Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 13 Issue 2

Calibration for efficiency of ratio estimator in domains of study with sub-sampling the nonrespondents

Ikot Ekemini E, Iseh Matthew Joshua

Department of Statistics, Akwa Ibom State University, Mkpat Enin, Nigeria

Correspondence: Iseh Matthew Joshua, Department of Statistics, Akwa Ibom State University, Mkpat Enin, Nigeria, Tel +23480386405

Received: April 15, 2024 | Published: May 20, 2024

Citation: Ikot EE, Iseh MJ. Calibration for efficiency of ratio estimator in domains of study with sub-sampling the nonrespondents. Biom Biostat Int J. 2024;13(2):42-50. DOI: 10.15406/bbij.2024.13.00413

Download PDF

Abstract

In sample survey, it is expected that the information would be collected from all the selected units in the sample, but practically, it is generally not possible because of non-response. Some of the units may not respond or may not be contacted during the survey period. This work focuses on domain estimation of population mean with sub-sampling the non-respondents. In this study, we consider calibration technique as a method of correcting non-response in domains of study by minimizing the chi-square distance function between the weight of the main estimator and the calibrated weight subject to the formulated constraint on the auxiliary variable. As a result, two estimators are proposed; these are the ratio estimator for domain mean and a ratio estimator for double sampling. Bias and Mean Square Error (MSE) for the proposed estimators are derived.

We have used an auxiliary variable to estimate the population mean assuming that the non-response is observed only on the study variable. The proposed estimators and the existing estimators where compared empirically in the domains with small sampling units and two populations where considered in terms of the MSE and Percentage Relative Efficiency (PRE). We considered two cases where non-responses are uniform in the two strata at approximately (30%) and a case where the non-response rates are different with 20% and 40% in strata 1 and 2 respectively. The proposed estimators are more efficient than the existing estimators.

Keywords: auxiliary variable, calibration, non-response, ratio estimator, sub-sampling, domain

Introduction

It is obvious that society cannot run effectively on the basis of hunches or trial and error. Decisions based on data will provide better results than those based on intuitions or gut feelings. Statistics is a range of procedures for gathering, organizing, analyzing and presenting quantitative data. In the modern society, the need for statistical information seems endless. In particular, data are regularly collected to satisfy the need for information about specified sets of elements, called as finite population. Statistics helps us to turn data into information. One of the most important modes of data collection for satisfying such needs is sample survey, that is, a partial investigation of the finite population and on the basis of such partial information (sample information) one tries to inference about the finite population characteristics (parameters). Sample survey is less expensive than a complete enumeration, it is usually less time consuming, and may even be more accurate than the method of complete enumeration. The term sample is used for the set of units or portion of the aggregate of material which has been selected with the belief that it will be representative of the whole aggregate. The sampling theory deals with scientific and objective procedure of choosing an appropriate sampling design, i.e. selecting a sample from the population which is representative of the population as a whole and also provides suitable estimation procedure to estimate the population parameters. Most challenging about the sample representation of the population is the effect of non-response on the estimation of the population parameter. Different authors have suggested different techniques for a reliable and efficient estimator, among which is the calibration technique.

Calibration estimation in sample surveys has since its introduction by Deville JC, et al.1 developed an established theory and method for estimation of finite population parameter. Calibration of weights is a technique that uses population data on auxiliary variables to improve estimates in sample surveys. If auxiliary data are available, some improvement in the precision of estimate may be achieved. Incorporation of auxiliary data in the estimation process is known as calibration. In stratified random sampling, calibration approach is used to obtain optimum strata weights for improving the precision of survey estimates of population parameters. Koyuncu N, et al.2 defined some calibration estimators in stratified random sampling for population characteristics and Clement EP, et al.3 applied the concept of calibration estimators for domain totals in stratified random sampling. Clement EP, et al.4 combined some scalars with the mean of the auxiliary variable and proposed calibration alternative ratio estimator of mean in stratified sampling.

When a researcher is interested in obtaining information from a local or small area, it becomes challenging with small sample size in some of the areas of interest and even very difficult when non-response occurs. Several authors have made attempts to obtain reliable estimates in such areas of interests popularly called domains of study. Among them is Godwin A, et al.5 The author considers modifications of some of the procedures for global ratio estimation in single-phase sampling with sub-sampling the non-respondents proposed by Rao P6 to obtain an estimate of mean for a small domain that cuts across constituent strata of a population with unknown weights. The bias and mean-square error of each of the modified estimators were obtained for comparison However, the estimators were not subjected numerical test to validate the analytical claims most importantly in areas of small/zero sample sizes. Unlike,6 the population mean of the auxiliary variable adopted by Godwin A, et al.5 is assumed to be unknown before the start of the survey and hence double sampling was applied under stratified simple random sampling.

In a bid to improve on the efficiency of the estimators under non-response,7,8 adopted the concept of calibration with a single constraint to estimate the population mean and the result was encouraging. Cochran WG9 showed that knowledge of, of domain j that is of interest reduces the variance of the estimator of domain mean in a single-phase simple random design. The reduction in variance is shown to be greater when the proportion of non-domain elements in the population is large and the study variable varies little among the domain elements. Ashutosh10 proposed estimators for domain mean utilizing stratified sampling with non-response. The proposed estimator was compared to a direct ratio estimator for domain mean utilizing stratified sampling with non-response. Clement EP, et al.4 stated that in the presence of powerful auxiliary variables, the calibration estimation meets the objective of reducing both non-response bias and the sampling error. Etebong P11 develops a new approach to ratio estimation that produces a more efficient class of ratio estimators that do not depend on any optimality conditions for optimum performance using calibration weightings. Iseh MJ, et al.,12 Iseh MJ, et al.,13 Iseh MJ, et al.14 considered the challenges of population mean estimation in small area that is characterized by small or no sample size and in the presence of unit non-response and presents a calibration estimator that produces reliable estimates under stratified random sampling from a class of synthetic estimators using calibration approach with alternative distance measure. To overcome the challenges of poor performance of the ratio estimator in small area occasioned with small/no sample size as a result of non-response, this work considers the calibration approach using the constraints of equal weights adjustment criteria, unbiased estimator of the population mean and variance of the auxiliary variable.

In this paper, based on the attempt by Godwin A, et al.5 who suggested the global ratio estimation in single-phase sampling with sub-sampling the non-respondents to obtain an estimate of mean for a small domain that cuts across constituent strata of a population with unknown weights, a new improved ratio estimator for population mean in stratified random sampling is suggested using the theory of calibration estimation with three constraints to achieve optimal precision and efficiency.

Some existing estimator and theoretical underpinnings

This section considers some existing ratio estimators for estimation of domain population mean and the theoretical underpinnings for the proposed ratio estimator. Though not much have been done in the area of domains of study in the presence of non-response probably due to the intricate nature of the estimation, this paper highlights some existing estimators as applicable to domain estimation which applied the concept of sub-sampling the non-respondents.

Some existing estimator

Study notations and definitions

N= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8Ntaiabg2da9aaa@390F@ population size under study

N d = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaadsgaa8aabeaak8qacqGH9aqpaaa@3A64@ population size for the d th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A49@  domain

N dh = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaeyyp a0daaa@3B51@ population size of h th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A4D@ stratum in d th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A49@ domain

n dh = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaeyyp a0daaa@3B71@ sample size for the d th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A49@ domain in the h th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A4D@  stratum

n dh = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaeyyp a0daaa@3B71@ domain sample Size

n 1dh = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaWgaaWcbaWdbiaaigdacaWGKbGaamiAaaWdaeqaaOWd biabg2da9aaa@3C2C@ sample size for respondent units for the d th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A49@ domain in the h th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A4D@ Stratum

n 2dh = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaWgaaWcbaWdbiaaikdacaWGKbGaamiAaaWdaeqaaOWd biabg2da9aaa@3C2D@ Sample size for nonrespondents units for the d th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A49@ domain in the h th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A4D@ Stratum

W d h * = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaadsgaa8aabeaak8qacaWGObWdamaa CaaaleqabaWdbiaacQcaaaGccqGH9aqpaaa@3C5E@ The calibration weight

W dh = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaeyyp a0daaa@3B5A@ Stratum weight

W dh1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaadsgacaWGObGaaGymaaWdaeqaaaaa @3AF5@ = Response rate of the d th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A49@ domain in the h th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A4D@ Stratum

W dh2 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaadsgacaWGObGaaGOmaaWdaeqaaOWd biabg2da9aaa@3C16@ Non-response rate of the d th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A49@ domain in the h th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A4D@ Stratum

λ 1 , λ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacqaH 7oaBpaWaaSbaaSqaa8qacaaIYaaapaqabaaaaa@3D8B@ and λ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaaG4maaWdaeqaaaaa@39F9@  = the LaGrange multipliers

X= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwaiabg2da9aaa@3911@ Auxiliary variable

Y= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamywaiabg2da9aaa@3912@ Study variable

x ¯ dh = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiEayaaraWaaSbaaSqaaiaadsgacaWGObaabeaakiabg2da9aaa @3B55@ Sample mean for the d th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A49@ domain in the h th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A4D@ Stratum of the auxiliary variable

y ¯ * dh = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmyEayaaraWaaWbaaSqabeaacaGGQaaaaOWaaSbaaSqaaiaadsga caWGObaabeaakiabg2da9aaa@3C3B@ Unbiased estimator of the population mean for the d th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A49@ domain in the h th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A4D@ Stratum of the study variable

X ¯ dh = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiwayaaraWaaSbaaSqaaiaadsgacaWGObaabeaakiabg2da9aaa @3B35@ Population mean for d th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A49@ domain of the auxiliary variable in the h th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A4D@ Stratum

Y ¯ dh = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmywayaaraWaaSbaaSqaaiaadsgacaWGObaabeaakiabg2da9aaa @3B36@ Population mean for d th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A49@ domain of the study variable in the h th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A4D@ Stratum

