Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 11 Issue 2

Effect of correlated measurement errors on estimation of population mean with modified ratio estimator

Okafor Ikechukwu Boniface, Onyeka Aloysius Chijioke, Ogbonna Chukwudi Justin, Izunobi Chinyeaka Hostensia

Department of Statistics, Federal University of Technology, Nigeria

Correspondence: Okafor Ikechukwu Boniface, Department of Statistics, Federal University of Technology, Owerri, Imo state, Nigeria

Received: November 19, 2021 | Published: April 25, 2022

Citation: Boniface OI, Chijioke OA, Justin OC, et al. Effect of correlated measurement errors on estimation of population mean with modified ratio estimator. Biom Biostat Int J. 2022;11(2):52-56. DOI: 10.15406/bbij.2022.11.00354

Download PDF

Abstract

This paper proposes a class of modified ratio estimators of population mean using correlation coefficient between study and auxiliary variables in the presence of correlated measurement errors under simple random strategy. Usual unbiased estimator of sample mean per unit, ratio and product-type estimators belong to the suggested modified class of estimators. Considering large sample approximation, properties of the proposed estimator are obtained. Theoretical and empirical analysis revealed that the proposed class of estimators are more efficient than some existing estimators.

Keywords: Correlated measurement errors, ratio estimator, bias, mean squared error, correlation coefficient.

Introduction

Many researchers have widely utilized auxiliary information while estimating population parameters. This has contributed immensely in advancing sampling theory as a result of its ability to improve the accuracy of sampling strategies and reduce their design variances. Due to the fact that sample sizes are not sufficiently large in most of the survey exercises, estimators of population parameters based on these survey exercises may not be satisfactory in terms of their variances. At the same time it is not unusual that some auxiliary information about the study variable may be available. Such additional information, if available, can be utilized to improve properties of estimators. Some of the auxiliary information about the population that is used to improve the accuracy of an estimator may include a known variable to which study variable is approximately related. Such estimators which utilize auxiliary information include ratio, product and regression estimators. Although use of auxiliary information may have improved the estimates of population parameters, measurement errors may still influence the efficiency of the estimators.

In sampling survey, properties of estimators presume that observed values are indeed true values. However, several observations of the same quantity on the same subject may not in most cases be the same as a result of natural variation in the subject, variation in the observational process, or both. Hence, it is generally accepted that data available for statistical analysis are subject to error.

The difference between the individual observed values and their corresponding true values are referred to as measurement errors. This constitutes an essential part of errors in any sample survey data and their presence is practically inevitable whatever precautions one takes. The causes of these measurement errors may be attributed to errors during data collection stage due to respondents or enumerators’ bias or both, and to data collation and coding.1,2 The magnitude of the effect of measurement errors on statistical inference drawn about the population parameter may sometimes be inconsequential. However, in some other situation, the magnitude may throw a serious concern which may invalidate the inference drawn and lead to unfortunate implication.

Shalabh3 had examined the issue of observational error or measurement errors on ratio estimator under simple random sampling strategy. Following his work, other researchers further investigated the impact of measurement errors on the estimators of population parameters using different sampling schemes. Manish and Singh4 considered linear combination of ratio estimator and sample mean per unit and came up with a family of estimators of population mean. They obtained the bias and mean squared error of the proposed family of estimators when the sample data are contaminated with measurement errors. Using variable transformation, Diwakar et al.5 worked on estimator of a population mean in the presence of measurement errors and the properties of the estimator were obtained. Comparing this estimator with the estimators proposed by Manish and Singh4 and Shalabh3 when the study and auxiliary variables are contaminated with measurement errors, it was observed that their proposed estimator is more efficient in a localized domain. Using variable transformation, Viplav et al.6 studied a class of difference-type estimator for estimating the population mean of the study variable when measurement errors are present. They generated some new estimators that belong to the family of estimators proposed by them. Their empirical study showed that the suggested estimators have more gain in efficiency overother existing estimators.

Gregoire and Salas7 studied systematic measurement errors as well as measurement errors that are assumed to be stochastic in nature. They obtained the statistical properties of three ratio estimators under these measurement error conditions. They concluded that the ratio-of-means estimator appears to be less affected when the auxiliary variants are contaminated with measurement errors. Empirical study of ratio and regression estimators through Monte Carlo simulation by Sahoo et al.8 when the auxiliary variable is contaminated with the measurement errors reveals that the regression estimator is more sensitive to measurement errors than the ratio estimator with respect to their efficiency. Bias of both estimators is sensitive to measurement errors with the bias of an estimator decreasing as the sample size is increasing, and increase when the regression line of  (study variable) on  (auxiliary variable)moves away from the origin.

All the work reviewed so far were based on the general assumption that measurement errors are uncorrelated though the study variable  and auxiliary variable  are correlated. However, Shalabh and Jia-Ren9 relaxed the general assumption and studied the performance of ratio as well as product estimators of population mean with correlated measurement errors.

In this work, we examine the performance of modified ratio-type estimator of population mean under the influence of correlated measurement errors using simple random sampling scheme.

Measurement error model definition

Considering, a population of size N, ( U i = U 1 , U 2 ,, U N ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaabwfapaWaaSbaaSqaa8qacaWGPbaapaqabaGc peGaeyypa0Jaaeyva8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qaca GGSaGaaeyva8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGSaGa eyOjGWRaaiilaiaabwfapaWaaSbaaSqaa8qacaWGobaapaqabaaak8 qacaGLOaGaayzkaaaaaa@45E3@ . Let’s denote the study variable as y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG5baaaa@3715@  and the auxiliary variableas x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382C@  and let them take on the values y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3975@  and x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3974@ respectively on the i th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAa8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A4F@  unit of U i ,( i=1,2,,N ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGSaWaaeWa a8aabaWdbiaadMgacqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaey OjGWRaaiilaiaad6eaaiaawIcacaGLPaaaaaa@439F@ . We denote population mean of y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaaaa@382D@  and x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382C@  as μ Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaBaaaleaapeGaamywaaWdaeqaaaaa@3A1D@ and μ X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaBaaaleaapeGaamiwaaWdaeqaaaaa@3A1C@ respectively, and the population variance of y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaaaa@382D@  and x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382C@  as σ Y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaamywaaWdaeaapeGaaGOmaaaaaaa@3AF7@ and σ X 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaamiwaaWdaeaapeGaaGOmaaaaaaa@3AF6@ respectively. Also let σ XY MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamiwaiaadMfaa8aabeaaaaa@3B07@ and ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdihaaa@38EF@ denote the population covariance and the correlation coefficient between ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdihaaa@38EF@ and x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382C@ .

Assume a simple random sample without replacement (SRSWOR) of size n is drawn from population U. Let y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadMhagaqeaa aa@3825@  and x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIhagaqeaa aa@3824@  be the sample means of y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaaaa@382D@ and x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382C@ respectively. Thus, for a simple random sampling scheme, let ( y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3975@ , x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3974@ ) be observed values instead of the true values ( y i * , x i * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadMhapaWaa0baaSqaa8qacaWGPbaapaqaa8qa caGGQaaaaOGaaiilaiaadIhapaWaa0baaSqaa8qacaWGPbaapaqaa8 qacaGGQaaaaaGccaGLOaGaayzkaaaaaa@3FA4@  on the two characteristics ( y,x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadMhacaGGSaGaamiEaaGaayjkaiaawMcaaaaa @3B82@ respectively for the i th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAa8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A4F@  unit ( i=1,2,,n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadMgacqGH9aqpcaaIXaGaaiilaiaaikdacaGG SaGaeyOjGWRaaiilaiaad6gaaiaawIcacaGLPaaaaaa@40D3@  in a sample of size n. Let the measurement errors be defined as:

u i = y i y i * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpcaWG 5bWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgkHiTiaadMhapa Waa0baaSqaa8qacaWGPbaapaqaa8qacaGGQaaaaaaa@40E3@   (1)

v i = x i x i * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpcaWG 4bWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgkHiTiaadIhapa Waa0baaSqaa8qacaWGPbaapaqaa8qacaGGQaaaaaaa@40E2@   (2)

Such that

E( u )=E( v )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyramaabmaapaqaa8qacaWG1baacaGLOaGaayzkaaGaeyypa0Ja amyramaabmaapaqaa8qacaWG2baacaGLOaGaayzkaaGaeyypa0JaaG imaaaa@40CE@  

Var( u )= σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaiaadggacaWGYbWaaeWaa8aabaWdbiaadwhaaiaawIcacaGL PaaacqGH9aqpcqaHdpWCpaWaa0baaSqaa8qacaWG1baapaqaa8qaca aIYaaaaaaa@4173@ , Var( v )= σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaiaadggacaWGYbWaaeWaa8aabaWdbiaadAhaaiaawIcacaGL PaaacqGH9aqpcqaHdpWCpaWaa0baaSqaa8qacaWG2baapaqaa8qaca aIYaaaaaaa@4175@

cov( u,v )= ρ * σ u σ v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaci4yaiaac+gacaGG2bWaaeWaa8aabaWdbiaadwhacaGGSaGaamOD aaGaayjkaiaawMcaaiabg2da9iabeg8aY9aadaahaaWcbeqaa8qaca GGQaaaaOGaeq4Wdm3damaaBaaaleaapeGaamyDaaWdaeqaaOWdbiab eo8aZ9aadaWgaaWcbaWdbiaadAhaa8aabeaaaaa@4865@  

Thus, expressing the observed value as a function of the true value and the measurement errors, we have,

y i = y i * + u i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpcaWG 5bWdamaaDaaaleaapeGaamyAaaWdaeaapeGaaiOkaaaakiabgUcaRi aadwhapaWaaSbaaSqaa8qacaWGPbaapaqabaaaaa@40C8@   (3)

x i = x i * + v i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpcaWG 4bWdamaaDaaaleaapeGaamyAaaWdaeaapeGaaiOkaaaakiabgUcaRi aadAhapaWaaSbaaSqaa8qacaWGPbaapaqabaaaaa@40C7@   (4)

Notations

Considering large sample approximation, the finite population correction 1f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabgkHiTiaadAgaaaa@39C2@  can be ignored,

where

f= n N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiabg2da9maalaaapaqaa8qacaWGUbaapaqaa8qacaWGobaa aaaa@3B34@

