Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Review Article Volume 12 Issue 5

Consumers purchase instances with hidden Markov Model and dynamic programming

Kumaraswamy Kandukuri

Kaloji Narayana Rao University of Health Sciences, India

Correspondence: Kumaraswamy Kandukuri, Kaloji Narayana Rao University of Health Sciences, India

Received: November 24, 2023 | Published: December 11, 2023

Citation: Kandukuri K. Consumers purchase instances with hidden Markov Model and dynamic programming. Biom Biostat Int J. 2023;12(5):188-190. DOI: 10.15406/bbij.2023.12.00401

Download PDF

Abstract

Customer choice behavior can be broadly categorized as the state of choices and acts that affect a customer's purchasing behavior. A comprehensive statistical model for consumer switching from one brand to another is provided. Employing the Hidden Markov Model and Dynamic Programming techniques, various purchasing possibilities of customers are ascertained based on their brand purchase or non-purchase decisions.

Keywords: Consumer, Dynamic Programming, Hidden Markov Model, Purchase.

Introduction

Throughout the past few decades, consumers have become increasingly important to commercial markets. In the business environment, one must create a model that examines operations in order to evaluate customer behavior for marketing decisions. In order to better understand the lifetime worth of consumer-firm interactions, marketing scientists have begun to construct models in this domain. Thus far, there has been insufficient focus on understanding customer dynamics and how interactions between the organization and its clients impact relationships and behavioral decisions made by both parties.

According to scientific study, customer choice behaviors can be broadly categorized as the state of choices and acts that affect a customer's purchasing behavior. When making a purchase, consumers weigh both logic and emotion when selecting the most prominent drives. The study illustrates how shifts in consumer views affect their purchasing behavior. These shifts can be interpreted as probabilities when evaluated in relation to other circumstances, and they can be organized into arrays to represent a Markov chain.

Numerous studies examine how consumers behave when making purchases of goods that are related to the probabilistic behavior of making repeat purchases and switching brands. The random decisions made by repeated purchases, such as negative-binomial, logarithmic series, beta-binomial, condensed negative binomial, beta, lognormal, beta-geometric, Pareto-negative binomial, Weibull, Lomax, Poisson – Weibull distributions, etc,1,2 have been the focus of Ehrenberg,3 Chatfield et al.,4 Chatfield & Goodhardt,5,6 Kumaraswamy & Bhatracharyulu,7,8 etc. Lipstein9 created a statistical analytical model for consumer behavior regarding the effects of advertising in the marketplace. A stochastic matrix is created in order to evaluate the effect of consumer attitudes on advertising. A brand transferring Markov model was developed by Whitaker10 to extract a loyalty measure from the changes in brand shares and purchase pressure. Kumaraswamy  Bhatracharyulu11,12 develop a statistical linear structure to investigate recurring purchase behavior based on performance indicators of different brands and further captive and quantify the relationships between the customer attitudes, an HMM is created.

General statistical model for consumer behavior in brand switching

Let there are k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@381E@ ‘’ brands, B 1 , B 2  B k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamOq a8aadaWgaaWcbaWdbiaaikdacaqGGaGaeyOjGWlapaqabaGcpeGaam Oqa8aadaWgaaWcbaWdbiaadUgaa8aabeaaaaa@400D@ . Each brand has only two states, no-purchase and Purchase indicated as 0 or 1. Let us suppose that evidence indicates that the probability of a purchase followed by another purchase is made with α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdegaaa@38CD@ and the probability that a no-purchase is followed by a no-purchase with β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@38CF@ . This information can be summarized as follows

Consider into account just two state processes: one with a purchase and the other without. Let us assume that the data points to two states: purchase and no-purchase, respectively, and that the probability of a purchase followed by another purchase is represented by α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdegaaa@38CD@  and the chance of a no-purchase followed by a no-purchase by β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@38CF@ . This data can be summed up as follows:

  A=[ α 1α 1β β ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyqai abg2da9OWaamWaaeaajugibuaabeqaciaaaOqaaKqzGeGaeqySdega keaajugibiaaigdacqGHsislcqaHXoqyaOqaaKqzGeGaaGymaiabgk HiTiabek7aIbGcbaqcLbsacqaHYoGyaaaakiaawUfacaGLDbaaaaa@4842@   (1)

