3@

implying Var(θ| y,d)Var(θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGwbGaamyyaiaadkhacaGGOaGaeqiUde3aaqqaaeaacaWG5bGaaiil aiaadsgaaiaawEa7aiaacMcacqGHKjYOcaWGwbGaamyyaiaadkhaca GGOaGaeqiUdeNaaiykaaaa@49A7@ . The educated average guess of the angle for wind direction based on known percent, y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG5baaaa@3937@ of ashes at distance, d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGKbaaaa@3922@ is more precise than the uneducated average guess of wind direction without knowing percent ashes at location of distance d.

We now proceed to estimate the model parameters from a collected data. Consider a random sample y i , θ i , d i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG5bWaaSbaaeaajugWaiaadMgaaKqbagqaaiaacYcacqaH4oqClmaa BaaajuaGbaqcLbmacaWGPbaajuaGbeaacaGGSaGaamizaSWaaSbaaK qbagaajugWaiaadMgaaKqbagqaaaaa@46C9@ of size n2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGUbGaeyyzImRaaGOmaaaa@3BAE@ from FDTD (1). Let y ¯ , θ ¯ , d ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGce WG5bGbaebacaGGSaGafqiUdeNbaebacaGGSaGabmizayaaraaaaa@3D7E@ and s y 2 , s θ 2 , s d 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGZbWaa0baaeaajugWaiaadMhaaKqbagaajugWaiaaikdaaaqcfaOa aiilaiaadohadaqhaaqaaKqzadGaeqiUdehajuaGbaqcLbmacaaIYa aaaKqbakaacYcacaWGZbWcdaqhaaqcfayaaKqzadGaamizaaqcfaya aKqzadGaaGOmaaaaaaa@4D2B@ denote respectively their sample average and variance. The log-likelihood function is L(n,y,θ,d,ϕ)= i=1 n lnf( y i , θ i , d i ,ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGmbGaaiikaiaad6gacaGGSaGaamyEaiaacYcacqaH4oqCcaGGSaGa amizaiaacYcacqaHvpGzcaGGPaGaeyypa0ZaaabCaeaaciGGSbGaai OBaiaadAgacaGGOaGaamyEamaaBaaabaqcLbmacaWGPbaajuaGbeaa caGGSaGaeqiUde3cdaWgaaqcfayaaKqzadGaamyAaaqcfayabaGaai ilaiaadsgadaWgaaqaaKqzadGaamyAaaqcfayabaGaaiilaiabew9a MjaacMcaaeaajugWaiaadMgacqGH9aqpcaaIXaaajuaGbaqcLbmaca WGUbaajuaGcqGHris5aaaa@625C@ . Then, their maximum likelihood estimators (MLE) are the simultaneous solutions of the score functions ϕ L(n,y,θ,d,ϕ)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq GHciITdaWgaaqaaKqzadGaeqy1dygajuaGbeaacaWGmbGaaiikaiaa d6gacaGGSaGaamyEaiaacYcacqaH4oqCcaGGSaGaamizaiaacYcacq aHvpGzcaGGPaGaeyypa0JaaGimaaaa@4A46@ , α L(n,y,θ,d,ϕ)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq GHciITlmaaBaaajuaGbaqcLbmacqaHXoqyaKqbagqaaiaadYeacaGG OaGaamOBaiaacYcacaWG5bGaaiilaiabeI7aXjaacYcacaWGKbGaai ilaiabew9aMjaacMcacqGH9aqpcaaIWaaaaa@4AB6@ , β L(n,y,θ,d,ϕ)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq GHciITdaWgaaqaaKqzadGaeqOSdigajuaGbeaacaWGmbGaaiikaiaa d6gacaGGSaGaamyEaiaacYcacqaH4oqCcaGGSaGaamizaiaacYcacq aHvpGzcaGGPaGaeyypa0JaaGimaaaa@4A1F@ , δ L(n,y,θ,d,ϕ)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq GHciITdaWgaaqaaKqzadGaeqiTdqgajuaGbeaacaWGmbGaaiikaiaa d6gacaGGSaGaamyEaiaacYcacqaH4oqCcaGGSaGaamizaiaacYcacq aHvpGzcaGGPaGaeyypa0JaaGimaaaa@4A23@