We define mean and variance of study variable Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamywaaaa@380D@ and auxiliary variable X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwaaaa@380C@ as

X ¯ = 1 N i=1 N X i , Y ¯ = 1 N i=1 N Y i , σ X = 1 N i=1 N ( X i X ¯ ) 2 , σ Y = 1 N i=1 N ( Y i Y ¯ ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiwayaaraGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaa d6eaaaWaaabCaeaacaWGybWdamaaBaaaleaapeGaamyAaaWdaeqaaa WdbeaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiaa cYcaceWGzbGbaebacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaape GaamOtaaaadaaeWbqaaiaadMfapaWaaSbaaSqaa8qacaWGPbaapaqa baaapeqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aO Gaaiilaiabeo8aZ9aadaWgaaWcbaWdbiaadIfaa8aabeaak8qacqGH 9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOtaaaadaaeWbqaam aabmaapaqaa8qacaWGybWdamaaBaaaleaapeGaamyAaaWdaeqaaOWd biabgkHiT8aaceWGybGbaebaa8qacaGLOaGaayzkaaWdamaaCaaale qabaWdbiaaikdaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWGobaa niabggHiLdGccaGGSaGaeq4Wdm3damaaBaaaleaapeGaamywaaWdae qaaOWdbiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaWGobaa amaaqahabaWaaeWaa8aabaWdbiaadMfapaWaaSbaaSqaa8qacaWGPb aapaqabaGcpeGaeyOeI0IabmywayaaraaacaGLOaGaayzkaaWdamaa CaaaleqabaWdbiaaikdaaaaabaGaamyAaiabg2da9iaaigdaaeaaca WGobaaniabggHiLdaaaa@760A@  

Further, we define the coefficient of variation of X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwaaaa@380C@  and Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamywaaaa@380D@  as

C X = σ X X ¯ and C Y = σ Y Y ¯ respectively MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadIfaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaeq4Wdm3damaaBaaaleaapeGaamiwaaWdaeqaaaGcba WdbiqadIfagaqeaaaacaqGHbGaaeOBaiaabsgacaWGdbWdamaaBaaa leaapeGaamywaaWdaeqaaOWdbiabg2da9maalaaapaqaa8qacqaHdp WCpaWaaSbaaSqaa8qacaWGzbaapaqabaaakeaapeGabmywayaaraaa aiaabkhacaqGLbGaae4CaiaabchacaqGLbGaae4yaiaabshacaqGPb GaaeODaiaabwgacaqGSbGaaeyEaaaa@53DE@  

Also Covariance of Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamywaaaa@380C@  and X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwaaaa@380B@ , Correlation Coefficient between Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamywaaaa@380C@  and X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwaaaa@380B@ , and Correlation Coefficient between u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaaaa@3828@  and v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaaaa@3829@ are defined as

σ XY = 1 N i=1 N ( X i X ¯ ) ( Y i Y ¯ ),ρ= σ XY σ X σ Y and ρ * = σ uv σ v σ u respectively MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamiwaiaadMfaa8aabeaak8qacqGH 9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOtaaaadaaeWbqaam aabmaapaqaa8qacaWGybWdamaaBaaaleaapeGaamyAaaWdaeqaaOWd biabgkHiT8aaceWGybGbaebaa8qacaGLOaGaayzkaaaaleaacaWGPb Gaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakmaabmaapaqaa8qa caWGzbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgkHiTiqadM fagaqeaaGaayjkaiaawMcaaiaacYcacqaHbpGCcqGH9aqpdaWcaaWd aeaapeGaeq4Wdm3damaaBaaaleaapeGaamiwaiaadMfaa8aabeaaaO qaa8qacqaHdpWCpaWaaSbaaSqaa8qacaWGybaapaqabaGcpeGaeq4W dm3damaaBaaaleaapeGaamywaaWdaeqaaaaak8qacaqGHbGaaeOBai aabsgacqaHbpGCpaWaaWbaaSqabeaapeGaaiOkaaaakiabg2da9maa laaapaqaa8qacqaHdpWCpaWaaSbaaSqaa8qacaWG1bGaamODaaWdae qaaaGcbaWdbiabeo8aZ9aadaWgaaWcbaWdbiaadAhaa8aabeaak8qa cqaHdpWCpaWaaSbaaSqaa8qacaWG1baapaqabaaaaOWdbiaabkhaca qGLbGaae4CaiaabchacaqGLbGaae4yaiaabshacaqGPbGaaeODaiaa bwgacaqGSbGaaeyEaaaa@79CA@  

Using delta notation, we define the following:

δ 0 = y ¯ y ¯ 1 y ¯ = Y ¯ ( 1+ δ o ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdq2damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da9maa laaapaqaa8qaceWG5bGbaebaa8aabaWdbiqadMhagaqeaaaacqGHsi slcaaIXaGaeyO0H4TabmyEayaaraGaeyypa0JabmywayaaraWaaeWa a8aabaWdbiaaigdacqGHRaWkcqaH0oazpaWaaSbaaSqaa8qacaWGVb aapaqabaaak8qacaGLOaGaayzkaaaaaa@4AEA@   (5)

δ 1 = x ¯ x ¯ 1 x ¯ = X ¯ ( 1+ δ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdq2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9maa laaapaqaa8qaceWG4bGbaebaa8aabaWdbiqadIhagaqeaaaacqGHsi slcaaIXaGaeyO0H4TabmiEayaaraGaeyypa0JabmiwayaaraWaaeWa a8aabaWdbiaaigdacqGHRaWkcqaH0oazpaWaaSbaaSqaa8qacaaIXa aapaqabaaak8qacaGLOaGaayzkaaaaaa@4AAE@   (6)

Such that,

E( δ 0 )=E( δ 1 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyramaabmaapaqaa8qacqaH0oazpaWaaSbaaSqaa8qacaaIWaaa paqabaaak8qacaGLOaGaayzkaaGaeyypa0Jaamyramaabmaapaqaa8 qacqaH0oazpaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGa ayzkaaGaeyypa0JaaGimaaaa@447F@   (7)

E( δ 0 2 )= σ Y 2 n θ Y Y ¯ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyramaabmaapaqaa8qacqaH0oazpaWaa0baaSqaa8qacaaIWaaa paqaa8qacaaIYaaaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaa8aaba Wdbiabeo8aZ9aadaqhaaWcbaWdbiaadMfaa8aabaWdbiaaikdaaaaa k8aabaWdbiaad6gacqaH4oqCpaWaaSbaaSqaa8qacaWGzbaapaqaba GcpeGabmywayaaraWdamaaCaaaleqabaWdbiaaikdaaaaaaaaa@484F@   (8)

E( δ 1 2 )= σ X 2 n X ¯ 2 ( σ X 2 + σ v 2 σ X 2 )= σ X 2 n θ X X ¯ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyramaabmaapaqaa8qacqaH0oazpaWaa0baaSqaa8qacaaIXaaa paqaa8qacaaIYaaaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaa8aaba Wdbiabeo8aZ9aadaqhaaWcbaWdbiaadIfaa8aabaWdbiaaikdaaaaa k8aabaWdbiaad6gapaGabmiwayaaraWaaWbaaSqabeaapeGaaGOmaa aaaaGcdaqadaWdaeaapeWaaSaaa8aabaWdbiabeo8aZ9aadaqhaaWc baWdbiaadIfaa8aabaWdbiaaikdaaaGccqGHRaWkcqaHdpWCpaWaa0 baaSqaa8qacaWG2baapaqaa8qacaaIYaaaaaGcpaqaa8qacqaHdpWC paWaa0baaSqaa8qacaWGybaapaqaa8qacaaIYaaaaaaaaOGaayjkai aawMcaaiabg2da9maalaaapaqaa8qacqaHdpWCpaWaa0baaSqaa8qa caWGybaapaqaa8qacaaIYaaaaaGcpaqaa8qacaWGUbGaeqiUde3dam aaBaaaleaapeGaamiwaaWdaeqaaOGabmiwayaaraWaaWbaaSqabeaa peGaaGOmaaaaaaaaaa@5EB6@   (9)

where,

θ Y = σ Y 2 σ Y 2 + σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUde3damaaBaaaleaapeGaamywaaWdaeqaaOWdbiabg2da9maa laaapaqaa8qacqaHdpWCpaWaa0baaSqaa8qacaWGzbaapaqaa8qaca aIYaaaaaGcpaqaa8qacqaHdpWCpaWaa0baaSqaa8qacaWGzbaapaqa a8qacaaIYaaaaOGaey4kaSIaeq4Wdm3damaaDaaaleaapeGaamyDaa WdaeaapeGaaGOmaaaaaaaaaa@47F4@  and θ X = σ X 2 σ X 2 + σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUde3damaaBaaaleaapeGaamiwaaWdaeqaaOWdbiabg2da9maa laaapaqaa8qacqaHdpWCpaWaa0baaSqaa8qacaWGybaapaqaa8qaca aIYaaaaaGcpaqaa8qacqaHdpWCpaWaa0baaSqaa8qacaWGybaapaqa a8qacaaIYaaaaOGaey4kaSIaeq4Wdm3damaaDaaaleaapeGaamODaa WdaeaapeGaaGOmaaaaaaaaaa@47F2@ ,

and are bounded on (0,1).