X ¯ d = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiwayaaraWaaSbaaSqaaiaadsgaaeqaaOGaeyypa0daaa@3A48@ Population mean for d th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A49@ domain of the auxiliary variable

Y ¯ d = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmywayaaraWaaSbaaSqaaiaadsgaaeqaaOGaeyypa0daaa@3A49@ Population mean for d th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A49@ domain of the study variable

S ydh 2 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaqhaaWcbaWdbiaadMhacaWGKbGaamiAaaWdaeaapeGa aGOmaaaakiabg2da9aaa@3D11@ Mean square of the d th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A49@ domain in the h th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A4D@ Stratum of the study variable

S xdh 2 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaqhaaWcbaWdbiaadIhacaWGKbGaamiAaaWdaeaapeGa aGOmaaaakiabg2da9aaa@3D10@ Mean square of the d th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A49@ domain in the Stratum of the h th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A4D@ auxilliary variable

C xdh = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadIhacaWGKbGaamiAaaWdaeqaaOWd biabg2da9aaa@3C43@ Coefficient of variation for the d th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A49@ domain in the h th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A4D@ Stratum of the auxilliary variable

C ydh = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadMhacaWGKbGaamiAaaWdaeqaaOWd biabg2da9aaa@3C44@ Coefficient of variation for the d th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A49@ domain in the h th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A4D@ Stratum of the study variable

S ydh2 2 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaqhaaWcbaWdbiaadMhacaWGKbGaamiAaiaaikdaa8aa baWdbiaaikdaaaGccqGH9aqpaaa@3DCD@ Mean square of non-respondence of the d th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A49@ domain in the h th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A4D@ Stratum of the study variable

k dh = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaeyyp a0daaa@3B6E@ Inverse sampling rate

Q dh = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyua8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaeyyp a0daaa@3B54@ Tuning parameter

Udofia (2004) estimator

An alternative ratio estimator for domain mean was suggested by [5] is as follows:

t 2j = h k W h y ¯ h * x ¯ h X ¯ h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaikdacaWGQbaapaqabaGcpeGaeyyp a0ZaaybCaeqal8aabaWdbiaadIgaa8aabaWdbiaadUgaa0Wdaeaape GaeyyeIuoaaOGaam4va8aadaWgaaWcbaWdbiaadIgaa8aabeaak8qa daWcaaWdaeaaceWG5bGbaebadaqhaaWcbaWdbiaadIgaa8aabaWdbi aacQcaaaaak8aabaWdbiqadIhapaGbaebadaWgaaWcbaWdbiaadIga a8aabeaaaaGcpeGabmiwa8aagaqeamaaBaaaleaapeGaamiAaaWdae qaaaaa@4A1E@    (1)

With

Bias( t 2j )= h=1 k W h 1 f h n h X ¯ h ( R h S x h 2 S x h y h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiaadMgacaWGHbGaam4Camaabmaapaqaa8qacaWG0bWdamaa BaaaleaapeGaaGOmaiaadQgaa8aabeaaaOWdbiaawIcacaGLPaaacq GH9aqpdaGfWbqabSWdaeaapeGaamiAaiabg2da9iaaigdaa8aabaWd biaadUgaa0WdaeaapeGaeyyeIuoaaOGaam4va8aadaWgaaWcbaWdbi aadIgaa8aabeaak8qadaWcaaWdaeaapeGaaGymaiabgkHiTiaadAga paWaaSbaaSqaa8qacaWGObaapaqabaaakeaapeGaamOBa8aadaWgaa WcbaWdbiaadIgaa8aabeaak8qaceWGybGbaebapaWaaSbaaSqaa8qa caWGObaapaqabaaaaOWdbmaabmaapaqaa8qacaWGsbWdamaaBaaale aapeGaamiAaaWdaeqaaOWdbiaadofapaWaa0baaSqaa8qacaWG4bWd amaaBaaameaapeGaamiAaaWdaeqaaaWcbaWdbiaaikdaaaGccqGHsi slcaWGtbWdamaaBaaaleaapeGaamiEa8aadaWgaaadbaWdbiaadIga a8aabeaal8qacaWG5bWdamaaBaaameaapeGaamiAaaWdaeqaaaWcbe aaaOWdbiaawIcacaGLPaaaaaa@60E5@

and

MSE( t 2j )= h=1 k W h 2 [ 1 f h n h ( S yh 2 + R h 2 S x h 2 2 R h S x h y h + W 2h ( k1 ) n h S 2 y h 2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaadofacaWGfbWaaeWaa8aabaWdbiaadshapaWaaSbaaSqa a8qacaaIYaGaamOAaaWdaeqaaaGcpeGaayjkaiaawMcaaiabg2da9m aawahabeWcpaqaa8qacaWGObGaeyypa0JaaGymaaWdaeaapeGaam4A aaqdpaqaa8qacqGHris5aaGccaWGxbWdamaaDaaaleaapeGaamiAaa WdaeaapeGaaGOmaaaakmaadmaapaqaa8qadaWcaaWdaeaapeGaaGym aiabgkHiTiaadAgapaWaaSbaaSqaa8qacaWGObaapaqabaaakeaape GaamOBa8aadaWgaaWcbaWdbiaadIgaa8aabeaaaaGcpeWaaeWaa8aa baWdbiaadofapaWaa0baaSqaa8qacaWG5bGaamiAaaWdaeaapeGaaG OmaaaakiabgUcaRiaadkfapaWaa0baaSqaa8qacaWGObaapaqaa8qa caaIYaaaaOGaam4ua8aadaqhaaWcbaWdbiaadIhapaWaaSbaaWqaa8 qacaWGObaapaqabaaaleaapeGaaGOmaaaakiabgkHiTiaaikdacaWG sbWdamaaBaaaleaapeGaamiAaaWdaeqaaOWdbiaadofapaWaaSbaaS qaa8qacaWG4bWdamaaBaaameaapeGaamiAaaWdaeqaaSWdbiaadMha paWaaSbaaWqaa8qacaWGObaapaqabaaaleqaaOWdbiabgUcaRmaala aapaqaa8qacaWGxbWdamaaBaaaleaapeGaaGOmaiaadIgaa8aabeaa k8qadaqadaWdaeaapeGaam4AaiabgkHiTiaaigdaaiaawIcacaGLPa aaa8aabaWdbiaad6gapaWaaSbaaSqaa8qacaWGObaapaqabaaaaOWd biaadofapaWaa0baaSqaa8qacaaIYaGaamyEa8aadaWgaaadbaWdbi aadIgaa8aabeaaaSqaa8qacaaIYaaaaaGccaGLOaGaayzkaaaacaGL BbGaayzxaaaaaa@7889@    (2)

where

R h = Y ¯ h X ¯ h , f h =( 1 n h 1 N h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaadIgaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGabmywa8aagaqeamaaBaaaleaapeGaamiAaaWdaeqaaa GcbaWdbiqadIfapaGbaebadaWgaaWcbaWdbiaadIgaa8aabeaaaaGc peGaaiilaiaadAgapaWaaSbaaSqaa8qacaWGObaapaqabaGcpeGaey ypa0ZaaeWaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWG UbWdamaaBaaaleaapeGaamiAaaWdaeqaaaaak8qacqGHsisldaWcaa WdaeaapeGaaGymaaWdaeaapeGaamOta8aadaWgaaWcbaWdbiaadIga a8aabeaaaaaak8qacaGLOaGaayzkaaaaaa@4C79@

Pal and Singh HP estimator

Pal and Singh15 proposed a class of ratio-cum-ratio-type exponential estimators for population mean with sub sampling the non-respondents. The estimator and the mean square error is given as:

t ps1 =α y ¯ * ( X ¯ x ¯ )+( 1α ) y ¯ * exp( X ¯ x ¯ X ¯ + x ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadchacaWGZbGaaGymaaWdaeqaaOWd biabg2da9iabeg7aHjqadMhagaqea8aadaahaaWcbeqaa8qacaGGQa aaaOWaaeWaa8aabaWdbmaalaaapaqaa8qaceWGybGbaebaa8aabaWd biqadIhagaqeaaaaaiaawIcacaGLPaaacqGHRaWkdaqadaWdaeaape GaaGymaiabgkHiTiabeg7aHbGaayjkaiaawMcaaiqadMhagaqea8aa daahaaWcbeqaa8qacaGGQaaaaOGaciyzaiaacIhacaGGWbWaaeWaa8 aabaWdbmaalaaapaqaa8qaceWGybGbaebacqGHsislceWG4bGbaeba a8aabaWdbiqadIfagaqeaiabgUcaRiqadIhagaqeaaaaaiaawIcaca GLPaaaaaa@56A1@

And

MSE( t ps1 )= Y ¯ 2 ( λ C y 2 ( 1 ρ xy 2 )+ W 2 ( Z1 ) n C y( 2 ) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaadofacaWGfbWaaeWaa8aabaWdbiaadshapaWaaSbaaSqa a8qacaWGWbGaam4Caiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacq GH9aqpceWGzbGbaebapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaa paqaa8qacqaH7oaBcaWGdbWdamaaDaaaleaapeGaamyEaaWdaeaape GaaGOmaaaakmaabmaapaqaa8qacaaIXaGaeyOeI0IaeqyWdi3damaa DaaaleaapeGaamiEaiaadMhaa8aabaWdbiaaikdaaaaakiaawIcaca GLPaaacqGHRaWkdaWcaaWdaeaapeGaam4va8aadaWgaaWcbaWdbiaa ikdaa8aabeaak8qadaqadaWdaeaapeGaamOwaiabgkHiTiaaigdaai aawIcacaGLPaaaa8aabaWdbiaad6gaaaGaam4qa8aadaqhaaWcbaWd biaadMhadaqadaWdaeaapeGaaGOmaaGaayjkaiaawMcaaaWdaeaape GaaGOmaaaaaOGaayjkaiaawMcaaaaa@5EB5@    (3)