γ L(n,y,θ,d,ϕ)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq GHciITdaWgaaqaaKqzadGaeq4SdCgajuaGbeaacaWGmbGaaiikaiaa d6gacaGGSaGaamyEaiaacYcacqaH4oqCcaGGSaGaamizaiaacYcacq aHvpGzcaGGPaGaeyypa0JaaGimaaaa@4A25@ and π L(n,y,θ,d,ϕ)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq GHciITlmaaBaaajuaGbaqcLbmacqaHapaCaKqbagqaaiaadYeacaGG OaGaamOBaiaacYcacaWG5bGaaiilaiabeI7aXjaacYcacaWGKbGaai ilaiabew9aMjaacMcacqGH9aqpcaaIWaaaaa@4AD4@ . They yield

ϕ ^ mle | i=1 n y i θ i d i n π ^ o α ^ o β ^ o δ ^ o i=1 n ( y i θ i d i ) 2 n ( π ^ o α ^ o β ^ o δ ^ o ) 2 | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHvpGzgaqcamaaBaaabaqcLbmacaWGTbGaamiBaiaadwgaaKqbagqa aiabgIKi7oaaemaabaWaaSaaaeaadaaeWbqaaiaadMhalmaaBaaaju aGbaqcLbmacaWGPbaajuaGbeaacqaH4oqCdaWgaaqaaKqzadGaamyA aaqcfayabaGaamizaSWaaSbaaKqbagaajugWaiaadMgaaKqbagqaai abgkHiTiaad6gacuaHapaCgaqcamaaBaaabaqcLbmacaWGVbaajuaG beaacuaHXoqygaqcamaaBaaabaqcLbmacaWGVbaajuaGbeaacuaHYo GygaqcamaaBaaabaqcLbmacaWGVbaajuaGbeaacuaH0oazgaqcamaa BaaabaqcLbmacaWGVbaajuaGbeaaaeaajugWaiaadMgacqGH9aqpca aIXaaajuaGbaqcLbmacaWGUbaajuaGcqGHris5aaqaamaaqahabaGa aiikaiaadMhalmaaBaaajuaGbaqcLbmacaWGPbaajuaGbeaacqaH4o qClmaaBaaajuaGbaqcLbmacaWGPbaajuaGbeaacaWGKbWcdaWgaaqc fayaaKqzadGaamyAaaqcfayabaGaaiykaSWaaWbaaKqbagqabaqcLb macaaIYaaaaKqbakabgkHiTiaad6gacaGGOaGafqiWdaNbaKaadaWg aaqaaKqzadGaam4BaaqcfayabaGafqySdeMbaKaalmaaBaaajuaGba qcLbmacaWGVbaajuaGbeaacuaHYoGygaqcamaaBaaabaqcLbmacaWG VbaajuaGbeaacuaH0oazgaqcamaaBaaabaqcLbmacaWGVbaajuaGbe aacaGGPaWaaWbaaeqabaqcLbmacaaIYaaaaaqcfayaaKqzadGaamyA aiabg2da9iaaigdaaKqbagaajugWaiaad6gaaKqbakabggHiLdaaaa Gaay5bSlaawIa7aaaa@A243@ (5.a)

π ^ mle =| π ^ o ϕ ^ d ¯ δ ^ o ( γ ^ 0 + δ ^ o ) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHapaCgaqcamaaBaaabaqcLbmacaWGTbGaamiBaiaadwgaaKqbagqa aiabg2da9maaemaabaGafqiWdaNbaKaalmaaBaaajuaGbaqcLbmaca WGVbaajuaGbeaacqGHsisldaWcaaqaaiqbew9aMzaajaGabmizayaa raGafqiTdqMbaKaadaWgaaqaaKqzadGaam4BaaqcfayabaaabaGaai ikaiqbeo7aNzaajaWcdaWgaaqcfayaaKqzadGaaGimaaqcfayabaGa ey4kaSIafqiTdqMbaKaalmaaBaaajuaGbaqcLbmacaWGVbaajuaGbe aacaGGPaaaaaGaay5bSlaawIa7aaaa@5CAC@ , (5.b)