Also,

E( δ 0h δ 1h )= 1 n Y ¯ X ¯ ( C Y C X ρ+ σ u σ v ρ * ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyramaabmaapaqaa8qacqaH0oazpaWaaSbaaSqaa8qacaaIWaGa amiAaaWdaeqaaOWdbiabes7aK9aadaWgaaWcbaWdbiaaigdacaWGOb aapaqabaaak8qacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aabaWdbiaa igdaa8aabaWdbiaad6gaceWGzbGbaebaceWGybGbaebaaaWaaeWaa8 aabaWdbiaadoeapaWaaSbaaSqaa8qacaWGzbaapaqabaGcpeGaam4q a8aadaWgaaWcbaWdbiaadIfaa8aabeaak8qacqaHbpGCcqGHRaWkcq aHdpWCpaWaaSbaaSqaa8qacaWG1baapaqabaGcpeGaeq4Wdm3damaa BaaaleaapeGaamODaaWdaeqaaOWdbiabeg8aY9aadaahaaWcbeqaa8 qacaGGQaaaaaGccaGLOaGaayzkaaaaaa@57B2@   (10)

Adapted Estimators

The traditional sample mean per unit estimator for estimating population mean when the sample data is contaminated with measurement error is given by:

t 0 = y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqppaGa bmyEayaaraaaaa@3B80@   (11)

The variance is given as

V( t 0 )= C Y 2 n θ Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacaWG0bWdamaaBaaaleaapeGaaGimaaWd aeqaaaGcpeGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qacaWGdb WdamaaDaaaleaapeGaamywaaWdaeaapeGaaGOmaaaaaOWdaeaapeGa amOBaiabeI7aX9aadaWgaaWcbaWdbiaadMfaa8aabeaaaaaaaa@43E4@   (12)

Shalabh and Jia-Ren9 proposed ratio estimator and product estimator when the general assumption on the measurement errors is relaxed as

t 1 = y ¯ X ¯ x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpceWG 5bGbaebadaWcaaWdaeaaceWGybGbaebaaeaaceWG4bGbaebaaaaaaa@3D9B@   (13)

t 2 = y ¯ x ¯ X ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpceWG 5bGbaebadaWcaaWdaeaaceWG4bGbaebaaeaaceWGybGbaebaaaaaaa@3D9C@   (14)

They obtained the mean square error of ratio and product estimators as

MSE( t 1 )= Y ¯ 2 n ( C Y 2 θ Y + C X 2 θ X 2( C Y C X ρ+ σ u σ v ρ * Y ¯ X ¯ ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaadofacaWGfbWaaeWaa8aabaWdbiaadshapaWaaSbaaSqa a8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaeyypa0ZaaSaaa8 aabaWdbiqadMfagaqea8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqa a8qacaWGUbaaamaabmaapaqaa8qadaWcaaWdaeaapeGaam4qa8aada qhaaWcbaWdbiaadMfaa8aabaWdbiaaikdaaaaak8aabaWdbiabeI7a X9aadaWgaaWcbaWdbiaadMfaa8aabeaaaaGcpeGaey4kaSYaaSaaa8 aabaWdbiaadoeapaWaa0baaSqaa8qacaWGybaapaqaa8qacaaIYaaa aaGcpaqaa8qacqaH4oqCpaWaaSbaaSqaa8qacaWGybaapaqabaaaaO WdbiabgkHiTiaaikdadaqadaWdaeaapeGaam4qa8aadaWgaaWcbaWd biaadMfaa8aabeaak8qacaWGdbWdamaaBaaaleaapeGaamiwaaWdae qaaOWdbiabeg8aYjabgUcaRmaalaaapaqaa8qacqaHdpWCpaWaaSba aSqaa8qacaWG1baapaqabaGcpeGaeq4Wdm3damaaBaaaleaapeGaam ODaaWdaeqaaOWdbiabeg8aY9aadaahaaWcbeqaa8qacaGGQaaaaaGc paqaa8qaceWGzbGbaebapaGabmiwayaaraaaaaWdbiaawIcacaGLPa aaaiaawIcacaGLPaaaaaa@6648@   (15)

MSE( t 2 )= Y ¯ 2 n ( C Y 2 θ Y + C X 2 θ X +2( C Y C X ρ+ σ u σ v ρ * Y ¯ X ¯ ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaadofacaWGfbWaaeWaa8aabaWdbiaadshapaWaaSbaaSqa a8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaeyypa0ZaaSaaa8 aabaWdbiqadMfagaqea8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqa a8qacaWGUbaaamaabmaapaqaa8qadaWcaaWdaeaapeGaam4qa8aada qhaaWcbaWdbiaadMfaa8aabaWdbiaaikdaaaaak8aabaWdbiabeI7a X9aadaWgaaWcbaWdbiaadMfaa8aabeaaaaGcpeGaey4kaSYaaSaaa8 aabaWdbiaadoeapaWaa0baaSqaa8qacaWGybaapaqaa8qacaaIYaaa aaGcpaqaa8qacqaH4oqCpaWaaSbaaSqaa8qacaWGybaapaqabaaaaO WdbiabgUcaRiaaikdadaqadaWdaeaapeGaam4qa8aadaWgaaWcbaWd biaadMfaa8aabeaak8qacaWGdbWdamaaBaaaleaapeGaamiwaaWdae qaaOWdbiabeg8aYjabgUcaRmaalaaapaqaa8qacqaHdpWCpaWaaSba aSqaa8qacaWG1baapaqabaGcpeGaeq4Wdm3damaaBaaaleaapeGaam ODaaWdaeqaaOWdbiabeg8aY9aadaahaaWcbeqaa8qacaGGQaaaaaGc paqaa8qaceWGzbGbaebapaGabmiwayaaraaaaaWdbiaawIcacaGLPa aaaiaawIcacaGLPaaaaaa@663E@   (16)

Proposed estimator

Motivated by the Shalabh and Jia-Ren,9 we propose the following modified ratio estimator to estimate population mean in the presence of correlated measurement errors as

t r = y ¯ ( X ¯ +ρ x ¯ +ρ ) β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadkhaa8aabeaak8qacqGH9aqpceWG 5bGbaebadaqadaWdaeaapeWaaSaaa8aabaGabmiwayaaraWdbiabgU caRiabeg8aYbWdaeaaceWG4bGbaebapeGaey4kaSIaeqyWdihaaaGa ayjkaiaawMcaa8aadaahaaWcbeqaa8qacqaHYoGyaaaaaa@46DF@   (17)

where β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@38CF@  is any real number chosen so as to minimize the mean squared errors of t 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@393C@ . It may be noted that the proposed modified estimator is a class of estimators and that the following estimators are particular members of the proposed estimators when

β=0, t r0 = y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0JaaGimaiaacYcacaWG0bWdamaaBaaaleaapeGa amOCaiaaicdaa8aabeaak8qacqGH9aqpceWG5bGbaebaaaa@4079@   (18)

β=1, t r1 = y ¯ ( X ¯ +ρ x ¯ +ρ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0JaaGymaiaacYcacaWG0bWdamaaBaaaleaapeGa amOCaiaaigdaa8aabeaak8qacqGH9aqpceWG5bGbaebadaqadaWdae aapeWaaSaaa8aabaGabmiwayaaraWdbiabgUcaRiabeg8aYbWdaeaa ceWG4bGbaebapeGaey4kaSIaeqyWdihaaaGaayjkaiaawMcaaaaa@49BF@   (19)

β=1, t r2 = y ¯ ( x ¯ +ρ X ¯ +ρ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0JaeyOeI0IaaGymaiaacYcacaWG0bWdamaaBaaa leaapeGaamOCaiaaikdaa8aabeaak8qacqGH9aqpceWG5bGbaebada qadaWdaeaapeWaaSaaa8aabaGabmiEayaaraWdbiabgUcaRiabeg8a YbWdaeaaceWGybGbaebapeGaey4kaSIaeqyWdihaaaGaayjkaiaawM caaaaa@4AAD@   (20)

β= 1 2 , t r3 = y ¯ ( X ¯ +ρ x ¯ +ρ ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikda aaGaaiilaiaadshapaWaaSbaaSqaa8qacaWGYbGaaG4maaWdaeqaaO Wdbiabg2da9iqadMhagaqeamaabmaapaqaa8qadaWcaaWdaeaaceWG ybGbaebapeGaey4kaSIaeqyWdihapaqaaiqadIhagaqea8qacqGHRa WkcqaHbpGCaaaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbmaalaaa paqaa8qacaaIXaaapaqaa8qacaaIYaaaaaaaaaa@4CDC@   (21)

β= 1 2 , t r4 = y ¯ ( X ¯ +ρ x ¯ +ρ ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0JaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWd biaaikdaaaGaaiilaiaadshapaWaaSbaaSqaa8qacaWGYbGaaGinaa WdaeqaaOWdbiabg2da9iqadMhagaqeamaabmaapaqaa8qadaWcaaWd aeaaceWGybGbaebapeGaey4kaSIaeqyWdihapaqaaiqadIhagaqea8 qacqGHRaWkcqaHbpGCaaaacaGLOaGaayzkaaWdamaaCaaaleqabaWd biabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaaaaaaa a@4EB7@   (22)

Properties of proposed estimator

Using notations defined in Section 3, we obtain the properties of the proposed estimators. Expressing (17) in terms of δ i ,( i=0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdq2damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaacYcadaqa daWdaeaapeGaamyAaiabg2da9iaaicdacaGGSaGaaGymaaGaayjkai aawMcaaaaa@40A6@

t r = Y ¯ ( 1+ δ 0 ) ( X ¯ +ρ X ¯ ( 1+ δ 1 )+ρ ) β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadkhaa8aabeaak8qacqGH9aqppaGa bmywayaaraWdbmaabmaapaqaa8qacaaIXaGaey4kaSIaeqiTdq2dam aaBaaaleaapeGaaGimaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaa paqaa8qadaWcaaWdaeaaceWGybGbaebapeGaey4kaSIaeqyWdihapa qaaiqadIfagaqea8qadaqadaWdaeaapeGaaGymaiabgUcaRiabes7a K9aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacq GHRaWkcqaHbpGCaaaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiab ek7aIbaaaaa@52EF@   (23)

(23) can be rewritten as

t r = Y ¯ ( 1+ δ 0 ) ( 1+ X ¯ ρ X ¯ +ρ δ 1 ) β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadkhaa8aabeaak8qacqGH9aqppaGa bmywayaaraWdbmaabmaapaqaa8qacaaIXaGaey4kaSIaeqiTdq2dam aaBaaaleaapeGaaGimaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaa paqaa8qacaaIXaGaey4kaSYaaSaaa8aabaGabmiwayaaraWdbiabeg 8aYbWdaeaaceWGybGbaebapeGaey4kaSIaeqyWdihaaiabes7aK9aa daWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaapaWaaW baaSqabeaapeGaeqOSdigaaaaa@5065@  

