Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 12 Issue 6

Discriminant analysis in the classification of anxiety disorders

Bruno Guedes, Paulo Gomes

Information Management School, Universidade Nova de Lisboa, Portugal

Correspondence: Bruno Gomes, Information Management School, Universidade Nova de Lisboa, Portugal

Received: November 29, 2023 | Published: December 21, 2023

Citation: Guedes B, Gomes P. Discriminant analysis in the classification of anxiety disorders. Biom Biostat Int J. 2023;12(6):204-214. DOI: 10.15406/bbij.2023.12.00404

Download PDF

Abstract

The urgency of preventing serious mental disorders (MDs) has intensified in recent decades demanding innovative approaches for early diagnosis. This paper’s main objective is to revisit statistical discriminant methods emphasizing their crucial and practical role to classify patients into different MDs categories. From three groups (nervous, psychotic, and healthy) of fifty individuals, each evaluated by thirty variables, an exploratory discriminant analysis was performed in order to obtain the linear combination of the variables who maximize the separation between these groups. From the statistical analysis of the two first discriminant functions, it was identified a subset of fifteen variables which discriminant power revealed a misclassification rate of 10% in the training test and 14.6% in the testing test. Finally, this model was compared to a discriminant stepwise method which identified eighteen discriminant variables.

At the Era of Artificial Intelligence, it makes sense to provide National Health Systems with automatic tools which may effectively help Physicians to get an early diagnose of mental disorders diseases.

Keywords: mental disorders, principal component analysis, factorial discriminant analysis, stepwise discriminant analysis

Abbreviations

DA, discriminant analysis; DF, discriminant function; FDA, factorial discriminant analysis; TND, truncated normal distribution; VIF, variance inflation factors

Introduction

Mental disorders (MDs) are conditions that can disrupt a person's behavior, well-being, and emotional state. When left untreated or misdiagnosed, they can have tragic consequences, including self-harm and suicide. Research has shown that people with mental health issues have a higher mortality rate compared to those who have not.1,2

MDs include anxiety disorders (ADs), post-traumatic stress disorder, disruptive behavior disorders, bipolar disorder, dissocial disorders, depression, schizophrenia, neurodevelopmental disorders, and eating disorders. Research suggests that ADs are particularly common, with estimates of their global prevalence ranging from 3.8% to 25%.3

People with ADs may experience panic attacks, changes in appetite, sweats, and palpitations, among other symptoms.4 According to,5 individuals with anxiety are 26% more susceptible to the risk of developing coronary heart disease and almost 50% more susceptible to the risk of cardiac death.

Accurate and early diagnosis of MDs is crucial for effective treatment and can help prevent people from experiencing more severe states of mind. However, diagnosing them can be challenging, and misdiagnosis can lead to inappropriate treatment and continued suffering.6

This paper aims to use Factorial Discriminant Analysis (FDA) to develop rules for classifying new individuals into one of three categories: nervous, psychotic, or healthy,

  • Identifying the variables that best discriminate the three classes under study;
  • Identify the number of discriminant functions needed to represent the differences among the groups;
  • Creating a rule to classify future observations into one of the three groups and develop a misclassification apparent rate matrix.

Methodology

This paper will be supported by a study conducted by Professor P. Pichot at the Saint-Anne Hospital. The study involved a survey of thirty questions, evaluating thirty distinct characteristics enumerated in Table 1. In such study, each question was rated on a continuous scale from zero to four based on the frequency and intensity of symptoms in the days before the examination. It was known beforehand that out of a hundred and fifty young adults, fifty were classified as nervous, fifty were classified as psychotic, and fifty were classified as not having any mental health condition – therefore classified as healthy. Forty individuals from each group were selected for the training sample and were assigned to groups one, two, and three. The remaining ten observations from each group were selected to take part in a testing sample.

Number

Variable 

1

Fatigue

2

Nightmares

3

Muscle twitching

4

Cramps

5

Tremors

6

Tension

7

Muscle pain

8

Knotted throat

9

Satiety

10

Heartburn

11

Diarrhea

12

Horripilation

13

Palpitations

14

Headaches

15

Dizziness

16

Tingling

17

Pulse

18

Fainting

19

Eye floaters

20

Oppression

21

Indifference

22

Attention

23

Memory

24

Indecision

25

Vague anxiety

26

Fear of the future

27

Apprehension of the worst

28

Fear of loneliness

29

Other fears

30

Fear of crowds

Table 1 List of variables to be studied

Out of the hundred and twenty questionnaires, the answers from each participant in the training sample were displayed in two separate tables, showing the mean of each variable for each group, and the standard deviation of each variable and for each group as shown in Tables 2 & 3, respectively.

Variable

Group 1

Group 2

Group 3

 

Nervous group

Psychotic group

Healthy group

Variable 1.

2.300

2.100

1.550

Variable 2.

1.325

0.525

0.300

Variable 3.

0.525

0.775

0.250

Variable 4.

0.325

0.425

0.350

Variable 5.

1.075

1.025

0.150

Variable 6.

2.675

1.725

0.675

Variable 7.

0.975

0.500

0.650

Variable 8.

1.125

0.925

0.200

Variable 9.

1.350

0.800

0.750

Variable 10.

0.400

0.275

0.050

Variable 11.

0.325

0.325

0.150

Variable 12.

1.000

0.550

0.150

Variable 13.

1.275

1.550

0.100

Variable 14.

1.200

0.825

0.525

Variable 15.

0.850

0.975

0.275

Variable 16.

0.800

0.625

0.400

Variable 17.

0.700

0.700

0.100

Variable 18.

0.850

0.775

0.025

Variable 19.

0.625

0.700

0.125

Variable 20.

1.550

1.325

0.200

Variable 21.

2.000

1.225

0.375

Variable 22.

2.575

2.375

0.800

Variable 23.

1.925

1.575

0.675

Variable 24.

2.175

1.875

0.700

Variable 25.

2.425

2.300

0.750

Variable 26.

2.450

2.000

0.475

Variable 27.

1.650

1.700

0.225

Variable 28.

1.200

1.425

0.125

Variable 29.

1.500

1.725

0.675

Variable 30.

1.350

0.975

0.075

Table 2 Mean values of each variable for each group

In this study, and due to the need of having every individual result from each participant to perform a discriminant analysis technique, a Monte Carlo simulation was made of a hundred and fifty participants, fifty for each group. The data was generated recurring to the truncated normal distribution (TND) recurring to the mean values in Table 2 and the standard deviation values in Table 3.

Variable

Group 1

Group 2

Group 3

 

Nervous group

Psychotic group

Healthy group

Variable 1.

1.646

1.513

1.431

Variable 2.

1.349

1.024

0.748

Variable 3.

1.072

1.235

0.733

Variable 4.

0.755

0.863

0.823

Variable 5.

1.349

1.351

0.654

Variable 6.

1.385

1.549

1.034

Variable 7.

1.405

1.025

1.13

Variable 8.

1.615

1.273

0.678

Variable 9.

1.542

1.288

1.318

Variable 10.

0.970

0.547

0.218

Variable 11.

0.848

0.565

0.421

Variable 12.

1.342

0.947

0.527

Variable 13.

1.323

1.431

0.300

Variable 14.

1.470

1.302

0.894

Variable 15.

1.295

1.294

0.922

Variable 16.

1.187

0.967

0.943

Variable 17.

1.030

1.005

0.300

Variable 18.

1.333

1.084

0.156

Variable 19.

1.177

0.980

0.640

Variable 20.

1.642

1.403

0.400

Variable 21.

1.703

1.214

0.827

Variable 22.

1.563

1.576

1.145

Variable 23.

1.523

1.579

0.985

Variable 24.

1.783

1.646

0.954

Variable 25.

1.611

1.676

1.199

Variable 26.

1.627

1.673

0.894

Variable 27.

1.696

1.600

0.474

Variable 28.

1.520

1.563

0.458

Variable 29.

1.565

1.396

1.081

Variable 30.

1.636

1.313

0.346

Table 3 Standard deviation values of each variable for each group

Supposing that X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwaaaa@380B@ has a TND with mean µ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyTaaaa@3868@ , standard deviation σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdmhaaa@38F1@ , inferiorly truncated by " a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaaaa@3814@ " and superiorly truncated by " b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOyaaaa@3815@ ", its density function is given by

f( x )= 1 σ 2π e (xµ) 2 2 σ 2 Φ( bµ σ )Φ( aµ σ )  , axb MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Za aSaaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacqaHdpWCda GcaaWdaeaapeGaaGOmaiabec8aWbWcbeaaaaGccaWGLbWdamaaCaaa leqabaWdbmaalaaapaqaa8qacqGHsislcaGGOaGaamiEaiabgkHiTi aadwlacaGGPaWdamaaCaaameqabaWdbiaaikdaaaaal8aabaWdbiaa ikdacqaHdpWCpaWaaWbaaWqabeaapeGaaGOmaaaaaaaaaaGcpaqaa8 qacqqHMoGrdaqadaWdaeaapeWaaSaaa8aabaWdbiaadkgacqGHsisl caWG1caapaqaa8qacqaHdpWCaaaacaGLOaGaayzkaaGaeyOeI0Iaeu OPdy0aaeWaa8aabaWdbmaalaaapaqaa8qacaWGHbGaeyOeI0IaamyT aaWdaeaapeGaeq4WdmhaaaGaayjkaiaawMcaaiaacckaaaGaaiilai aacckacaWGHbGaeyizImQaamiEaiabgsMiJkaadkgaaaa@67C9@   2.1

where Φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuOPdyeaaa@38A8@ is the standard normal distribution cumulative distribution function, which is defined by

Φ( x )= 1 2π x e t 2 2 dt. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuOPdy0aaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacqGH9aqp daWcaaWdaeaapeGaaGymaaWdaeaapeWaaOaaa8aabaWdbiaaikdacq aHapaCaSqabaaaaOWaaybCaeqal8aabaWdbiabgkHiTiabg6HiLcWd aeaapeGaamiEaaqdpaqaa8qacqGHRiI8aaGccaWGLbWdamaaCaaale qabaWdbmaalaaapaqaa8qacqGHsislcaWG0bWdamaaCaaameqabaWd biaaikdaaaaal8aabaWdbiaaikdaaaaaaOGaamizaiaadshacaGGUa aaaa@4E24@   2.2

Statistical analysis

Factorial discriminant analysis: Let X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwaaaa@380B@ be the table with the p quantitative variables, and A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqaaaa@37F4@ a logic table associated with a qualitative variable with r=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaiabg2da9iaaiodaaaa@39E8@  modalities. Let p i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@396B@ be the weight attributed to each individual i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaaaa@381C@ , and let

P r = i C r p i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadkhaa8aabeaak8qacqGH9aqpdaGf qbqabSWdaeaapeGaamyAaiabgIGiolaadoeapaWaaSbaaWqaa8qaca WGYbaapaqabaaal8qabeqdpaqaa8qacqGHris5aaGccaWGWbWdamaa BaaaleaapeGaamyAaaWdaeqaaaaa@43CB@   2.3

be the weight of class C r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadkhaa8aabeaaaaa@3947@  and

g=  i=1 n p i x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa83zaiabg2da9iaacckadaGfWbqabSWdaeaapeGaamyAaiab g2da9iaaigdaa8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOGaam iCa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaWF4bWdamaaBaaa leaapeGaamyAaaWdaeqaaaaa@4538@   2.4

the center of gravity of the total cluster. As a result,

g r = 1 p r i C r p i x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa83za8aadaWgaaWcbaWdbiaadkhaa8aabeaak8qacqGH9aqp daWcaaWdaeaapeGaaGymaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbi aadkhaa8aabeaaaaGcpeWaaybuaeqal8aabaWdbiaadMgacqGHiiIZ caWGdbWdamaaBaaameaapeGaamOCaaWdaeqaaaWcpeqab0Wdaeaape GaeyyeIuoaaOGaamiCa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qa caWF4bWdamaaBaaaleaapeGaamyAaaWdaeqaaaaa@49AE@   2.5

will be the center of gravity associated with the class C r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadkhaa8aabeaaaaa@3947@ and g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa83zaaaa@3822@ can also be calculated as

g=  k=1 3 P k g k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa83zaiabg2da9iaacckadaGfWbqabSWdaeaapeGaam4Aaiab g2da9iaaigdaa8aabaWdbiaaiodaa0WdaeaapeGaeyyeIuoaaOGaam iua8aadaWgaaWcbaWdbiaadUgaa8aabeaak8qacaWFNbWdamaaBaaa leaapeGaam4AaaWdaeqaaOWdbiaac6caaaa@45A2@   2.6