Where 

W 2 = n 2 n ,λ= 1f n ,f= n N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaamOBa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOqaa8 qacaWGUbaaaiaacYcacqaH7oaBcqGH9aqpdaWcaaWdaeaapeGaaGym aiabgkHiTiaadAgaa8aabaWdbiaad6gaaaGaaiilaiaadAgacqGH9a qpdaWcaaWdaeaapeGaamOBaaWdaeaapeGaamOtaaaaaaa@4978@  and α is a constant

Ashutosh estimator

Ashutosh10 proposed a direct ratio generalized estimator for domain mean through stratified sampling with non-response as;

T DG.st.β.d = y ¯ st.d [ x ¯ st.d X ¯ st.d ] β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadseacaWGhbGaaiOlaiaadohacaWG 0bGaaiOlaiabek7aIjaac6cacaWGKbaapaqabaGcpeGaeyypa0Jabm yEayaaraWdamaaBaaaleaapeGaam4CaiaadshacaGGUaGaamizaaWd aeqaaOWdbmaadmaapaqaa8qadaWcaaWdaeaapeGabmiEa8aagaqeam aaBaaaleaapeGaam4CaiaadshacaGGUaGaamizaaWdaeqaaaGcbaWd biqadIfagaqea8aadaWgaaWcbaWdbiaadohacaWG0bGaaiOlaiaads gaa8aabeaaaaaak8qacaGLBbGaayzxaaWdamaaCaaaleqabaWdbiab ek7aIbaaaaa@54F4@

Where β is a chosen constant of d th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A49@ domain mean of x and the value of y respondents can be written as;

y ¯ st.d = h=1 H W h.d y ¯ h.d x ¯ st.d = h=1 H W h.d x ¯ h.d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qaceWG5bGbaebapaWaaSbaaSqaa8qacaWGZbGaamiDaiaac6ca caWGKbaapaqabaGcpeGaeyypa0ZaaybCaeqal8aabaWdbiaadIgacq GH9aqpcaaIXaaapaqaa8qacaWGibaan8aabaWdbiabggHiLdaakiaa dEfapaWaaSbaaSqaa8qacaWGObGaaiOlaiaadsgaa8aabeaak8qace WG5bGbaebapaWaaSbaaSqaa8qacaWGObGaaiOlaiaadsgaa8aabeaa aOqaa8qaceWG4bWdayaaraWaaSbaaSqaa8qacaWGZbGaamiDaiaac6 cacaWGKbaapaqabaGcpeGaeyypa0ZaaybCaeqal8aabaWdbiaadIga cqGH9aqpcaaIXaaapaqaa8qacaWGibaan8aabaWdbiabggHiLdaaki aadEfapaWaaSbaaSqaa8qacaWGObGaaiOlaiaadsgaa8aabeaak8qa ceWG4bWdayaaraWaaSbaaSqaa8qacaWGObGaaiOlaiaadsgaa8aabe aaaaaa@5F7D@

Members of the proposed estimators   T DG.st.β.d * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaqhaaWcbaWdbiaadseacaWGhbGaaiOlaiaadohacaWG 0bGaaiOlaiabek7aIjaac6cacaWGKbaapaqaa8qacaGGQaaaaaaa@4146@

T DG.st.β.d * = y ¯ st.a * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaqhaaWcbaWdbiaadseacaWGhbGaaiOlaiaadohacaWG 0bGaaiOlaiabek7aIjaac6cacaWGKbaapaqaa8qacaGGQaaaaOGaey ypa0JabmyEayaaraWdamaaDaaaleaapeGaam4CaiaadshacaGGUaGa amyyaaWdaeaapeGaaiOkaaaaaaa@480E@  if  β = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaaeiiaiabg2da9iaabccacaaIWaaaaa@3BD5@

T DG.st.1.a * = y ¯ st.a * x ¯ st.a * X ¯ h.a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaqhaaWcbaWdbiaadseacaWGhbGaaiOlaiaadohacaWG 0bGaaiOlaiabgkHiTiaaigdacaGGUaGaamyyaaWdaeaapeGaaiOkaa aakiabg2da9maalaaapaqaa8qaceWG5bGbaebapaWaa0baaSqaa8qa caWGZbGaamiDaiaac6cacaWGHbaapaqaa8qacaGGQaaaaaGcpaqaa8 qaceWG4bWdayaaraWaa0baaSqaa8qacaWGZbGaamiDaiaac6cacaWG Hbaapaqaa8qacaGGQaaaaaaakiqadIfagaqea8aadaWgaaWcbaWdbi aadIgacaGGUaGaamyyaaWdaeqaaaaa@51FF@  if  β=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0JaeyOeI0IaaGymaaaa@3B7D@

T DG.st.1.a * = y ¯ st.a * x ¯ st.a * x ¯ st.a * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaqhaaWcbaWdbiaadseacaWGhbGaaiOlaiaadohacaWG 0bGaaiOlaiaaigdacaGGUaGaamyyaaWdaeaapeGaaiOkaaaakiabg2 da9iqadMhagaqea8aadaqhaaWcbaWdbiaadohacaWG0bGaaiOlaiaa dggaa8aabaWdbiaacQcaaaGcdaWcaaWdaeaapeGabmiEa8aagaqeam aaDaaaleaapeGaam4CaiaadshacaGGUaGaamyyaaWdaeaapeGaaiOk aaaaaOWdaeaapeGabmiEa8aagaqeamaaDaaaleaapeGaam4Caiaads hacaGGUaGaamyyaaWdaeaapeGaaiOkaaaaaaaaaa@52F5@  if  β=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0JaaGymaaaa@3A90@

T DG.st.2.a * = y ¯ st.a * [ x ¯ st.a * x ¯ st.a * ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaqhaaWcbaWdbiaadseacaWGhbGaaiOlaiaadohacaWG 0bGaaiOlaiaaikdacaGGUaGaamyyaaWdaeaapeGaaiOkaaaakiabg2 da9iqadMhagaqea8aadaqhaaWcbaWdbiaadohacaWG0bGaaiOlaiaa dggaa8aabaWdbiaacQcaaaGcdaWadaWdaeaapeWaaSaaa8aabaWdbi qadIhapaGbaebadaqhaaWcbaWdbiaadohacaWG0bGaaiOlaiaadgga a8aabaWdbiaacQcaaaaak8aabaWdbiqadIhapaGbaebadaqhaaWcba WdbiaadohacaWG0bGaaiOlaiaadggaa8aabaWdbiaacQcaaaaaaaGc caGLBbGaayzxaaWdamaaCaaaleqabaWdbiaaikdaaaaaaa@5619@  if  β=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0JaaGOmaaaa@3A91@

Bias and Mean Square Error of T DG.st.1.a   * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaqhaaWcbaWdbiaadseacaWGhbGaaiOlaiaadohacaWG 0bGaaiOlaiabgkHiTiaaigdacaGGUaGaamyyaiaacckacaGGGcaapa qaa8qacaGGQaaaaaaa@4392@ is given as;

Bias( T DG.st.1.a * )= h=1 H W h.a Y ¯ h.a [ N h.a n h.a N h.a n h.a C Xh.a 2 + ( g h.a 1 ) W 2h.a n h.a C 2Yh.a 2 ] Y ¯ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiaadMgacaWGHbGaam4Camaabmaapaqaa8qacaWGubWdamaa DaaaleaapeGaamiraiaadEeacaGGUaGaam4CaiaadshacaGGUaGaey OeI0IaaGymaiaac6cacaWGHbaapaqaa8qacaGGQaaaaaGccaGLOaGa ayzkaaGaeyypa0ZaaybCaeqal8aabaWdbiaadIgacqGH9aqpcaaIXa aapaqaa8qacaWGibaan8aabaWdbiabggHiLdaakiaadEfapaWaaSba aSqaa8qacaWGObGaaiOlaiaadggaa8aabeaak8qaceWGzbGbaebapa WaaSbaaSqaa8qacaWGObGaaiOlaiaadggaa8aabeaak8qadaWadaWd aeaapeWaaSaaa8aabaWdbiaad6eapaWaaSbaaSqaa8qacaWGObGaai Olaiaadggaa8aabeaak8qacqGHsislcaWGUbWdamaaBaaaleaapeGa amiAaiaac6cacaWGHbaapaqabaaakeaapeGaamOta8aadaWgaaWcba WdbiaadIgacaGGUaGaamyyaaWdaeqaaOWdbiaad6gapaWaaSbaaSqa a8qacaWGObGaaiOlaiaadggaa8aabeaaaaGcpeGaam4qa8aadaqhaa WcbaWdbiaadIfacaWGObGaaiOlaiaadggaa8aabaWdbiaaikdaaaGc cqGHRaWkdaWcaaWdaeaapeWaaeWaa8aabaWdbiaadEgapaWaaSbaaS qaa8qacaWGObGaaiOlaiaadggaa8aabeaak8qacqGHsislcaaIXaaa caGLOaGaayzkaaGaam4va8aadaWgaaWcbaWdbiaaikdacaWGObGaai Olaiaadggaa8aabeaaaOqaa8qacaWGUbWdamaaBaaaleaapeGaamiA aiaac6cacaWGHbaapaqabaaaaOWdbiaadoeapaWaa0baaSqaa8qaca aIYaGaamywaiaadIgacaGGUaGaamyyaaWdaeaapeGaaGOmaaaaaOGa ay5waiaaw2faaiabgkHiTiqadMfagaqea8aadaWgaaWcbaWdbiaadg gaa8aabeaaaaa@877B@