= Y ¯ ( 1+ δ 0 )[ 1β( X ¯ ρ X ¯ +ρ ) δ 1 + β( β+1 ) 2 ( X ¯ ρ X ¯ +ρ ) 2 δ 1 +O( δ 1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0ZdaiqadMfagaqea8qadaqadaWdaeaapeGaaGymaiabgUca Riabes7aK9aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawIcaca GLPaaadaWadaWdaeaapeGaaGymaiabgkHiTiabek7aInaabmaapaqa a8qadaWcaaWdaeaaceWGybGbaebapeGaeqyWdihapaqaaiqadIfaga qea8qacqGHRaWkcqaHbpGCaaaacaGLOaGaayzkaaGaeqiTdq2damaa BaaaleaapeGaaGymaaWdaeqaaOWdbiabgUcaRmaalaaapaqaa8qacq aHYoGydaqadaWdaeaapeGaeqOSdiMaey4kaSIaaGymaaGaayjkaiaa wMcaaaWdaeaapeGaaGOmaaaadaqadaWdaeaapeWaaSaaa8aabaGabm iwayaaraWdbiabeg8aYbWdaeaaceWGybGbaebapeGaey4kaSIaeqyW dihaaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeq iTdq2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgUcaRiaad+ea daqadaWdaeaapeGaeqiTdq2damaaBaaaleaapeGaaGymaaWdaeqaaa GcpeGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@6A9E@  

t r = Y ¯ + Y ¯ [ δ 0 β( X ¯ ρ X ¯ +ρ ) δ 1 δ 0 + β( β+1 ) 2 ( X ¯ ρ X ¯ +ρ ) 2 δ 1 2 δ 0 β( X ¯ ρ X ¯ +ρ ) δ 1 + β( β+1 ) 2 ( X ¯ ρ X ¯ +ρ ) 2 δ 1 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadkhaa8aabeaak8qacqGH9aqppaGa bmywayaaraWdbiabgUcaR8aaceWGzbGbaebapeWaamWaa8aabaWdbi abes7aK9aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHsislcqaH YoGydaqadaWdaeaapeWaaSaaa8aabaGabmiwayaaraWdbiabeg8aYb WdaeaaceWGybGbaebapeGaey4kaSIaeqyWdihaaaGaayjkaiaawMca aiabes7aK9aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqaH0oazpa WaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaey4kaSYaaSaaa8aabaWd biabek7aInaabmaapaqaa8qacqaHYoGycqGHRaWkcaaIXaaacaGLOa Gaayzkaaaapaqaa8qacaaIYaaaamaabmaapaqaa8qadaWcaaWdaeaa ceWGybGbaebapeGaeqyWdihapaqaaiqadIfagaqea8qacqGHRaWkcq aHbpGCaaaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaGc cqaH0oazpaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaOGaeq iTdq2damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabgkHiTiabek7a Inaabmaapaqaa8qadaWcaaWdaeaaceWGybGbaebapeGaeqyWdihapa qaaiqadIfagaqea8qacqGHRaWkcqaHbpGCaaaacaGLOaGaayzkaaGa eqiTdq2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgUcaRmaala aapaqaa8qacqaHYoGydaqadaWdaeaapeGaeqOSdiMaey4kaSIaaGym aaGaayjkaiaawMcaaaWdaeaapeGaaGOmaaaadaqadaWdaeaapeWaaS aaa8aabaGabmiwayaaraWdbiabeg8aYbWdaeaaceWGybGbaebapeGa ey4kaSIaeqyWdihaaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qaca aIYaaaaOGaeqiTdq2damaaDaaaleaapeGaaGymaaWdaeaapeGaaGOm aaaaaOGaay5waiaaw2faaaaa@8E26@  

t r Y ¯ = Y ¯ [ δ 0 β( X ¯ ρ X ¯ +ρ ) δ 1 δ 0 + β( β+1 ) 2 ( X ¯ ρ X ¯ +ρ ) 2 δ 1 2 δ 0 β( X ¯ ρ X ¯ +ρ ) δ 1 + β( β+1 ) 2 ( X ¯ ρ X ¯ +ρ ) 2 δ 1 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadkhaa8aabeaak8qacqGHsislpaGa bmywayaaraWdbiabg2da98aaceWGzbGbaebapeWaamWaa8aabaWdbi abes7aK9aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHsislcqaH YoGydaqadaWdaeaapeWaaSaaa8aabaGabmiwayaaraWdbiabeg8aYb WdaeaaceWGybGbaebapeGaey4kaSIaeqyWdihaaaGaayjkaiaawMca aiabes7aK9aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqaH0oazpa WaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaey4kaSYaaSaaa8aabaWd biabek7aInaabmaapaqaa8qacqaHYoGycqGHRaWkcaaIXaaacaGLOa Gaayzkaaaapaqaa8qacaaIYaaaamaabmaapaqaa8qadaWcaaWdaeaa ceWGybGbaebapeGaeqyWdihapaqaaiqadIfagaqea8qacqGHRaWkcq aHbpGCaaaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaGc cqaH0oazpaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaOGaeq iTdq2damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabgkHiTiabek7a Inaabmaapaqaa8qadaWcaaWdaeaaceWGybGbaebapeGaeqyWdihapa qaaiqadIfagaqea8qacqGHRaWkcqaHbpGCaaaacaGLOaGaayzkaaGa eqiTdq2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgUcaRmaala aapaqaa8qacqaHYoGydaqadaWdaeaapeGaeqOSdiMaey4kaSIaaGym aaGaayjkaiaawMcaaaWdaeaapeGaaGOmaaaadaqadaWdaeaapeWaaS aaa8aabaGabmiwayaaraWdbiabeg8aYbWdaeaaceWGybGbaebapeGa ey4kaSIaeqyWdihaaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qaca aIYaaaaOGaeqiTdq2damaaDaaaleaapeGaaGymaaWdaeaapeGaaGOm aaaaaOGaay5waiaaw2faaaaa@8E31@   (24)

Taking expectation of both sides of (24) and making necessary substitutions using (8), (9) and (10) and simplifying the bias up to first order approximation, (24) becomes

Bias( t r )=E( t r Y ¯ )= Y ¯ β n [ ( β+1 2 ) ( X ¯ ρ X ¯ +ρ ) 2 C X θ X ( X ¯ ρ X ¯ +ρ )( ρ C Y C X + σ u σ v ρ * Y ¯ X ¯ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiaadMgacaWGHbGaam4Camaabmaapaqaa8qacaWG0bWdamaa BaaaleaapeGaamOCaaWdaeqaaaGcpeGaayjkaiaawMcaaiabg2da9i aadweadaqadaWdaeaapeGaamiDa8aadaWgaaWcbaWdbiaadkhaa8aa beaak8qacqGHsislpaGabmywayaaraaapeGaayjkaiaawMcaaiabg2 da9maalaaapaqaaiqadMfagaqea8qacqaHYoGya8aabaWdbiaad6ga aaWaamWaa8aabaWdbmaabmaapaqaa8qadaWcaaWdaeaapeGaeqOSdi Maey4kaSIaaGymaaWdaeaapeGaaGOmaaaaaiaawIcacaGLPaaadaqa daWdaeaapeWaaSaaa8aabaGabmiwayaaraWdbiabeg8aYbWdaeaace WGybGbaebapeGaey4kaSIaeqyWdihaaaGaayjkaiaawMcaa8aadaah aaWcbeqaa8qacaaIYaaaaOWaaSaaa8aabaWdbiaadoeapaWaaSbaaS qaa8qacaWGybaapaqabaaakeaapeGaeqiUde3damaaBaaaleaapeGa amiwaaWdaeqaaaaak8qacqGHsisldaqadaWdaeaapeWaaSaaa8aaba GabmiwayaaraWdbiabeg8aYbWdaeaaceWGybGbaebapeGaey4kaSIa eqyWdihaaaGaayjkaiaawMcaamaabmaapaqaa8qacqaHbpGCcaWGdb WdamaaBaaaleaapeGaamywaaWdaeqaaOWdbiaadoeapaWaaSbaaSqa a8qacaWGybaapaqabaGcpeGaey4kaSYaaSaaa8aabaWdbiabeo8aZ9 aadaWgaaWcbaWdbiaadwhaa8aabeaak8qacqaHdpWCpaWaaSbaaSqa a8qacaWG2baapaqabaGcpeGaeqyWdi3damaaCaaaleqabaWdbiaacQ caaaaak8aabaGabmywayaaraGabmiwayaaraaaaaWdbiaawIcacaGL PaaaaiaawUfacaGLDbaaaaa@7F39@   (25)

Squaring and taking expectation of both sides of (24) and making necessary substitution using (8), (9) and (10) and simplifyingthe mean square error up to first order approximation, (24) becomes

MSE( t r )=E ( t r Y ¯ ) 2 = Y ¯ 2 n [ C Y 2 θ Y + β 2 ( X ¯ ρ X ¯ +ρ ) 2 C X 2 θ X 2β( X ¯ ρ X ¯ +ρ )( ρ C Y C X + σ u σ v Y ¯ X ¯ ρ * ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaadofacaWGfbWaaeWaa8aabaWdbiaadshapaWaaSbaaSqa a8qacaWGYbaapaqabaaak8qacaGLOaGaayzkaaGaeyypa0Jaamyram aabmaapaqaa8qacaWG0bWdamaaBaaaleaapeGaamOCaaWdaeqaaOWd biabgkHiT8aaceWGzbGbaebaa8qacaGLOaGaayzkaaWdamaaCaaale qabaWdbiaaikdaaaGccqGH9aqpdaWcaaWdaeaaceWGzbGbaebadaah aaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaWGUbaaamaadmaapaqaa8 qadaWcaaWdaeaapeGaam4qa8aadaqhaaWcbaWdbiaadMfaa8aabaWd biaaikdaaaaak8aabaWdbiabeI7aX9aadaWgaaWcbaWdbiaadMfaa8 aabeaaaaGcpeGaey4kaSIaeqOSdi2damaaCaaaleqabaWdbiaaikda aaGcdaqadaWdaeaapeWaaSaaa8aabaGabmiwayaaraWdbiabeg8aYb WdaeaaceWGybGbaebapeGaey4kaSIaeqyWdihaaaGaayjkaiaawMca a8aadaahaaWcbeqaa8qacaaIYaaaaOWaaSaaa8aabaWdbiaadoeapa Waa0baaSqaa8qacaWGybaapaqaa8qacaaIYaaaaaGcpaqaa8qacqaH 4oqCpaWaaSbaaSqaa8qacaWGybaapaqabaaaaOWdbiabgkHiTiaaik dacqaHYoGydaqadaWdaeaapeWaaSaaa8aabaGabmiwayaaraWdbiab eg8aYbWdaeaaceWGybGbaebapeGaey4kaSIaeqyWdihaaaGaayjkai aawMcaamaabmaapaqaa8qacqaHbpGCcaWGdbWdamaaBaaaleaapeGa amywaaWdaeqaaOWdbiaadoeapaWaaSbaaSqaa8qacaWGybaapaqaba GcpeGaey4kaSYaaSaaa8aabaWdbiabeo8aZ9aadaWgaaWcbaWdbiaa dwhaa8aabeaak8qacqaHdpWCpaWaaSbaaSqaa8qacaWG2baapaqaba aakeaaceWGzbGbaebaceWGybGbaebaaaWdbiabeg8aY9aadaahaaWc beqaa8qacaGGQaaaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@856A@   (26)