The Variance and Covariance matrix is defined by

V= X   t DX=  i=1 n p i ( x i g) * t ( x i g ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaiabg2da98aadaqhbaWcbaWdbiaacckaa8aabaWdbiaadsha aaGccaWGybGaamiraiaadIfacqGH9aqpcaGGGcWaaybCaeqal8aaba WdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaWGUbaan8aabaWdbiab ggHiLdaakiaadchapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaai ikaGqadiaa=HhapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyOe I0Iaa83zaiaacMcacaGGQaWdamaaCaaaleqabaWdbiaadshaaaGcda qadaWdaeaapeGaa8hEa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qa cqGHsislcaWFNbaacaGLOaGaayzkaaaaaa@5663@   2.7

where D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiraaaa@37F7@ is the matrix of the weights attributed to the individuals. The variance between groups ( B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaaaa@37F5@ ) measures the variability between the means of each group under study, quantifying how much each group differs from one another, while the variance within groups ( W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4vaaaa@380A@ ) measures the variability of individuals within each group. The variance between groups can be calculated by

B= k=1 3 P k ( g k g) * t ( g k g ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiabg2da9maawahabeWcpaqaa8qacaWGRbGaeyypa0JaaGym aaWdaeaapeGaaG4maaqdpaqaa8qacqGHris5aaGccaWGqbWdamaaBa aaleaapeGaam4AaaWdaeqaaOWdbiaacIcaieWacaWFNbWdamaaBaaa leaapeGaam4AaaWdaeqaaOWdbiabgkHiTiaa=DgacaGGPaGaaiOka8 aadaahaaWcbeqaa8qacaWG0baaaOWaaeWaa8aabaWdbiaa=DgapaWa aSbaaSqaa8qacaWGRbaapaqabaGcpeGaeyOeI0Iaa83zaaGaayjkai aawMcaaaaa@4E9F@   2.8

while the variance within groups can be calculated by

W= k=1 r i C r p i ( x i g k ) * t ( x i g k ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4vaiabg2da9maawahabeWcpaqaa8qacaWGRbGaeyypa0JaaGym aaWdaeaapeGaamOCaaqdpaqaa8qacqGHris5aaGcdaGfqbqabSWdae aapeGaamyAaiabgIGiolaadoeapaWaaSbaaWqaa8qacaWGYbaapaqa baaal8qabeqdpaqaa8qacqGHris5aaGccaWGWbWdamaaBaaaleaape GaamyAaaWdaeqaaOWdbiaacIcaieWacaWF4bWdamaaBaaaleaapeGa amyAaaWdaeqaaOWdbiabgkHiTiaa=DgapaWaaSbaaSqaa8qacaWGRb aapaqabaGcpeGaaiykaiaacQcapaWaaWbaaSqabeaapeGaamiDaaaa kmaabmaapaqaa8qacaWF4bWdamaaBaaaleaapeGaamyAaaWdaeqaaO WdbiabgkHiTiaa=DgapaWaaSbaaSqaa8qacaWGRbaapaqabaaak8qa caGLOaGaayzkaaGaaiOlaaaa@59BE@   2.9

It can be shown that the sum of both between variance and within variance represents the total variability of the data, previously referred to as V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaaaa@3809@ .

To reach this paper’s main purpose, one of the settled objectives is to obtain the linear combination of the thirty variables under study that best discriminates the classes. Being MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyyhIulaaa@38AE@  the vector of the coefficients associated with each independent variable, then C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa83qaaaa@37FE@ can be represented as the linear combination

C=  j=1 p j x j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa83qaiabg2da9iaabckadaGfWbqabSWdaeaapeGaamOAaiab g2da9iaaigdaa8aabaWdbiaadchaa0WdaeaapeGaeyyeIuoaaOGaey yhIu7damaaCaaaleqabaWdbiaadQgaaaGccaWF4bWdamaaCaaaleqa baWdbiaadQgaaaaaaa@4576@   2.10

which will be used to maximize the variance between groups. The respective variance can be calculated by

s 2 ( C )=|| C | | D 2 = C   t DC MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Ca8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaacbmWd biaa=neaaiaawIcacaGLPaaacqGH9aqpcaGG8bWaaqWaa8aabaWdbi aa=neaaiaawEa7caGLiWoacaGG8bWdamaaDaaaleaapeGaamiraaWd aeaapeGaaGOmaaaakiabg2da98aadaqhbaWcbaWdbiaacckaa8aaba WdbiaadshaaaGccaWFdbGaamiraiaa=neaaaa@4A9F@   2.11

and by equivalence, is equal to   t V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaDeaaleaaqa aaaaaaaaWdbiaacckaa8aabaWdbiaadshaaaGccqGHDisTcaWGwbGa eyyhIulaaa@3D7D@ , demonstrated in.7 As the total variance, V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaaaa@3809@ , can be decomposed into the within-group variance, W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4vaaaa@380A@ , and between-group variance, B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaaaa@37F5@ , then

  t V =    t W +   t B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaDeaaleaaqa aaaaaaaaWdbiaacckaa8aabaWdbiaadshaaaGccqGHDisTcaWGwbGa eyyhIulcbmGaa8hOaiabg2da9iaa=bkapaWaa0raaSqaa8qacaGGGc aapaqaa8qacaWG0baaaOGaeyyhIuRaam4vaiabg2Hi1kaa=bkacqGH RaWkpaWaa0raaSqaa8qacaGGGcaapaqaa8qacaWG0baaaOGaeyyhIu RaamOqaiabg2Hi1caa@4F9D@   2.12

and so

s 2 ( C ) =    t W+   t B. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Ca8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaacbmWd biaa=neaaiaawIcacaGLPaaacaqGGcGaeyypa0JaaeiOa8aadaqhba WcbaWdbiaacckaa8aabaWdbiaadshaaaGccqGHDisTcaWGxbGaeyyh IuRaey4kaSYdamaaDeaaleaapeGaaiiOaaWdaeaapeGaamiDaaaaki abg2Hi1kaadkeacqGHDisTcaGGUaaaaa@4D59@   2.13

To obtain the linear combination C  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa83qaiaabckaaaa@3921@ that best discriminates the classes, the optimal solution will be the vector MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyyhIulaaa@38AE@  under the condition x    t B   t V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiaacckadaWcaaWdaeaadaqhbaWcbaWdbiaacckaa8aabaWd biaadshaaaGccqGHDisTcaWGcbGaeyyhIulapaqaamaaDeaaleaape GaaiiOaaWdaeaapeGaamiDaaaakiabg2Hi1kaadAfacqGHDisTaaaa aa@4627@ , where   t V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaDeaaleaaqa aaaaaaaaWdbiaacckaa8aabaWdbiaadshaaaGccqGHDisTcaWGwbGa eyyhIulaaa@3D7D@  is constant.

Without loss of generality, it is considered   t V=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaDeaaleaaqa aaaaaaaaWdbiaacckaa8aabaWdbiaadshaaaGccqGHDisTcaWGwbGa eyyhIuRaeyypa0JaaGymaaaa@3F3E@ , simplifying the optimal solution to maximizing   t B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaDeaaleaaqa aaaaaaaaWdbiaacckaa8aabaWdbiaadshaaaGccqGHDisTcaWGcbGa eyyhIulaaa@3D69@ . The maximum is obtained when the vector MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyyhIulaaa@38AE@  is the eigenvector of V 1 B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaOGaamOqaaaa @3ACE@ associated with the highest eigenvalue λ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaaGymaaWdaeqaaaaa@39F7@ :

V 1 B =  λ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaOGaamOqaiab g2Hi1kaabckacqGH9aqpcaqGGcGaeq4UdW2damaaBaaaleaapeGaaG ymaaWdaeqaaOWdbiabg2Hi1caa@43FD@   2.14

so   t B   t V  =  λ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWaa0raaSqaa8qacaGGGcaapaqaa8qacaWG0baaaOGa eyyhIuRaamOqaiabg2Hi1cWdaeaadaqhbaWcbaWdbiaacckaa8aaba WdbiaadshaaaGccqGHDisTcaWGwbGaeyyhIulaaiaacckacqGH9aqp caGGGcGaeq4UdW2damaaBaaaleaapeGaaGymaaWdaeqaaaaa@4A1D@ . As a result, the highest eigenvalue λ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaaGymaaWdaeqaaaaa@39F7@ will measure the discriminant power associated with the first discriminant function

C 1 =  j=1 p j x j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaqG GcWaaybCaeqal8aabaWdbiaadQgacqGH9aqpcaaIXaaapaqaa8qaca WGWbaan8aabaWdbiabggHiLdaakiabg2Hi1+aadaahaaWcbeqaa8qa caWGQbaaaGqadOGaa8hEa8aadaahaaWcbeqaa8qacaWGQbaaaaaa@46A9@   2.15

where j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyyhIu7damaaCaaaleqabaWdbiaadQgaaaaaaa@39E9@  are the coordinates of the eigenvector MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyyhIulaaa@38AE@ . To test the significance of each DF, the likelihood ratio test will be performed to determine whether or not the DF under analysis is relevant to discriminate the individuals.

Like maximizing   t B   t V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWaa0raaSqaa8qacaGGGcaapaqaa8qacaWG0baaaOGa eyyhIuRaamOqaiabg2Hi1cWdaeaadaqhbaWcbaWdbiaacckaa8aaba WdbiaadshaaaGccqGHDisTcaWGwbGaeyyhIulaaaaa@4406@ , the maximization of   t B   t W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWaa0raaSqaa8qacaGGGcaapaqaa8qacaWG0baaaOGa eyyhIuRaamOqaiabg2Hi1cWdaeaadaqhbaWcbaWdbiaacckaa8aaba WdbiaadshaaaGccqGHDisTcaWGxbGaeyyhIulaaaaa@4407@  will produce equivalent results. Its solution will be the eigenvector of W 1 B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaOGaamOqaaaa @3ACF@ associated with the highest eigenvalue

W 1 B =  γ 1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaOGaamOqaiab g2Hi1kaabckacqGH9aqpcaqGGcGaeq4SdC2damaaBaaaleaapeGaaG ymaaWdaeqaaOWdbiabg2Hi1kaac6caaaa@44A3@   2.16

The eigenvector will remain the same, but the eigenvalue will be

γ= λ 1λ , λ<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdCMaeyypa0ZaaSaaa8aabaWdbiabeU7aSbWdaeaapeGaaGym aiabgkHiTiabeU7aSbaacaGGSaGaaiiOaiabeU7aSjabgYda8iaaig daaaa@4480@   2.17

The new metric will be W 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaaaa@39FE@  as in opposition to the previous metric V 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaaaa@39FE@ , the metric of Mahalanobis.

There can be at most r1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaiabgkHiTiaaigdaaaa@39CE@ DFs, being r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaaaa@3826@ the number of classes under study. In the most complex problems, to separate r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGYbaaaa@370E@  groups from each other, r1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGYbGaeyOeI0IaaGymaaaa@38B6@  boundaries will be generally needed.

Supposing that a new observation, x 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hEa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3947@ , is obtained, the objective will be to allocate the observation to the nearest group recurring to the Mahalanobis distance (with metric W 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaaaa@39FE@  or the equivalent metric V 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaaaa@39FE@ ) calculated by

d 2 ( x 0 , g i ) W 1 = ( x 0 g i )   t W 1 ( x 0 g i )  d 2 ( x 0 , g i ) W 1 = x   t 0 W 1 x 0 + g   t i W 1 g i 2* x   t 0 W 1 g i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGKbWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaa ieWapeGaa8hEa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGSa Gaa83za8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGPaWdamaa BaaaleaapeGaam4va8aadaahaaadbeqaa8qacqGHsislcaaIXaaaaa WcpaqabaGcpeGaeyypa0ZdamaaDeaaleaapeGaaiiOaaWdaeaapeGa amiDaaaakiaacIcacaWF4bWdamaaBaaaleaapeGaaGimaaWdaeqaaO WdbiabgkHiTiaa=DgapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGa aiykaiaadEfapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaakiaacI cacaWF4bWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabgkHiTiaa =DgapaWaaSbaaSqaa8qacaWGPbaapaqabaaak8qacaGLOaGaayzkaa GaaiiOaaqaaiaadsgapaWaaWbaaSqabeaapeGaaGOmaaaakiaacIca caWF4bWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaacYcacaWFNb WdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaacMcapaWaaSbaaSqa a8qacaWGxbWdamaaCaaameqabaWdbiabgkHiTiaaigdaaaaal8aabe aak8qacqGH9aqppaWaa0raaSqaa8qacaGGGcaapaqaa8qacaWG0baa aOGaa8hEa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaWGxbWdam aaCaaaleqabaWdbiabgkHiTiaaigdaaaGccaWF4bWdamaaBaaaleaa peGaaGimaaWdaeqaaOWdbiabgUcaR8aadaqhbaWcbaWdbiaacckaa8 aabaWdbiaadshaaaGccaWFNbWdamaaBaaaleaapeGaamyAaaWdaeqa aOWdbiaadEfapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaakiaa=D gapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyOeI0IaaGOmaiaa cQcapaWaa0raaSqaa8qacaGGGcaapaqaa8qacaWG0baaaOGaa8hEa8 aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaWGxbWdamaaCaaaleqa baWdbiabgkHiTiaaigdaaaGccaWFNbWdamaaBaaaleaapeGaamyAaa Wdaeqaaaaaaa@85DF@   2.18

The new individual will then be attributed to the group to which d 2 ( x 0 ,  g i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaacbmWd biaa=HhapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaaiilaiaacc kacaWFNbWdamaaBaaaleaapeGaamyAaaWdaeqaaaGcpeGaayjkaiaa wMcaaaaa@4123@  in minimum.