MSE( T DG.st.1a * )= h=1 H W h.a 2 Y ¯ h.a 2 [ N h.a n h.a N h.a n ha ( C Yh.a 2 + C Xh.a 2 2 C YXha )+ ( g h.a 1 ) W 2h.a n h.a ( C 2Yh.a 2 + C 2Xh.a 2 2 C 2YXha ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaadofacaWGfbWaaeWaa8aabaWdbiaadsfapaWaa0baaSqa a8qacaWGebGaam4raiaac6cacaWGZbGaamiDaiaac6cacqGHsislca aIXaGaamyyaaWdaeaapeGaaiOkaaaaaOGaayjkaiaawMcaaiabg2da 9maawahabeWcpaqaa8qacaWGObGaeyypa0JaaGymaaWdaeaapeGaam isaaqdpaqaa8qacqGHris5aaGccaWGxbWdamaaDaaaleaapeGaamiA aiaac6cacaWGHbaapaqaa8qacaaIYaaaaOGabmywayaaraWdamaaDa aaleaapeGaamiAaiaac6cacaWGHbaapaqaa8qacaaIYaaaaOWaamWa a8aaeaqabeaapeWaaSaaa8aabaWdbiaad6eapaWaaSbaaSqaa8qaca WGObGaaiOlaiaadggaa8aabeaak8qacqGHsislcaWGUbWdamaaBaaa leaapeGaamiAaiaac6cacaWGHbaapaqabaaakeaapeGaamOta8aada WgaaWcbaWdbiaadIgacaGGUaGaamyyaaWdaeqaaOWdbiaad6gapaWa aSbaaSqaa8qacaWGObGaamyyaaWdaeqaaaaak8qadaqadaWdaeaape Gaam4qa8aadaqhaaWcbaWdbiaadMfacaWGObGaaiOlaiaadggaa8aa baWdbiaaikdaaaGccqGHRaWkcaWGdbWdamaaDaaaleaapeGaamiwai aadIgacaGGUaGaamyyaaWdaeaapeGaaGOmaaaakiabgkHiTiaaikda caWGdbWdamaaBaaaleaapeGaamywaiaadIfacaWGObGaamyyaaWdae qaaaGcpeGaayjkaiaawMcaaiabgUcaRaqaamaalaaapaqaa8qadaqa daWdaeaapeGaam4za8aadaWgaaWcbaWdbiaadIgacaGGUaGaamyyaa WdaeqaaOWdbiabgkHiTiaaigdaaiaawIcacaGLPaaacaWGxbWdamaa BaaaleaapeGaaGOmaiaadIgacaGGUaGaamyyaaWdaeqaaaGcbaWdbi aad6gapaWaaSbaaSqaa8qacaWGObGaaiOlaiaadggaa8aabeaaaaGc peWaaeWaa8aabaWdbiaadoeapaWaa0baaSqaa8qacaaIYaGaamywai aadIgacaGGUaGaamyyaaWdaeaapeGaaGOmaaaakiabgUcaRiaadoea paWaa0baaSqaa8qacaaIYaGaamiwaiaadIgacaGGUaGaamyyaaWdae aapeGaaGOmaaaakiabgkHiTiaaikdacaWGdbWdamaaBaaaleaapeGa aGOmaiaadMfacaWGybGaamiAaiaadggaa8aabeaaaOWdbiaawIcaca GLPaaaaaGaay5waiaaw2faaaaa@A17F@    (4)

Sampling design in single phase

Let π={ U 1 , U 2 ,..., U N } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiWdaNaeyypa0ZaaiWaa8aabaWdbiaadwfapaWaaSbaaSqaa8qa caaIXaaapaqabaGcpeGaaiilaiaadwfapaWaaSbaaSqaa8qacaaIYa aapaqabaGcpeGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWGvbWd amaaBaaaleaapeGaamOtaaWdaeqaaaGcpeGaay5Eaiaaw2haaaaa@469B@ denote a finite population, the elements of which fall into L known strata with N dh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaa@3A31@  elements the h th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A4D@ stratum, h=1,2,...,L, h N dh = N d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaGGUaGaaiOl aiaac6cacaGGSaGaamitaiaacYcapaWaaubiaeqaleqabaGaaGzaVd qdbaWdbiabggHiLdaakiaadIgacaWGobWdamaaBaaaleaapeGaamiz aiaadIgaa8aabeaak8qacqGH9aqpcaWGobWdamaaBaaaleaapeGaam izaaWdaeqaaaaa@4B12@ . It is assumed that π can also be partitioned according to the distribution of variable Z into exhaustive set of D sub-populations or domains of study that is denoted by { A d * ;d=1,2,...,D } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiaadgeapaWaa0baaSqaa8qacaWGKbaapaqaa8qa caGGQaaaaOGaai4oaiaadsgacqGH9aqpcaaIXaGaaiilaiaaikdaca GGSaGaaiOlaiaac6cacaGGUaGaaiilaiaadseaaiaawUhacaGL9baa aaa@4564@ . Each stratum consist of a substratum of N 1dh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaaikdacaWGKbGaamiAaaWdaeqaaaaa @3AED@ respondents and a substratum of N 2dh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaaikdacaWGKbGaamiAaaWdaeqaaaaa @3AED@  non-respondents, N 1dh + N 2dh = N dh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaaigdacaWGKbGaamiAaaWdaeqaaOWd biabgUcaRiaad6eapaWaaSbaaSqaa8qacaaIYaGaamizaiaadIgaa8 aabeaak8qacqGH9aqpcaWGobWdamaaBaaaleaapeGaamizaiaadIga a8aabeaaaaa@43CA@ for all h. Let A dh * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaqhaaWcbaWdbiaadsgacaWGObaapaqaa8qacaGGQaaa aaaa@3AE3@  denote the part of domain d( A d * ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizamaabmaapaqaa8qacaWGbbWdamaaDaaaleaapeGaamizaaWd aeaapeGaaiOkaaaaaOGaayjkaiaawMcaaaaa@3C91@ in stratum h and N dhj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaadsgacaWGObGaamOAaaWdaeqaaaaa @3B20@ the unknown number of elements in A dh * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaqhaaWcbaWdbiaadsgacaWGObaapaqaa8qacaGGQaaa aaaa@3AE3@ . Let y dhj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEa8aadaWgaaWcbaWdbiaadsgacaWGObGaamOAaaWdaeqaaaaa @3B4B@  denote the value of characteristic Y for element i in A dh * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaqhaaWcbaWdbiaadsgacaWGObaapaqaa8qacaGGQaaa aaaa@3AE3@ .

Proposed estimator

Calibration has been proven to be an estimation technique to smoothen an existing estimator for a better precision and an improved efficiency. For household survey and other economic data that requires knowledge of the supplementary information, a new ratio estimator is suggested to enhance efficiency in domains of study even in the presence of non-response.  Motivated by [5] in an Alternative Ratio Estimator for domain mean, we proposed the following estimator:

t cal * = h=1 L W dh * y ¯ dh * x ¯ dh X ¯ dh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaqhaaWcbaWdbiaadogacaWGHbGaamiBaaWdaeaapeGa aiOkaaaakiabg2da9maawahabeWcpaqaa8qacaWGObGaeyypa0JaaG ymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGccaWGxbWdamaa DaaaleaapeGaamizaiaadIgaa8aabaWdbiaacQcaaaGcdaWcaaWdae aapeGabmyEayaaraWdamaaDaaaleaapeGaamizaiaadIgaa8aabaWd biaacQcaaaaak8aabaWdbiqadIhagaqea8aadaWgaaWcbaWdbiaads gacaWGObaapaqabaaaaOWdbiqadIfagaqea8aadaWgaaWcbaWdbiaa dsgacaWGObaapaqabaaaaa@51F5@    (5)

(5) can be written as

t cal * = h=1 L W dh * y ¯ dhr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaqhaaWcbaWdbiaadogacaWGHbGaamiBaaWdaeaapeGa aiOkaaaakiabg2da9maawahabeWcpaqaa8qacaWGObGaeyypa0JaaG ymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGccaWGxbWdamaa DaaaleaapeGaamizaiaadIgaa8aabaWdbiaacQcaaaGcpaGabmyEay aaraWaaSbaaSqaa8qacaWGKbGaamiAaiaadkhaa8aabeaaaaa@4B52@    (6)

where

y ¯ dhr = r dh X ¯ dh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadMhagaqeam aaBaaaleaaqaaaaaaaaaWdbiaadsgacaWGObGaamOCaaWdaeqaaOWd biabg2da9iaadkhapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaO GabmiwayaaraWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaaa@42B4@

and

r dh = y ¯ dh * x ¯ dh , X ¯ dh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaeyyp a0ZaaSaaa8aabaGabmyEayaaraWaa0baaSqaa8qacaWGKbGaamiAaa WdaeaapeGaaiOkaaaaaOWdaeaaceWG4bGbaebadaWgaaWcbaWdbiaa dsgacaWGObaapaqabaaaaOWdbiaacYcapaGabmiwayaaraWaaSbaaS qaa8qacaWGKbGaamiAaaWdaeqaaaaa@46C8@  is assume to be known and W dh * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaqhaaWcbaWdbiaadsgacaWGObaapaqaa8qacaGGQaaa aaaa@3AF9@ is the calibration weight aimed at adjusting the existing weight in [5] estimators using a chi-square distance measure.