α ^ mle =| α ^ o ϕ ^ β ^ o δ ^ o ( γ ^ 0 + δ ^ o ) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHXoqygaqcaSWaaSbaaKqbagaajugWaiaad2gacaWGSbGaamyzaaqc fayabaGaeyypa0ZaaqWaaeaacuaHXoqygaqcamaaBaaabaqcLbmaca WGVbaajuaGbeaacqGHsisldaWcaaqaaiqbew9aMzaajaGafqOSdiMb aKaalmaaBaaajuaGbaqcLbmacaWGVbaajuaGbeaacuaH0oazgaqcam aaBaaabaqcLbmacaWGVbaajuaGbeaaaeaacaGGOaGafq4SdCMbaKaa daWgaaqaaKqzadGaaGimaaqcfayabaGaey4kaSIafqiTdqMbaKaalm aaBaaajuaGbaqcLbmacaWGVbaajuaGbeaacaGGPaaaaaGaay5bSlaa wIa7aaaa@5FF1@ , (5.c)

β ^ mle =| β ^ o ϕ ^ δ ^ o ( γ ^ 0 + δ ^ o ) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHYoGygaqcaSWaaSbaaKqbagaajugWaiaad2gacaWGSbGaamyzaaqc fayabaGaeyypa0ZaaqWaaeaacuaHYoGygaqcamaaBaaabaqcLbmaca WGVbaajuaGbeaacqGHsisldaWcaaqaaiqbew9aMzaajaGafqiTdqMb aKaadaWgaaqaaKqzadGaam4BaaqcfayabaaabaGaaiikaiqbeo7aNz aajaWaaSbaaeaajugWaiaaicdaaKqbagqaaiabgUcaRiqbes7aKzaa jaWcdaWgaaqcfayaaKqzadGaam4BaaqcfayabaGaaiykaaaaaiaawE a7caGLiWoaaaa@5ADA@ , (5.d)

δ ^ mle =| δ ^ o ϕ ^ ( γ ^ 0 + δ ^ o ) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aH0oazgaqcamaaBaaabaqcLbmacaWGTbGaamiBaiaadwgaaKqbagqa aiabg2da9maaemaabaGafqiTdqMbaKaalmaaBaaajuaGbaqcLbmaca WGVbaajuaGbeaacqGHsisldaWcaaqaaiqbew9aMzaajaaabaGaaiik aiqbeo7aNzaajaWaaSbaaeaajugWaiaaicdaaKqbagqaaiabgUcaRi qbes7aKzaajaWcdaWgaaqcfayaaKqzadGaam4BaaqcfayabaGaaiyk aaaaaiaawEa7caGLiWoaaaa@565C@ , (5.e)

and

γ ^ mle =| γ ^ o ϕ ^ δ ^ o ( γ ^ 0 + δ ^ o ) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHZoWzgaqcaSWaaSbaaKqbagaajugWaiaad2gacaWGSbGaamyzaaqc fayabaGaeyypa0ZaaqWaaeaacuaHZoWzgaqcaSWaaSbaaKqbagaaju gWaiaad+gaaKqbagqaaiabgkHiTmaalaaabaGafqy1dyMbaKaacuaH 0oazgaqcamaaBaaabaqcLbmacaWGVbaajuaGbeaaaeaacaGGOaGafq 4SdCMbaKaalmaaBaaajuaGbaqcLbmacaaIWaaajuaGbeaacqGHRaWk cuaH0oazgaqcamaaBaaabaqcLbmacaWGVbaajuaGbeaacaGGPaaaaa Gaay5bSlaawIa7aaaa@5B7F@ , (5.f)

where the initial values π ^ o = θ (n) =max( θ 1 , θ 2 ,..., θ n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHapaCgaqcamaaBaaabaqcLbmacaWGVbaajuaGbeaacqGH9aqpcqaH 4oqClmaaBaaajuaGbaqcLbmacaGGOaGaamOBaiaacMcaaKqbagqaai abg2da9iGac2gacaGGHbGaaiiEaiaacIcacqaH4oqClmaaBaaajuaG baqcLbmacaaIXaaajuaGbeaacaGGSaGaeqiUde3aaSbaaeaajugWai aaikdaaKqbagqaaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaeqiU de3aaSbaaeaajugWaiaad6gaaKqbagqaaiaacMcaaaa@5B6A@ , α ^ o = s d 2 d ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHXoqygaqcamaaBaaabaqcLbmacaWGVbaajuaGbeaacqGH9aqpdaWc aaqaaiaadohadaqhaaqaaKqzadGaamizaaqcfayaaKqzadGaaGOmaa aaaKqbagaaceWGKbGbaebaaaaaaa@4507@ , β ^ o = d ¯ α ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHYoGygaqcamaaBaaabaqcLbmacaWGVbaajuaGbeaacqGH9aqpdaWc aaqaaiqadsgagaqeaaqaaiqbeg7aHzaajaaaaaaa@4081@ , δ ^ o = y ¯ (1 y ¯ ) s y 2 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aH0oazgaqcaSWaaSbaaKqbagaajugWaiaad+gaaKqbagqaaiabg2da 9maalaaabaGabmyEayaaraGaaiikaiaaigdacqGHsislceWG5bGbae bacaGGPaaabaGaam4CaSWaa0baaKqbagaajugWaiaadMhaaKqbagaa jugWaiaaikdaaaaaaKqbakabgkHiTiaaigdaaaa@4C28@ , γ ^ o =(1 y ¯ ) δ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHZoWzgaqcamaaBaaabaqcLbmacaWGVbaajuaGbeaacqGH9aqpcaGG OaGaaGymaiabgkHiTiqadMhagaqeaiaacMcacuaH0oazgaqcaaaa@4393@ are obtained from the sample averages and variances. In the next section, all derived expressions of this section are illustrated.