If the dispersion of the values subjacent to each group differs significantly from one another, the exploratory analysis reaches its limits, as a new observation could be keen to be attributed to the group whose dispersion is the highest. To overcome this limitation, a statistical distribution hypothesis of the repartition of the observations in the space is usually needed, which will imply a probabilistic model underlying the multivariate sample.

Probabilistic context

Let p j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaadQgaa8aabeaaaaa@396D@  be the proportion of observation in each group j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOAaaaa@381E@ and f j ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadQgaa8aabeaak8qadaqadaWdaeaa ieWapeGaa8hEaaGaayjkaiaawMcaaaaa@3C2A@  be the probabilistic distribution of x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hEaaaa@3833@ of group j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOAaaaa@381D@ . A new observation x 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hEa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3947@  will be attributed to group C j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadQgaa8aabeaaaaa@393F@  where

P( C j |x )= p j f j ( x ) j=1 r p j f j ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuamaabmaapaqaa8qacaWGdbWdamaaBaaaleaapeGaamOAaaWd aeqaaOWdbiaabYhaieWacaWF4baacaGLOaGaayzkaaGaeyypa0ZaaS aaa8aabaWdbiaadchapaWaaSbaaSqaa8qacaWGQbaapaqabaGcpeGa amOza8aadaWgaaWcbaWdbiaadQgaa8aabeaak8qadaqadaWdaeaape Gaa8hEaaGaayjkaiaawMcaaaWdaeaapeWaaubmaeqal8aabaWdbiaa dQgacqGH9aqpcaaIXaaapaqaa8qacaWGYbaan8aabaWdbiabggHiLd aakiaadchapaWaaSbaaSqaa8qacaWGQbaapaqabaGcpeGaamOza8aa daWgaaWcbaWdbiaadQgaa8aabeaak8qadaqadaWdaeaapeGaa8hEaa GaayjkaiaawMcaaaaaaaa@53D3@   2.19

is the highest. For any new observation, the denominator will always be equal to 1, so the affection can be deduced as maximizing

p j f j ( x ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaadQgaa8aabeaak8qacaWGMbWdamaa BaaaleaapeGaamOAaaWdaeqaaOWdbmaabmaapaqaaGqad8qacaWF4b aacaGLOaGaayzkaaGaaiOlaaaa@3F33@   2.20

In case the data can be assumed to be from a truncated multivariate Gaussian model, its probability density function will be given by

f j ( x )= 1 k (2π) p j 2 det( Σ j )   exp  [ 1 2 ( x μ j )   t Σ j 1 ( x μ j ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadQgaa8aabeaak8qadaqadaWdaeaa peGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qacaaIXa aapaqaa8qacaWGRbGaaiikaiaaikdacqaHapaCcaGGPaWdamaaCaaa leqabaWdbmaalaaapaqaa8qacaWGWbWdamaaBaaameaapeGaamOAaa WdaeqaaaWcbaWdbiaaikdaaaaaaOWaaOaaa8aabaWdbiaabsgacaqG LbGaaeiDamaabmaapaqaa8qacqqHJoWupaWaaSbaaSqaa8qacaWGQb aapaqabaaak8qacaGLOaGaayzkaaaaleqaaaaakiaacckacaGGGcGa ciyzaiaacIhacaGGWbGaaiiOaiaacckadaWadaWdaeaapeGaeyOeI0 YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaWdamaaDeaaleaa peGaaiiOaaWdaeaapeGaamiDaaaakmaabmaapaqaa8qacaWG4bGaey OeI0IaeqiVd02damaaBaaaleaapeGaamOAaaWdaeqaaaGcpeGaayjk aiaawMcaaiabfo6at9aadaqhaaWcbaWdbiaadQgaa8aabaWdbiabgk HiTiaaigdaaaGcdaqadaWdaeaapeGaamiEaiabgkHiTiabeY7aT9aa daWgaaWcbaWdbiaadQgaa8aabeaaaOWdbiaawIcacaGLPaaaaiaawU facaGLDbaaaaa@6ECD@ , where k= [0,4] 30   f j ( x )dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9maawahabeWcpaqaa8qacaGGBbGaaGimaiaacYca caaI0aGaaiyxa8aadaahaaadbeqaa8qacaaIZaGaaGimaaaaaSWdae aapeGaaiiOaaqdpaqaa8qacqGHRiI8aaGccaWGMbWdamaaBaaaleaa peGaamOAaaWdaeqaaOWdbmaabmaapaqaaGqad8qacaWF4baacaGLOa GaayzkaaGaamizaiaa=Hhaaaa@49B4@  2.21

Maximizing f j ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadQgaa8aabeaak8qadaqadaWdaeaa peGaamiEaaGaayjkaiaawMcaaaaa@3C21@  is equivalent to maximizing its logarithm, as the logarithmic function is a strictly increasing function. Therefore, applying the logarithm to the maximization of equation (2.20) will be equivalent to

Min[ ( x μ j )   t Σ j 1 ( x μ j )2ln p j +ln(det( Σ j )) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaadMgacaWGUbWaamWaa8aabaWaa0raaSqaa8qacaGGGcaa paqaa8qacaWG0baaaOWaaeWaa8aabaWdbiaadIhacqGHsislcqaH8o qBpaWaaSbaaSqaa8qacaWGQbaapaqabaaak8qacaGLOaGaayzkaaGa eu4Odm1damaaDaaaleaapeGaamOAaaWdaeaapeGaeyOeI0IaaGymaa aakmaabmaapaqaa8qacaWG4bGaeyOeI0IaeqiVd02damaaBaaaleaa peGaamOAaaWdaeqaaaGcpeGaayjkaiaawMcaaiabgkHiTiaaikdaci GGSbGaaiOBaiaadchapaWaaSbaaSqaa8qacaWGQbaapaqabaGcpeGa ey4kaSIaciiBaiaac6gacaGGOaGaaeizaiaabwgacaqG0bGaaiikai abfo6at9aadaWgaaWcbaWdbiaadQgaa8aabeaak8qacaGGPaGaaiyk aaGaay5waiaaw2faaiaac6caaaa@6208@   2.22

If there is equality between the variance and covariance matrices, the decision rule is linear. From equation (2.22), ln(det( Σ j )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciiBaiaac6gacaGGOaGaaeizaiaabwgacaqG0bGaaiikaiabfo6a t9aadaWgaaWcbaWdbiaadQgaa8aabeaak8qacaGGPaGaaiykaaaa@4171@ becomes constant and ( x μ j )   t Σ 1 ( x μ j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaDeaaleaaqa aaaaaaaaWdbiaabckaa8aabaWdbiaadshaaaGcdaqadaWdaeaapeGa amiEaiabgkHiTiabeY7aT9aadaWgaaWcbaWdbiaadQgaa8aabeaaaO WdbiaawIcacaGLPaaacqqHJoWupaWaaWbaaSqabeaapeGaeyOeI0Ia aGymaaaakmaabmaapaqaa8qacaWG4bGaeyOeI0IaeqiVd02damaaBa aaleaapeGaamOAaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@4A79@  is the Mahalanobis distance between and x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382B@ , μ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaBaaaleaapeGaamOAaaWdaeqaaaaa@3A2D@ μ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaBaaaleaapeGaamOAaaWdaeqaaaaa@3A2D@ which can be decomposed in

x   t Σ 1 x2 x   t Σ 1 μ j + μ   t j Σ 1 μ j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaDeaaleaaqa aaaaaaaaWdbiaacckaa8aabaWdbiaadshaaaGccaWG4bGaeu4Odm1d amaaCaaaleqabaWdbiabgkHiTiaaigdaaaGccaWG4bGaeyOeI0IaaG Oma8aadaqhbaWcbaWdbiaacckaa8aabaWdbiaadshaaaGccaWG4bGa eu4Odm1damaaCaaaleqabaWdbiabgkHiTiaaigdaaaGccqaH8oqBpa WaaSbaaSqaa8qacaWGQbaapaqabaGcpeGaey4kaSYdamaaDeaaleaa peGaaiiOaaWdaeaapeGaamiDaaaakiabeY7aT9aadaWgaaWcbaWdbi aadQgaa8aabeaak8qacqqHJoWupaWaaWbaaSqabeaapeGaeyOeI0Ia aGymaaaakiabeY7aT9aadaWgaaWcbaWdbiaadQgaa8aabeaak8qaca GGUaaaaa@58CD@   2.23

The term x   t Σ 1 x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaDeaaleaaqa aaaaaaaaWdbiaacckaa8aabaWdbiaadshaaaGccaWG4bGaeu4Odm1d amaaCaaaleqabaWdbiabgkHiTiaaigdaaaGccaWG4baaaa@3F1E@  of the equation above does not depend on group j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOAaaaa@381D@ , therefore the maximization of ln( p j f j ( x ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiBaiaab6gadaqadaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaa dQgaa8aabeaak8qacaWGMbWdamaaBaaaleaapeGaamOAaaWdaeqaaO WdbmaabmaapaqaaGqad8qacaWF4baacaGLOaGaayzkaaaacaGLOaGa ayzkaaaaaa@4209@ can be written as

Max[ x   t Σ 1 μ j 1 2 μ   t j Σ 1 μ j +ln p j ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaadggacaWG4bWaamWaa8aabaWaa0raaSqaa8qacaGGGcaa paqaa8qacaWG0baaaOGaamiEaiabfo6at9aadaahaaWcbeqaa8qacq GHsislcaaIXaaaaOGaeqiVd02damaaBaaaleaapeGaamOAaaWdaeqa aOWdbiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaa8 aadaqhbaWcbaWdbiaacckaa8aabaWdbiaadshaaaGccqaH8oqBpaWa aSbaaSqaa8qacaWGQbaapaqabaGcpeGaeu4Odm1damaaCaaaleqaba WdbiabgkHiTiaaigdaaaGccqaH8oqBpaWaaSbaaSqaa8qacaWGQbaa paqabaGcpeGaey4kaSIaciiBaiaac6gacaWGWbWdamaaBaaaleaape GaamOAaaWdaeqaaaGcpeGaay5waiaaw2faaaaa@5A17@   2.24

Let x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hEaaaa@3833@ be a new observation. To attribute x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hEaaaa@3833@ to group i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaaaa@381C@ or j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOAaaaa@381D@ , the linear discriminant scores are defined as

W ij = x   t S 1 ( x ¯ i x ¯ j ) 1 2 ( x ¯ i x ¯ j )   t S 1 ( x ¯ i x ¯ j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaadMgacaWGQbaapaqabaGcpeGaeyyp a0ZdamaaDeaaleaapeGaaiiOaaWdaeaapeGaamiDaaaakiaadIhaca WGtbWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaGcdaqadaWdaeaa peGabmiEa8aagaqeamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgk HiTiqadIhapaGbaebadaWgaaWcbaWdbiaadQgaa8aabeaaaOWdbiaa wIcacaGLPaaacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaaG OmaaaapaWaa0raaSqaa8qacaGGGcaapaqaa8qacaWG0baaaOWaaeWa a8aabaWdbiqadIhapaGbaebadaWgaaWcbaWdbiaadMgaa8aabeaak8 qacqGHsislceWG4bWdayaaraWaaSbaaSqaa8qacaWGQbaapaqabaaa k8qacaGLOaGaayzkaaGaam4ua8aadaahaaWcbeqaa8qacqGHsislca aIXaaaaOWaaeWaa8aabaWdbiqadIhapaGbaebadaWgaaWcbaWdbiaa dMgaa8aabeaak8qacqGHsislceWG4bWdayaaraWaaSbaaSqaa8qaca WGQbaapaqabaaak8qacaGLOaGaayzkaaaaaa@606E@   2.25

where x ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiEa8aagaqeamaaBaaaleaapeGaamyAaaWdaeqaaaaa@398B@  and x ¯ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiEa8aagaqeamaaBaaaleaapeGaamOAaaWdaeqaaaaa@398C@  are unbiased estimators of the mean of groups i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaaaa@381C@ and j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOAaaaa@381D@ , respectively and S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uaaaa@3806@ is the unbiased estimator of the variance-covariance matrix Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4Odmfaaa@38B2@  defined by each group, calculated by

S= 1 nr i=1 r ( n i 1 ) S i   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uaiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaWGUbGa eyOeI0IaamOCaaaadaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaig daa8aabaWdbiaadkhaa0WdaeaapeGaeyyeIuoaaOWaaeWaa8aabaWd biaad6gapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyOeI0IaaG ymaaGaayjkaiaawMcaaiaadofapaWaaSbaaSqaa8qacaWGPbaapaqa baGcpeGaaiiOaaaa@4C46@   2.26

where S i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@394E@  is the empirical variance matrix of group i ( i=1, , r ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaacckadaqadaWdaeaapeGaamyAaiabg2da9iaaigdacaGG SaGaaiiOaiabgAci8kaacYcacaGGGcGaamOCaaGaayjkaiaawMcaai aac6caaaa@4476@ 1 The classification rule will be assigned individual x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hEaaaa@3833@ group i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaaaa@381C@ if W ij >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaadMgacaWGQbaapaqabaGcpeGaeyOp a4JaaGimaaaa@3C1D@ , for ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabgcMi5kaadQgaaaa@3AD2@ .