φ= h=1 L ( W dh * W dh ) 2 Q dh W dh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOXdOMaeyypa0ZaaSaaa8aabaWdbmaavadabeWcpaqaa8qacaWG ObGaeyypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aa GcdaqadaWdaeaapeGaam4va8aadaqhaaWcbaWdbiaadsgacaWGObaa paqaa8qacaGGQaaaaOGaeyOeI0Iaam4va8aadaWgaaWcbaWdbiaads gacaWGObaapaqabaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWd biaaikdaaaaak8aabaWdbiaadgfapaWaaSbaaSqaa8qacaWGKbGaam iAaaWdaeqaaOWdbiaadEfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWd aeqaaaaaaaa@50FC@

Subject to the following constraints

h=1 L W dh * =1 h=1 L W dh * x ¯ dh = h=1 L W dh X ¯ dh h=1 L W dh * s dh 2 = h= L W dh S dh 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qadaGfWbqabSWdaeaapeGaamiAaiabg2da9iaaigdaa8aabaWd biaadYeaa0WdaeaapeGaeyyeIuoaaOGaam4va8aadaqhaaWcbaWdbi aadsgacaWGObaapaqaa8qacaGGQaaaaOGaeyypa0JaaGymaaqaamaa wahabeWcpaqaa8qacaWGObGaeyypa0JaaGymaaWdaeaapeGaamitaa qdpaqaa8qacqGHris5aaGccaWGxbWdamaaDaaaleaapeGaamizaiaa dIgaa8aabaWdbiaacQcaaaGcpaGabmiEayaaraWaaSbaaSqaa8qaca WGKbGaamiAaaWdaeqaaOWdbiabg2da9maawahabeWcpaqaa8qacaWG ObGaeyypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aa GccaWGxbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaakiqadIfa gaqeamaaBaaaleaapeGaamizaiaadIgaa8aabeaaaOqaa8qadaGfWb qabSWdaeaapeGaamiAaiabg2da9iaaigdaa8aabaWdbiaadYeaa0Wd aeaapeGaeyyeIuoaaOGaam4va8aadaqhaaWcbaWdbiaadsgacaWGOb aapaqaa8qacaGGQaaaaOGaam4Ca8aadaqhaaWcbaWdbiaadsgacaWG Obaapaqaa8qacaaIYaaaaOGaeyypa0ZaaybCaeqal8aabaWdbiaadI gacqGH9aqpa8aabaWdbiaadYeaa0WdaeaapeGaeyyeIuoaaOGaam4v a8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaam4ua8aada qhaaWcbaWdbiaadsgacaWGObaapaqaa8qacaaIYaaaaaaaaa@7956@

Thus the optimization problem is given by:

φ= h=1 L ( W dh * W d h ) 2 Q dh W dh 2 λ 1 ( h=1 L W dh * 1 )2 λ 2 ( h=1 L W dh * x ¯ dh h=1 L W dh X ¯ dh ) 2 λ 3 ( h=1 L W dh * s dh 2 h= L W dh S dh 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacqaHgpGAcqGH9aqpdaWcaaWdaeaapeWaaubmaeqal8aabaWd biaadIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaan8aabaWdbiabgg HiLdaakmaabmaapaqaa8qacaWGxbWdamaaDaaaleaapeGaamizaiaa dIgaa8aabaWdbiaacQcaaaGccqGHsislcaWGxbWdamaaBaaaleaape Gaamiza8aadaWgaaadbaWdbiaadIgaa8aabeaaaSqabaaak8qacaGL OaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaadg fapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbiaadEfapaWa aSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaaak8qacqGHsislcaaIYa Gaeq4UdW2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbmaabmaapaqa a8qadaGfWbqabSWdaeaapeGaamiAaiabg2da9iaaigdaa8aabaWdbi aadYeaa0WdaeaapeGaeyyeIuoaaOGaam4va8aadaqhaaWcbaWdbiaa dsgacaWGObaapaqaa8qacaGGQaaaaOGaeyOeI0IaaGymaaGaayjkai aawMcaaiabgkHiTiaaikdacqaH7oaBpaWaaSbaaSqaa8qacaaIYaaa paqabaGcpeWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaWGObGaey ypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGccaWG xbWdamaaDaaaleaapeGaamizaiaadIgaa8aabaWdbiaacQcaaaGcce WG4bGbaebapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbiab gkHiTmaawahabeWcpaqaa8qacaWGObGaeyypa0JaaGymaaWdaeaape Gaamitaaqdpaqaa8qacqGHris5aaGccaWGxbWdamaaBaaaleaapeGa amizaiaadIgaa8aabeaak8qaceWGybGbaebapaWaaSbaaSqaa8qaca WGKbGaamiAaaWdaeqaaaGcpeGaayjkaiaawMcaaaqaaiabgkHiTiaa ikdacqaH7oaBpaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeWaaeWaa8 aabaWdbmaawahabeWcpaqaa8qacaWGObGaeyypa0JaaGymaaWdaeaa peGaamitaaqdpaqaa8qacqGHris5aaGccaWGxbWdamaaDaaaleaape GaamizaiaadIgaa8aabaWdbiaacQcaaaGccaWGZbWdamaaDaaaleaa peGaamizaiaadIgaa8aabaWdbiaaikdaaaGccqGHsisldaGfWbqabS WdaeaapeGaamiAaiabg2da9aWdaeaapeGaamitaaqdpaqaa8qacqGH ris5aaGccaWGxbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8 qacaWGtbWdamaaDaaaleaapeGaamizaiaadIgaa8aabaWdbiaaikda aaaakiaawIcacaGLPaaaaaaa@A611@

where λ 1 , λ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacqaH 7oaBpaWaaSbaaSqaa8qacaaIYaaapaqabaaaaa@3D8B@  and λ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaaG4maaWdaeqaaaaa@39F9@  are the Lagrange multipliers such that

φ W dh * = 2( W dh * W d h ) Q dh W dh 2 λ 1 2 λ 2 x ¯ dh 2 λ 3 s dh 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kabeA8aQbWdaeaapeGaeyOaIyRaam4v a8aadaqhaaWcbaWdbiaadsgacaWGObaapaqaa8qacaGGQaaaaaaaki abg2da9maalaaapaqaa8qacaaIYaWaaeWaa8aabaWdbiaadEfapaWa a0baaSqaa8qacaWGKbGaamiAaaWdaeaapeGaaiOkaaaakiabgkHiTi aadEfapaWaaSbaaSqaa8qacaWGKbWdamaaBaaameaapeGaamiAaaWd aeqaaaWcbeaaaOWdbiaawIcacaGLPaaaa8aabaWdbiaadgfapaWaaS baaSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbiaadEfapaWaaSbaaSqa a8qacaWGKbGaamiAaaWdaeqaaaaak8qacqGHsislcaaIYaGaeq4UdW 2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgkHiTiaaikdacqaH 7oaBpaWaaSbaaSqaa8qacaaIYaaapaqabaGcceWG4bGbaebadaWgaa WcbaWdbiaadsgacaWGObaapaqabaGcpeGaeyOeI0IaaGOmaiabeU7a S9aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacaWGZbWdamaaDaaale aapeGaamizaiaadIgaa8aabaWdbiaaikdaaaGccqGH9aqpcaaIWaaa aa@68BD@

W dh * = W dh + Q dh W dh ( λ 1 + λ 2 x ¯ dh + λ 3 s dh 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyO0H4Taam4va8aadaqhaaWcbaWdbiaadsgacaWGObaapaqaa8qa caGGQaaaaOGaeyypa0Jaam4va8aadaWgaaWcbaWdbiaadsgacaWGOb aapaqabaGcpeGaey4kaSIaamyua8aadaWgaaWcbaWdbiaadsgacaWG ObaapaqabaGcpeGaam4va8aadaWgaaWcbaWdbiaadsgacaWGObaapa qabaGcpeWaaeWaa8aabaWdbiabeU7aS9aadaWgaaWcbaWdbiaaigda a8aabeaak8qacqGHRaWkcqaH7oaBpaWaaSbaaSqaa8qacaaIYaaapa qabaGcpeGabmiEayaaraWdamaaBaaaleaapeGaamizaiaadIgaa8aa beaak8qacqGHRaWkcqaH7oaBpaWaaSbaaSqaa8qacaaIZaaapaqaba GcpeGaam4Ca8aadaqhaaWcbaWdbiaadsgacaWGObaapaqaa8qacaaI YaaaaaGccaGLOaGaayzkaaaaaa@5C2A@

Substituting W dh * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaqhaaWcbaWdbiaadsgacaWGObaapaqaa8qacaGGQaaa aaaa@3AF9@  in Eq. 6 gives

t ¯ ^ cal = h=1 L W dh y ¯ dhr + β 1(dh ( 1 h=1 L W dh )+ β 2( dh ) ( h=1 L W dh ( X ¯ dh x ¯ dh ) ) + β 3( dh ) ( h=1 W dh ( S dh 2 s dh 2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaecaae aaqaaaaaaaaaWdbiqadshagaqeaaWdaiaawkWaamaaBaaaleaapeGa am4yaiaadggacaWGSbaapaqabaGcpeGaeyypa0ZaaybCaeqal8aaba WdbiaadIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaan8aabaWdbiab ggHiLdaakiaadEfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaO GabmyEayaaraWaaSbaaSqaa8qacaWGKbGaamiAaiaadkhaa8aabeaa k8qacqGHRaWkcqaHYoGypaWaaSbaaSqaa8qacaaIXaGaaiikaiaads gacaWGObaapaqabaGcpeWaaeWaa8aabaWdbiaaigdacqGHsisldaGf WbqabSWdaeaapeGaamiAaiabg2da9iaaigdaa8aabaWdbiaadYeaa0 WdaeaapeGaeyyeIuoaaOGaam4va8aadaWgaaWcbaWdbiaadsgacaWG Obaapaqabaaak8qacaGLOaGaayzkaaGaey4kaSIaeqOSdi2damaaBa aaleaapeGaaGOmamaabmaapaqaa8qacaWGKbGaamiAaaGaayjkaiaa wMcaaaWdaeqaaOWdbmaabmaapaqaa8qadaGfWbqabSWdaeaapeGaam iAaiabg2da9iaaigdaa8aabaWdbiaadYeaa0WdaeaapeGaeyyeIuoa aOGaam4va8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeWaae Waa8aabaGabmiwayaaraWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqa aOWdbiabgkHiT8aaceWG4bGbaebadaWgaaWcbaWdbiaadsgacaWGOb aapaqabaaak8qacaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGaey4k aSIaeqOSdi2damaaBaaaleaapeGaaG4mamaabmaapaqaa8qacaWGKb GaamiAaaGaayjkaiaawMcaaaWdaeqaaOWdbmaabmaapaqaa8qadaGf qbqabSWdaeaapeGaamiAaiabg2da9iaaigdaaeqan8aabaWdbiabgg HiLdaakiaadEfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaOWd bmaabmaapaqaa8qacaWGtbWdamaaDaaaleaapeGaamizaiaadIgaa8 aabaWdbiaaikdaaaGccqGHsislcaWGZbWdamaaDaaaleaapeGaamiz aiaadIgaa8aabaWdbiaaikdaaaaakiaawIcacaGLPaaaaiaawIcaca GLPaaaaaaa@9480@    (7)