Assume furthermore that there are favorable connections between the brand purchasing scenario and purchase behavior. Envision of three distinct possibilities for the instant: L, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamitaiaacYcaaaa@38AF@ M, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaacYcaaaa@38B0@ and H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisaaaa@37FB@ stand for least purchase, moderate buy, and hefty purchase, respectively. Using the data at hand, the probability connections are provided by

  B=[ p PL p PM p PH p NPL p NPM p NPH ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeacqGH9a qpdaWadaqaauaabeqacmaaaeaacaWGWbWaaSbaaSqaaiaadcfacaWG mbaabeaaaOqaaiaadchadaWgaaWcbaGaamiuaiaad2eaaeqaaaGcba GaamiCamaaBaaaleaacaWGqbGaamisaaqabaaakeaacaWGWbWaaSba aSqaaiaad6eacaWGqbGaamitaaqabaaakeaacaWGWbWaaSbaaSqaai aad6eacaWGqbGaamytaaqabaaakeaacaWGWbWaaSbaaSqaaiaad6ea caWGqbGaamisaaqabaaaaaGccaGLBbGaayzxaaaaaa@4E39@   (2)

The average purchasing behavior, either P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuaaaa@3803@ or NP MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtaiaadcfaaaa@38D6@ , is the system's state. A Markov process of order one is the change from one state to another. Since, the present state and the fixed probability in (2.1) are the only things that immediately determine the next state. But since we are unable to see the causes linked with the transaction, the true states remain hidden.

Assume that the distribution of the initial state, represented by MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4dIunaaa@38C0@ , is assessed using the information at hand

  ={ π 1 , π 2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4dIuTaeyypa0ZdaiaacUhacqaHapaCdaWgaaWcbaWdbiaaigda a8aabeaak8qacaGGSaGaeqiWda3damaaBaaaleaapeGaaGOmaaWdae qaaOGaaiyFaaaa@423F@   (3)

The matrices (, A, B) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcaqaaaaa aaaaWdbiabg+GivlaacYcacaqGGaGaamyqaiaacYcacaqGGaGaamOq a8aacaGGPaaaaa@3E5B@  are row stochastic i.e. each row is a probability distribution, each element is a probability and row sum is unity.

Hidden Markov model

A hidden markov model (HMM) is a statistical model that is used to explain a system that is believed to build observable occurrences that rely upon internal variables related to the markov process (i.e., hidden states that are not visible). Double embedded random processes, which include Markov processes with unknown parameters, are modeled in by an HMM. The hidden parameters must be retrieved from the observable parameters, that is, A HMM has two distinct processes. The first procedure dealt with a markov chain that has states and transition probabilities attached to it; the states are concealed and hence invisible. In the second procedure, emissions are displayed based on a state-dependent probability distribution at every time epoch.

Let's make a glance at a specific " n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaaaa@3821@ " period of purchases, where we observe that if n=4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaaisdaaaa@39E5@ , then (L, M. H, M) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaadYeacaGGSaGaaeiiaiaad2eacaGGUaGaaeiiaiaadIea caGGSaGaaeiiaiaad2eapaGaaiykaaaa@3FD3@ or ( L, M, L, H ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGmbGaaiilaiaabccacaWGnbGaaiilaiaabccacaWG mbGaaiilaiaabccacaWGibaapaGaayjkaiaawMcaaaaa@4000@ or, ( M, L, M, L ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGnbGaaiilaiaabccacaWGmbGaaiilaiaabccacaWG nbGaaiilaiaabccacaWGmbaapaGaayjkaiaawMcaaaaa@4005@ etc. Given the evidence, we might be interested in finding the Markov process's most probable average purchase state sequence. The dynamics of consumers during the switching process are not fully captured by this method. We adopt into consideration a comprehensive overview of the variables that influence switching and non-switching during the purchasing process. All of these elements were included in our model.

