Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 7 Issue 5

Construction and analysis of Sudoku square designs with rectangles

Jambulingam Subramani

Department of Statistics, Pondicherry University, India

Correspondence: Jambulingam Subramani, Department of Statistics, Pondicherry University, RV Nagar, Kalapet, Puducherry?605 014, India

Received: October 09, 2018 | Published: October 31, 2018

Citation: Subramani J. Construction and analysis of Sudoku square designs with rectangles. Biom Biostat Int J. 2018;7(5):491-497. DOI: 10.15406/bbij.2018.07.00251

Download PDF

Abstract

The present paper deals with the introduction of new experimental designs namely “Sudoku Square Designs with Rectangles”. The construction and analysis of the Sudoku square designs with rectangles are explained in detail. The steps for the construction of proposed designs are illustrated with the help of a numerical example. Some applications of Sudoku designs with rectangles in real life situations are also discussed.

Keywords: latin squares, sequential method, rectangles, sudoku designs

Introduction

The foremost and an important work to be completed immediately after the bed coffee in the morning by many is to solve a simple puzzle called Sudoku appeared in the newspapers and/or magazines. In fact millions of people from different parts of the world including from Japan, Great Britain, India and elsewhere become addict to tackle the latest edition of the Sudoku Puzzle. The puzzle typically consists of a nine–by–nine grid. Some of the grids contain numbers; most of the grids are blank. The goal is to fill in the blanks with digits from 1 to 9 so that each row, each column, and each of the nine three–by–three squares within the outer squares making up the grid contains just one of each of the nine digits. Here, the rules are very simple but the puzzles can be very challenging and highly addictive. It's basically a logic puzzle; there's no math involved in solving it. The digits could just as easily be nine different letters, shapes, or colors. There is mathematics and computer science, however, in analyzing the puzzles and creating efficient computer programs for generating and solving the Sudoku puzzles. A Sudoku grid is a special case of a mathematical object called a Latin square. A Latin square consists of n sets of numbers from 1 to n arranged in a square pattern so that no row or column contains the same number twice or more. The additional constraint is that a standard nine–by–nine sudoku puzzle has three–by–three squares within the Latin square that also contain each of the nine digits once and only once.

Recently, Subramani & Ponnuswamy1 have introduced Sudoku puzzles as Sudoku square designs, which will extract more sources of variations than the Latin square designs do. Further they have discussed four different variations of the Sudoku square designs together with their construction and analysis. Subramani2 has extended the work of Subramani & Ponnuswamy1 and has introduced the construction and analysis of orthogonal Sudoku square designs. For further details on the definition, design, analysis and applications of Sudoku square designs the readers are referred to Bailey et al.3 Lorch,4 Subramani & Ponnuswamy1and the references cited therein. For a detailed discussion on the treatment effects, interaction effects, nested factors and their effects, the assumptions, analysis of the new experimental designs to be developed for new situations, one may refer to Cochran and Cox,5 Das & Dey,6 Hicks,7 and the references cited there in.8–12

It is to be noted that the Sudoku square designs are applicable whenever the number of treatments are and the corresponding Sudoku square designs are of orders. In this paper an attempt is made to include the Sudoku square designs with treatments. However the difference is that the outer Latin square of order  contains rectangles of order. Consequently the resulting Sudoku square designs are called as “Sudoku square designs with rectangles”.

The Objective of the present work is

  1. To develop a method to construct Sudoku square designs with rectangles
  2. To explain various factors involved in the ANOVA techniques
  3. To develop statistical models and analyze the data from Sudoku square designs with rectangles
  4. To identify the applications for Sudoku square designs with rectangles together with an numerical example.

Construction of Sudoku square designs with rectangles

To construct Sudoku square designs with rectangles of orders mn×mn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaad6 gacqGHxdaTcaWGTbGaamOBaaaa@3D57@ sequentially, follow the steps given below:

Step 1: Write the mn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaad6 gaaaa@39EE@ numbers from 1 to mn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaad6 gaaaa@395B@ in a matrix of order m×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgE na0kaad6gaaaa@3B72@ form sequentially starting from row 1 to row m as given in Table 1.