Where

β 1( d h ) =[ ( h=1 L Q dh W dh y ¯ dhr )( h=1 L Q dh W dh x ¯ dh 2 )( h=1 L Q dh W dh s dh 4 ) ( h=1 L Q dh W dh y ¯ dhr ) ( h=1 L Q dh W dh x ¯ dh s dh 2 ) 2 ( h=1 L Q dh W dh x ¯ dh )( h=1 L Q dh W dh x ¯ dh y ¯ dhr )( h=1 L Q dh W dh s dh 4 )+ ( h=1 L Q dh W dh x ¯ dh )( h=1 L Q dh W dh s dh 2 y ¯ dhr )( h=1 L Q dh W dh x ¯ dh s dh 2 ) ( h=1 L Q dh W dh s dh 2 )( h=1 L Q dh W dh x ¯ dh y ¯ dhr )( h=1 L Q dh W dh x ¯ dh s dh 2 ) ( h=1 L Q dh W dh s dh 2 )( h=1 L Q dh W dh s dh 2 y ¯ dhr )( h=1 L Q dh W dh x ¯ dh 2 ) ( h=1 L Q dh W dh )( h=1 L Q dh W dh x ¯ dh )( h=1 L Q dh W dh x ¯ dh s dh 2 ) ( h=1 L Q dh W dh ) ( h=1 L Q dh W dh x ¯ dh s dh 2 ) 2 ( h=1 L Q dh W dh x ¯ dh ) 2 ( h=1 L Q dh W dh s dh 4 )+( h=1 L Q dh W dh x ¯ dh ) ( h=1 L Q dh W dh s dh 2 )( h=1 L Q dh W dh x ¯ dh s dh 2 )+ ( h=1 L Q dh W dh s dh 2 )( h=1 L Q dh W dh x ¯ dh )( h=1 L Q dh W dh x ¯ dh s dh 2 ) ( h=1 L Q dh W dh s dh 2 ) 2 ( h=1 L Q dh W dh x ¯ dh 2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGymamaabmaapaqaa8qacaWGKbWd amaaBaaameaapeGaamiAaaWdaeqaaaWcpeGaayjkaiaawMcaaaWdae qaaOGaeyypa0ZaamWaaqaabeqaa8qadaqadaWdaeaapeWaaybCaeqa l8aabaWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaan8aaba WdbiabggHiLdaakiaadgfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWd aeqaaOWdbiaadEfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaO GabmyEayaaraWaaSbaaSqaa8qacaWGKbGaamiAaiaadkhaa8aabeaa aOWdbiaawIcacaGLPaaadaqadaWdaeaapeWaaybCaeqal8aabaWdbi aadIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaan8aabaWdbiabggHi LdaakiaadgfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbi aadEfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaOGabmiEayaa raWaa0baaSqaa8qacaWGKbGaamiAaaWdaeaapeGaaGOmaaaaaOGaay jkaiaawMcaamaabmaapaqaa8qadaGfWbqabSWdaeaapeGaamiAaiab g2da9iaaigdaa8aabaWdbiaadYeaa0WdaeaapeGaeyyeIuoaaOGaam yua8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaam4va8aa daWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaam4Ca8aadaqhaa WcbaWdbiaadsgacaWGObaapaqaa8qacaaI0aaaaaGccaGLOaGaayzk aaGaeyOeI0cabaWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaWGOb Gaeyypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGc caWGrbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qacaWGxb WdamaaBaaaleaapeGaamizaiaadIgaa8aabeaakiqadMhagaqeamaa BaaaleaapeGaamizaiaadIgacaWGYbaapaqabaaak8qacaGLOaGaay zkaaWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaWGObGaeyypa0Ja aGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGccaWGrbWdam aaBaaaleaapeGaamizaiaadIgaa8aabeaak8qacaWGxbWdamaaBaaa leaapeGaamizaiaadIgaa8aabeaakiqadIhagaqeamaaBaaaleaape GaamizaiaadIgaa8aabeaak8qacaWGZbWdamaaDaaaleaapeGaamiz aiaadIgaa8aabaWdbiaaikdaaaaakiaawIcacaGLPaaapaWaaWbaaS qabeaapeGaaGOmaaaakiabgkHiTaqaamaabmaapaqaa8qadaGfWbqa bSWdaeaapeGaamiAaiabg2da9iaaigdaa8aabaWdbiaadYeaa0Wdae aapeGaeyyeIuoaaOGaamyua8aadaWgaaWcbaWdbiaadsgacaWGObaa paqabaGcpeGaam4va8aadaWgaaWcbaWdbiaadsgacaWGObaapaqaba GcceWG4bGbaebadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaak8qa caGLOaGaayzkaaWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaWGOb Gaeyypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGc caWGrbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qacaWGxb WdamaaBaaaleaapeGaamizaiaadIgaa8aabeaakiqadIhagaqeamaa BaaaleaapeGaamizaiaadIgaa8aabeaakiqadMhagaqeamaaBaaale aapeGaamizaiaadIgacaWGYbaapaqabaaak8qacaGLOaGaayzkaaWa aeWaa8aabaWdbmaawahabeWcpaqaa8qacaWGObGaeyypa0JaaGymaa WdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGccaWGrbWdamaaBaaa leaapeGaamizaiaadIgaa8aabeaak8qacaWGxbWdamaaBaaaleaape GaamizaiaadIgaa8aabeaak8qacaWGZbWdamaaDaaaleaapeGaamiz aiaadIgaa8aabaWdbiaaisdaaaaakiaawIcacaGLPaaacqGHRaWkae aadaqadaWdaeaapeWaaybCaeqal8aabaWdbiaadIgacqGH9aqpcaaI Xaaapaqaa8qacaWGmbaan8aabaWdbiabggHiLdaakiaadgfapaWaaS baaSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbiaadEfapaWaaSbaaSqa a8qacaWGKbGaamiAaaWdaeqaaOGabmiEayaaraWaaSbaaSqaa8qaca WGKbGaamiAaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qa daGfWbqabSWdaeaapeGaamiAaiabg2da9iaaigdaa8aabaWdbiaadY eaa0WdaeaapeGaeyyeIuoaaOGaamyua8aadaWgaaWcbaWdbiaadsga caWGObaapaqabaGcpeGaam4va8aadaWgaaWcbaWdbiaadsgacaWGOb aapaqabaGcpeGaam4Ca8aadaqhaaWcbaWdbiaadsgacaWGObaapaqa a8qacaaIYaaaaOWdaiqadMhagaqeamaaBaaaleaapeGaamizaiaadI gacaWGYbaapaqabaaak8qacaGLOaGaayzkaaWaaeWaa8aabaWdbmaa wahabeWcpaqaa8qacaWGObGaeyypa0JaaGymaaWdaeaapeGaamitaa qdpaqaa8qacqGHris5aaGccaWGrbWdamaaBaaaleaapeGaamizaiaa dIgaa8aabeaak8qacaWGxbWdamaaBaaaleaapeGaamizaiaadIgaa8 aabeaakiqadIhagaqeamaaBaaaleaapeGaamizaiaadIgaa8aabeaa k8qacaWGZbWdamaaDaaaleaapeGaamizaiaadIgaa8aabaWdbiaaik daaaaakiaawIcacaGLPaaaaeaadaqadaWdaeaapeWaaybCaeqal8aa baWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaan8aabaWdbi abggHiLdaakiaadgfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqa aOWdbiaadEfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbi aadohapaWaa0baaSqaa8qacaWGKbGaamiAaaWdaeaapeGaaGOmaaaa aOGaayjkaiaawMcaamaabmaapaqaa8qadaGfWbqabSWdaeaapeGaam iAaiabg2da9iaaigdaa8aabaWdbiaadYeaa0WdaeaapeGaeyyeIuoa aOGaamyua8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaam 4va8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcceWG4bGbaeba daWgaaWcbaWdbiaadsgacaWGObaapaqabaGcceWG5bGbaebadaWgaa WcbaWdbiaadsgacaWGObGaamOCaaWdaeqaaaGcpeGaayjkaiaawMca amaabmaapaqaa8qadaGfWbqabSWdaeaapeGaamiAaiabg2da9iaaig daa8aabaWdbiaadYeaa0WdaeaapeGaeyyeIuoaaOGaamyua8aadaWg aaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaam4va8aadaWgaaWcba WdbiaadsgacaWGObaapaqabaGcceWG4bGbaebadaWgaaWcbaWdbiaa dsgacaWGObaapaqabaGcpeGaam4Ca8aadaqhaaWcbaWdbiaadsgaca WGObaapaqaa8qacaaIYaaaaaGccaGLOaGaayzkaaGaeyOeI0cabaWa