From (5.a), we note that the product variables to be considered are

{ y 1 θ 1 d 1 π ^ o α ^ o β ^ o δ ^ o ( y 1 θ 1 d 1 ) 2 ( π ^ o α ^ o β ^ o δ ^ o ) 2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai 4EamaalaaabaGaamyEaKGbaoaaBaaabaGaaGymaaqabaqcfaOaeqiU dexcga4aaSbaaeaacaaIXaaabeaajuaGcaWGKbqcga4aaSbaaeaaca aIXaaabeaajuaGcqGHsislcuaHapaCgaqcamaaBaaajyaGbaGaam4B aaqcfayabaGafqySdeMbaKaadaWgaaqcgayaaiaad+gaaKqbagqaai qbek7aIzaajaWaaSbaaKGbagaacaWGVbaajuaGbeaacuaH0oazgaqc amaaBaaajyaGbaGaam4BaaqcfayabaaabaGaaiikaiaadMhajyaGda WgaaqaaiaaigdaaeqaaKqbakabeI7aXLGbaoaaBaaabaGaaGymaaqa baqcfaOaamizaKGbaoaaBaaabaGaaGymaaqabaqcfaOaaiykamaaCa aabeqcgayaaiaaikdaaaqcfaOaeyOeI0Iaaiikaiqbec8aWzaajaWa aSbaaKGbagaacaWGVbaajuaGbeaacuaHXoqygaqcaKGbaoaaBaaaba Gaam4BaaqabaqcfaOafqOSdiMbaKaadaWgaaqcgayaaiaad+gaaKqb agqaaiqbes7aKzaajaqcga4aaSbaaeaacaWGVbaabeaajuaGcaGGPa WaaWbaaeqajyaGbaGaaGOmaaaaaaqcfaOaaiyFaaaa@74C4@ { y 2 θ 2 d 2 π ^ o α ^ o β ^ o δ ^ o ( y 2 θ 2 d 2 ) 2 ( π ^ o α ^ o β ^ o δ ^ o ) 2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai 4EamaalaaabaGaamyEamaaBaaajyaGbaGaaGOmaaqcfayabaGaeqiU de3aaSbaaKGbagaacaaIYaaajuaGbeaacaWGKbqcga4aaSbaaeaaca aIYaaabeaajuaGcqGHsislcuaHapaCgaqcamaaBaaajyaGbaGaam4B aaqcfayabaGafqySdeMbaKaadaWgaaqcgayaaiaad+gaaKqbagqaai qbek7aIzaajaWaaSbaaKGbagaacaWGVbaajuaGbeaacuaH0oazgaqc amaaBaaajyaGbaGaam4BaaqcfayabaaabaGaaiikaiaadMhajyaGda WgaaqaaiaaikdaaeqaaKqbakabeI7aXnaaBaaajyaGbaGaaGOmaaqc fayabaGaamizamaaBaaajyaGbaGaaGOmaaqcfayabaGaaiykamaaCa aabeqcgayaaiaaikdaaaqcfaOaeyOeI0Iaaiikaiqbec8aWzaajaWa aSbaaKGbagaacaWGVbaajuaGbeaacuaHXoqygaqcaKGbaoaaBaaaba Gaam4BaaqabaqcfaOafqOSdiMbaKaajyaGdaWgaaqaaiaad+gaaeqa aKqbakqbes7aKzaajaWaaSbaaKGbagaacaWGVbaajuaGbeaacaGGPa WaaWbaaeqajyaGbaGaaGOmaaaaaaqcfaOaaiyFaaaa@74CA@ ,…., { y n θ n d n π ^ o α ^ o β ^ o δ ^ o ( y n θ n d n ) 2 ( π ^ o α ^ o β ^ o δ ^ o ) 2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai 4EamaalaaabaGaamyEamaaBaaajyaGbaGaamOBaaqcfayabaGaeqiU dexcga4aaSbaaeaacaWGUbaabeaajuaGcaWGKbWaaSbaaKGbagaaca WGUbaajuaGbeaacqGHsislcuaHapaCgaqcamaaBaaabaGaam4Baaqa baGafqySdeMbaKaadaWgaaqaaiaad+gaaeqaaiqbek7aIzaajaWaaS baaeaacaWGVbaabeaacuaH0oazgaqcamaaBaaabaGaam4Baaqabaaa baGaaiikaiaadMhadaWgaaqcgayaaiaad6gaaKqbagqaaiabeI7aXn aaBaaajyaGbaGaamOBaaqcfayabaGaamizaKGbaoaaBaaabaGaamOB aaqabaqcfaOaaiykamaaCaaabeqcgayaaiaaikdaaaqcfaOaeyOeI0 Iaaiikaiqbec8aWzaajaqcga4aaSbaaeaacaWGVbaabeaajuaGcuaH XoqygaqcamaaBaaajyaGbaGaam4BaaqcfayabaGafqOSdiMbaKaada Wgaaqcgayaaiaad+gaaKqbagqaaiqbes7aKzaajaWaaSbaaKGbagaa caWGVbaajuaGbeaacaGGPaqcga4aaWbaaeqabaGaaGOmaaaaaaqcfa OaaiyFaaaa@71A0@ .