Assume, based on evidence, that there is a 0.8 chance that a purchase of a specific brand will be followed by another purchase, and a 0.7 chance that a no-purchase will be followed by another no-purchase and assume that these probabilities are held in the distant past. This can be summarized as [ 0.8 0.2 0.3 0.7 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqbae qabiGaaaqaaiaaicdacaGGUaGaaGioaaqaaiaaicdacaGGUaGaaGOm aaqaaiaaicdacaGGUaGaaG4maaqaaiaaicdacaGGUaGaaG4naaaaai aawUfacaGLDbaaaaa@41BC@ . Let's additionally consider into account a relationship between purchase behavior and the purchase scenario. Three distinct scenarios—light purchase, moderate purchase, and heavy purchase, or L,M, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamitaiaacYcacaWGnbGaaiilaaaa@3A31@ and H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisaaaa@37FB@ , respectively—are taken into consideration in order to overcome complexity. Lastly, given the information at hand, the probability relationship between the scenario and the purchase behavior is given by [ 0.1 0.3 0.6 0.8 0.1 0.1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqbae qabiWaaaqaaiaaicdacaGGUaGaaGymaaqaaiaaicdacaGGUaGaaG4m aaqaaiaaicdacaGGUaGaaGOnaaqaaiaaicdacaGGUaGaaGioaaqaai aaicdacaGGUaGaaGymaaqaaiaaicdacaGGUaGaaGymaaaaaiaawUfa caGLDbaaaaa@460B@  and additionally, let us assume that [ 0.7 0.3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaaeaa aaaaaaa8qacaaIWaGaaiOlaiaaiEdacaqGGaGaaGimaiaac6cacaaI ZaaapaGaay5waiaaw2faaaaa@3E28@  is the initial state distribution of purchase and no-purchase. The purchase behavior—either a purchase or no purchase—is the system's state. A Markov process with order one is involved in the change from one state to the next. The actual states are concealed, though. Since, we haven't personally witnessed the behavior in the past. Nonetheless, we ought to pay attention to the brand-purchase scenarios. These scenarios provide us with probabilistic information regarding the purchase behavior.

Therefore the states are hidden and the system is said to be hidden markov model (HMM). The main aim is to gain insight into different aspects of the markov process with use of available information. The state transition matrix A=[ 0.8 0.2 0.3 0.7 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacqGH9a qpdaWadaqaauaabeqaciaaaeaacaaIWaGaaiOlaiaaiIdaaeaacaaI WaGaaiOlaiaaikdaaeaacaaIWaGaaiOlaiaaiodaaeaacaaIWaGaai OlaiaaiEdaaaaacaGLBbGaayzxaaaaaa@4388@ , the observation matrix B=[ 0.1 0.3 0.6 0.8 0.1 0.1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeacqGH9a qpdaWadaqaauaabeqacmaaaeaacaaIWaGaaiOlaiaaigdaaeaacaaI WaGaaiOlaiaaiodaaeaacaaIWaGaaiOlaiaaiAdaaeaacaaIWaGaai OlaiaaiIdaaeaacaaIWaGaaiOlaiaaigdaaeaacaaIWaGaaiOlaiaa igdaaaaacaGLBbGaayzxaaaaaa@47D8@ and the initial distribution π= [ 0.7 0.3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiWdaNaeyypa0Jaaeiia8aadaWadaqaa8qacaaIWaGaaiOlaiaa iEdacaqGGaGaaGimaiaac6cacaaIZaaapaGaay5waiaaw2faaaaa@41AD@ also these matrices are row stochastic.

Consider a particular 4 – period of interest from the distant past. For which we observe the series of purchase scenarios L M L H, letting 0 – represents L, 1 – represents M and 2 – represents H. Therefore the observed sequence

O= ( 0, 1, 0, 2 )       MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4taiabg2da9iaabccapaWaaeWaaeaapeGaaGimaiaacYcacaqG GaGaaGymaiaacYcacaqGGaGaaGimaiaacYcacaqGGaGaaGOmaaWdai aawIcacaGLPaaapeGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG Gcaaaa@492E@  (*)

We have to determine the most likely state sequence of the markov process for the given observation sequence (*)