In the particular case where, the discriminant scores will be:

W 12 = x   t S 1 ( x ¯ 1 x ¯ 2 ) 1 2 ( x ¯ 1 x ¯ 2 )   t S 1 ( x ¯ 1 x ¯ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaeyyp a0ZdamaaDeaaleaapeGaaiiOaaWdaeaapeGaamiDaaaakiaadIhaca WGtbWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaGcdaqadaWdaeaa peGabmiEa8aagaqeamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgk HiTiqadIhapaGbaebadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaa wIcacaGLPaaacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaaG OmaaaapaWaa0raaSqaa8qacaGGGcaapaqaa8qacaWG0baaaOWaaeWa a8aabaWdbiqadIhapaGbaebadaWgaaWcbaWdbiaaigdaa8aabeaak8 qacqGHsislceWG4bWdayaaraWaaSbaaSqaa8qacaaIYaaapaqabaaa k8qacaGLOaGaayzkaaGaam4ua8aadaahaaWcbeqaa8qacqGHsislca aIXaaaaOWaaeWaa8aabaWdbiqadIhapaGbaebadaWgaaWcbaWdbiaa igdaa8aabeaak8qacqGHsislceWG4bWdayaaraWaaSbaaSqaa8qaca aIYaaapaqabaaak8qacaGLOaGaayzkaaaaaa@5ED6@
W 13 = x   t S 1 ( x ¯ 1 x ¯ 3 ) 1 2 ( x ¯ 1 x ¯ 3 )   t S 1 ( x ¯ 1 x ¯ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaaigdacaaIZaaapaqabaGcpeGaeyyp a0ZdamaaDeaaleaapeGaaiiOaaWdaeaapeGaamiDaaaakiaadIhaca WGtbWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaGcdaqadaWdaeaa peGabmiEa8aagaqeamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgk HiTiqadIhapaGbaebadaWgaaWcbaWdbiaaiodaa8aabeaaaOWdbiaa wIcacaGLPaaacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaaG OmaaaapaWaa0raaSqaa8qacaGGGcaapaqaa8qacaWG0baaaOWaaeWa a8aabaWdbiqadIhapaGbaebadaWgaaWcbaWdbiaaigdaa8aabeaak8 qacqGHsislceWG4bWdayaaraWaaSbaaSqaa8qacaaIZaaapaqabaaa k8qacaGLOaGaayzkaaGaam4ua8aadaahaaWcbeqaa8qacqGHsislca aIXaaaaOWaaeWaa8aabaWdbiqadIhapaGbaebadaWgaaWcbaWdbiaa igdaa8aabeaak8qacqGHsislceWG4bWdayaaraWaaSbaaSqaa8qaca aIZaaapaqabaaak8qacaGLOaGaayzkaaaaaa@5EDA@
W 23 = x   t S 1 ( x ¯ 2 x ¯ 3 ) 1 2 ( x ¯ 2 x ¯ 3 )   t S 1 ( x ¯ 2 x ¯ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaaikdacaaIZaaapaqabaGcpeGaeyyp a0ZdamaaDeaaleaapeGaaiiOaaWdaeaapeGaamiDaaaakiaadIhaca WGtbWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaGcdaqadaWdaeaa peGabmiEa8aagaqeamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgk HiTiqadIhapaGbaebadaWgaaWcbaWdbiaaiodaa8aabeaaaOWdbiaa wIcacaGLPaaacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaaG OmaaaapaWaa0raaSqaa8qacaGGGcaapaqaa8qacaWG0baaaOWaaeWa a8aabaWdbiqadIhapaGbaebadaWgaaWcbaWdbiaaikdaa8aabeaak8 qacqGHsislceWG4bWdayaaraWaaSbaaSqaa8qacaaIZaaapaqabaaa k8qacaGLOaGaayzkaaGaam4ua8aadaahaaWcbeqaa8qacqGHsislca aIXaaaaOWaaeWaa8aabaWdbiqadIhapaGbaebadaWgaaWcbaWdbiaa ikdaa8aabeaak8qacqGHsislceWG4bWdayaaraWaaSbaaSqaa8qaca aIZaaapaqabaaak8qacaGLOaGaayzkaaaaaa@5EDE@   2.27

Considering that, it is only required two of the equation’s terms to know the final one. As a result, the classification rule is defined as

  • Classify the new individual to group 1 if W 12 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaeyOp a4JaaGimaaaa@3BB7@ and W 13 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaaigdacaaIZaaapaqabaGcpeGaeyOp a4JaaGimaaaa@3BB8@
  • Classify the new individual to group 2 if W 12 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaeyip aWJaaGimaaaa@3BB3@ and W 23 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaaikdacaaIZaaapaqabaGcpeGaeyOp a4JaaGimaaaa@3BB9@
  • Classify the new individual to group 3 if W 13 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaaigdacaaIZaaapaqabaGcpeGaeyip aWJaaGimaaaa@3BB4@ and W 23 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaaikdacaaIZaaapaqabaGcpeGaeyip aWJaaGimaaaa@3BB5@

If Σ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4Odm1damaaBaaaleaapeGaamOAaaWdaeqaaaaa@39FB@  is different among the groups under study, it will be necessary to compare k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@381E@  quadratic functions of x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382B@ , being Σ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4Odm1damaaBaaaleaapeGaamOAaaWdaeqaaaaa@39FB@  estimated by n j n j 1 S j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaad6gapaWaaSbaaSqaa8qacaWGQbaapaqabaaa keaapeGaamOBa8aadaWgaaWcbaWdbiaadQgaa8aabeaak8qacqGHsi slcaaIXaaaaiaabofapaWaaSbaaSqaa8qacaWGQbaapaqabaaaaa@3FD0@ , where S j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4ua8aadaWgaaWcbaWdbiaadQgaa8aabeaaaaa@394D@  is the empirical variance and covariance matrix of group j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOAaaaa@381D@ , and μ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaBaaaleaapeGaamOAaaWdaeqaaaaa@3A2D@  estimated by the center of gravity of each group g j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa83za8aadaWgaaWcbaWdbiaadQgaa8aabeaaaaa@396B@ .

Box M test will be used to test the equality of the variance-covariance matrices between groups, being its hypothesis H 0 :  Σ 1 = Σ 2 == Σ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGG6aGaaiiO aiabfo6at9aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcq qHJoWupaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0JaeyOj GWRaeyypa0Jaeu4Odm1damaaBaaaleaapeGaamOCaaWdaeqaaaaa@47E7@
vs MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaiaadohaaaa@3921@
H 1 :( r,j ), with rj and j<r:  Σ r   Σ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGG6aGaey4a IqYaaeWaa8aabaWdbiaadkhacaGGSaGaamOAaaGaayjkaiaawMcaai aacYcacaGGGcGaam4DaiaadMgacaWG0bGaamiAaiaacckacaWGYbGa eyiyIKRaamOAaiaacckacaWGHbGaamOBaiaadsgacaGGGcGaamOAai abgYda8iaadkhacaGG6aGaaiiOaiabfo6at9aadaWgaaWcbaWdbiaa dkhaa8aabeaak8qacqGHGjsUcaGGGcGaeu4Odm1damaaBaaaleaape GaamOAaaWdaeqaaaaa@5BED@  

where r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaaaa@3825@ is the total number of groups under study. The sensitivity of the Box M test to the lack of normality in the variable vector emphasizes the potential use of a significance level of 0.01 or lower.8

If the equality between the variance-covariance matrices cannot be assumed, quadratic discriminant analysis overcomes this problem, although it will be needed to estimate each, which will complexify the problem. Another problem associated with the use of quadratic discriminant analysis is when the sample sizes are small. It affects the robustness of the DFs obtained, so it may be better to use LDA either way.7

Contribution of variables

For the contribution of each variable to each DF, the coefficients are analyzed in absolute value, so that it is known if the variable of matter is or is not important to the problematic context. As for the interpretation of the DFs, the signs of the coefficients are important to determine the context of the variables under analysis.9 Three different approaches are suggested to analyze the contribution of each variable to discriminate the groups, namely the standardized discriminant function coefficients, the correlation between variables and the DFs, and perform partial F-tests.

The approach of analyzing the contribution of each variable to discriminate between groups may not provide the most accurate results since it does not consider the potential impact of other variables, which could lead to misleading conclusions.9

The standardized discriminant function coefficients enable the possibility of comparing each variable with one another, as the coefficients become-scale free. As a result, the coefficients will showcase the exact contribution of each variable to the corresponding DF.

Finally, the partial F-test is a statistical test whose objective is to show the relevance of each variable to the contribution of group separation. However, when there is more than one DF, the partial F-values cannot be associated with a DF, but with the overall contribution of the variable to the group discrimination. In opposition, if the weight of any eigenvalue is large enough, then most of the separability is accounted for the DF associated with such eigenvalue, and the variables, ordered according to their partial F-values, may produce similar results to those obtained by the standardized discriminant function coefficients.9

Stepwise discriminant analysis

Multicollinearity can influence the selection of discriminator variables. The absence of a specific variable does not necessarily mean the variables lack importance for the model. The omitted variable may be indeed capable of discriminating the groups, but its correlation with other variables does not allow it to be included in the model.10 Recurring to Variance Inflation Factors (VIF) it is possible to determine whether or not a variable is related to another.11

Stepwise Discriminant Analysis combines both forward and backward approaches. In the forward approach, the model selects the variable with the highest partial F-statistic based on Wilk’s lambda at each step. As the analysis proceeds, the previously included variables are reevaluated to determine if any variable that has entered the model has become redundant due to newly included variables. This joint procedure continues until the largest partial F value among the included variables surpasses a predefined threshold. In the backward approach, the initial model includes all variables and, at each step, the variable with the lowest partial F values, in other words, the one that least contributes to the model, is removed from the model.9 Once the subset of discriminant variables is established, it will be useful to calculate the DFs and evaluate the performance of this discriminant procedure, namely, evaluating the percentage of misclassified observations using the sample test. This procedure could be referred to as Stepwise MANOVA (Multivariate Analysis of Variance). In such approach, no DFs are calculated at each step. After the selection of variables is achieved, the DFs and the misclassified rate matrix will be calculated.

To evaluate the effectiveness and reliability of each model, they will be evaluated through a testing set. Using testing sets is a reliable way of analyzing the overall performance of the model, as it is a process that helps ensure that the model performs reliably and accurately when applied to unseen data.

1If Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4Odmfaaa@38B2@ is estimated by S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uaaaa@3806@ ( n np W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaad6gaa8aabaWdbiaad6gacqGHsislcaWGWbaa aiaadEfaaaa@3C20@ ) where W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4vaaaa@380A@ is the within-group variance matrix), the Bayesian rule will correspond to the geometric rule under the equality of the probabilities a priori, so the geometric rule is then optimal.

Results

The first steps of data processing, which were simulating TND values to create the samples, were done with the software RStudio, which uses R as the programming language. With the same software, it was possible to create boxplots, and Box’s M-test. JMP Pro 17 and SPSS were used to perform the discriminant analysis techniques.

For the preliminary data analysis, the variables will be compared within the same group, as the objective is to discriminate the three groups. The main purpose of analyzing parallel boxplots is to find the variables whose boxplots of each group are the furthest from one another.

The boxplot’s interpretation can be resumed in five different sets (Figure 1):

  1. All three groups’ distributions do not seem to be different - variables Fatigue, Cramps, and SatietyFigure 1A;
  2. All three groups’ distributions seem to differ from one another – variables Nightmares, Muscle twitching, Tension, Heartburn, Horripilation, Headaches, Indifference, Memory, and Vague anxietyFigure 1B;
  3. The Healthy group differentiates itself from the other two groups, but there is no apparent differentiation amongst the other groups – variables Tremors, Knotted throat, Palpitations, Headaches, Dizziness, Pulse, Fainting, Eye floaters, Oppression, Attention, Memory, Indecision, Fear of the future, Apprehension of the worst, Fear of loneliness, Other fears, and Fear of crowdsFigure 1C;
  4. The Nervous group differentiates itself from the other two groups, but there is no apparent differentiation amongst the other groups – variables Diarrhea and TinglingFigure 1D;
  5. The Psychotic group differentiates itself from the other two groups, but there is no apparent differentiation amongst the other groups – variable Muscle PainFigure 1E.