With the MLE ϕ ^ mle MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHvpGzgaqcamaaBaaabaqcLbmacaWGTbGaamiBaiaadwgaaKqbagqa aaaa@3EBB@ of the flexible parameter and expressions (3) and (4.b), an approximate 100(1α)% MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca aIXaGaaGimaiaaicdacaGGOaGaaGymaiabgkHiTiabeg7aHjaacMca caGGLaaaaa@3FB2@ confidence interval for 0<α<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca aIWaGaeyipaWJaeqySdeMaeyipaWJaaGymaaaa@3D56@ can be constructed and it is

ϕ ϕ ^ mle ± t (n1)df,1 α 2 s { yθd π ^ o α ^ o β ^ o δ ^ o (yθd) 2 ( π ^ o α ^ o β ^ o δ ^ o ) 2 } n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHvpGzcqGHiiIZcuaHvpGzgaqcamaaBaaabaqcLbmacaWGTbGaamiB aiaadwgaaKqbagqaaiabgglaXoaalaaabaGaamiDamaaBaaabaqcLb macaGGOaGaamOBaiabgkHiTiaaigdacaGGPaqcfaOaamizaiaadAga caGGSaGaaGymaiabgkHiTmaalaaabaGaeqySdegabaGaaGOmaaaaae qaaiaadohadaWgaaqaaiaacUhadaWcaaqaaiaadMhacqaH4oqCcaWG KbGaeyOeI0IafqiWdaNbaKaadaWgaaqaaKqzadGaam4Baaqcfayaba GafqySdeMbaKaadaWgaaqaaKqzadGaam4BaaqcfayabaGafqOSdiMb aKaadaWgaaqaaKqzadGaam4BaaqcfayabaGafqiTdqMbaKaadaWgaa GcbaqcLbmacaWGVbaajuaGbeaaaeaacaGGOaGaamyEaiabeI7aXjaa dsgacaGGPaWcdaahaaqcfayabeaajugWaiaaikdaaaqcfaOaeyOeI0 Iaaiikaiqbec8aWzaajaWaaSbaaeaajugWaiaad+gaaKqbagqaaiqb eg7aHzaajaWcdaWgaaqcfayaaKqzadGaam4BaaqcfayabaGafqOSdi MbaKaadaWgaaqaaKqzadGaam4BaaqcfayabaGafqiTdqMbaKaalmaa BaaajuaGbaqcLbmacaWGVbaajuaGbeaacaGGPaWcdaahaaqcfayabe aajugWaiaaikdaaaaaaKqbakaac2haaeqaaaqaamaakaaabaGaamOB aaqabaaaaaaa@8D46@ (6)