For this example, we have T=4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaiabg2da9iaaisdaaaa@39CB@ , N=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtaiabg2da9iaaikdaaaa@39C3@ , M=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamytaiabg2da9iaaiodaaaa@39C3@ , Q={ P, NP } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da98aadaGadaqaa8qacaWGqbGaaiilaiaabccacaWG obGaamiuaaWdaiaawUhacaGL9baaaaa@3F39@ , V={ 0, 1, 2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaiabg2da98aadaGadaqaa8qacaaIWaGaaiilaiaabccacaaI XaGaaiilaiaabccacaaIYaaapaGaay5Eaiaaw2haaaaa@4045@  and the matrices of order A=  ( a ij ) NxN MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqaiabg2da9iaabccapaWaaeWaaeaapeGaamyya8aadaWgaaWc baWdbiaadMgacaWGQbaapaqabaaakiaawIcacaGLPaaadaWgaaWcba Wdbiaad6eacaWG4bGaamOtaaWdaeqaaaaa@415A@ , B= ( b jk ) NxM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiabg2da98aadaqadaqaa8qacaWGIbWdamaaBaaaleaapeGa amOAaiaadUgaa8aabeaaaOGaayjkaiaawMcaamaaBaaaleaapeGaam OtaiaadIhacaWGnbaapaqabaaaaa@40BA@ =P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0Jaamiuaaaa@3909@  (Observation k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@381E@ at time step t/ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiaac+caaaa@38DA@  state q j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaWgaaWcbaWdbiaadQgaa8aabeaaaaa@396D@ at t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaaaa@3827@ )

Consider a state generic sequence of length four X=( x 0 ,  x 1 ,  x 2 ,  x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwaiabg2da98aadaqadaqaa8qacaWG4bWdamaaBaaaleaapeGa aGimaaWdaeqaaOWdbiaacYcacaqGGaGaamiEa8aadaWgaaWcbaWdbi aaigdaa8aabeaak8qacaGGSaGaaeiiaiaadIhapaWaaSbaaSqaa8qa caaIYaaapaqabaGcpeGaaiilaiaabccacaWG4bWdamaaBaaaleaape GaaG4maaWdaeqaaaGccaGLOaGaayzkaaaaaa@4754@ and the corresponding observational sequence O=( O 0 ,  O 1 ,  O 2 ,  O 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4taiabg2da98aadaqadaqaa8qacaWGpbWdamaaBaaaleaapeGa aGimaaWdaeqaaOWdbiaacYcacaqGGaGaam4ta8aadaWgaaWcbaWdbi aaigdaa8aabeaak8qacaGGSaGaaeiiaiaad+eapaWaaSbaaSqaa8qa caaIYaaapaqabaGcpeGaaiilaiaabccacaWGpbWdamaaBaaaleaape GaaG4maaWdaeqaaaGccaGLOaGaayzkaaaaaa@46A7@ and also π x0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabec8aWnaaBa aaleaaqaaaaaaaaaWdbiaadIhacaaIWaaapaqabaaaaa@3ADD@ is the probability of starting state x 0 , b x0 ( O 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGSaGaamOy a8aadaWgaaWcbaWdbiaadIhacaaIWaaapaqabaGcdaqadaqaa8qaca WGpbWdamaaBaaaleaapeGaaGimaaWdaeqaaaGccaGLOaGaayzkaaaa aa@4096@ be the probability of initial observation O 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ta8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3916@ and a x0,x1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaadIhacaaIWaGaaiilaiaadIhacaaI Xaaapaqabaaaaa@3C8D@ be the transit probability from x 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@393F@  to x 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3940@ . The probability for the whole state sequence X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwaaaa@380B@ is

  P(X)= π x 0 . b x 0 ( O 0 ). a x 0 , x 1 . b x 1 ( O 1 ). a x 1 , x 2 . b x 2 ( O 2 ). a x 2 , x 3 . b x 3 ( O 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaGGOa GaamiwaiaacMcacqGH9aqpcqaHapaCdaWgaaWcbaGaamiEamaaBaaa meaacaaIWaaabeaaaSqabaGccaGGUaGaamOyamaaBaaaleaacaWG4b WaaSbaaWqaaiaaicdaaeqaaaWcbeaakiaacIcacaWGpbWaaSbaaSqa aiaaicdaaeqaaOGaaiykaiaac6cacaWGHbWaaSbaaSqaaiaadIhada WgaaadbaGaaGimaaqabaWccaGGSaGaamiEamaaBaaameaacaaIXaaa beaaaSqabaGccaGGUaGaamOyamaaBaaaleaacaWG4bWaaSbaaWqaai aaigdaaeqaaaWcbeaakiaacIcacaWGpbWaaSbaaSqaaiaaigdaaeqa aOGaaiykaiaac6cacaWGHbWaaSbaaSqaaiaadIhadaWgaaadbaGaaG ymaaqabaWccaGGSaGaamiEamaaBaaameaacaaIYaaabeaaaSqabaGc caGGUaGaamOyamaaBaaaleaacaWG4bWaaSbaaWqaaiaaikdaaeqaaa WcbeaakiaacIcacaWGpbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiaa c6cacaWGHbWaaSbaaSqaaiaadIhadaWgaaadbaGaaGOmaaqabaWcca GGSaGaamiEamaaBaaameaacaaIZaaabeaaaSqabaGccaGGUaGaamOy amaaBaaaleaacaWG4bWaaSbaaWqaaiaaiodaaeqaaaWcbeaakiaacI cacaWGpbWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@6D96@   (**)