 

Column

Row

1

2

3

4

1

1

2

3

4

2

5

6

7

8

3

9

10

11

12

4

13

14

15

16

5

17

18

19

20

Table 1 Procedure Given in Step 1

Step 2: Write the  columns obtained in step 1, one by one to get a column of order as given in Table 2.

Columns

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Rows

1

1

2

5

3

9

4

13

5

17

6

2

7

6

8

10

9

14

10

18

11

3

12

7

13

11

14

15

15

19

16

4

17

8

18

12

19

16

20

20

Table 2 Procedure Given in Step 2

Step 3: Column 2 can be obtained from column1 by adding 1 to each of its elements and reduce to mod if it exceeds the value mn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaad6 gaaaa@395B@ . Proceed in the similar way to complete all the columns. The completed Sudoku square design of order 20 is given in Table 3.

Columns

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Rows

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1

2

3

4

3

9

10

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

4

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

11

12

5

17

18

19

20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

6

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1

7

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

8

10

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

9

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

11

12

13

10

18

19

20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

11

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1

2

12

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

13

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

19

20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

16

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1

2

3

17

8

9

10

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

18

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

11

19

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

20

20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Table 3 Procedure Given in Step 3

The above three steps lead to construct a complete Sudoku square design of any order sequentially. Here, we explain the method of construction for the case of 20 treatments with m=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2 da9iaaiwdaaaa@3A2D@ and n=4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2 da9iaaisdaaaa@3A2D@ in a systematic way.

More examples of Sudoku square designs with rectangles of orders 6, 8 and 12 are given below (Figures 1–3):

Figure 1 Sudoku design of order 6.

Figure 2 Sudoku design of order 8.

Figure 3 Sudoku design of order 12.

Sudoku designs modeling and analysis

In section 2, we have presented a sequential method of constructing Sudoku square designs with rectangles of any order. Now by keeping the successive m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@3868@  rows ( n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@3869@  columns) as blocks (treatments) of a randomized block design with mn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaad6 gaaaa@395B@  observations in each cell and the outer Sudoku square as a Latin square design of order mn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaad6 gaaaa@395B@ , one can construct a Sudoku square experimental design with rectangles. These Sudoku designs are viewed like Latin square designs, F–square designs and replicated Latin square designs. One of the important properties of any experimental design is the “Randomization Principle”. One has to maintain the randomization to achieve unbiased results. The randomness can be achieved by selecting any one of the available completed Sudoku grids or constructing the designs by using the sequential method discussed in Section 2 as done normally in the case of Latin square designs. Randomly arranging the mn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaad6 gaaaa@395B@  numbers, one may get (mn)! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaad2 gacaWGUbGaaiykaiaacgcaaaa@3B59@  distinct arrangements of the numbers, which will lead to (mn)! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaad2 gacaWGUbGaaiykaiaacgcaaaa@3B59@  distinct Sudoku square designs, which will also ensure the randomization of the treatments. Further by interchanging the rows or columns within the row blocks or column blocks one may get additional Sudoku square designs with rectangles.

The Sudoku square design with rectangles of order mn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaad6 gaaaa@395B@  and its Analysis of Variance (ANOVA) model together with the various assumptions and the ANOVA table are given below:

Y lp(ijk) =μ+ α i + β j +α β ij + r l + c p + τ k + e ij(klpq) i=1,2,....,n,j=1,2,....,m andk,l,p=1,2,...,mn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGceaqabeaacaWGzb WaaSbaaeaacaWGSbGaamiCaiaacIcacaWGPbGaamOAaiaadUgacaGG PaaabeaacqGH9aqpcqaH8oqBcqGHRaWkcqaHXoqydaWgaaqaaiaadM gaaeqaaiabgUcaRiabek7aInaaBaaabaGaamOAaaqabaGaey4kaSIa eqySdeMaeqOSdi2aaSbaaeaacaWGPbGaamOAaaqabaGaey4kaSIaam OCamaaBaaabaGaamiBaaqabaGaey4kaSIaam4yamaaBaaabaGaamiC aaqabaGaey4kaSIaeqiXdq3aaSbaaeaacaWGRbaabeaacqGHRaWkca WGLbWaaSbaaeaacaWGPbGaamOAaiaacIcacaWGRbGaamiBaiaadcha caWGXbGaaiykaaqabaGaaGPaVlaaykW7caaMc8UaaGPaVlaadMgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaiOlaiaac6cacaGGUaGa aiOlaiaacYcacaWGUbGaaiilaiaaykW7caaMc8UaamOAaiabg2da9i aaigdacaGGSaGaaGOmaiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGa aiilaiaad2gacaaMc8oabaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaamyyaiaad6gaca WGKbGaaGPaVlaadUgacaGGSaGaamiBaiaacYcacaWGWbGaeyypa0Ja aGymaiaacYcacaaIYaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcaca WGTbGaamOBaaaaaa@5B99@

Where μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0gaaa@392C@ = General mean effect

α i = i th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamyAamaaCaaaleqabaGaamiD aiaadIgaaaaaaa@3E40@  Row (RBD) effect

β j = j th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaadQgaaeqaaOGaeyypa0JaamOAamaaCaaaleqabaGaamiD aiaadIgaaaaaaa@3E44@ Column (RBD) effect

α β ij =i j th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeq OSdi2aaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9iaadMgacaWG QbWaaWbaaSqabeaacaWG0bGaamiAaaaaaaa@41BF@ Interaction (RBD) effect

r l = l th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaWGSbaabeaakiabg2da9iaadYgadaahaaWcbeqaaiaadsha caWGObaaaaaa@3D9E@ Row (LSD) effect

c p = p th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGWbaabeaakiabg2da9iaadchadaahaaWcbeqaaiaadsha caWGObaaaaaa@3D97@ sColumn (LSD) effect

τ k = k th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiaadUgaaeqaaOGaeyypa0Jaam4AamaaCaaaleqabaGaamiD aiaadIgaaaaaaa@3E6A@ Treatment (LSD) effect

e lp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGSbGaamiCaaqabaaaaa@3A72@ = Error component with mean zero and variance σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaW baaSqabeaacaaIYaaaaaaa@3A22@

The Sudoku square design with rectangles consists of randomized block design with m blocks (columns) and n treatments (rows) with mn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaad6 gaaaa@395B@  observations in each cell and a Latin square design with mn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaad6 gaaaa@395B@  rows, columns and treatments as given below Table 4 & Table 5.

After a little algebra we have obtained the formulae for computing various sum of squares and degrees of freedom and formed the Analysis of Variance Table given in Table 6.

 

CB1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaadk eacaaIXaaaaa@39C0@

CB2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaadk eacaaIYaaaaa@39C1@

CBm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaadk eacaWGTbaaaa@39F7@

1

2

n

1

2

n

 

1

2

n

RB1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaadk eacaaIXaaaaa@39CF@

1

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

RB2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaadk eacaaIYaaaaa@39D0@

1

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RBn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaadk eacaWGUbaaaa@3A07@

1

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 Sudoku square design of order n×m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb Gaey41aqRaamyBaaaa@3C01@ - RBD part

Columns

1

2

3

4

5

6

mn

Rows

1

2

3

4

5

6

mn

Table 5 Sudoku square design of order mn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaad6 gaaaa@395B@ - LSD part

Source

Sum of
squares

Degrees of
freedom

Mean
squares

F-Ratio
(Observed)

Row (RBD)

SSRR

(n-1)

MSRR=SSRR/df

MSRR/MSE

Column (RBD)

SSCR

(m-1)

MSCR=SSCR/df

MSCR/MSE

RC-interaction (RBD)

SSRCR

(m-1)(n-1)

MSRCR=SSRCR/df

MSRCR/MSE

ROWS (LSD)

SSRL

(m-1)(n-1)

MSRL=SSRL/df

MSRL/MSE

COLUMNS (LSD)

SSCL

(mn-1)

MSCL=SSCL/df

MSCL/MSE

Treatments (LSD)