aeWaa8aabaWdbmaawahabeWcpaqaa8qacaWGObGaeyypa0JaaGymaa WdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGccaWGrbWdamaaBaaa leaapeGaamizaiaadIgaa8aabeaak8qacaWGxbWdamaaBaaaleaape GaamizaiaadIgaa8aabeaak8qacaWGZbWdamaaDaaaleaapeGaamiz aiaadIgaa8aabaWdbiaaikdaaaaakiaawIcacaGLPaaadaqadaWdae aapeWaaybCaeqal8aabaWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qa caWGmbaan8aabaWdbiabggHiLdaakiaadgfapaWaaSbaaSqaa8qaca WGKbGaamiAaaWdaeqaaOWdbiaadEfapaWaaSbaaSqaa8qacaWGKbGa amiAaaWdaeqaaOWdbiaadohapaWaa0baaSqaa8qacaWGKbGaamiAaa WdaeaapeGaaGOmaaaak8aaceWG5bGbaebadaWgaaWcbaWdbiaadsga caWGObGaamOCaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8 qadaGfWbqabSWdaeaapeGaamiAaiabg2da9iaaigdaa8aabaWdbiaa dYeaa0WdaeaapeGaeyyeIuoaaOGaamyua8aadaWgaaWcbaWdbiaads gacaWGObaapaqabaGcpeGaam4va8aadaWgaaWcbaWdbiaadsgacaWG ObaapaqabaGcceWG4bGbaebadaqhaaWcbaWdbiaadsgacaWGObaapa qaa8qacaaIYaaaaaGccaGLOaGaayzkaaWaaSGaa8aabaaabaaaaaWd beaadaqadaWdaeaapeWaaybCaeqal8aabaWdbiaadIgacqGH9aqpca aIXaaapaqaa8qacaWGmbaan8aabaWdbiabggHiLdaakiaadgfapaWa aSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbiaadEfapaWaaSbaaS qaa8qacaWGKbGaamiAaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaa paqaa8qadaGfWbqabSWdaeaapeGaamiAaiabg2da9iaaigdaa8aaba WdbiaadYeaa0WdaeaapeGaeyyeIuoaaOGaamyua8aadaWgaaWcbaWd biaadsgacaWGObaapaqabaGcpeGaam4va8aadaWgaaWcbaWdbiaads gacaWGObaapaqabaGcceWG4bGbaebadaWgaaWcbaWdbiaadsgacaWG Obaapaqabaaak8qacaGLOaGaayzkaaWaaeWaa8aabaWdbmaawahabe Wcpaqaa8qacaWGObGaeyypa0JaaGymaaWdaeaapeGaamitaaqdpaqa a8qacqGHris5aaGccaWGrbWdamaaBaaaleaapeGaamizaiaadIgaa8 aabeaak8qacaWGxbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaa kiqadIhagaqeamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qaca WGZbWdamaaDaaaleaapeGaamizaiaadIgaa8aabaWdbiaaikdaaaaa kiaawIcacaGLPaaacqGHsislaeaadaqadaWdaeaapeWaaybCaeqal8 aabaWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaan8aabaWd biabggHiLdaakiaadgfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdae qaaOWdbiaadEfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaGc peGaayjkaiaawMcaamaabmaapaqaa8qadaGfWbqabSWdaeaapeGaam iAaiabg2da9iaaigdaa8aabaWdbiaadYeaa0WdaeaapeGaeyyeIuoa aOGaamyua8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaam 4va8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcceWG4bGbaeba daWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaam4Ca8aadaqhaa WcbaWdbiaadsgacaWGObaapaqaa8qacaaIYaaaaaGccaGLOaGaayzk aaWdamaaCaaaleqabaWdbiaaikdaaaGccqGHsislaeaadaqadaWdae aapeWaaybCaeqal8aabaWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qa caWGmbaan8aabaWdbiabggHiLdaakiaadgfapaWaaSbaaSqaa8qaca WGKbGaamiAaaWdaeqaaOWdbiaadEfapaWaaSbaaSqaa8qacaWGKbGa amiAaaWdaeqaaOGabmiEayaaraWaaSbaaSqaa8qacaWGKbGaamiAaa WdaeqaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaa aOWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaWGObGaeyypa0JaaG ymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGccaWGrbWdamaa BaaaleaapeGaamizaiaadIgaa8aabeaak8qacaWGxbWdamaaBaaale aapeGaamizaiaadIgaa8aabeaak8qacaWGZbWdamaaDaaaleaapeGa amizaiaadIgaa8aabaWdbiaaisdaaaaakiaawIcacaGLPaaacqGHRa WkdaqadaWdaeaapeWaaybCaeqal8aabaWdbiaadIgacqGH9aqpcaaI Xaaapaqaa8qacaWGmbaan8aabaWdbiabggHiLdaakiaadgfapaWaaS baaSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbiaadEfapaWaaSbaaSqa a8qacaWGKbGaamiAaaWdaeqaaOGabmiEayaaraWaaSbaaSqaa8qaca WGKbGaamiAaaWdaeqaaaGcpeGaayjkaiaawMcaaaqaamaabmaapaqa a8qadaGfWbqabSWdaeaapeGaamiAaiabg2da9iaaigdaa8aabaWdbi aadYeaa0WdaeaapeGaeyyeIuoaaOGaamyua8aadaWgaaWcbaWdbiaa dsgacaWGObaapaqabaGcpeGaam4va8aadaWgaaWcbaWdbiaadsgaca WGObaapaqabaGcpeGaam4Ca8aadaqhaaWcbaWdbiaadsgacaWGObaa paqaa8qacaaIYaaaaaGccaGLOaGaayzkaaWaaeWaa8aabaWdbmaawa habeWcpaqaa8qacaWGObGaeyypa0JaaGymaaWdaeaapeGaamitaaqd paqaa8qacqGHris5aaGccaWGrbWdamaaBaaaleaapeGaamizaiaadI gaa8aabeaak8qacaWGxbWdamaaBaaaleaapeGaamizaiaadIgaa8aa beaakiqadIhagaqeamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8 qacaWGZbWdamaaDaaaleaapeGaamizaiaadIgaa8aabaWdbiaaikda aaaakiaawIcacaGLPaaacqGHRaWkaeaadaqadaWdaeaapeWaaybCae qal8aabaWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaan8aa baWdbiabggHiLdaakiaadgfapaWaaSbaaSqaa8qacaWGKbGaamiAaa WdaeqaaOWdbiaadEfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqa aOWdbiaadohapaWaa0baaSqaa8qacaWGKbGaamiAaaWdaeaapeGaaG OmaaaaaOGaayjkaiaawMcaamaabmaapaqaa8qadaGfWbqabSWdaeaa peGaamiAaiabg2da9iaaigdaa8aabaWdbiaadYeaa0WdaeaapeGaey yeIuoaaOGaamyua8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGc peGaam4va8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcceWG4b GbaebadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaak8qacaGLOaGa ayzkaaWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaWGObGaeyypa0 JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGccaWGrbWd amaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qacaWGxbWdamaaBa aaleaapeGaamizaiaadIgaa8aabeaakiqadIhagaqeamaaBaaaleaa peGaamizaiaadIgaa8aabeaak8qacaWGZbWdamaaDaaaleaapeGaam izaiaadIgaa8aabaWdbiaaikdaaaaakiaawIcacaGLPaaacqGHsisl aeaadaqadaWdaeaapeWaaybCaeqal8aabaWdbiaadIgacqGH9aqpca aIXaaapaqaa8qacaWGmbaan8aabaWdbiabggHiLdaakiaadgfapaWa aSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbiaadEfapaWaaSbaaS qaa8qacaWGKbGaamiAaaWdaeqaaOWdbiaadohapaWaa0baaSqaa8qa caWGKbGaamiAaaWdaeaapeGaaGOmaaaaaOGaayjkaiaawMcaa8aada ahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWdbmaawahabeWcpaqa a8qacaWGObGaeyypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacq GHris5aaGccaWGrbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaa k8qacaWGxbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaakiqadI hagaqeamaaDaaaleaapeGaamizaiaadIgaa8aabaWdbiaaikdaaaaa kiaawIcacaGLPaaaaaWdaiaawUfacaGLDbaaaaa@ABB1@