We are computed the each possible state sequence probabilities of length four for the given observation sequence (*). There is N T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaahaaWcbeqaa8qacaWGubaaaaaa@3926@ possible state sequences are available for purchase or no-purchase on particular observed sequence.

Fundamental problems in HMMS

We are interested to estimate the probability for purchase or absorbing state over the period of time, the following central issues are encountered.

  1. Evaluation Problem: For the given model λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@38E2@ , we estimate that the probability of sequence of visible states generated by model λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@38E2@ .
  2. Decoding Problem: We are able to determine the most likely hidden state sequences that led to the creation of the visible sequence.
  3. Learning Problem: For the given training sequence, estimate the transition and emission probabilities when the hidden and visible states are well defined.
  4. Illustration: Consider again the previous example with the observed sequence as given in (*). Using (**) we can evaluate, say,

P( HCHC )=0.7( 0.1 )( 0.2 )( 0.1 )( 0.3 )( 0.1 )( 0.2 )( 0.1 )=0.00000084 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaqadaqaa8qacaWGibGaam4qaiaadIeacaWGdbaapaGa ayjkaiaawMcaa8qacqGH9aqpcaaIWaGaaiOlaiaaiEdapaWaaeWaae aapeGaaGimaiaac6cacaaIXaaapaGaayjkaiaawMcaamaabmaabaWd biaaicdacaGGUaGaaGOmaaWdaiaawIcacaGLPaaadaqadaqaa8qaca aIWaGaaiOlaiaaigdaa8aacaGLOaGaayzkaaWaaeWaaeaapeGaaGim aiaac6cacaaIZaaapaGaayjkaiaawMcaamaabmaabaWdbiaaicdaca GGUaGaaGymaaWdaiaawIcacaGLPaaadaqadaqaa8qacaaIWaGaaiOl aiaaikdaa8aacaGLOaGaayzkaaWaaeWaaeaapeGaaGimaiaac6caca aIXaaapaGaayjkaiaawMcaa8qacqGH9aqpcaaIWaGaaiOlaiaaicda caaIWaGaaGimaiaaicdacaaIWaGaaGimaiaaiIdacaaI0aaaaa@6341@

We calculated the odds of every potential four-length state sequence to the sequence that was observed in (*). Table 1 lists all of these outcomes, and the other column's normalized probabilities are all added up to one. We list the ideal sequence in the HMM sense, which is NPNP, from Table 2.

State

Probability

Normalized probability

PPNN

0.00018116

0.030778745

PPPP

0.000645

0.109584293

PPPN

0.00002688

0.004566862

PPNP

0.00048384

0.082203511

PNPP

0.00002016

0.003425146

PNPN

0.00000084

0.000142714

PNNP

0.00014112

0.023976024

PNNN

0.00005488

0.009324009

NPPP

0.00082944

0.140920304

NPPN

0.00003456

0.005871679

NPNP

0.00062208

0.105690228

NPNN

0.00024192

0.041101755

NNPP

0.00024192

0.041101755

NNPN

0.00001008

0.001712573

NNNP

0.00169344

0.287712288

NNNN

0.00065856

0.111888112

Table 1 State sequence probabilities

Element

 

 

 

 

 

0

1

2

3

P (P)

0.264001

0.520717378

0.3073253

0.794614

P (N)

0.735999

0.479282622

0.6926747

0.205386

Table 2 HMM probabilities

Dynamic programming

We briefly discuss the connection between dynamic programming (DP) and HMMs. Dynamic programming is comparable to a - pass in which "max" is used instead of "sum". The dynamic programming (DP) approach is also utilized to compute the probabilities of the state sequence. Every moment we have to complete pick NNNP, the maximum probability sequence. The dynamic programming algorithm stated as given below.