To enrich the exploratory statistical analysis, FDA will be performed with all thirty variables predicting the group to which an individual will be allocated, although it is noted that some variables might not be as useful to discriminate each group from one another.

Figure 1 Boxplot representation of the variables for the five possible cases of data distribution.

Considering multivariate data are generated from a truncated multivariate normal distribution, it is possible to perform the Box’s M test. The test statistic obtained was 1026.4, with a p-value of 0.015, so the null hypothesis is not rejected for the significance level fixed at most 0.01, considering the specific statistical properties of such test. Thus, the three groups can be assumed to have homogeneous covariance matrices. With these two assumptions, FDA can be performed on the whole data set.

Factorial discriminant analysis

From Figure 2, which showcases the dispersion of a hundred and fifty individuals, with each group centroid defined by a “+” sign, when represented by all variables, it is noted that the separation of the healthy group and the non-healthy groups is evident. It can then be inferred that the first DF will aim to separate the healthy group from the non-healthy groups, whereas the second DF will aim to separate nervous individuals from psychotic individuals.

Figure 2 Representation of all thirty variables in the first factorial principal plane generated by the two discriminant functions.

The standardized scoring coefficients of each variable for each DF, represented in Table 4, indicate the contribution of the variable to the DF. Therefore, the further from zero the coefficient is, the more the variable will contribute to the discrimination of the three groups. From the set of thirty variables, the ones who have the biggest scoring coefficient in the first DF are variables (and respective standardized scoring coefficients in parenthesis) Palpitations (0.401), Heartburn (0.4), Apprehension of the worst (0.397), Oppression (0.381), and Fear of loneliness (0.35). For the second DF, it can be noticed that the variables that most contribute to the discrimination of groups Nervous and Psychotic are Palpitations (-0.507), Muscle pain (0.499), Muscle twitching (-0.480), Headaches (0.429), Tingling (0.415), and Tension (0.388). Palpitations and Muscle twitching contribute to the psychotic group, while the other three variables mentioned contribute to the nervous group.

Variable

Discriminant function 1

Discriminant function 2

Fatigue

0.182

0.216

Nightmares

0.289

0.112

Muscle twitching

0.212

-0.480

Cramps

0.069

0.040

Tremors

0.069

0.029

Tension

0.230

0.388

Muscle pain

-0.058

0.499

Knotted throat

0.144

0.080

Satiety

-0.059

0.235

Heartburn

0.400

0.202

Diarrhea

0.117

0.164

Horripilation

0.255

0.136

Palpitations

0.401

-0.507

Headaches

-0.030

0.429

Dizziness

0.047

0.102

Tingling

0.127

0.415

Pulse

0.230

-0.073

Fainting

0.205

-0.224

Eye floaters

0.049

0.141

Oppression

0.381

-0.090

Indifference

0.235

0.045

Attention

0.113

0.082

Memory

0.229

-0.302

Indecision

0.256

0.146

Vague anxiety

0.116

0.025

Fear of the future

0.214

-0.066

Apprehension of the worst

0.397

-0.069

Fear of loneliness

0.350

-0.080

Other fears

0.065

-0.247

Fear of crowds

0.242

0.171

Table 4 Standardized scoring coefficients of the thirty variables in each discriminant function

The two eigenvalues obtained were 11.537 and 0.940. Consequently, the discriminant power of the first DF is 92.47% and the discriminant power of the second DF is 7.53%, which comes to prove that it will be easier to separate healthy and non-healthy individuals than it will be to separate nervous individuals from psychotic individuals. The two obtained DFs associated with the model are:

C 1 =0.185* x 1 + 0.377 * x 2 + 0.292 * x 3  + 0.137 * x 4  + 0.088 *  x 5  + 0.265 *  x 6 0.077      *  x 7 +0.187 *  x 8   0.066* x 9 +0.999 *  x 10 + 0.278 * x 11 + 0.355 *  x 12      + 0.482 *  x 13  0.036 * x 14 + 0.061 * x 15 + 0.176 * x 16 +0.347 *  x 17     + 0.332 * x 18 + 0.069 * x 19  + 0.467 * x 20 + 0.277 *  x 21 + 0.121 *  x 22     + 0.241 *  x 23 + 0.251 * x 24 + 0.114 *  x 25 + 0.243 * x 26  + 0.427 *  x 27     +0.433 *  x 28  + 0.065 *  x 29 +0.299 * x 30   8.791 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGdbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da 9iaaicdacaGGUaGaaGymaiaaiIdacaaI1aGaaiOkaiaadIhapaWaaS baaSqaa8qacaaIXaaapaqabaGcpeGaey4kaSIaaiiOaiaaicdacaGG UaGaaG4maiaaiEdacaaI3aGaaiiOaiaacQcacaWG4bWdamaaBaaale aapeGaaGOmaaWdaeqaaOWdbiabgUcaRiaacckacaaIWaGaaiOlaiaa ikdacaaI5aGaaGOmaiaacckacaGGQaGaamiEa8aadaWgaaWcbaWdbi aaiodaa8aabeaak8qacaGGGcGaey4kaSIaaiiOaiaaicdacaGGUaGa aGymaiaaiodacaaI3aGaaiiOaiaacQcacaWG4bWdamaaBaaaleaape GaaGinaaWdaeqaaOWdbiaacckacqGHRaWkcaGGGcGaaGimaiaac6ca caaIWaGaaGioaiaaiIdacaGGGcGaaiOkaiaacckacaWG4bWdamaaBa aaleaapeGaaGynaaWdaeqaaOWdbiaacckacqGHRaWkcaGGGcGaaGim aiaac6cacaaIYaGaaGOnaiaaiwdacaGGGcGaaiOkaiaacckacaWG4b WdamaaBaaaleaapeGaaGOnaaWdaeqaaOWdbiabgkHiTiaaicdacaGG UaGaaGimaiaaiEdacaaI3aaabaGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGQaGaaiiOaiaadIhapaWaaSbaaSqaa8qacaaI3aaapaqa baGcpeGaey4kaSIaaGimaiaac6cacaaIXaGaaGioaiaaiEdacaGGGc GaaiOkaiaacckacaWG4bWdamaaBaaaleaapeGaaGioaaWdaeqaaOWd biaacckacaGGGcGaeyOeI0IaaGimaiaac6cacaaIWaGaaGOnaiaaiA dacaGGQaGaamiEa8aadaWgaaWcbaWdbiaaiMdaa8aabeaak8qacqGH RaWkcaaIWaGaaiOlaiaaiMdacaaI5aGaaGyoaiaacckacaGGQaGaai iOaiaadIhapaWaaSbaaSqaa8qacaaIXaGaaGimaaWdaeqaaOWdbiab gUcaRiaacckacaaIWaGaaiOlaiaaikdacaaI3aGaaGioaiaacckaca GGQaGaamiEa8aadaWgaaWcbaWdbiaaigdacaaIXaaapaqabaGcpeGa ey4kaSIaaiiOaiaaicdacaGGUaGaaG4maiaaiwdacaaI1aGaaiiOai aacQcacaGGGcGaamiEa8aadaWgaaWcbaWdbiaaigdacaaIYaaapaqa baaakeaapeGaaiiOaiaacckacaGGGcGaaiiOaiaacckacqGHRaWkca GGGcGaaGimaiaac6cacaaI0aGaaGioaiaaikdacaGGGcGaaiOkaiaa cckacaWG4bWdamaaBaaaleaapeGaaGymaiaaiodaa8aabeaak8qaca GGGcGaeyOeI0IaaGimaiaac6cacaaIWaGaaG4maiaaiAdacaGGGcGa aiOkaiaadIhapaWaaSbaaSqaa8qacaaIXaGaaGinaaWdaeqaaOWdbi abgUcaRiaacckacaaIWaGaaiOlaiaaicdacaaI2aGaaGymaiaaccka caGGQaGaamiEa8aadaWgaaWcbaWdbiaaigdacaaI1aaapaqabaGcpe Gaey4kaSIaaiiOaiaaicdacaGGUaGaaGymaiaaiEdacaaI2aGaaiiO aiaacQcacaWG4bWdamaaBaaaleaapeGaaGymaiaaiAdaa8aabeaak8 qacqGHRaWkcaaIWaGaaiOlaiaaiodacaaI0aGaaG4naiaacckacaGG QaGaaiiOaiaadIhapaWaaSbaaSqaa8qacaaIXaGaaG4naaWdaeqaaa GcbaWdbiaacckacaGGGcGaaiiOaiaacckacqGHRaWkcaGGGcGaaGim aiaac6cacaaIZaGaaG4maiaaikdacaGGGcGaaiOkaiaadIhapaWaaS baaSqaa8qacaaIXaGaaGioaaWdaeqaaOWdbiabgUcaRiaacckacaaI WaGaaiOlaiaaicdacaaI2aGaaGyoaiaacckacaGGQaGaamiEa8aada WgaaWcbaWdbiaaigdacaaI5aaapaqabaGcpeGaaiiOaiabgUcaRiaa cckacaaIWaGaaiOlaiaaisdacaaI2aGaaG4naiaacckacaGGQaGaam iEa8aadaWgaaWcbaWdbiaaikdacaaIWaaapaqabaGcpeGaey4kaSIa aiiOaiaaicdacaGGUaGaaGOmaiaaiEdacaaI3aGaaiiOaiaacQcaca GGGcGaamiEa8aadaWgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGa ey4kaSIaaiiOaiaaicdacaGGUaGaaGymaiaaikdacaaIXaGaaiiOai aacQcacaGGGcGaamiEa8aadaWgaaWcbaWdbiaaikdacaaIYaaapaqa baaakeaapeGaaiiOaiaacckacaGGGcGaaiiOaiabgUcaRiaacckaca aIWaGaaiOlaiaaikdacaaI0aGaaGymaiaacckacaGGQaGaaiiOaiaa dIhapaWaaSbaaSqaa8qacaaIYaGaaG4maaWdaeqaaOWdbiabgUcaRi aacckacaaIWaGaaiOlaiaaikdacaaI1aGaaGymaiaacckacaGGQaGa amiEa8aadaWgaaWcbaWdbiaaikdacaaI0aaapaqabaGcpeGaey4kaS IaaiiOaiaaicdacaGGUaGaaGymaiaaigdacaaI0aGaaiiOaiaacQca caGGGcGaamiEa8aadaWgaaWcbaWdbiaaikdacaaI1aaapaqabaGcpe Gaey4kaSIaaiiOaiaaicdacaGGUaGaaGOmaiaaisdacaaIZaGaaiiO aiaacQcacaWG4bWdamaaBaaaleaapeGaaGOmaiaaiAdaa8aabeaak8 qacaGGGcGaey4kaSIaaiiOaiaaicdacaGGUaGaaGinaiaaikdacaaI 3aGaaiiOaiaacQcacaGGGcGaamiEa8aadaWgaaWcbaWdbiaaikdaca aI3aaapaqabaaakeaapeGaaiiOaiaacckacaGGGcGaaiiOaiabgUca RiaaicdacaGGUaGaaGinaiaaiodacaaIZaGaaiiOaiaacQcacaGGGc GaamiEa8aadaWgaaWcbaWdbiaaikdacaaI4aaapaqabaGcpeGaaiiO aiabgUcaRiaacckacaaIWaGaaiOlaiaaicdacaaI2aGaaGynaiaacc kacaGGQaGaaiiOaiaadIhapaWaaSbaaSqaa8qacaaIYaGaaGyoaaWd aeqaaOWdbiabgUcaRiaaicdacaGGUaGaaGOmaiaaiMdacaaI5aGaai iOaiaacQcacaWG4bWdamaaBaaaleaapeGaaG4maiaaicdaa8aabeaa k8qacaGGGcGaeyOeI0IaaiiOaiaaiIdacaGGUaGaaG4naiaaiMdaca aIXaaaaaa@98F6@   4.1