where

s { yθd π ^ o α ^ o β ^ o δ ^ o (yθd) 2 ( π ^ o α ^ o β ^ o δ ^ o ) 2 } = i=1 n ( { yθd π ^ o α ^ o β ^ o δ ^ o (yθd) 2 ( π ^ o α ^ o β ^ o δ ^ o ) 2 } { i=1 n { yθd π ^ o α ^ o β ^ o δ ^ o (yθd) 2 ( π ^ o α ^ o β ^ o δ ^ o ) 2 } n }) 2 (n1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaai aadohadaWgaaWcbaGaai4EamaalaaabaGaamyEaiabeI7aXjaadsga cqGHsislcuaHapaCgaqcamaaBaaameaacaWGVbaabeaaliqbeg7aHz aajaWaaSbaaWqaaiaad+gaaeqaaSGafqOSdiMbaKaadaWgaaadbaGa am4BaaqabaWccuaH0oazgaqcamaaBaaameaacaWGVbaabeaaaSqaai aacIcacaWG5bGaeqiUdeNaamizaiaacMcadaahaaadbeqaaiaaikda aaWccqGHsislcaGGOaGafqiWdaNbaKaadaWgaaadbaGaam4Baaqaba WccuaHXoqygaqcamaaBaaameaacaWGVbaabeaaliqbek7aIzaajaWa aSbaaWqaaiaad+gaaeqaaSGafqiTdqMbaKaadaWgaaadbaGaam4Baa qabaWccaGGPaWaaWbaaWqabeaacaaIYaaaaaaaliaac2haaeqaaKqb akabg2da9maakaaabaWaaSaaaeaadaaeWbqaaiaacIcadaWgaaqaai aacUhadaWcaaqaaiaadMhacqaH4oqCcaWGKbGaeyOeI0IafqiWdaNb aKaalmaaBaaajyaGbaqcLbmacaWGVbaajyaGbeaajuaGcuaHXoqyga qcaSWaaSbaaKqbagaajugWaiaad+gaaKqbagqaaiqbek7aIzaajaWa aSbaaKqbGeaacaWGVbaajuaGbeaacuaH0oazgaqcamaaBaaajuaiba Gaam4BaaqabaaajuaGbaGaaiikaiaadMhacqaH4oqCcaWGKbGaaiyk amaaCaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0Iaaiikaiqbec8aWz aajaWaaSbaaKqbGeaacaWGVbaabeaajuaGcuaHXoqygaqcamaaBaaa juaibaGaam4BaaqabaqcfaOafqOSdiMbaKaadaWgaaqcfasaaiaad+ gaaeqaaKqbakqbes7aKzaajaWaaSbaaKqbGeaacaWGVbaabeaajuaG caGGPaWcdaahaaqcfasabeaajugWaiaaikdaaaaaaKqbakaac2haae qaaiabgkHiTiaacUhadaWcaaqaamaaqahabaWaaSbaaeaacaGG7bWa aSaaaeaacaWG5bGaeqiUdeNaamizaiabgkHiTiqbec8aWzaajaWaaS baaeaajugWaiaad+gaaKqbagqaaiqbeg7aHzaajaWcdaWgaaqcfaya aKqzadGaam4BaaqcfayabaGafqOSdiMbaKaadaWgaaqaaKqzadGaam 4BaaqcfayabaGafqiTdqMbaKaadaWgaaqaaKqzadGaam4Baaqcfaya baaabaGaaiikaiaadMhacqaH4oqCcaWGKbGaaiykaSWaaWbaaKqbag qabaqcLbmacaaIYaaaaKqbakabgkHiTiaacIcacuaHapaCgaqcaSWa aSbaaKqbagaajugWaiaad+gaaKqbagqaaiqbeg7aHzaajaWaaSbaaK GbagaajugWaiaad+gaaKqbagqaaiqbek7aIzaajaWcdaWgaaqcfaya aKqzadGaam4BaaqcfayabaGafqiTdqMbaKaalmaaBaaajuaGbaqcLb macaWGVbaajuaGbeaacaGGPaWaaWbaaeqabaqcLbmacaaIYaaaaaaa juaGcaGG9baabeaaaeaajugWaiaadMgacqGH9aqpcaaIXaaajuaGba qcLbmacaWGUbaajuaGcqGHris5aaqaaiaad6gaaaGaaiyFaiaacMca daahaaqabeaajugWaiaaikdaaaaajuaGbaqcLbmacaWGPbGaeyypa0 JaaGymaaqcfayaaKqzadGaamOBaaqcfaOaeyyeIuoaaeaacaGGOaGa amOBaiabgkHiTiaaigdacaGGPaaaaaqabaaakeaaaaaa@ED4C@

is the standard error of the product variables.