Using the least square method which seek to minimize sum of square errors, we obtain the optimum value β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHYoGyaaa@37B8@  which minimizes the mean square error of t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadkhaa8aabeaaaaa@3978@  as

β= β opt =( X ¯ +ρ X ¯ ρ )( ρ C Y C X + σ u σ v Y ¯ X ¯ ρ * ) θ X C X 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0JaeqOSdi2damaaBaaaleaapeGaam4Baiaadcha caWG0baapaqabaGcpeGaeyypa0ZaaeWaa8aabaWdbmaalaaapaqaai qadIfagaqea8qacqGHRaWkcqaHbpGCa8aabaGabmiwayaaraWdbiab eg8aYbaaaiaawIcacaGLPaaadaqadaWdaeaapeGaeqyWdiNaam4qa8 aadaWgaaWcbaWdbiaadMfaa8aabeaak8qacaWGdbWdamaaBaaaleaa peGaamiwaaWdaeqaaOWdbiabgUcaRmaalaaapaqaa8qacqaHdpWCpa WaaSbaaSqaa8qacaWG1baapaqabaGcpeGaeq4Wdm3damaaBaaaleaa peGaamODaaWdaeqaaaGcbaGabmywayaaraGabmiwayaaraaaa8qacq aHbpGCpaWaaWbaaSqabeaapeGaaiOkaaaaaOGaayjkaiaawMcaamaa laaapaqaa8qacqaH4oqCpaWaaSbaaSqaa8qacaWGybaapaqabaaake aapeGaam4qa8aadaqhaaWcbaWdbiaadIfaa8aabaWdbiaaikdaaaaa aaaa@61D4@   (27)

Substituting (27) in (26) we obtain minimum mean square error of t r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG0bWdamaaBaaaleaapeGaamOCaaWdaeqaaaaa@3861@  as

MS E min ( t r )= Y ¯ 2 n [ C Y 2 θ Y θ X C X 2 ( ρ C Y C X + σ u σ v Y ¯ X ¯ ρ * ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaadofacaWGfbWdamaaBaaaleaapeGaciyBaiaacMgacaGG UbaapaqabaGcpeWaaeWaa8aabaWdbiaadshapaWaaSbaaSqaa8qaca WGYbaapaqabaaak8qacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aabaGa bmywayaaraWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaamOBaa aadaWadaWdaeaapeWaaSaaa8aabaWdbiaadoeapaWaa0baaSqaa8qa caWGzbaapaqaa8qacaaIYaaaaaGcpaqaa8qacqaH4oqCpaWaaSbaaS qaa8qacaWGzbaapaqabaaaaOWdbiabgkHiTmaalaaapaqaa8qacqaH 4oqCpaWaaSbaaSqaa8qacaWGybaapaqabaaakeaapeGaam4qa8aada qhaaWcbaWdbiaadIfaa8aabaWdbiaaikdaaaaaaOWaaeWaa8aabaWd biabeg8aYjaadoeapaWaaSbaaSqaa8qacaWGzbaapaqabaGcpeGaam 4qa8aadaWgaaWcbaWdbiaadIfaa8aabeaak8qacqGHRaWkdaWcaaWd aeaapeGaeq4Wdm3damaaBaaaleaapeGaamyDaaWdaeqaaOWdbiabeo 8aZ9aadaWgaaWcbaWdbiaadAhaa8aabeaaaOqaaiqadMfagaqeaiqa dIfagaqeaaaapeGaeqyWdi3damaaCaaaleqabaWdbiaacQcaaaaaki aawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaaaOGaay5waiaa w2faaaaa@692B@   (28)

The variance and the mean square errors of the estimators which are particular members of the proposed modified estimator can easily be obtained by substituting the appropriate values of β=0,1,1, 1 2 , 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0JaaGimaiaacYcacaaIXaGaaiilaiabgkHiTiaa igdacaGGSaWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaai ilaiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaaaaa @4429@ in (26). Thus,

Var( t r0 )= Y ¯ 2 n C Y 2 θ Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaiaadggacaWGYbWaaeWaa8aabaWdbiaadshapaWaaSbaaSqa a8qacaWGYbGaaGimaaWdaeqaaaGcpeGaayjkaiaawMcaaiabg2da9m aalaaapaqaaiqadMfagaqeamaaCaaaleqabaWdbiaaikdaaaaak8aa baWdbiaad6gaaaWaaSaaa8aabaWdbiaadoeapaWaa0baaSqaa8qaca WGzbaapaqaa8qacaaIYaaaaaGcpaqaa8qacqaH4oqCpaWaaSbaaSqa a8qacaWGzbaapaqabaaaaaaa@48EF@   (29)

MSE( t r1 )= Y ¯ 2 n [ C Y 2 θ Y + ( X ¯ ρ X ¯ +ρ ) 2 C X 2 θ X 2( X ¯ ρ X ¯ +ρ )( ρ C Y C X + σ u σ v Y ¯ X ¯ ρ * ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaadofacaWGfbWaaeWaa8aabaWdbiaadshapaWaaSbaaSqa a8qacaWGYbGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiabg2da9m aalaaapaqaaiqadMfagaqeamaaCaaaleqabaWdbiaaikdaaaaak8aa baWdbiaad6gaaaWaamWaa8aabaWdbmaalaaapaqaa8qacaWGdbWdam aaDaaaleaapeGaamywaaWdaeaapeGaaGOmaaaaaOWdaeaapeGaeqiU de3damaaBaaaleaapeGaamywaaWdaeqaaaaak8qacqGHRaWkdaqada WdaeaapeWaaSaaa8aabaGabmiwayaaraWdbiabeg8aYbWdaeaaceWG ybGbaebapeGaey4kaSIaeqyWdihaaaGaayjkaiaawMcaa8aadaahaa Wcbeqaa8qacaaIYaaaaOWaaSaaa8aabaWdbiaadoeapaWaa0baaSqa a8qacaWGybaapaqaa8qacaaIYaaaaaGcpaqaa8qacqaH4oqCpaWaaS baaSqaa8qacaWGybaapaqabaaaaOWdbiabgkHiTiaaikdadaqadaWd aeaapeWaaSaaa8aabaGabmiwayaaraWdbiabeg8aYbWdaeaaceWGyb GbaebapeGaey4kaSIaeqyWdihaaaGaayjkaiaawMcaamaabmaapaqa a8qacqaHbpGCcaWGdbWdamaaBaaaleaapeGaamywaaWdaeqaaOWdbi aadoeapaWaaSbaaSqaa8qacaWGybaapaqabaGcpeGaey4kaSYaaSaa a8aabaWdbiabeo8aZ9aadaWgaaWcbaWdbiaadwhaa8aabeaak8qacq aHdpWCpaWaaSbaaSqaa8qacaWG2baapaqabaaakeaaceWGzbGbaeba ceWGybGbaebaaaWdbiabeg8aY9aadaahaaWcbeqaa8qacaGGQaaaaa GccaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@78E1@   (30)

MSE( t r2 )= Y ¯ 2 n [ C Y 2 θ Y + ( X ¯ ρ X ¯ +ρ ) 2 C X 2 θ X +2( X ¯ ρ X ¯ +ρ )( ρ C Y C X + σ u σ v Y ¯ X ¯ ρ * ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaadofacaWGfbWaaeWaa8aabaWdbiaadshapaWaaSbaaSqa a8qacaWGYbGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaiabg2da9m aalaaapaqaaiqadMfagaqeamaaCaaaleqabaWdbiaaikdaaaaak8aa baWdbiaad6gaaaWaamWaa8aabaWdbmaalaaapaqaa8qacaWGdbWdam aaDaaaleaapeGaamywaaWdaeaapeGaaGOmaaaaaOWdaeaapeGaeqiU de3damaaBaaaleaapeGaamywaaWdaeqaaaaak8qacqGHRaWkdaqada WdaeaapeWaaSaaa8aabaGabmiwayaaraWdbiabeg8aYbWdaeaaceWG ybGbaebapeGaey4kaSIaeqyWdihaaaGaayjkaiaawMcaa8aadaahaa Wcbeqaa8qacaaIYaaaaOWaaSaaa8aabaWdbiaadoeapaWaa0baaSqa a8qacaWGybaapaqaa8qacaaIYaaaaaGcpaqaa8qacqaH4oqCpaWaaS baaSqaa8qacaWGybaapaqabaaaaOWdbiabgUcaRiaaikdadaqadaWd aeaapeWaaSaaa8aabaGabmiwayaaraWdbiabeg8aYbWdaeaaceWGyb GbaebapeGaey4kaSIaeqyWdihaaaGaayjkaiaawMcaamaabmaapaqa a8qacqaHbpGCcaWGdbWdamaaBaaaleaapeGaamywaaWdaeqaaOWdbi aadoeapaWaaSbaaSqaa8qacaWGybaapaqabaGcpeGaey4kaSYaaSaa a8aabaWdbiabeo8aZ9aadaWgaaWcbaWdbiaadwhaa8aabeaak8qacq aHdpWCpaWaaSbaaSqaa8qacaWG2baapaqabaaakeaaceWGzbGbaeba ceWGybGbaebaaaWdbiabeg8aY9aadaahaaWcbeqaa8qacaGGQaaaaa GccaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@78D7@   (31)