C 1 =0.218* x 1 + 0.147 * x 2 0.662 * x 3  + 0.079 * x 4  + 0.037 *  x 5   + 0.447 *  x 6 +0.668 *  x 7 +0.104 *  x 8  +0.264* x 9 +0.505 *  x 10 + 0.388 * x 11 + 0.19 *  x 12 0.609 *  x 13 +0.51 * x 14 + 0.13 * x 15 + 0.578 * x 16 0.111 *  x 17  0.362* x 18 + 0.199 * x 19 0.11 * x 20 + 0.053 *  x 21 + 0.088 *  x 22  0.317 *  x 23 + 0.143 * x 24 + 0.024  *  x 25  0.074 * x 26  0.074 *  x 27 0.1 *  x 28  0.248 *  x 29 +0.212  * x 30   2.631 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGdbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da 9iaaicdacaGGUaGaaGOmaiaaigdacaaI4aGaaiOkaiaadIhapaWaaS baaSqaa8qacaaIXaaapaqabaGcpeGaey4kaSIaaiiOaiaaicdacaGG UaGaaGymaiaaisdacaaI3aGaaiiOaiaacQcacaWG4bWdamaaBaaale aapeGaaGOmaaWdaeqaaOWdbiabgkHiTiaaicdacaGGUaGaaGOnaiaa iAdacaaIYaGaaiiOaiaacQcacaWG4bWdamaaBaaaleaapeGaaG4maa WdaeqaaOWdbiaacckacqGHRaWkcaGGGcGaaGimaiaac6cacaaIWaGa aG4naiaaiMdacaGGGcGaaiOkaiaadIhapaWaaSbaaSqaa8qacaaI0a aapaqabaGcpeGaaiiOaiabgUcaRiaacckacaaIWaGaaiOlaiaaicda caaIZaGaaG4naiaacckacaGGQaGaaiiOaiaadIhapaWaaSbaaSqaa8 qacaaI1aaapaqabaGcpeGaaiiOaaqaaiabgUcaRiaacckacaaIWaGa aiOlaiaaisdacaaI0aGaaG4naiaacckacaGGQaGaaiiOaiaadIhapa WaaSbaaSqaa8qacaaI2aaapaqabaGcpeGaey4kaSIaaGimaiaac6ca caaI2aGaaGOnaiaaiIdacaGGGcGaaiOkaiaacckacaWG4bWdamaaBa aaleaapeGaaG4naaWdaeqaaOWdbiabgUcaRiaaicdacaGGUaGaaGym aiaaicdacaaI0aGaaiiOaiaacQcacaGGGcGaamiEa8aadaWgaaWcba WdbiaaiIdaa8aabeaak8qacaGGGcGaey4kaSIaaGimaiaac6cacaaI YaGaaGOnaiaaisdacaGGQaGaamiEa8aadaWgaaWcbaWdbiaaiMdaa8 aabeaak8qacqGHRaWkcaaIWaGaaiOlaiaaiwdacaaIWaGaaGynaiaa cckacaGGQaGaaiiOaiaadIhapaWaaSbaaSqaa8qacaaIXaGaaGimaa WdaeqaaaGcbaWdbiabgUcaRiaacckacaaIWaGaaiOlaiaaiodacaaI 4aGaaGioaiaacckacaGGQaGaamiEa8aadaWgaaWcbaWdbiaaigdaca aIXaaapaqabaGcpeGaey4kaSIaaiiOaiaaicdacaGGUaGaaGymaiaa iMdacaGGGcGaaiOkaiaacckacaWG4bWdamaaBaaaleaapeGaaGymai aaikdaa8aabeaak8qacqGHsislcaaIWaGaaiOlaiaaiAdacaaIWaGa aGyoaiaacckacaGGQaGaaiiOaiaadIhapaWaaSbaaSqaa8qacaaIXa GaaG4maaWdaeqaaOWdbiabgUcaRiaaicdacaGGUaGaaGynaiaaigda caGGGcGaaiOkaiaadIhapaWaaSbaaSqaa8qacaaIXaGaaGinaaWdae qaaOWdbiabgUcaRiaacckacaaIWaGaaiOlaiaaigdacaaIZaGaaiiO aiaacQcacaWG4bWdamaaBaaaleaapeGaaGymaiaaiwdaa8aabeaaaO qaa8qacqGHRaWkcaGGGcGaaGimaiaac6cacaaI1aGaaG4naiaaiIda caGGGcGaaiOkaiaadIhapaWaaSbaaSqaa8qacaaIXaGaaGOnaaWdae qaaOWdbiabgkHiTiaaicdacaGGUaGaaGymaiaaigdacaaIXaGaaiiO aiaacQcacaGGGcGaamiEa8aadaWgaaWcbaWdbiaaigdacaaI3aaapa qabaGcpeGaeyOeI0IaaiiOaiaaicdacaGGUaGaaG4maiaaiAdacaaI YaGaaiOkaiaadIhapaWaaSbaaSqaa8qacaaIXaGaaGioaaWdaeqaaO WdbiabgUcaRiaacckacaaIWaGaaiOlaiaaigdacaaI5aGaaGyoaiaa cckacaGGQaGaamiEa8aadaWgaaWcbaWdbiaaigdacaaI5aaapaqaba GcpeGaeyOeI0IaaGimaiaac6cacaaIXaGaaGymaiaacckacaGGQaGa amiEa8aadaWgaaWcbaWdbiaaikdacaaIWaaapaqabaaakeaapeGaey 4kaSIaaiiOaiaaicdacaGGUaGaaGimaiaaiwdacaaIZaGaaiiOaiaa cQcacaGGGcGaamiEa8aadaWgaaWcbaWdbiaaikdacaaIXaaapaqaba GcpeGaey4kaSIaaiiOaiaaicdacaGGUaGaaGimaiaaiIdacaaI4aGa aiiOaiaacQcacaGGGcGaamiEa8aadaWgaaWcbaWdbiaaikdacaaIYa aapaqabaGcpeGaeyOeI0IaaiiOaiaaicdacaGGUaGaaG4maiaaigda caaI3aGaaiiOaiaacQcacaGGGcGaamiEa8aadaWgaaWcbaWdbiaaik dacaaIZaaapaqabaGcpeGaey4kaSIaaiiOaiaaicdacaGGUaGaaGym aiaaisdacaaIZaGaaiiOaiaacQcacaWG4bWdamaaBaaaleaapeGaaG Omaiaaisdaa8aabeaak8qacqGHRaWkcaGGGcGaaGimaiaac6cacaaI WaGaaGOmaiaaisdacaGGGcaabaGaaiOkaiaacckacaWG4bWdamaaBa aaleaapeGaaGOmaiaaiwdaa8aabeaak8qacqGHsislcaGGGcGaaGim aiaac6cacaaIWaGaaG4naiaaisdacaGGGcGaaiOkaiaadIhapaWaaS baaSqaa8qacaaIYaGaaGOnaaWdaeqaaOWdbiabgkHiTiaacckacaaI WaGaaiOlaiaaicdacaaI3aGaaGinaiaacckacaGGQaGaaiiOaiaadI hapaWaaSbaaSqaa8qacaaIYaGaaG4naaWdaeqaaOWdbiabgkHiTiaa icdacaGGUaGaaGymaiaacckacaGGQaGaaiiOaiaadIhapaWaaSbaaS qaa8qacaaIYaGaaGioaaWdaeqaaOWdbiabgkHiTiaacckacaaIWaGa aiOlaiaaikdacaaI0aGaaGioaiaacckacaGGQaGaaiiOaiaadIhapa WaaSbaaSqaa8qacaaIYaGaaGyoaaWdaeqaaOWdbiabgUcaRiaaicda caGGUaGaaGOmaiaaigdacaaIYaGaaiiOaaqaaiaacQcacaWG4bWdam aaBaaaleaapeGaaG4maiaaicdaa8aabeaak8qacaGGGcGaeyOeI0Ia aiiOaiaaikdacaGGUaGaaGOnaiaaiodacaaIXaaaaaa@7267@   4.2

where x 1 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpaaa@3A60@  Fatigue, x 2 =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpcaGG Gcaaaa@3B85@ Nightmares, x 3 =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaGaaG4maaqabaGcpeGaeyypa0JaaiiOaaaa @3B67@ Muscle twitching, x 4 =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaGaaGinaaqabaGcpeGaeyypa0JaaiiOaaaa @3B68@ Cramps, x 5 =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaiwdaa8aabeaak8qacqGH9aqpcaGG Gcaaaa@3B88@ Tremors, x 6 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaiAdaa8aabeaak8qacqGH9aqpaaa@3A65@ Tension, x 7 =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaiEdaa8aabeaak8qacqGH9aqpcaGG Gcaaaa@3B8A@ Muscle pain, x 8 =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaiIdaa8aabeaak8qacqGH9aqpcaGG Gcaaaa@3B8B@ Knotted throat, x 9 =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaiMdaa8aabeaak8qacqGH9aqpcaGG Gcaaaa@3B8C@ Satiety, x 10 =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdacaaIWaaapaqabaGcpeGaeyyp a0JaaiiOaaaa@3C3E@ Heartburn, x 11 =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdacaaIXaaapaqabaGcpeGaeyyp a0JaaiiOaaaa@3C3F@ Diarrhea, x 12 =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaeyyp a0JaaiiOaaaa@3C40@ Horripilation, x 13 =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdacaaIZaaapaqabaGcpeGaeyyp a0JaaiiOaaaa@3C41@ Palpitations, x 14 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdacaaI0aaapaqabaGcpeGaeyyp a0daaa@3B1E@ Headaches, x 15 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdacaaI1aaapaqabaGcpeGaeyyp a0daaa@3B1F@ Dizziness, x 16 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdacaaI2aaapaqabaGcpeGaeyyp a0daaa@3B20@ Tingling, x 17 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdacaaI3aaapaqabaGcpeGaeyyp a0daaa@3B21@ Pulse, x 18 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdacaaI4aaapaqabaGcpeGaeyyp a0daaa@3B22@ Fainting, x 19 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdacaaI5aaapaqabaGcpeGaeyyp a0daaa@3B23@ Eye floaters, x 20 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaGaaGOmaiaaicdaaeqaaOWdbiabg2da9aaa @3AFC@ Oppression, x 21 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaeyyp a0daaa@3B1C@ Indifference, x 22 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaikdacaaIYaaapaqabaGcpeGaeyyp a0daaa@3B1D@ Attention, x 23 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaikdacaaIZaaapaqabaGcpeGaeyyp a0daaa@3B1E@ Memory, x 24 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaikdacaaI0aaapaqabaGcpeGaeyyp a0daaa@3B1F@ Indecision, x 25 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaikdacaaI1aaapaqabaGcpeGaeyyp a0daaa@3B20@ Vague anxiety, x 26 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaikdacaaI2aaapaqabaGcpeGaeyyp a0daaa@3B21@ Fear of the future, x 27 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaikdacaaI3aaapaqabaGcpeGaeyyp a0daaa@3B22@  Apprehension of the worst, x 28 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaikdacaaI4aaapaqabaGcpeGaeyyp a0daaa@3B23@ Fear of loneliness, x 29 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaikdacaaI5aaapaqabaGcpeGaeyyp a0daaa@3B24@ Other fears, and, x 30 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaiodacaaIWaaapaqabaGcpeGaeyyp a0daaa@3B1C@ Fear of crowds. When testing the likelihood ratio test, the p-value obtained for each DF, C 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@390B@ and C 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaGaaGOmaaqabaaaaa@38ED@ , was below 0.01, justifying the use of both DF to discriminate the three groups under study.

Representing the classifications attained from the training set in the first FDA performed, Table 5 shows that the healthy individuals are not for once mistaken with individuals from any other group, leading to a perfect classification of the Healthy group, and only one individual (from the Psychotic group) is misclassified for healthy. In addition, the percentage of individuals that were misclassified is 4.(6)% (3 individuals from the nervous group and four individuals from the psychotic group, out of the total 150 individuals).

Classification results

 

 

 

 

     

Predicted classification group

Total

Group

 

 

Nervous

Psychotic

Healthy

 

Original

Count

Nervous

47

3

0

50

   

Psychotic

3

46

1

50

 

 

Healthy

0

0

50

50

Table 5 Classification count in the training set with thirty variables

To validate the models’ accuracy in discriminating the three groups, the model was submitted to a testing set. The testing set contained seventy-five new individuals, evenly distributed by the three groups, generated from the same TND as the training sample. A misclassification rate of 10.(6)% was obtained and, in Table 6, it can be seen that the model was able to perfectly classify healthy individuals, while the psychotic individuals were only once mistakenly classified as healthy individuals. As a result, it can be said that the model was able to discriminate the three groups predominantly correctly. To further analyze the three groups on behalf of this paper’s main objective, two different approaches are referred to analyze the behavior of each variable to the DFs.

Classification results

 

 

 

 

     

Predicted classification group

Total

Group

 

 

Nervous

Psychotic

Healthy

 

Original

Count

Nervous

18

7

0

25

   

Psychotic

0

24

1

25

 

 

Healthy

0

0

25

25

Table 6 Classification count in the testing set with thirty variables

From Table 7, with the partial F test statistic and p-values associated with the test statistic obtained for each variable, it can be seen that variables Fatigue, Cramps, and Satiety are not significantly contributing to the discriminant model created, as their p-value is superior to 0.28, which goes according to the exploratory analysis previously made.