SSTL

(mn-1)

MSTL=SSTL/df

MSTL/MSE

ERROR

SSE

(mn-1)(mn-3)

MSE=SSE/df

---

TOTAL

TSS

m2n2-1

---

---

Table 6 ANOVA Table of Sudoku Design of order mn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaad6 gaaaa@395B@

Where

TSS= l=1 N p=1 N Y lp 2 G 2 N 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamivaiaado facaWGtbGaeyypa0ZaaabCaeaadaaeWbqaaiaadMfadaqhaaWcbaGa amiBaiaadchaaeaacaaIYaaaaOGaeyOeI0YaaSaaaeaacaWGhbWaaW baaSqabeaacaaIYaaaaaGcbaGaamOtamaaCaaaleqabaGaaGOmaaaa aaaabaGaamiCaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdaale aacaWGSbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaaa@4EBB@  

G= l=1 N p=1 N Y ij andN=mn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4raiabg2 da9maaqahabaWaaabCaeaacaWGzbWaaSbaaSqaaiaadMgacaWGQbaa beaaaeaacaWGWbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaS qaaiaadYgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aOGaaGPa VlaaykW7caWGHbGaamOBaiaadsgacaaMc8UaamOtaiabg2da9iaad2 gacaWGUbaaaa@52E1@

SSRR= i=1 n R B i.. 2 mN G 2 N 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaado facaWGsbGaamOuaiabg2da9maaqahabaWaaSaaaeaacaWGsbGaamOq amaaDaaaleaacaWGPbGaaiOlaiaac6caaeaacaaIYaaaaaGcbaGaam yBaiaad6eaaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0Ga eyyeIuoakiabgkHiTmaalaaabaGaam4ramaaCaaaleqabaGaaGOmaa aaaOqaaiaad6eadaahaaWcbeqaaiaaikdaaaaaaaaa@4CF8@

SSCR= j=1 m C B j.. 2 nN G 2 N 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaado facaWGdbGaamOuaiabg2da9maaqahabaWaaSaaaeaacaWGdbGaamOq amaaDaaaleaacaWGQbGaaiOlaiaac6caaeaacaaIYaaaaaGcbaGaam OBaiaad6eaaaaaleaacaWGQbGaeyypa0JaaGymaaqaaiaad2gaa0Ga eyyeIuoakiabgkHiTmaalaaabaGaam4ramaaCaaaleqabaGaaGOmaa aaaOqaaiaad6eadaahaaWcbeqaaiaaikdaaaaaaaaa@4CDC@

SSRCR= i=1 n j=1 m R C ij 2 N i=1 n R B i.. 2 mN j=1 m C B j.. 2 nN + G 2 N 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaado facaWGsbGaam4qaiaadkfacqGH9aqpdaaeWbqaamaaqahabaWaaSaa aeaacaWGsbGaam4qamaaDaaaleaacaWGPbGaamOAaaqaaiaaikdaaa aakeaacaWGobaaaaWcbaGaamOAaiabg2da9iaaigdaaeaacaWGTbaa niabggHiLdGccqGHsislaSqaaiaadMgacqGH9aqpcaaIXaaabaGaam OBaaqdcqGHris5aOWaaabCaeaadaWcaaqaaiaadkfacaWGcbWaa0ba aSqaaiaadMgacaGGUaGaaiOlaaqaaiaaikdaaaaakeaacaWGTbGaam OtaaaaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5 aOGaeyOeI0YaaabCaeaadaWcaaqaaiaadoeacaWGcbWaa0baaSqaai aadQgacaGGUaGaaiOlaaqaaiaaikdaaaaakeaacaWGUbGaamOtaaaa aSqaaiaadQgacqGH9aqpcaaIXaaabaGaamyBaaqdcqGHris5aOGaey 4kaSYaaSaaaeaacaWGhbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOt amaaCaaaleqabaGaaGOmaaaaaaaaaa@6D56@