Illustration with volcanic data

The 39-day long eruption of Eyjafjallajokull volcano, Iceland started on 14th April 2010 and continued on to 13th May 2010. The ash was seen as far as 100 Kilo Meters in several directions from 900 to 2250 due to the wind. The percent of ashes varied up to 63 μm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH8oqBcaWGTbaaaa@3AE2@ (Table 1). Several jet-engine powered aircrafts were strained, not able to fly as they were exposed to volcanic ash. Due to the prevailing winds, the ash spread out mostly to the southeast, and south, closing the entire European air space for several days. The health hazards were rising among the residents in Europe and even beyond. Exposure to the volcanic ash had adverse effects on respiratory health. The short-term effects of the ash exposure were irritation in eyes, upper airway, or asthma type discomforts. Table 1 for observations on the wind’s angle, the distance up to which the debris is spread out, and the percent of ashes on the sampled days. Their averages and variances are calculated and displayed in Table 1. They warn the existence of their unpredictability. The Table 2 points out their non-zerocorrelations, emphasizing the importance of bonding and flexing the three random variables. Especially, the correlation (0.77) between the distance in kilo meter and the percent of ashes is significant at a p-value 0.0001, emphasizing the importance bonding and flexing the data variables.

The initial parametric values, according to the displayed data averages and variances in Table 1, are obtained. They are π ^ o = θ (n) = 225 o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHapaCgaqcaSWaaSbaaKqbagaajugWaiaad+gaaKqbagqaaiabg2da 9iabeI7aXTWaaSbaaKqbagaajugWaiaacIcacaWGUbGaaiykaaqcfa yabaGaeyypa0JaaGOmaiaaikdacaaI1aWcdaahaaqcfayabeaajugW aiaad+gaaaaaaa@4B08@ , α ^ o =11.38 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHXoqygaqcaSWaaSbaaKqbagaajugWaiaad+gaaKqbagqaaiabg2da 9iaaigdacaaIXaGaaiOlaiaaiodacaaI4aaaaa@41FF@ , β ^ o =1.96 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHYoGygaqcaSWaaSbaaKqbagaajugWaiaad+gaaKqbagqaaiabg2da 9iaaigdacaGGUaGaaGyoaiaaiAdaaaa@414A@ , δ ^ o =4.36 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aH0oazgaqcamaaBaaabaqcLbmacaWGVbaajuaGbeaacqGH9aqpcaaI 0aGaaiOlaiaaiodacaaI2aaaaa@40B2@ , γ ^ o =2.95 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHZoWzgaqcaSWaaSbaaKqbagaajugWaiaad+gaaKqbagqaaiabg2da 9iaaikdacaGGUaGaaGyoaiaaiwdaaaa@4150@ . From (5.a), we obtain that ϕ ^ mle 1.57 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHvpGzgaqcamaaBaaabaqcLbmacaWGTbGaamiBaiaadwgaaKqbagqa aiabgIKi7kaaigdacaGGUaGaaGynaiaaiEdaaaa@4359@ which is much higher than zero. It is no wonder the three data variables are not independent. The MLE of the model parameters, from (5.b) through (5.f) are π ^ mle = 194.7 o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHapaCgaqcaSWaaSbaaKqbagaajugWaiaad2gacaWGSbGaamyzaaqc fayabaGaeyypa0JaaGymaiaaiMdacaaI0aGaaiOlaiaaiEdalmaaCa aajuaGbeqaaKqzadGaam4Baaaaaaa@46DB@ , α ^ o =9.54 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHXoqygaqcamaaBaaabaqcLbmacaWGVbaajuaGbeaacqGH9aqpcaaI 5aGaaiOlaiaaiwdacaaI0aaaaa@40B1@ , β ^ o =1.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHYoGygaqcaSWaaSbaaKqbagaajugWaiaad+gaaKqbagqaaiabg2da 9iaaigdacaGGUaGaaGimaiaaikdaaaa@413D@ , δ ^ o =4.14 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aH0oazgaqcamaaBaaabaqcLbmacaWGVbaajuaGbeaacqGH9aqpcaaI 0aGaaiOlaiaaigdacaaI0aaaaa@40AE@ , γ ^ o =2.01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHZoWzgaqcamaaBaaabaqcLbmacaWGVbaajuaGbeaacqGH9aqpcaaI YaGaaiOlaiaaicdacaaIXaaaaa@40AA@ . Using the expression (6), an approximate 95% confidence interval is computed and it is ϕ(1.57±0.000002) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHvpGzcqGHiiIZcaGGOaGaaGymaiaac6cacaaI1aGaaG4naiabggla XkaaicdacaGGUaGaaGimaiaaicdacaaIWaGaaGimaiaaicdacaaIYa Gaaiykaaaa@4783@ . A measure of goodness-of fit may be based on the log-likelihood statistic. Then one may test the hypothesis H0: ϕ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHvpGzcqGH9aqpcaaIWaaaaa@3BC1@  against H1: ϕ0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHvpGzcqGHGjsUcaaIWaaaaa@3C82@  by using the likelihood ratio test.