η t (i)= max j{0,1,...,N1} [ η t1 (j)a ij b i (O t ) ]Fort=1,2,..,T1 and i=1,2,...,N1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabE7adaWgaa WcbaGaaeiDaaqabaGccaqGOaGaaeyAaiaabMcacqGH9aqpdaWfqaqa aiaab2gacaqGHbGaaeiEaaWcbaGaaeOAaiabgIGiolaabUhacaqGWa GaaeilaiaabgdacaqGSaGaaeOlaiaab6cacaqGUaGaaeilaiaab6ea cqGHsislcaqGXaGaaeyFaaqabaGcdaWadaqaaiaabE7adaWgaaWcba GaaeiDaiabgkHiTiaabgdaaeqaaOGaaeikaiaabQgacaqGPaGaaeyy amaaBaaaleaacaqGPbGaaeOAaaqabaGccaqGIbWaaSbaaSqaaiaabM gaaeqaaOGaaeikaiaab+eadaWgaaWcbaGaaeiDaaqabaGccaqGPaaa caGLBbGaayzxaaGaaeOraiaab+gacaqGYbGaaGjbVlaabshacqGH9a qpcaqGXaGaaeilaiaabkdacaqGSaGaaeOlaiaab6cacaqGSaGaaeiv aiabgkHiTiaabgdacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaabM gacqGH9aqpcaqGXaGaaeilaiaabkdacaqGSaGaaGPaVlaab6cacaaM i8UaaGPaVlaab6cacaaMc8UaaGjcVlaab6cacaaMc8UaaGjcVlaabY cacaaMi8UaaeOtaiabgkHiTiaabgdaaaa@84B5@  

η 0 (i)= π i b i (O 0 ), For i=1,2,...,N1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabE7adaWgaa WcbaGaaeimaaqabaGccaqGOaGaaeyAaiaabMcacqGH9aqpcaqGapWa aSbaaSqaaiaabMgaaeqaaOGaaeOyamaaBaaaleaacaqGPbaabeaaki aabIcacaqGpbWaaSbaaSqaaiaabcdaaeqaaOGaaeykaiaabYcacaqG GaGaaeOraiaab+gacaqGYbGaaeiiaiaabMgacqGH9aqpcaqGXaGaae ilaiaabkdacaqGSaGaaeOlaiaab6cacaqGUaGaaeilaiaab6eacqGH sislcaqGXaGaaeOlaaaa@5341@  

At each successive time stamp t, the DP determines the best path at each of the states I = 0, 1, …, N-1. The best overall path with maximum probability is Max j{0,1,...,N1} [ η T1 (j) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaca qGnbGaaeyyaiaabIhaaSqaaiaabQgacqGHiiIZcaqG7bGaaeimaiaa bYcacaqGXaGaaeilaiaab6cacaqGUaGaaeOlaiaabYcacaqGobGaey OeI0Iaaeymaiaab2haaeqaaOWaamWaaeaacaqG3oWaaSbaaSqaaiaa bsfacqGHsislcaqGXaaabeaakiaabIcacaqGQbGaaeykaaGaay5wai aaw2faaiaaykW7caGGUaaaaa@4FAE@ the computation procedure of DP can be augmented to retrieve the optimal path by choosing the highest probability score in final state.

Consider the above example, the initial period path of length one values are P( P )=0.7*( 0.1 )=0.07 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaqadaqaa8qacaWGqbaapaGaayjkaiaawMcaa8qacqGH 9aqpcaaIWaGaaiOlaiaaiEdacaGGQaWdamaabmaabaWdbiaaicdaca GGUaGaaGymaaWdaiaawIcacaGLPaaapeGaeyypa0JaaGimaiaac6ca caaIWaGaaG4naaaa@465B@ and P( N )=0.3*( 0.8 )=0.24 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaqadaqaa8qacaWGobaapaGaayjkaiaawMcaa8qacqGH 9aqpcaaIWaGaaiOlaiaaiodacaGGQaWdamaabmaabaWdbiaaicdaca GGUaGaaGioaaWdaiaawIcacaGLPaaapeGaeyypa0JaaGimaiaac6ca caaIYaGaaGinaaaa@465B@  hence the best path of length on ending with state is (No-Purchase).