SSRL= l=1 N R L l 2 N G 2 N 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaado facaWGsbGaamitaiabg2da9maaqahabaWaaSaaaeaacaWGsbGaamit amaaDaaaleaacaWGSbaabaGaaGOmaaaaaOqaaiaad6eaaaaaleaaca WGSbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabgkHiTmaa laaabaGaam4ramaaCaaaleqabaGaaGOmaaaaaOqaaiaad6eadaahaa Wcbeqaaiaaikdaaaaaaaaa@4A8C@

          

SSCL= p=1 N C L p 2 N G 2 N 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaado facaWGdbGaamitaiabg2da9maaqahabaWaaSaaaeaacaWGdbGaamit amaaDaaaleaacaWGWbaabaGaaGOmaaaaaOqaaiaad6eaaaaaleaaca WGWbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabgkHiTmaa laaabaGaam4ramaaCaaaleqabaGaaGOmaaaaaOqaaiaad6eadaahaa Wcbeqaaiaaikdaaaaaaaaa@4A76@

SSTL= k=1 N T L k 2 N G 2 N 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaado facaWGubGaamitaiabg2da9maaqahabaWaaSaaaeaacaWGubGaamit amaaDaaaleaacaWGRbaabaGaaGOmaaaaaOqaaiaad6eaaaaaleaaca WGRbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabgkHiTmaa laaabaGaam4ramaaCaaaleqabaGaaGOmaaaaaOqaaiaad6eadaahaa Wcbeqaaiaaikdaaaaaaaaa@4A8E@

ESS= l=1 N p=1 N Y lp 2 i=1 n j=1 m R C ij 2 m 3 l=1 N R L l 2 N p=1 N C L p 2 N k=1 N T L k 2 N + 3 G 2 N 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyraiaado facaWGtbGaeyypa0ZaaabCaeaadaaeWbqaaiaadMfadaqhaaWcbaGa amiBaiaadchaaeaacaaIYaaaaOGaeyOeI0YaaabCaeaadaaeWbqaam aalaaabaGaamOuaiaadoeadaqhaaWcbaGaamyAaiaadQgaaeaacaaI YaaaaaGcbaGaamyBamaaCaaaleqabaGaaG4maaaaaaaabaGaamOAai abg2da9iaaigdaaeaacaWGTbaaniabggHiLdaaleaacaWGPbGaeyyp a0JaaGymaaqaaiaad6gaa0GaeyyeIuoakiabgkHiTmaaqahabaWaaS aaaeaacaWGsbGaamitamaaDaaaleaacaWGSbaabaGaaGOmaaaaaOqa aiaad6eaaaaaleaacaWGSbGaeyypa0JaaGymaaqaaiaad6eaa0Gaey yeIuoakiabgkHiTmaaqahabaWaaSaaaeaacaWGdbGaamitamaaDaaa leaacaWGWbaabaGaaGOmaaaaaOqaaiaad6eaaaaaleaacaWGWbGaey ypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabgkHiTmaaqahabaWa aSaaaeaacaWGubGaamitamaaDaaaleaacaWGRbaabaGaaGOmaaaaaO qaaiaad6eaaaaaleaacaWGRbGaeyypa0JaaGymaaqaaiaad6eaa0Ga eyyeIuoakiabgUcaRmaalaaabaGaaG4maiaadEeadaahaaWcbeqaai aaikdaaaaakeaacaWGobWaaWbaaSqabeaacaaIYaaaaaaaaeaacaWG WbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaSqaaiaadYgacq GH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aaaa@83ED@

Numerical example

In this section the analysis of Sudoku square design with rectangles is explained with the help of a numerical example. For this purpose we have generated hypothetical data and are given below: (Table 7).