Comments and conclusions

In some instances but not always, the percent of ashes might proportionally decrease as the distance increases only if the wind is stable. Otherwise, the percent of ashes might be more in a faraway distance if the wind is blowing at an angle and strongly. A realistic probability model is identified and applied to volcanic data analysis. In the model, a parametric symptom is introduced and utilized in this article to check out whether or not the wind direction, distance for volcanic debris, and the percent of ashes have functioned as disconnected entities in a particular natural disaster. With a new and novel flexing and bonding trivariate probability density function (1), we have proved that the three data variables (namely, ash in proportion, spilled distance in kilo meter, and angle direction of the wind) are not independent because ϕ ^ mle 1.57 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aHvpGzgaqcaSWaaSbaaKqbagaajugWaiaad2gacaWGSbGaamyzaaqc fayabaGaeyisISRaaGymaiaac6cacaaI1aGaaG4naaaa@43F2@ which is much higher than zero. Recall that ϕ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHvpGzcqGH9aqpcaaIWaaaaa@3BC1@ is a requirement for the three data variables to be independent.

Acknowledgements

The authors appreciates and thanks an anonymous referee for valuable suggestions which helped to improve contents and quality of the article.

Conflicts of interest

None

References

  1. Beaubien SE, Ciotoli G, Lucchese R. Carbon dioxide and radon gas hazard in the Alban Hills area (central Italy). J Volcanol Geotherm Res. 2003;123:63‒80.
  2. Simkin T, Siebert L, Blong R. Volcano Fatalities‒Lessons from the historical record. Science. 2001;291(5502):255.
  3. Annuziatellis A, Ciotoli GLombardi S. Short‒ and long‒term gas hazard: the release of toxic gases in the Alban Hills volcanic area (central Italy). J Geochem Exploration. 2003;77:93‒108.
  4. Small D, Naumann The global distribution of human population and recent volcanism. Environ Haz. 2001;3:93‒109.
  5. Gıslason SR, Alfredsson HA, Eiriksdottir ES, et al. Volcanic ash from the 2010 Eyjafjallajokull eruption. Applied Geochemistry. 2011;26:S188‒S190.
  6. Grattan J, Durand M, Gilbertson D. Human sickness and mortality rates in relation to the distant eruption of volcanic gases: rural England and the 1783 eruption of the Laki fissure, Iceland. In: Geology and Health: Closing the Gap, Skinner HCW & Berger A (Ed.) Oxford: Oxford University Press, USA. 2003;p. 19‒24.
  7. World Health Organization (2010) Volcanic Ash Cloud over Europe.
  8. Durand M, Grattan J. Effects of volcanic air pollution on health. Lancet. 2001;357:164. 
  9. Shanmugam R, Chattamvelli R. Statistics for Scientists and Engineers, John Wiley Press, 111 River Street, Hoboken, NJ. 2015;07030‒5774, ISBN: 978‒1‒118‒228968.
  10. Baxter PJ. Medical effects of volcanic eruptions. Bull Volcanol. 1990;52:532‒544.
Creative Commons Attribution License

©2017 Shanmugam, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.