The probabilities for second period path of length of two values are

P( PP ) = 0.07 ( 0.8 ) ( 0.3 ) = 0.0168 P( PN ) = 0.07 ( 0.2 ) ( 0.1 ) = 0.0014 P( NP ) = 0.24 ( 0.3 ) ( 0.3 ) = 0.0216 P( NN ) = 0.24 ( 0.7 ) ( 0.1 ) = 0.0168 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqaeeaaaa qaaabaaaaaaaaapeGaamiua8aadaqadaqaa8qacaWGqbGaamiuaaWd aiaawIcacaGLPaaapeGaaeiiaiabg2da9iaabccacaaIWaGaaiOlai aaicdacaaI3aGaaeiia8aadaqadaqaa8qacaaIWaGaaiOlaiaaiIda a8aacaGLOaGaayzkaaWdbiaabccapaWaaeWaaeaapeGaaGimaiaac6 cacaaIZaaapaGaayjkaiaawMcaa8qacaqGGaGaeyypa0Jaaeiiaiaa icdacaGGUaGaaGimaiaaigdacaaI2aGaaGioaaWdaeaapeGaamiua8 aadaqadaqaa8qacaWGqbGaamOtaaWdaiaawIcacaGLPaaapeGaaeii aiabg2da9iaabccacaaIWaGaaiOlaiaaicdacaaI3aGaaeiia8aada qadaqaa8qacaaIWaGaaiOlaiaaikdaa8aacaGLOaGaayzkaaWdbiaa bccapaWaaeWaaeaapeGaaGimaiaac6cacaaIXaaapaGaayjkaiaawM caa8qacaqGGaGaeyypa0JaaeiiaiaaicdacaGGUaGaaGimaiaaicda caaIXaGaaGinaaWdaeaapeGaamiua8aadaqadaqaa8qacaWGobGaam iuaaWdaiaawIcacaGLPaaapeGaaeiiaiabg2da9iaabccacaaIWaGa aiOlaiaaikdacaaI0aGaaeiia8aadaqadaqaa8qacaaIWaGaaiOlai aaiodaa8aacaGLOaGaayzkaaWdbiaabccapaWaaeWaaeaapeGaaGim aiaac6cacaaIZaaapaGaayjkaiaawMcaa8qacaqGGaGaeyypa0Jaae iiaiaaicdacaGGUaGaaGimaiaaikdacaaIXaGaaGOnaaWdaeaapeGa amiua8aadaqadaqaa8qacaWGobGaamOtaaWdaiaawIcacaGLPaaape Gaaeiiaiabg2da9iaabccacaaIWaGaaiOlaiaaikdacaaI0aGaaeii a8aadaqadaqaa8qacaaIWaGaaiOlaiaaiEdaa8aacaGLOaGaayzkaa WdbiaabccapaWaaeWaaeaapeGaaGimaiaac6cacaaIXaaapaGaayjk aiaawMcaa8qacaqGGaGaeyypa0JaaeiiaiaaicdacaGGUaGaaGimai aaigdacaaI2aGaaGioaaaaaaa@9CBD@

The optimal path of length two ending with N is NN, whereas the most likely state sequence of length two ending with is. Continue in consideration that the dynamic programming algorithm only needs to keep track of the highest-scoring paths at each possible state at each stage, instead of a list of every path that could possibly exist. This is the secret to the DP algorithm's effectiveness.

 