MSE( t r3 )= Y ¯ 2 n [ C Y 2 θ Y + 1 4 ( X ¯ ρ X ¯ +ρ ) 2 C X 2 θ X ( X ¯ ρ X ¯ +ρ )( ρ C Y C X + σ u σ v Y ¯ X ¯ ρ * ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaadofacaWGfbWaaeWaa8aabaWdbiaadshapaWaaSbaaSqa a8qacaWGYbGaaG4maaWdaeqaaaGcpeGaayjkaiaawMcaaiabg2da9m aalaaapaqaaiqadMfagaqeamaaCaaaleqabaWdbiaaikdaaaaak8aa baWdbiaad6gaaaWaamWaa8aabaWdbmaalaaapaqaa8qacaWGdbWdam aaDaaaleaapeGaamywaaWdaeaapeGaaGOmaaaaaOWdaeaapeGaeqiU de3damaaBaaaleaapeGaamywaaWdaeqaaaaak8qacqGHRaWkdaWcaa WdaeaapeGaaGymaaWdaeaapeGaaGinaaaadaqadaWdaeaapeWaaSaa a8aabaGabmiwayaaraWdbiabeg8aYbWdaeaaceWGybGbaebapeGaey 4kaSIaeqyWdihaaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI YaaaaOWaaSaaa8aabaWdbiaadoeapaWaa0baaSqaa8qacaWGybaapa qaa8qacaaIYaaaaaGcpaqaa8qacqaH4oqCpaWaaSbaaSqaa8qacaWG ybaapaqabaaaaOWdbiabgkHiTmaabmaapaqaa8qadaWcaaWdaeaace WGybGbaebapeGaeqyWdihapaqaaiqadIfagaqea8qacqGHRaWkcqaH bpGCaaaacaGLOaGaayzkaaWaaeWaa8aabaWdbiabeg8aYjaadoeapa WaaSbaaSqaa8qacaWGzbaapaqabaGcpeGaam4qa8aadaWgaaWcbaWd biaadIfaa8aabeaak8qacqGHRaWkdaWcaaWdaeaapeGaeq4Wdm3dam aaBaaaleaapeGaamyDaaWdaeqaaOWdbiabeo8aZ9aadaWgaaWcbaWd biaadAhaa8aabeaaaOqaaiqadMfagaqeaiqadIfagaqeaaaapeGaeq yWdi3damaaCaaaleqabaWdbiaacQcaaaaakiaawIcacaGLPaaaaiaa wUfacaGLDbaaaaa@79EE@   (32)

MSE( t r4 )= Y ¯ 2 n [ C Y 2 θ Y + ( X ¯ ρ X ¯ +ρ ) 2 C X 2 θ X +2( X ¯ ρ X ¯ +ρ )( ρ C Y C X + σ u σ v Y ¯ X ¯ ρ * ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaadofacaWGfbWaaeWaa8aabaWdbiaadshapaWaaSbaaSqa a8qacaWGYbGaaGinaaWdaeqaaaGcpeGaayjkaiaawMcaaiabg2da9m aalaaapaqaaiqadMfagaqeamaaCaaaleqabaWdbiaaikdaaaaak8aa baWdbiaad6gaaaWaamWaa8aabaWdbmaalaaapaqaa8qacaWGdbWdam aaDaaaleaapeGaamywaaWdaeaapeGaaGOmaaaaaOWdaeaapeGaeqiU de3damaaBaaaleaapeGaamywaaWdaeqaaaaak8qacqGHRaWkdaqada WdaeaapeWaaSaaa8aabaGabmiwayaaraWdbiabeg8aYbWdaeaaceWG ybGbaebapeGaey4kaSIaeqyWdihaaaGaayjkaiaawMcaa8aadaahaa Wcbeqaa8qacaaIYaaaaOWaaSaaa8aabaWdbiaadoeapaWaa0baaSqa a8qacaWGybaapaqaa8qacaaIYaaaaaGcpaqaa8qacqaH4oqCpaWaaS baaSqaa8qacaWGybaapaqabaaaaOWdbiabgUcaRiaaikdadaqadaWd aeaapeWaaSaaa8aabaGabmiwayaaraWdbiabeg8aYbWdaeaaceWGyb GbaebapeGaey4kaSIaeqyWdihaaaGaayjkaiaawMcaamaabmaapaqa a8qacqaHbpGCcaWGdbWdamaaBaaaleaapeGaamywaaWdaeqaaOWdbi aadoeapaWaaSbaaSqaa8qacaWGybaapaqabaGcpeGaey4kaSYaaSaa a8aabaWdbiabeo8aZ9aadaWgaaWcbaWdbiaadwhaa8aabeaak8qacq aHdpWCpaWaaSbaaSqaa8qacaWG2baapaqabaaakeaaceWGzbGbaeba ceWGybGbaebaaaWdbiabeg8aY9aadaahaaWcbeqaa8qacaGGQaaaaa GccaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@78D9@   (33)

Theoretical efficiency comparison of t_r with some existing estimators

The optimum mean square error of t r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG0bWdamaaBaaaleaapeGaamOCaaWdaeqaaaaa@3861@ was compared with the existing estimators t 0 , t 1 , t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGSaGaamiD a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamiDa8aada WgaaWcbaWdbiaaikdaa8aabeaaaaa@3EEC@ . Thus, from (28) and(12), we observed that

MS E min ( t r )Var( t 0 )= ( ρ C Y C X + σ u σ v Y ¯ X ¯ ρ * ) 2 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaadofacaWGfbWdamaaBaaaleaapeGaciyBaiaacMgacaGG UbaapaqabaGcpeWaaeWaa8aabaWdbiaadshapaWaaSbaaSqaa8qaca WGYbaapaqabaaak8qacaGLOaGaayzkaaGaeyOeI0IaamOvaiaadgga caWGYbWaaeWaa8aabaWdbiaadshapaWaaSbaaSqaa8qacaaIWaaapa qabaaak8qacaGLOaGaayzkaaGaeyypa0JaeyOeI0YaaeWaa8aabaWd biabeg8aYjaadoeapaWaaSbaaSqaa8qacaWGzbaapaqabaGcpeGaam 4qa8aadaWgaaWcbaWdbiaadIfaa8aabeaak8qacqGHRaWkdaWcaaWd aeaapeGaeq4Wdm3damaaBaaaleaapeGaamyDaaWdaeqaaOWdbiabeo 8aZ9aadaWgaaWcbaWdbiaadAhaa8aabeaaaOqaaiqadMfagaqeaiqa dIfagaqeaaaapeGaeqyWdi3damaaCaaaleqabaWdbiaacQcaaaaaki aawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakiabgYda8iaa icdaaaa@60E9@   (34)

Since ( ρ C Y C X + σ u σ v Y ¯ X ¯ ρ * ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabeg8aYjaadoeapaWaaSbaaSqaa8qacaWGzbaa paqabaGcpeGaam4qa8aadaWgaaWcbaWdbiaadIfaa8aabeaak8qacq GHRaWkdaWcaaWdaeaapeGaeq4Wdm3damaaBaaaleaapeGaamyDaaWd aeqaaOWdbiabeo8aZ9aadaWgaaWcbaWdbiaadAhaa8aabeaaaOqaai qadMfagaqeaiqadIfagaqeaaaapeGaeqyWdi3damaaCaaaleqabaWd biaacQcaaaaakiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaa aaaaa@4BF4@ will always be positive, (34) will always be negative, and the proposed estimator will always be more efficient than the usual unbiased sample mean per unit estimator.

From (28) and (15), we observed that

MS E min ( t r )MSE( t 1 )= θ X C X 2 ( ρ C Y C X + σ u σ v Y ¯ X ¯ ρ * ) 2 C X 2 θ X +2( ρ C Y C X + σ u σ v Y ¯ X ¯ ρ * )<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaadofacaWGfbWdamaaBaaaleaapeGaciyBaiaacMgacaGG UbaapaqabaGcpeWaaeWaa8aabaWdbiaadshapaWaaSbaaSqaa8qaca WGYbaapaqabaaak8qacaGLOaGaayzkaaGaeyOeI0Iaamytaiaadofa caWGfbWaaeWaa8aabaWdbiaadshapaWaaSbaaSqaa8qacaaIXaaapa qabaaak8qacaGLOaGaayzkaaGaeyypa0JaeyOeI0YaaSaaa8aabaWd biabeI7aX9aadaWgaaWcbaWdbiaadIfaa8aabeaaaOqaa8qacaWGdb WdamaaDaaaleaapeGaamiwaaWdaeaapeGaaGOmaaaaaaGcdaqadaWd aeaapeGaeqyWdiNaam4qa8aadaWgaaWcbaWdbiaadMfaa8aabeaak8 qacaWGdbWdamaaBaaaleaapeGaamiwaaWdaeqaaOWdbiabgUcaRmaa laaapaqaa8qacqaHdpWCpaWaaSbaaSqaa8qacaWG1baapaqabaGcpe Gaeq4Wdm3damaaBaaaleaapeGaamODaaWdaeqaaaGcbaGabmywayaa raGabmiwayaaraaaa8qacqaHbpGCpaWaaWbaaSqabeaapeGaaiOkaa aaaOGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOe I0YaaSaaa8aabaWdbiaadoeapaWaa0baaSqaa8qacaWGybaapaqaa8 qacaaIYaaaaaGcpaqaa8qacqaH4oqCpaWaaSbaaSqaa8qacaWGybaa paqabaaaaOWdbiabgUcaRiaaikdadaqadaWdaeaapeGaeqyWdiNaam 4qa8aadaWgaaWcbaWdbiaadMfaa8aabeaak8qacaWGdbWdamaaBaaa leaapeGaamiwaaWdaeqaaOWdbiabgUcaRmaalaaapaqaa8qacqaHdp WCpaWaaSbaaSqaa8qacaWG1baapaqabaGcpeGaeq4Wdm3damaaBaaa leaapeGaamODaaWdaeqaaaGcbaGabmywayaaraGabmiwayaaraaaa8 qacqaHbpGCpaWaaWbaaSqabeaapeGaaiOkaaaaaOGaayjkaiaawMca aiabgYda8iaaicdaaaa@8326@   (35)