Variable

Test statistic - F

P-value

Fatigue

1.256

0.288

Nightmares

19.448

0.000

Muscle twitching

14.245

0.000

Cramps

0.017

0.983

Tremors

28.381

0.000

Tension

30.398

0.000

Muscle pain

7.036

0.001

Knotted throat

31.163

0.000

Satiety

1.004

0.369

Heartburn

37.491

0.000

Diarrhea

12.382

0.000

Horripilation

33.683

0.000

Palpitations

57.591

0.000

Headaches

13.652

0.000

Dizziness

8.485

0.000

Tingling

11.315

0.000

Pulse

31.812

0.000

Fainting

46.508

0.000

Eye floaters

13.969

0.000

Oppression

47.004

0.000

Indifference

27.133

0.000

Attention

15.362

0.000

Memory

17.020

0.000

Indecision

9.216

0.000

Vague anxiety

15.771

0.000

Fear of the future

28.811

0.000

Apprehension of the worst

45.353

0.000

Fear of loneliness

54.338

0.000

Other fears

7.905

0.001

Fear of crowds

58.842

0.000

Table 7 Partial F test’ statistic and p-value performed on all thirty variables

From Table 8, it is observed that the correlations between the variables and the two DFs are bigger in the first DF than it is in the second one. One of the main causes is the percentage of the variance of the first DF being 92.47%, while the second DF covers the remaining 7.53%, as previously stated. The correlation between the variables to the first DF goes as high as 0.693 (Fear of crowds) to as low as -0.096 (Muscle pain). For the second DF, the correlation goes as high as 0.391 (Muscle twitching) to as low as -0.437 (Tingling). When analyzing the correlation with the first DF, only two variables are negatively (and weakly) correlated. It is noted that variables Tingling, Muscle pain, and Tension with correlations 0.437, 0.403, and 0.37, in the order mentioned, best describe the psychotic group, while the variables that best describe the nervous group are Muscle twitching, Palpitations, and Other fears with correlations -0.391, -0.277, and -0.234 in the respective order.

Variable

Discriminant function 1

Discriminant function 2

Muscle twitching

0.141

-0.479

Muscle pain

-0.118

0.459

Tension

0.214

0.405

Heartburn

0.443

0.197

Horripilation

0.321

0.099

Palpitations

0.492

-0.330

Headaches

-0.002

0.422

Tingling

0.183

0.402

Pulse

0.375

-0.032

Fainting

0.216

-0.247

Oppression

0.389

-0.038

Indifference

0.335

0.106

Apprehension of the worst

0.355

-0.033

Fear of loneliness

0.400

-0.150

Fear of crowds

0.208

0.163

Table 8 Standardized scoring coefficients of the fifteen variables in each discriminant function

Based on the analysis conducted on the contribution of each variable to FDA, the variables that indicate a good separation amongst the three groups are Muscle twitching, Muscle pain, Tension, Heartburn, Horripilation, Palpitations, Headaches, Tingling, Pulse, Fainting, Oppression, Indifference, Apprehension of the worst, Fear of loneliness, and Fear of crowds. Variable Muscle pain has a standardized coefficient of 0.499 with the second DF and a correlation with the same DF of 0.403. For this reason, the variable was chosen to be included in the model, as it is an important variable to discriminate both unhealthy groups from each other. Variables Headaches and Tingling were also chosen to take part in the model as their correlation to the second DF and standardized scoring coefficients were high when compared to other variables. Although the partial-F values were not the highest, the variables had to take part in the model to give more weight to the discrimination of Nervous and Psychotic groups, otherwise, the model’s focus would be to only discriminate healthy and unhealthy groups. Still, variables Fear of crowds, Fainting, Oppression, Apprehension of the worst, Indifference, Pulse, and Fear of loneliness were chosen as their behavior was very focused on separating the Healthy group from the two others. Variables Muscle twitching, Tension, Heartburn, Horripilation, Palpitations, and Fainting are variables that have a remarkable performance to discriminate the groups under study, the reason being choosing them to take part in the new model.

Reduced model

As any subset of the initial thirty variables also follows a multivariate normal distribution, the question is just to re-analyze the homogeneity of the covariance matrices among the three groups under the reduced model. The test statistics obtained for Box’s M test was 280.88, with a p-value of 0.04, from which the null hypothesis is not rejected.

From Figure 3, it is clear that the dispersion of the three groups has increased, although it is still noticeable that the dispersion of the healthy group is smaller than the other two groups. It is also visible that there is a greater mix of individuals in the nervous and psychotic groups, which indicates a bigger misclassification rate in this group.

Figure 3 Representation of the proposed variable selection (15 variables) in the first factorial principal plane generated by the two discriminant functions.

The standardized scoring coefficients are represented in Table 8, and as expected, all variables have a high standardized coefficient. In either one of the two functions, each variable shows how it behaves in accordance with the function. For instance, despite variable Headaches having a near-zero standardized scoring coefficient with the first DF, it has one of the highest standardized scoring coefficients in the second DF.

From this FDA produced, the two new eigenvalues associated with the first and second DFs, respectively, were 8.158 and 0.739, which corresponds to a discriminant power of 91.69% and 8.31%. The two DFs subjacent to the model were the following:

C 1 = 0.194* x 1 0.158* x 2 +0.247* x 3 +1.107* x 4 +0.447* x 5 +0.59 * x 6 0.002* x 7         +0.254 * x 8 +0.567 *  x 9 +0.35* x 10 +0.478* x 11 +0.396* x 12 +0.382* x 13         +0.494* x 14 +0.257* x 15 6.113 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGdbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da 9iaabckacaaIWaGaaiOlaiaaigdacaaI5aGaaGinaiaabQcacaWG4b WdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgkHiTiaaicdacaGG UaGaaGymaiaaiwdacaaI4aGaaeOkaiaadIhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaey4kaSIaaGimaiaac6cacaaIYaGaaGinaiaa iEdacaqGQaGaamiEa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacq GHRaWkcaaIXaGaaiOlaiaaigdacaaIWaGaaG4naiaabQcacaWG4bWd amaaBaaaleaapeGaaGinaaWdaeqaaOWdbiabgUcaRiaaicdacaGGUa GaaGinaiaaisdacaaI3aGaaeOkaiaadIhapaWaaSbaaSqaa8qacaaI 1aaapaqabaGcpeGaey4kaSIaaGimaiaac6cacaaI1aGaaGyoaiaabc kacaqGQaGaamiEa8aadaWgaaWcbaWdbiaaiAdaa8aabeaak8qacqGH sislcaaIWaGaaiOlaiaaicdacaaIWaGaaGOmaiaabQcacaWG4bWdam aaBaaaleaapeGaaG4naaWdaeqaaaGcbaWdbiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaey4kaSIaaGimaiaac6 cacaaIYaGaaGynaiaaisdacaqGGcGaaeOkaiaadIhapaWaaSbaaSqa a8qacaaI4aaapaqabaGcpeGaey4kaSIaaGimaiaac6cacaaI1aGaaG OnaiaaiEdacaqGGcGaaeOkaiaabckacaWG4bWdamaaBaaaleaapeGa aGyoaaWdaeqaaOWdbiabgUcaRiaaicdacaGGUaGaaG4maiaaiwdaca qGQaGaamiEa8aadaWgaaWcbaWdbiaaigdacaaIWaaapaqabaGcpeGa ey4kaSIaaGimaiaac6cacaaI0aGaaG4naiaaiIdacaqGQaGaamiEa8 aadaWgaaWcbaWdbiaaigdacaaIXaaapaqabaGcpeGaey4kaSIaaGim aiaac6cacaaIZaGaaGyoaiaaiAdacaqGQaGaamiEa8aadaWgaaWcba WdbiaaigdacaaIYaaapaqabaGcpeGaey4kaSIaaGimaiaac6cacaaI ZaGaaGioaiaaikdacaqGQaGaamiEa8aadaWgaaWcbaWdbiaaigdaca aIZaaapaqabaaakeaapeGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacqGHRaWkcaaIWaGaaiOlaiaaisdacaaI5a GaaGinaiaabQcacaWG4bWdamaaBaaaleaapeGaaGymaiaaisdaa8aa beaak8qacqGHRaWkcaaIWaGaaiOlaiaaikdacaaI1aGaaG4naiaabQ cacaWG4bWdamaaBaaaleaapeGaaGymaiaaiwdaa8aabeaak8qacqGH sislcaaI2aGaaiOlaiaaigdacaaIXaGaaG4maaaaaa@C7C5@   4.3

C 2 =0.66* x 1 +0.616* x 2 +0.467* x 3 +0.493* x 4 +0.138* x 5 0.396* x 6 +0.501* x 7        +0.559* x 8 0.048* x 9 0.4* x 10 0.046* x 11 +0.125* x 12 0.035* x 13        0.185* x 14 +0.201* x 15 1.797 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGdbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da 9iabgkHiTiaaicdacaGGUaGaaGOnaiaaiAdacaGGQaGaamiEa8aada WgaaWcbaWdbiaaigdaa8aabeaak8qacqGHRaWkcaaIWaGaaiOlaiaa iAdacaaIXaGaaGOnaiaacQcacaWG4bWdamaaBaaaleaapeGaaGOmaa WdaeqaaOWdbiabgUcaRiaaicdacaGGUaGaaGinaiaaiAdacaaI3aGa aiOkaiaadIhapaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaey4kaS IaaGimaiaac6cacaaI0aGaaGyoaiaaiodacaGGQaGaamiEa8aadaWg aaWcbaWdbiaaisdaa8aabeaak8qacqGHRaWkcaaIWaGaaiOlaiaaig dacaaIZaGaaGioaiaacQcacaWG4bWdamaaBaaaleaapeGaaGynaaWd aeqaaOWdbiabgkHiTiaaicdacaGGUaGaaG4maiaaiMdacaaI2aGaai OkaiaadIhapaWaaSbaaSqaa8qacaaI2aaapaqabaGcpeGaey4kaSIa aGimaiaac6cacaaI1aGaaGimaiaaigdacaGGQaGaamiEa8aadaWgaa WcbaWdbiaaiEdaa8aabeaaaOqaa8qacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaey4kaSIaaGimaiaac6cacaaI1aGaaG ynaiaaiMdacaGGQaGaamiEa8aadaWgaaWcbaWdbiaaiIdaa8aabeaa k8qacqGHsislcaaIWaGaaiOlaiaaicdacaaI0aGaaGioaiaacQcaca WG4bWdamaaBaaaleaapeGaaGyoaaWdaeqaaOWdbiabgkHiTiaaicda caGGUaGaaGinaiaacQcacaWG4bWdamaaBaaaleaapeGaaGymaiaaic daa8aabeaak8qacqGHsislcaaIWaGaaiOlaiaaicdacaaI0aGaaGOn aiaacQcacaWG4bWdamaaBaaaleaapeGaaGymaiaaigdaa8aabeaak8 qacqGHRaWkcaaIWaGaaiOlaiaaigdacaaIYaGaaGynaiaacQcacaWG 4bWdamaaBaaaleaapeGaaGymaiaaikdaa8aabeaak8qacqGHsislca aIWaGaaiOlaiaaicdacaaIZaGaaGynaiaacQcacaWG4bWdamaaBaaa leaapeGaaGymaiaaiodaa8aabeaaaOqaa8qacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaeyOeI0IaaGimaiaac6cacaaI XaGaaGioaiaaiwdacaGGQaGaamiEa8aadaWgaaWcbaWdbiaaigdaca aI0aaapaqabaGcpeGaey4kaSIaaGimaiaac6cacaaIYaGaaGimaiaa igdacaGGQaGaamiEa8aadaWgaaWcbaWdbiaaigdacaaI1aaapaqaba GcpeGaeyOeI0IaaGymaiaac6cacaaI3aGaaGyoaiaaiEdaaaaa@C02F@   4.4

where x 1 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpaaa@3A60@  Muscle twitching, x 2 =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpcaGG Gcaaaa@3B85@ Muscle pain, x 3 =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9aqpcaGG Gcaaaa@3B86@ Tension, x 4 =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacqGH9aqpcaGG Gcaaaa@3B87@ Heartburn, x 5 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaiwdaa8aabeaak8qacqGH9aqpaaa@3A64@ Horripilation, x 6 =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaiAdaa8aabeaak8qacqGH9aqpcaGG Gcaaaa@3B89@ Palpitations, x 7 =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaiEdaa8aabeaak8qacqGH9aqpcaGG Gcaaaa@3B8A@ Headaches, x 8 =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaiIdaa8aabeaak8qacqGH9aqpcaGG Gcaaaa@3B8B@ Tingling, x 9 =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaiMdaa8aabeaak8qacqGH9aqpcaGG Gcaaaa@3B8C@ Pulse, x 10 =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdacaaIWaaapaqabaGcpeGaeyyp a0JaaiiOaaaa@3C3E@ Fainting, x 11 =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdacaaIXaaapaqabaGcpeGaeyyp a0JaaiiOaaaa@3C3F@ Oppression, x 12 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaeyyp a0daaa@3B1C@ Indifference, x 13 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdacaaIZaaapaqabaGcpeGaeyyp a0daaa@3B1D@ Apprehension of the worst, x 14 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdacaaI0aaapaqabaGcpeGaeyyp a0daaa@3B1E@ Fear of loneliness, and, x 15 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdacaaI1aaapaqabaGcpeGaeyyp a0daaa@3B1F@ Fear of crowds. The p-value obtained for each DF, C 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@390B@ and C 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@390C@ , in the likelihood ratio test was below 0.01, justifying the use of both DF to discriminate the three groups under study.