The probabilities for third period path of length, three values are P( PPP )=0.001344 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaqadaqaa8qacaWGqbGaamiuaiaadcfaa8aacaGLOaGa ayzkaaWdbiabg2da9iaaicdacaGGUaGaaGimaiaaicdacaaIXaGaaG 4maiaaisdacaaI0aaaaa@4323@ , P( PNP )=0.000042 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaqadaqaa8qacaWGqbGaamOtaiaadcfaa8aacaGLOaGa ayzkaaWdbiabg2da9iaaicdacaGGUaGaaGimaiaaicdacaaIWaGaaG imaiaaisdacaaIYaaaaa@431B@ , P( NPP )=0.001728 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaqadaqaa8qacaWGobGaamiuaiaadcfaa8aacaGLOaGa ayzkaaWdbiabg2da9iaaicdacaGGUaGaaGimaiaaicdacaaIXaGaaG 4naiaaikdacaaI4aaaaa@4327@ , P( NNP )=0.000504 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaqadaqaa8qacaWGobGaamOtaiaadcfaa8aacaGLOaGa ayzkaaWdbiabg2da9iaaicdacaGGUaGaaGimaiaaicdacaaIWaGaaG ynaiaaicdacaaI0aaaaa@431C@ , P( PPN )=0.002688 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaqadaqaa8qacaWGqbGaamiuaiaad6eaa8aacaGLOaGa ayzkaaWdbiabg2da9iaaicdacaGGUaGaaGimaiaaicdacaaIYaGaaG OnaiaaiIdacaaI4aaaaa@432D@ , P( PNN )=0.000784 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaqadaqaa8qacaWGqbGaamOtaiaad6eaa8aacaGLOaGa ayzkaaWdbiabg2da9iaaicdacaGGUaGaaGimaiaaicdacaaIWaGaaG 4naiaaiIdacaaI0aaaaa@4326@ , P( NPN )=0.003456 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaqadaqaa8qacaWGobGaamiuaiaad6eaa8aacaGLOaGa ayzkaaWdbiabg2da9iaaicdacaGGUaGaaGimaiaaicdacaaIZaGaaG inaiaaiwdacaaI2aaaaa@4325@ and P( NNN )=0.009408 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaqadaqaa8qacaWGobGaamOtaiaad6eaa8aacaGLOaGa ayzkaaWdbiabg2da9iaaicdacaGGUaGaaGimaiaaicdacaaI5aGaaG inaiaaicdacaaI4aaaaa@4326@ .(Figure 1)

Figure 1 Dynamic programming.

Conclusion

The article discusses the connections between HMMs and dynamic programming (DP). HMMs can make it possible to analyze huge amounts of sequence data very effectively. Dynamic programming offers a methodical process for figuring out the best set of choices. For optimality, these can be used to shortest path problems. Observing four steps, the maximum probability of 0.00169344 occurs at the final state where P is NNNP and the arrows from P to the best path, NNNP, can be used to trace this out with Dynamic Programming. The optimal state sequence when utilizing the HMM technique is NPNP. Consequently, the state and sequence of the Hidden Markov Model and the optimal Dynamic Programming sequence are different.

Acknowledgments

None.

Conflicts of interest

The author declares that there are no conflicts of interest.

Funding

None.

References

  1. Weibull W. A Statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics. 1951; 293–297.
  2. Kumaraswamy K, Bhatracharyulu NCh. Compounding life distribution – Poisson Weibull, Journal of Computer and Mathematical Sciences. 2018;9(12):1882–1889.
  3. Ehrenberg ASC. The pattern of consumer purchases Journal of The Royal Statistical Society, Series-C (Applied Statistics). 1959;8(1):26–41.
  4. Chatfield C, Ehrenberg ASC, Goodhardt G.J. Progress on a simplified model of stationary purchasing behavior. Journal of the Royal Statistical Society, Series C (Applied Statistics). 1966;129(3):317–367.
  5. Chatfield C, Goodhardt GJ. The beta–binomial model for consumer purchasing behaviour, Journal of the Royal Statistical Society, Series-C (Applied Statistics). 1970;19(3):240–250.
  6. Chatfield C, Goodhardt GJ. A consumer purchasing model with Erlang inter-purchase time. Journal of The American Statistical Association. 1973;68:828–835.
  7. Kumaraswamy K, Bhatracharyulu NCh. On stochastic distribution of repeated purchase consumers. Int. J. Agricult. Stat. Sci. 2019;15(2):841–846.
  8. Kumaraswamy K, Bhatracharyulu NCh. Compound distribution of Poisson-Weibull. International Journal of Mathematics and Statistics Invention. 2021;9(1):29–34.
  9. Lipstein B. A mathematical model of consumer behavior. Journal of Marketing Research. 1965;2(3):259–265.
  10. Whitaker D. The derivation of a measure of brand loyalty using a Markov brand switching model. Journal of the Operational Research Society. 1978;29(10):959–970.
  11. Kumaraswamy K, Bhatracharyulu NCh. Statistical brand switching model: An Hidden Markov approach. Opsearch. 2023;60(2):942–950.
  12. Kumaraswamy K, Bhatracharyulu NCh. Statistical model for brand loyalty and switching. Statistics and Application. 2023;21(1):1–9.
Creative Commons Attribution License

©2023 Kandukuri. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.