Column RBD-1

Column RBD-2

Column RBD-3

Column RBD-4

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

Row RBD-1

R1

1

2

3

4

5

6

7

8

9

10

11

12

(15)

(11)

(16)

(21)

(22)

(21)

(14)

(19)

(15)

(16)

(23)

(22)

R2

4

5

6

7

8

9

10

11

12

1

2

3

(18)

(23)

(20)

(18)

(20)

(23)

(17)

(22)

(15)

(16)

(23)

(22)

R3

7

8

9

10

11

12

1

2

3

4

5

6

(15)

(10)

(22)

(15)

(18)

(19)

(24

(15

(16

(18

(15

(16

R4

10

11

12

1

2

3

4

5

6

7

8

9

(22)

(16)

(23)

(22)

(19)

(25)

(20)

(25)

(12)

(22)

(21)

(14)

Row
RBD-2

R5

2

3

4

5

6

7

8

9

10

11

12

1

(17)

(23)

(18)

(15)

(16)

(21)

(15)

(12)

(16)

(16)

(23)

(22)

R6

5

6

7

8

9

10

11

12

1

2

3

4

(20)

(25)

(12)

(26)

(21)

(17)

(18)

(25)

(19)

(22)

(21)

(14)

R7

8

9

10

11

12

1

2

3

4

5

6

7

(21)

(17)

(18)

(22)

(16)

(23)

(22)

(19)

(25)

(15)

(12)

(16)

R8

11

12

1

2

3

4

5

6

7

8

9

10

(13)

(22)

(21)

(22)

(20)

(19)

(14)

(14)

(17)

(11)

(16)

(18)

Row RBD-3

R9

3

4

5

6

7

8

9

10

11

12

1

2

(12)

(25)

(20)

(19)

(22)

(16)

(19)

(13)

(18)

(15)

(12

(16)

R10

6

7

8

9

10

11

12

1

2

3

4

5

(21)

(22)

(13)

(22)

(21)

(22)

(20)

(19)

(14)

(23)

(22

(19)

R11

9

10

11

12

1

2

3

4

5

6

7

8

(14)

(17)

(11)

(16)

(18)

(23)

(15)

(23)

(16)

(17)

(18)

(22)

R12

12

1

2

3

4

5

6

7

8

9

10

11

(21)

(22)

(20)

(19)

(15)

(12)

(16)

(21)

(22)

(20)

(19)

(15)

Table 7 Hypothetical data of a Sudoku square design of order 12

The various sums of squares are obtained from the data given above for the Sudoku design and are presented in the following ANOVA table. The statistical inferences drawn from the ANOVA table are also given immediately after the ANOVA table (Table 8).

Source               

Sum of
squares

Degrees of
freedom

Mean
squares

F-Ratio
(Observed)

Table value*
(Expected) 5% level

Rows (RBD)

3.7639

2

1.8819

0.1267

3

Columns (RBD)

63.6667

3

21.2222

1.4286

2.6

Row-Column Interaction (RBD)

41.7917

6

6.96528

0.4689

2.1

Rows (LSD)

187.3889

11

17.0354

1.1468

1.75

Columns (LSD)

126.5556

11

11.5051

0.7745

1.75

Treatments (LSD)

102.0556

11

9.2778

0.6246

1.75

ERROR

1470.667

99

14.8552

TOTAL

1995.889

143

Table 8 ANOVA Table of Sudoku square design with rectangles of order 12

*The values are taken with degrees of freedom (*, ∞) instead of (*, 99) from the F-Table

From the above ANOVA Table, it can be observed that the F–Ratio of observed values is lesser than the respective expected value obtained from the F–table at 5% level of significance. Hence it is concluded that none of the effect is significant at 5% level of significance.

Application of Sudoku square designs with rectangles

One can easily find applications of Sudoku designs with rectangles in real life situations. For example, in the agricultural experiments, suppose one may be interested in developing hybrid seeds or identifying the variety of seeds among several seeds available, which will give better yields. To conduct an experimental study for comparing k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@38F9@ variety of seeds (factors), one must have kr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaadk haaaa@39F0@ homogeneous plots (experimental units), where r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@3900@ is the number of replications of each variety of seeds. Assume that if kr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaadk haaaa@39F0@ homogeneous plots are available then one must use the completely randomized design for collecting the statistical data and use the one–way ANOVA for analyzing the data. The total variation is divided into two factors pertaining to the error component and to the seeds (factor A).