From the visualization of Table 9, it can be seen that a misclassification rate obtained for the training set of this model was 10%, where it was registered seven nervous individuals that were classified as psychotic, and eight psychotic individuals were misclassified, from which seven were classified as nervous and one as healthy.

Classification results

 

 

 

 

     

Predicted classification group

Total

Group

 

 

Nervous

Psychotic

Healthy

 

Original

Count

Nervous

43

7

0

50

   

Psychotic

7

42

1

50

 

 

Healthy

0

0

50

50

Table 9 Classification count in the training set with fifteen variables

When submitted to the testing set previously created, the percentage of misclassification obtained was 14.(6)%, where it is important to emphasize that the model was still able to perfectly classify healthy individuals into their group, visible in Table 10. The biggest rate of misclassification is present in the classification of nervous individuals to psychotic individuals, and vice versa. As expected, reducing the number of variables to fifteen implies a bigger misclassification rate. On the other hand, fifteen fewer variables are needed to maintain an expressive classification rate.

Classification results

 

 

 

 

 

 

     

Predicted classification group

Total

Group

 

 

Nervous

Psychotic

Healthy

 

Original

Count

Nervous

18

7

0

25

   

Psychotic

3

21

1

25

 

 

Healthy

0

0

25

25

Table 10 Classification count in the testing set with fifteen variables

Stepwise discrimination

To analyze the presence of multicollinearity, Table 11 reveals that it will not be a problem among the variables. Almost all variables have VIF values between one and two, indicating few signs of multicollinearity. For those values whose VIF exceeds two, the Tolerance values are superior to 0.4, and remembering that multicollinearity is assumed when tolerance is below 0.1, then multicollinearity is not considered in the variables under study.

Variable

Tolerance

VIF

Fatigue

0.803

1.246

Nightmares

0.683

1.465

Muscle twitching

0.747

1.338

Cramps

0.794

1.259

Tremors

0.558

1.791

Tension

0.582

1.719

Muscle pain

0.669

1.495

Knotted throat

0.577

1.734

Satiety

0.846

1.183

Heartburn

0.569

1.758

Diarrhea

0.666

1.502

Horripilation

0.589

1.699

Palpitations

0.455

2.200

Headaches

0.672

1.487

Dizziness

0.666

1.503

Tingling

0.772

1.296

Pulse

0.603

1.658

Fainting

0.491

2.037

Eye floaters

0.699

1.430

Oppression

0.582

1.717

Indifference

0.614

1.629

Attention

0.597

1.674

Memory

0.581

1.720

Indecision

0.730

1.369

Vague anxiety

0.660

1.516

Fear of the future

0.612

1.634

Apprehension of the worst

0.443

2.259

Fear of loneliness

0.477

2.094

Other fears

0.756

1.323

Fear of crowds

0.428

2.335

Table 11 Tolerance and VIF values for each of the thirty variables

The stepwise method took an optimal eighteen iterations, and the following eighteen variables were chosen to take part in the stepwise model: Fear of crowds, Fainting, Fear of loneliness, Horripilation, Nightmares, Heartburn, Palpitations, Pulse, Apprehension of the worst, Tension, Muscle twitching, Oppression, Indecision, Muscle pain, Memory, Headaches, Tingling, and Indifference. Each variable is enumerated in the order it entered the model.

The interpretation of the data dispersion does not fall far from the other interpretations made, as there is a clear separation of the healthy individuals and the unhealthy individuals, which can be seen in Figure 4. The dispersion of individuals in each group is also maintained, where it is clear that the healthy individuals are closer to their group centroid when compared to either the nervous or psychotic individuals, which are more spread out.

Figure 4 Representation of the eighteen variables obtained from stepwise discrimination, represented in an orthogonal axis generated by the two discriminant functions.

The eigenvalues obtained for the performed model were 9.967 and 0.772, respectively for the first and second DF, which can be interpreted as the first DF having a discriminant power of 92.81% and the second DF having a discriminant power of 7.19%.

In the training set of the model, a total of fifteen individuals out of the total one hundred and fifty were misclassified, visible in Table 12, which corresponds to a misclassification percentage of 10%. Of the fifteen misclassified individuals, six belong to the nervous group and were classified as psychotic, while eight psychotic individuals were classified as nervous and one psychotic as healthy. On the other hand, the individuals who belong to the healthy group were not, for once, misclassified.

Classification results

 

 

 

 

 

 

     

Predicted classification group

Total

Group

 

 

Nervous

Psychotic

Healthy

 

Original

Count

Nervous

44

6

0

50

   

Psychotic

8

41

1

50

 

 

Healthy

0

0

50

50

Table 12 Classification count in the training set with eighteen variables

When submitted to the testing set, the model obtained a misclassification apparent rate of 16%. The misclassifications were all prevenient from the nervous and psychotic groups, which can be seen in Table 13. Equivalently to the two other models analyzed, healthy individuals are accurately classified, which is a demonstration of how the set of variables can correctly recognize the patterns and characteristics of healthy individuals.

Classification results

 

 

 

 

 

 

     

Predicted classification group

Total

Group

 

 

Nervous

Psychotic

Healthy

 

Original

Count

Nervous

17

8

0

25

   

Psychotic

3

21

1

25

 

 

Healthy

0

0

25

25

Table 13 Classification count in the testing set with eighteen variables

In summary, the stepwise model has shown itself to be an effective classification model. On one hand, when comparing this model with the one with thirty variables, the misclassification percentage is higher in both the training and the testing set. However, the increase in the misclassification percentage is justified by the use of fewer variables.

Discussion

It is noted that the model created with thirty predictive variables obtained the best results. The misclassification apparent rate was 4.(6)% and 10.(6)%, respectively for the training and testing set. This result was proven to be counter-productive, as the exploratory data analysis provided useful information on the variables that could be excluded from the analysis to reach the study’s objective. Additionally, the interpretation of the correlation between variables and the DFs, partial F-tests, and the standardized discriminant function coefficients corroborated the suspicions raised by boxplot analysis. These four methods working together resulted in a set of fifteen variables. This new set was then used to perform FDA and create a new, reduced model, resulting in a misclassification rate of 10% in the training set and 14.(6)% in the testing set.

To further validate if the use of the fifteen variables provided a reliable result, the model was compared to a stepwise discrimination model with eighteen variables. This stepwise model obtained a misclassification apparent rate of 10% in the training set and 16% in the testing set. As a result, the reduced model provides a more reliable model to classify individuals into one of the three groups. The misclassification rate obtained in the training set was the same, but the reduced model had a better performance in the testing set.

When comparing the reduced model to the full model, it was verified that the full model is a better classifier both in the training and in the testing set, as expected, but the complexity and accuracy of the reduced model compensate for choosing the reduced model over the full model. As the main objective of this study is to help early diagnosis of mental illnesses, such as nervousness or psychosis, the larger misclassification rate in both training and testing sets is acceptable.

It is also important to note that all the fifteen variables selected to take part in the reduced model took part in the stepwise model created, being the only difference between the two models’ variables Nightmares, Indecision and Memory. Although these variables were not considered for the reduced model, they could provide relevant information for the patient’s classification when it is not possible to obtain information from one of the fifteen chosen variables.

Several limitations underlined to DA should be noted. Firstly, the DFs developed may not be generalizable to other populations or samples, as the model is based on the specific characteristics of the sample used. However12, have demonstrated that DFs can be effectively applied across similar samples, and13 suggest a generalization to help in the verification of food quality. Additionally, this study is subject to the limitations inherent to DA, such as the reliance on certain assumptions about the distribution of variables and the relationship between predictor variables and group membership, as well as the sensitivity to missing data and the limited ability to handle non-linear relationships. Furthermore, the more groups that are considered, the greater the risk of misdiagnosis for individual subjects. It is recommended to minimize the number of predictor variables to avoid creating an overly complex model, which would also increase the difficulty in interpreting the conclusions.

While DA is prone to be a useful tool in the diagnosis of ADs, it should not be used as the sole method of diagnosis. It is important to consider a range of factors, including the patient's medical history and the results of other exams, to make an accurate diagnosis. It is also important to note that DA is a statistical method and is subject to certain limitations and assumptions, as discussed earlier. Therefore, it is advisable to use DA in conjunction with other methods and to carefully evaluate the results in the context of the individual patient.

Conclusion

This research illustrates once again the effectiveness of DA, more precisely FDA, to affect individuals to pre-established groups. In all three models created, it is noteworthy that the characteristics and patterns of the Healthy group were consistently recognized by each model, leading to a misclassification apparent rate of 0% for healthy individuals. While the accuracy for nervous and psychotic individuals was not as high, the model still managed to get promising results that can contribute to the diagnostic process.

For the established objectives of this paper, the first model created demonstrated a consistent ability to predict to which one of the three groups, healthy, nervous, or psychotic groups, a new individual was mostly likely considered to be. Out of the thirty initial variables used to perform FDA, it was possible to reduce half of the variables while maintaining the expected performance. In addition, it was necessary to use two DFs to effectively separate the three groups under study. The first DF’s objective was to separate healthy from unhealthy individuals, while the second DF’s purpose was to separate both unhealthy groups. The error rate obtained from the training set is biased, and, as a result, it was not used as a measure to validate the DFs. Nowadays, several approaches are available to face this question. A complementary validation study using different approaches to validate the DFs is being prepared. Namely, the holdout method, and the bootstrap validation may be used, which will result in an unbiased estimate of the classification rate.

Although the use of only fifteen parameters has proved to be an option for diagnosing an individual’s mental state, the model should not be used exclusively to classify patients. MDs are highly delicate issues, and it is essential that supplementary studies and assessments are carried out on a case-by-case basis before any conclusions are drawn.

This study focused its methodology on FDA, but a non-parametric approach could be used, as the borderline between the assumption of multinormality subjacent to data dispersion and the equality of variance-covariance was almost crossed. It could be interesting to recreate the same study without being restricted to parametric discriminant analysis assumptions. This would allow larger flexibility on the dataset used to conduct the study. The behavior of individuals may change, leading to heterogeneity of data dispersion. Investigators could try approaching data classification by ranking observations, and distribution-free techniques.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Acknowledgments

None.

Funding

None.

References

  1. Gissler M, Laursen TM, Ösby U, et al.Patterns in mortality among people with severe mental disorders across birth cohorts: a register-based study of Denmark and Finland in 1982–2006. BMC Public Health. 2013;13(1):834.
  2. Walker ER, McGee RE, Druss BG. Mortality in mental disorders and global disease burden implications: A systematic review and meta-analysis. JAMA Psychiatry. 2015;72(4):334–341.
  3. Remes O, Brayne C, van der Linde R, et al. A systematic review of reviews on the prevalence of anxiety disorders in adult populations. Brain Behav. 2016;6(7):e00497.
  4. The Biological Effects and Consequences of Anxiety. Anxiety Care; UK. 2023.
  5. Batelaan NM, Seldenrijk A, Bot M, et al. Anxiety and new onset of cardiovascular disease: critical review and meta-analysis. Br J Psychiatry. 2016;208(3):223–231.
  6. Nasrallah HA. Consequences of misdiagnosis: inaccurate treatment and poor patient outcomes in bipolar disorder. J Clin Psychiatry. 2015;76(10):e1328.
  7. Saporta G. Probabilités, analyse des données et statistique. 3rd ed. France: Technip editions; 2011.
  8. Olson CL. Comparative robustness of six tests in multivariate analysis of variance. J Am Stat Assoc. 1974;69(348):894–908.
  9. Rencher AC. Methods of multivariate analysis. 2nd ed. New York : Wiley; 1995.
  10. Sharma S. Applied multivariate techniques. New York: Wiley; 1995.
  11. Miles J. Tolerance and variance inflation factor. John Wiley & Sons; 2014.
  12. Ma G, Zhang Y, Zhang J, et al. Determining the geographical origin of Chinese green tea by linear discriminant analysis of trace metals and rare earth elements: taking Dongting Biluochun as an example. Food Control. 2016;59:714–720.
  13. Esteki M, Shahsavari Z, Simal-Gandara J. Use of spectroscopic methods in combination with linear discriminant analysis for authentication of food products. Food Control. 2018;91:100–112.
Creative Commons Attribution License

©2023 Guedes, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.