From (28) and (16), we observed that

MS E min ( t r )MSE( t 2 )= θ X C X 2 ( ρ C Y C X + σ u σ v Y ¯ X ¯ ρ * ) 2 C X 2 θ X 2( ρ C Y C X + σ u σ v Y ¯ X ¯ ρ * )<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaadofacaWGfbWdamaaBaaaleaapeGaciyBaiaacMgacaGG UbaapaqabaGcpeWaaeWaa8aabaWdbiaadshapaWaaSbaaSqaa8qaca WGYbaapaqabaaak8qacaGLOaGaayzkaaGaeyOeI0Iaamytaiaadofa caWGfbWaaeWaa8aabaWdbiaadshapaWaaSbaaSqaa8qacaaIYaaapa qabaaak8qacaGLOaGaayzkaaGaeyypa0JaeyOeI0YaaSaaa8aabaWd biabeI7aX9aadaWgaaWcbaWdbiaadIfaa8aabeaaaOqaa8qacaWGdb WdamaaDaaaleaapeGaamiwaaWdaeaapeGaaGOmaaaaaaGcdaqadaWd aeaapeGaeqyWdiNaam4qa8aadaWgaaWcbaWdbiaadMfaa8aabeaak8 qacaWGdbWdamaaBaaaleaapeGaamiwaaWdaeqaaOWdbiabgUcaRmaa laaapaqaa8qacqaHdpWCpaWaaSbaaSqaa8qacaWG1baapaqabaGcpe Gaeq4Wdm3damaaBaaaleaapeGaamODaaWdaeqaaaGcbaGabmywayaa raGabmiwayaaraaaa8qacqaHbpGCpaWaaWbaaSqabeaapeGaaiOkaa aaaOGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOe I0YaaSaaa8aabaWdbiaadoeapaWaa0baaSqaa8qacaWGybaapaqaa8 qacaaIYaaaaaGcpaqaa8qacqaH4oqCpaWaaSbaaSqaa8qacaWGybaa paqabaaaaOWdbiabgkHiTiaaikdadaqadaWdaeaapeGaeqyWdiNaam 4qa8aadaWgaaWcbaWdbiaadMfaa8aabeaak8qacaWGdbWdamaaBaaa leaapeGaamiwaaWdaeqaaOWdbiabgUcaRmaalaaapaqaa8qacqaHdp WCpaWaaSbaaSqaa8qacaWG1baapaqabaGcpeGaeq4Wdm3damaaBaaa leaapeGaamODaaWdaeqaaaGcbaGabmywayaaraGabmiwayaaraaaa8 qacqaHbpGCpaWaaWbaaSqabeaapeGaaiOkaaaaaOGaayjkaiaawMca aiabgYda8iaaicdaaaa@8332@   (36)

From (34), (35) and (36), the proposed estimator will always be more efficient than the sample mean per unit estimator, ratio estimator and product estimator in the presence of correlated measurement errors.

Empirical efficiency comparison

The efficiency of the proposed estimator t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadkhaa8aabeaaaaa@3978@  is illustrated using hypothetical data set on income and expenditure from Gujarati and Porter.10

y i * =Household Spending( True Value ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEa8aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaacQcaaaGccqGH 9aqpcaqGibGaae4BaiaabwhacaqGZbGaaeyzaiaabIgacaqGVbGaae iBaiaabsgacaqGGaGaae4uaiaabchacaqGLbGaaeOBaiaabsgacaqG PbGaaeOBaiaabEgadaqadaWdaeaapeGaaeivaiaabkhacaqG1bGaae yzaiaabccacaqGwbGaaeyyaiaabYgacaqG1bGaaeyzaaGaayjkaiaa wMcaaaaa@55FF@  

x i * =Household Earning( True Value ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaacQcaaaGccqGH 9aqpcaqGibGaae4BaiaabwhacaqGZbGaaeyzaiaabIgacaqGVbGaae iBaiaabsgacaqGGaGaaeyraiaabggacaqGYbGaaeOBaiaabMgacaqG UbGaae4zamaabmaapaqaa8qacaqGubGaaeOCaiaabwhacaqGLbGaae iiaiaabAfacaqGHbGaaeiBaiaabwhacaqGLbaacaGLOaGaayzkaaaa aa@5507@  

y i =Household Spending( Observed Value ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpcaqG ibGaae4BaiaabwhacaqGZbGaaeyzaiaabIgacaqGVbGaaeiBaiaabs gacaqGGaGaae4uaiaabchacaqGLbGaaeOBaiaabsgacaqGPbGaaeOB aiaabEgadaqadaWdaeaapeGaae4taiaabkgacaqGZbGaaeyzaiaabk hacaqG2bGaaeyzaiaabsgacaqGGaGaaeOvaiaabggacaqGSbGaaeyD aiaabwgaaiaawIcacaGLPaaaaaa@58F6@  

x i =Household Earning( Observed Value ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpcaqG ibGaae4BaiaabwhacaqGZbGaaeyzaiaabIgacaqGVbGaaeiBaiaabs gacaqGGaGaaeyraiaabggacaqGYbGaaeOBaiaabMgacaqGUbGaae4z amaabmaapaqaa8qacaqGpbGaaeOyaiaabohacaqGLbGaaeOCaiaabA hacaqGLbGaaeizaiaabccacaqGwbGaaeyyaiaabYgacaqG1bGaaeyz aaGaayjkaiaawMcaaaaa@57FE@  

The following values of the parameter were obtained from the given data.

N

Y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmywayaaraaaaa@3825@   X ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmiwayaaraaaaa@3824@   σ Y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaamywaaWdaeaapeGaaGOmaaaaaaa@3AF7@   σ X 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaamiwaaWdaeaapeGaaGOmaaaaaaa@3AF6@   σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaamyDaaWdaeaapeGaaGOmaaaaaaa@3B13@   σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaamODaaWdaeaapeGaaGOmaaaaaaa@3B14@   ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdihaaa@38EF@   ρ * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaCaaaleqabaWdbiaabQcaaaaaaa@39E8@   θ Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUde3damaaBaaaleaapeGaamywaaWdaeqaaaaa@3A1D@   θ X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUde3damaaBaaaleaapeGaamiwaaWdaeqaaaaa@3A1C@  

10

127

170

1278

3300

36

41

0.964

-0.09087

0.975

0.988

Table 1 Value of the Parameters

Table 2 shows the percentage relative efficiency (PRE) with respect to sample mean per unit y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWG5bWdayaaraaaaa@373C@  of the proposed estimator and some existing estimator. This was defined as

PRE(·)= Var( y ¯ ) MSE( · ) ×100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiuaiaadkfacaWGfbGaaiikaiabl+y6NjaacMcacqGH9aqpdaWc aaWdaeaapeGaamOvaiaadggacaWGYbWaaeWaa8aabaWdbiqadMhaga qeaaGaayjkaiaawMcaaaWdaeaapeGaamytaiaadofacaWGfbWaaeWa a8aabaWdbiabl+y6NbGaayjkaiaawMcaaaaacqGHxdaTcaaIXaGaaG imaiaaicdaaaa@4F09@   (37)

Estimators

Mean square error

Percentage relative efficiency

t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@393C@  

131.3974

100

t r opt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadkhapaWaaSbaaWqaa8qacaWGVbGa amiCaiaadshaa8aabeaaaSqabaaaaa@3CB2@  

14.4820

907.32

t 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@393D@  

22.5620

582.38

t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@393E@  

613.1759

21.43

t r1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadkhacaaIXaaapaqabaaaaa@3A34@  

19.6744

667.86

t r2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadkhacaaIYaaapaqabaaaaa@3A35@  

611.8517

21.48

t r3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadkhacaaIZaaapaqabaaaaa@3A36@  

32.6882

401.97

t r4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadkhacaaI0aaapaqabaaaaa@3A37@  

315.8020

41.61

Table 2 Mean square error and relative efficiency

Further illustration of the efficiency of the proposed estimator was done using another hypothetical dataset from Okafor12 on land area available for cultivation and land area cultivate with maize, where,

y i =the observed land area of the village cultivated with maize MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMhapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyypa0JaaeiD aiaabIgacaqGLbGaaeiOaiaab+gacaqGIbGaae4CaiaabwgacaqGYb GaaeODaiaabwgacaqGKbGaaeiOaiaabYgacaqGHbGaaeOBaiaabsga caqGGcGaaeyyaiaabkhacaqGLbGaaeyyaiaabckacaqGVbGaaeOzai aabckacaqG0bGaaeiAaiaabwgacaqGGcGaaeODaiaabMgacaqGSbGa aeiBaiaabggacaqGNbGaaeyzaiaabckacaqGJbGaaeyDaiaabYgaca qG0bGaaeyAaiaabAhacaqGHbGaaeiDaiaabwgacaqGKbGaaeiOaiaa bEhacaqGPbGaaeiDaiaabIgacaqGGcGaaeyBaiaabggacaqGPbGaae OEaiaabwgaaaa@73EE@  

x i =the observed land area of the village avaliable for cultivation  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIhapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyypa0JaaeiD aiaabIgacaqGLbGaaeiOaiaab+gacaqGIbGaae4CaiaabwgacaqGYb GaaeODaiaabwgacaqGKbGaaeiOaiaabYgacaqGHbGaaeOBaiaabsga caqGGcGaaeyyaiaabkhacaqGLbGaaeyyaiaabckacaqGVbGaaeOzai aabckacaqG0bGaaeiAaiaabwgacaqGGcGaaeODaiaabMgacaqGSbGa aeiBaiaabggacaqGNbGaaeyzaiaabckacaqGHbGaaeODaiaabggaca qGSbGaaeyAaiaabggacaqGIbGaaeiBaiaabwgacaqGGcGaaeOzaiaa b+gacaqGYbGaaeiOaiaabogacaqG1bGaaeiBaiaabshacaqGPbGaae ODaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiOaaaa@78AF@  