Now let us assume that the kr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaadk haaaa@395D@ plots are not homogeneous. Further assume that the kr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaadk haaaa@395D@ plots are grouped into k sub groups of size r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@3900@ such that the plots within each group are homogeneous and between the groups they are heterogeneous. For example, the plots within the group are having the same soil fertility and between the groups are having different soil fertility. The variety of seeds form one factor and the different soil fertilities form another factor, which need the randomized block designs to collect the statistical data and the two–way ANOVA for analyzing the data. The total variation is divided into three pertaining to the error component; due to the seeds (factor A) and due to the soil fertilities (factor B).

Similarly, if one has a set of different fertilizers, in addition to the different variety of seeds and soil fertilities then Latin square designs have to be used provided the number of seeds, soil fertilities and the fertilizers are the same. The total variation is divided into four pertaining to the error component; due to the seeds (factor A); due to the soil fertilities (factor B) and due to the fertilizers (factor C).

Suppose that one wants to use more number of different factors, which are influencing the effects of the main factor (in this case the variety of seeds) one has to use a more advanced statistical designs like Graeco Latin squares designs, replicated Latin squares designs etc. For example, one wants to compare the performance or effects of different variety of seeds by incorporating different levels of water quality; different methods of cultivation; different types of natural fertilizers; different types of artificial fertilizers; and different types of soil fertilities; the existing statistical designs mentioned above are not useful. However one can use the proposed Sudoku designs with rectangles by studying the effects of different variety of seeds by incorporating all the factors given above as explained below:

Consider the variety of Seeds as different treatments; different levels of Water Quality as Rows of RBD; different methods of cultivation as Columns of RBD; different type of fertilizers (Artificial) as Rows of LSD; different type of fertilizers (Natural) as different Columns of LSD; different levels of Soil Fertility as treatments of LSD. Sudoku designs with rectangles and their statistical models together with the analysis are given earlier. Similarly one can look for applications of Sudoku square designs with rectangles in the fields like genetical statistics, biostatistics, medical statistics and animal breeding experiments etc. The authors are planned to study in detail about other variants of Sudoku square designs with rectangles and various optimality criteria in their future projects.

Acknowledgements

The author has expressed his gratitude’s and thanks to the editor and the reviewer for their constructive comments which has enhanced the presentation of the paper in a more meaningful way.

Conflict of interest

Author declares that there is no conflict of interest.

References

  1. MS Virk, AK Mahal. On balancing in repeated measurements designs. Model Assisted Statistics and Applications. 2006;1:77–81.
  2. J Subramani, KN Ponnuswamy. Construction and analysis of Sudoku designs. Model Assisted Statistics and Applications. 2009;4:287–301.
  3. R Bailey P, Cameron, R Connelly. Sudoku, gerechte designs, resolutions, affine space, spreads, reguli, and Hamming codes. Amer Math Monthly. 2008;115:383–403.
  4. J Lorch. Mutually orthogonal families of linear Sudoku solutions. J Austral Math Soc. 2009;87:409–420.
  5. WG Cochran, GM Cox. Experimental Designs. 2nd edn. New York: John Wiley and Sons; 1957.
  6. Das, A Dey. A Note on Construction of Graeco Latin Square of order 2n+1. J Indian Soc Agric Statist. 1890;42:247–249.
  7. CR Hicks. Fundamental Concepts in the Design of Experiments. New York: Holt, Rinehart and Winston; 1964.
  8. Design and Analysis of Experiments. 2nd edn. New York: John Wiley and Sons; 1984.
  9. VK Sharma C, Varghese, S Jaggi. Tetrahedral and cubical association schemes with related PBIB(3) designs. Model Assisted Statistics and Applications. 2010;5:93–99.
  10. J Subramani. A Further Note on Construction of Graeco Latin Square of order 2n+1. J Indian Soc Agric Statist. 1996;48:356–359.
  11. J Subramani. Construction and analysis of orthogonal (Graeco) Sudoku square esigns. Model Assisted Statistics and Applications. 2013;8(3):239–246.
  12. MS Virk, AK Mahal. Some balanced repeated measurements designs. Model Assisted Statistics and Applications. 2007;2:37–39.
Creative Commons Attribution License

©2018 Subramani. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.