y i * =the true land area of the village cultivated with maize MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMhapaWaa0baaSqaa8qacaWGPbaapaqaa8qacaGGQaaaaOGaeyyp a0JaaeiDaiaabIgacaqGLbGaaeiOaiaabshacaqGYbGaaeyDaiaabw gacaqGGcGaaeiBaiaabggacaqGUbGaaeizaiaabckacaqGHbGaaeOC aiaabwgacaqGHbGaaeiOaiaab+gacaqGMbGaaeiOaiaabshacaqGOb GaaeyzaiaabckacaqG2bGaaeyAaiaabYgacaqGSbGaaeyyaiaabEga caqGLbGaaeiOaiaabogacaqG1bGaaeiBaiaabshacaqGPbGaaeODai aabggacaqG0bGaaeyzaiaabsgacaqGGcGaae4DaiaabMgacaqG0bGa aeiAaiaabckacaqGTbGaaeyyaiaabMgacaqG6bGaaeyzaaaa@70F7@  

x i * =the true land area of the village avaliable for cultivation  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIhapaWaa0baaSqaa8qacaWGPbaapaqaa8qacaGGQaaaaOGaeyyp a0JaaeiDaiaabIgacaqGLbGaaeiOaiaabshacaqGYbGaaeyDaiaabw gacaqGGcGaaeiBaiaabggacaqGUbGaaeizaiaabckacaqGHbGaaeOC aiaabwgacaqGHbGaaeiOaiaab+gacaqGMbGaaeiOaiaabshacaqGOb GaaeyzaiaabckacaqG2bGaaeyAaiaabYgacaqGSbGaaeyyaiaabEga caqGLbGaaeiOaiaabggacaqG2bGaaeyyaiaabYgacaqGPbGaaeyyai aabkgacaqGSbGaaeyzaiaabckacaqGMbGaae4BaiaabkhacaqGGcGa ae4yaiaabwhacaqGSbGaaeiDaiaabMgacaqG2bGaaeyyaiaabshaca qGPbGaae4Baiaab6gacaqGGcaaaa@75B8@  

The following values for the population parameter were obtained from the given data.

N

Y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qahMfapaGbaebaaaa@38EC@   X ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmiwayaaraaaaa@3824@   σ Y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaamywaaWdaeaapeGaaGOmaaaaaaa@3AF7@   σ X 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaamiwaaWdaeaapeGaaGOmaaaaaaa@3AF6@   σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaamyDaaWdaeaapeGaaGOmaaaaaaa@3B13@   σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaamODaaWdaeaapeGaaGOmaaaaaaa@3B14@   ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdihaaa@38EF@   ρ * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaCaaaleqabaWdbiaabQcaaaaaaa@39E8@   θ Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUde3damaaBaaaleaapeGaamywaaWdaeqaaaaa@3A1D@   θ X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUde3damaaBaaaleaapeGaamiwaaWdaeqaaaaa@3A1C@  

20

530.08

829.16

61824.97

190361.30

9.57

9.31

0.814

0.998

0.99985

0.99995

Table 3 Value of the Parameters Population II

Table 4 shows the mean squared error and percentage relative efficiency (PRE) of the proposed estimator and some estimators which are particular members of the proposed modified estimator with respect to sample mean per unit y ¯ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadMhapaGbaebapeGaaiOlaaaa@39CA@

Estimators

Mean square error

Percentage relative efficiency

t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@393C@  

3091.712

100.00

t r opt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadkhapaWaaSbaaWqaa8qacaWGVbGa amiCaiaadshaa8aabeaaaSqabaaaaa@3CB2@  

0.892

346460.000

t r1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadkhacaaIXaaapaqabaaaaa@3A34@  

1073.425

288.023

t r2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadkhacaaIYaaapaqabaaaaa@3A35@  

10253.820

30.152

t r3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadkhacaaIZaaapaqabaaaaa@3A36@  

2587.140

119.503

t r4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadkhacaaI0aaapaqabaaaaa@3A37@  

4882.238

63.326

t 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@393D@  

1336.565

231.318

t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@393E@  

12627.140

24.485

Table 4 Mean Squared Error and Percentage Relative Efficiency

For different values of β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aIbaa@3983@ , we also obtained the relative efficiency of t r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshapaWaaSbaaSqaa8qacaWGYbaapaqabaaaaa@3A2D@  over t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshapaWaaSbaaSqaa8qacaaIWaaapaqabaaaaa@39F0@ defined as

PRE( . )= Var( t 0 ) MSE( t r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadcfacaWGsbGaamyramaabmaapaqaa8qacaGGUaaacaGLOaGaayzk aaGaeyypa0ZaaSaaa8aabaWdbiaadAfacaWGHbGaamOCamaabmaapa qaa8qacaWG0bWdamaaBaaaleaapeGaaGimaaWdaeqaaaGcpeGaayjk aiaawMcaaaWdaeaapeGaamytaiaadofacaWGfbWaaeWaa8aabaWdbi aadshapaWaaSbaaSqaa8qacaWGYbaapaqabaaak8qacaGLOaGaayzk aaaaaaaa@4B0E@   (38)

Table 5 represents the relative efficiency of t r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshapaWaaSbaaSqaa8qacaWGYbaapaqabaaaaa@3A2D@ with respect to t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshapaWaaSbaaSqaa8qacaaIWaaapaqabaaaaa@39F0@ for different values of β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aIbaa@3984@ .

Value of β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@38CF@  

MSE(tr)

Relative Efficiency

0.00

131.397

1.000

0.05

117.645

1.117

0.10

104.750

1.254

0.15

92.711

1.417

0.20

81.530

1.612

0.25

71.205

1.845

0.30

61.738

2.128

0.35

53.127

2.473

0.40

45.374

2.896

0.45

38.477

3.415

0.50

32.437

4.051

0.55

27.255

4.821

0.60

22.929

5.731

0.65

19.460

6.752

0.70

16.848

7.799

0.75

15.093

8.706

0.80

14.195

9.256

β opt =0.828 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaam4BaiaadchacaWG0baapaqabaGc peGaeyypa0JaaGimaiaac6cacaaI4aGaaGOmaiaaiIdaaaa@40D8@  

14.067

9.341

0.85

14.154

9.283

0.90

14.970

8.777

0.95

16.643

7.895

1.00

19.173

6.853

1.05

22.560

5.824

1.10

26.803

4.902

1.15

31.904

4.119

1.20

37.862

3.470

1.25

44.676

2.941

1.30

52.348

2.510

1.35

60.876

2.158

1.40

70.262

1.870

1.45

80.504

1.632

1.50

91.603

1.434

1.55

103.560

1.269

Table 5 Relative efficiency of t r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiDa8aadaWgaaWcbaWdbiaabkhaa8aabeaaaaa@3975@ with respect to t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@393A@ for different values of β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@38CF@

Conclusion

The main aim of this work is to ascertain the extent of the impact of correlated measurement errors on the quality of sample statistics which estimate the population parameters. Thus, since Bias( t r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkeacaWGPbGaamyyaiaadohadaqadaWdaeaapeGaamiDa8aadaWg aaWcbaWdbiaadkhaa8aabeaaaOWdbiaawIcacaGLPaaaaaa@3F82@ is a function of θ X , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeI7aX9aadaWgaaWcbaWdbiaadIfaa8aabeaak8qacaGGSaaaaa@3B9A@ it shows that the bias of the proposed class of estimator is affected by the presence of correlated measurement error in the auxiliary variable. Also MS E min ( t r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eacaWGtbGaamyra8aadaWgaaWcbaWdbiaad2gacaWGPbGaamOB aaWdaeqaaOWdbmaabmaapaqaa8qacaWG0bWdamaaBaaaleaapeGaam OCaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@41AA@ is a function of θ Y ,  θ X ,  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeI7aX9aadaWgaaWcbaWdbiaadMfaa8aabeaak8qacaGGSaGaaiiO aiabeI7aX9aadaWgaaWcbaWdbiaadIfaa8aabeaak8qacaGGSaGaai iOaaaa@419A@ it also showed that the mean squared error of the proposed class of estimator is affected by presence of correlated measurement errors in both study and auxiliary variables. Also the proposed modified ratio estimator at its optimum value has more gain in efficiency than some existing estimators in the presence of correlated measurement errors. The study also revealed that even when the proposed modified ratio estimator deviates from its optimum value, there are still range of estimators at different values of β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aIbaa@3984@ to choose from. Therefore, the proposed estimator should be preferred in practice.

Acknowledgments

None.

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. Cochran WG. Sampling Techniques. Wiley New York, third edition. 1977.
  2. Biemer PP, Groves RM, Lyberg LE, et al. Measurement errors in survey. John Wiley and Sons, Inc. 1991.
  3. Shalabh S. Ratio method of estimation in the presence of measurement errors. Journal of Indian Society of Agricultural Statistics. 1997;50(2): 150–155.
  4. Manish, Singh KR. An estimation of population mean in the presence of measurement errors. Journal of Indian Society of Agricultural Statistics. 2001;54(1):13–18.
  5. Diwakar S, Pathak S, Thakur NS. An estimator for mean estimation in presence of measurement errors. Research and reviews: A Journal of Statistics. 2012;1(1):1 −8.
  6. Viplav SK, Singh R, Smarandache F. Difference-type estimators for estimation of mean in the presence of measurement errors. Mathematics arXiv preprint arXiv:1410.0279. 2014.
  7. Gregoire TG, Salas C. Ratio Estimator with Measurement Error in the Auxiliary Variate. Journal of International Biometrics Society. 2008;65(2):590 −598.
  8. Sahoo LN, Sahoo RK, Senapati SC. An empirical study on the accuracy of ratio and regression estimator in the presence of measurement errors. Monte Carlo Methods and Application. 2006;12(5−6):495 – 501.
  9. Shalabh S, Jia-Ren T. Ratio and product methods of estimation of population mean in the presence of correlated measurement errors. Communication in Statistics Simulation and Computation. 2016;46(7).
  10. Gujarati, Darnodar N ,Porter D C. Basic econometrics. The McGraw-Hill. 2009.
  11. Singh HP, Tailor R, Tailor R, et al. An improved estimator of population mean using power transformation. Journal of Indian Society of Agricultural Statistics. 2004; 58(2):223 –230.
  12. Okafor FC. Sample Survey Theory with Applications. Afro-Orbis Publications Ltd., Nsukka. 2002.
Creative Commons Attribution License

©2022 Boniface, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.