β 2( d h ) =[ ( h=1 L Q dh W dh )( h=1 L Q dh W dh x ¯ dh y ¯ dhr )( h=1 L Q dh W dh s dh 4 ) ( h=1 L Q dh W dh )( h=1 L Q dh W dh s dh 2 y ¯ dhr )( h=1 L Q dh W dh x ¯ dh s dh 2 ) ( h=1 L Q dh W dh y ¯ dhr )( h=1 L Q dh W dh x ¯ dh 2 )( h=1 L Q dh W dh s dh 4 )+ ( h=1 L Q dh W dh y ¯ dhr ) ( h=1 L Q dh W dh x ¯ dh s dh 2 ) 2 + ( h=1 L Q dh W dh s dh 2 )( h=1 L Q dh W dh x ¯ dh )( h=1 L Q dh W dh s dh 2 y ¯ dhr ) ( h=1 L Q dh W dh s dh 2 )( h=1 L Q dh W dh s dh 2 )( h=1 L Q dh W dh s dh 2 y ¯ dhr ) ( h=1 L Q dh W dh )( h=1 L Q dh W dh x ¯ dh )( h=1 L Q dh W dh x ¯ dh s dh 2 ) ( h=1 L Q dh W dh ) ( h=1 L Q dh W dh x ¯ dh s dh 2 ) 2 ( h=1 L Q dh W dh x ¯ dh ) 2 ( h=1 L Q dh W dh s dh 4 )+( h=1 L Q dh W dh x ¯ dh ) ( h=1 L Q dh W dh s dh 2 )( h=1 L Q dh W dh x ¯ dh s dh 2 )+ ( h=1 L Q dh W dh s dh 2 )( h=1 L Q dh W dh x ¯ dh )( h=1 L Q dh W dh x ¯ dh s dh 2 ) ( h=1 L Q dh W dh s dh 2 ) 2 ( h=1 L Q dh W dh x ¯ dh 2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGOmamaabmaapaqaa8qacaWGKbWd amaaBaaameaapeGaamiAaaWdaeqaaaWcpeGaayjkaiaawMcaaaWdae qaaOWdbiabg2da9maadmaaeaqabeaadaqadaWdaeaapeWaaybCaeqa l8aabaWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaan8aaba WdbiabggHiLdaakiaadgfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWd aeqaaOWdbiaadEfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaa GcpeGaayjkaiaawMcaamaabmaapaqaa8qadaGfWbqabSWdaeaapeGa amiAaiabg2da9iaaigdaa8aabaWdbiaadYeaa0WdaeaapeGaeyyeIu oaaOGaamyua8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGa am4va8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcceWG4bGbae badaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcceWG5bGbaebadaWg aaWcbaWdbiaadsgacaWGObGaamOCaaWdaeqaaaGcpeGaayjkaiaawM caamaabmaapaqaa8qadaGfWbqabSWdaeaapeGaamiAaiabg2da9iaa igdaa8aabaWdbiaadYeaa0WdaeaapeGaeyyeIuoaaOGaamyua8aada WgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaam4va8aadaWgaaWc baWdbiaadsgacaWGObaapaqabaGcpeGaam4Ca8aadaqhaaWcbaWdbi aadsgacaWGObaapaqaa8qacaaI0aaaaaGccaGLOaGaayzkaaGaeyOe I0cabaWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaWGObGaeyypa0 JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGccaWGrbWd amaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qacaWGxbWdamaaBa aaleaapeGaamizaiaadIgaa8aabeaaaOWdbiaawIcacaGLPaaadaqa daWdaeaapeWaaybCaeqal8aabaWdbiaadIgacqGH9aqpcaaIXaaapa qaa8qacaWGmbaan8aabaWdbiabggHiLdaakiaadgfapaWaaSbaaSqa a8qacaWGKbGaamiAaaWdaeqaaOWdbiaadEfapaWaaSbaaSqaa8qaca WGKbGaamiAaaWdaeqaaOWdbiaadohapaWaa0baaSqaa8qacaWGKbGa amiAaaWdaeaapeGaaGOmaaaak8aaceWG5bGbaebadaWgaaWcbaWdbi aadsgacaWGObGaamOCaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaa paqaa8qadaGfWbqabSWdaeaapeGaamiAaiabg2da9iaaigdaa8aaba WdbiaadYeaa0WdaeaapeGaeyyeIuoaaOGaamyua8aadaWgaaWcbaWd biaadsgacaWGObaapaqabaGcpeGaam4va8aadaWgaaWcbaWdbiaads gacaWGObaapaqabaGcceWG4bGbaebadaWgaaWcbaWdbiaadsgacaWG ObaapaqabaGcpeGaam4Ca8aadaqhaaWcbaWdbiaadsgacaWGObaapa qaa8qacaaIYaaaaaGccaGLOaGaayzkaaGaeyOeI0cabaWaaeWaa8aa baWdbmaawahabeWcpaqaa8qacaWGObGaeyypa0JaaGymaaWdaeaape Gaamitaaqdpaqaa8qacqGHris5aaGccaWGrbWdamaaBaaaleaapeGa amizaiaadIgaa8aabeaak8qacaWGxbWdamaaBaaaleaapeGaamizai aadIgaa8aabeaakiqadMhagaqeamaaBaaaleaapeGaamizaiaadIga caWGYbaapaqabaaak8qacaGLOaGaayzkaaWaaeWaa8aabaWdbmaawa habeWcpaqaa8qacaWGObGaeyypa0JaaGymaaWdaeaapeGaamitaaqd paqaa8qacqGHris5aaGccaWGrbWdamaaBaaaleaapeGaamizaiaadI gaa8aabeaak8qacaWGxbWdamaaBaaaleaapeGaamizaiaadIgaa8aa beaakiqadIhagaqeamaaDaaaleaapeGaamizaiaadIgaa8aabaWdbi aaikdaaaaakiaawIcacaGLPaaadaqadaWdaeaapeWaaybCaeqal8aa baWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaan8aabaWdbi abggHiLdaakiaadgfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqa aOWdbiaadEfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbi aadohapaWaa0baaSqaa8qacaWGKbGaamiAaaWdaeaapeGaaGinaaaa aOGaayjkaiaawMcaaiabgUcaRaqaamaabmaapaqaa8qadaGfWbqabS WdaeaapeGaamiAaiabg2da9iaaigdaa8aabaWdbiaadYeaa0Wdaeaa peGaeyyeIuoaaOGaamyua8aadaWgaaWcbaWdbiaadsgacaWGObaapa qabaGcpeGaam4va8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGc ceWG5bGbaebadaWgaaWcbaWdbiaadsgacaWGObGaamOCaaWdaeqaaa GcpeGaayjkaiaawMcaamaabmaapaqaa8qadaGfWbqabSWdaeaapeGa amiAaiabg2da9iaaigdaa8aabaWdbiaadYeaa0WdaeaapeGaeyyeIu oaaOGaamyua8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGa am4va8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcceWG4bGbae badaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaam4Ca8aadaqh aaWcbaWdbiaadsgacaWGObaapaqaa8qacaaIYaaaaaGccaGLOaGaay zkaaWdamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkaeaadaqadaWd aeaapeWaaybCaeqal8aabaWdbiaadIgacqGH9aqpcaaIXaaapaqaa8 qacaWGmbaan8aabaWdbiabggHiLdaakiaadgfapaWaaSbaaSqaa8qa caWGKbGaamiAaaWdaeqaaOWdbiaadEfapaWaaSbaaSqaa8qacaWGKb GaamiAaaWdaeqaaOWdbiaadohapaWaa0baaSqaa8qacaWGKbGaamiA aaWdaeaapeGaaGOmaaaaaOGaayjkaiaawMcaamaabmaapaqaa8qada GfWbqabSWdaeaapeGaamiAaiabg2da9iaaigdaa8aabaWdbiaadYea a0WdaeaapeGaeyyeIuoaaOGaamyua8aadaWgaaWcbaWdbiaadsgaca WGObaapaqabaGcpeGaam4va8aadaWgaaWcbaWdbiaadsgacaWGObaa paqabaGcceWG4bGbaebadaWgaaWcbaWdbiaadsgacaWGObaapaqaba aak8qacaGLOaGaayzkaaWaaeWaa8aabaWdbmaawahabeWcpaqaa8qa caWGObGaeyypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHri s5aaGccaWGrbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qa caWGxbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qacaWGZb WdamaaDaaaleaapeGaamizaiaadIgaa8aabaWdbiaaikdaaaGcpaGa bmyEayaaraWaaSbaaSqaa8qacaWGKbGaamiAaiaadkhaa8aabeaaaO WdbiaawIcacaGLPaaacqGHsislaeaadaqadaWdaeaapeWaaybCaeqa l8aabaWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaan8aaba WdbiabggHiLdaakiaadgfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWd aeqaaOWdbiaadEfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaO WdbiaadohapaWaa0baaSqaa8qacaWGKbGaamiAaaWdaeaapeGaaGOm aaaaaOGaayjkaiaawMcaamaabmaapaqaa8qadaGfWbqabSWdaeaape GaamiAaiabg2da9iaaigdaa8aabaWdbiaadYeaa0WdaeaapeGaeyye IuoaaOGaamyua8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpe Gaam4va8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaam4C a8aadaqhaaWcbaWdbiaadsgacaWGObaapaqaa8qacaaIYaaaaaGcca GLOaGaayzkaaWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaWGObGa eyypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGcca WGrbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qacaWGxbWd amaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qacaWGZbWdamaaDa aaleaapeGaamizaiaadIgaa8aabaWdbiaaikdaaaGcpaGabmyEayaa raWaaSbaaSqaa8qacaWGKbGaamiAaiaadkhaa8aabeaaaOWdbiaawI cacaGLPaaadaWccaWdaeaaaeaaaaaapeqaamaabmaapaqaa8qadaGf WbqabSWdaeaapeGaamiAaiabg2da9iaaigdaa8aabaWdbiaadYeaa0 WdaeaapeGaeyyeIuoaaOGaamyua8aadaWgaaWcbaWdbiaadsgacaWG ObaapaqabaGcpeGaam4va8aadaWgaaWcbaWdbiaadsgacaWGObaapa qabaaak8qacaGLOaGaayzkaaWaaeWaa8aabaWdbmaawahabeWcpaqa a8qacaWGObGaeyypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacq GHris5aaGccaWGrbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaa k8qacaWGxbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaakiqadI hagaqeamaaBaaaleaapeGaamizaiaadIgaa8aabeaaaOWdbiaawIca caGLPaaadaqadaWdaeaapeWaaybCaeqal8aabaWdbiaadIgacqGH9a qpcaaIXaaapaqaa8qacaWGmbaan8aabaWdbiabggHiLdaakiaadgfa paWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbiaadEfapaWaaS baaSqaa8qacaWGKbGaamiAaaWdaeqaaOGabmiEayaaraWaaSbaaSqa a8qacaWGKbGaamiAaaWdaeqaaOWdbiaadohapaWaa0baaSqaa8qaca WGKbGaamiAaaWdaeaapeGaaGOmaaaaaOGaayjkaiaawMcaaiabgkHi Taqaamaabmaapaqaa8qadaGfWbqabSWdaeaapeGaamiAaiabg2da9i aaigdaa8aabaWdbiaadYeaa0WdaeaapeGaeyyeIuoaaOGaamyua8aa daWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaam4va8aadaWgaa WcbaWdbiaadsgacaWGObaapaqabaaak8qacaGLOaGaayzkaaWaaeWa a8aabaWdbmaawahabeWcpaqaa8qacaWGObGaeyypa0JaaGymaaWdae aapeGaamitaaqdpaqaa8qacqGHris5aaGccaWGrbWdamaaBaaaleaa peGaamizaiaadIgaa8aabeaak8qacaWGxbWdamaaBaaaleaapeGaam izaiaadIgaa8aabeaakiqadIhagaqeamaaBaaaleaapeGaamizaiaa dIgaa8aabeaak8qacaWGZbWdamaaDaaaleaapeGaamizaiaadIgaa8 aabaWdbiaaikdaaaaakiaawIcacaGLPaaapaWaaWbaaSqabeaapeGa aGOmaaaakiabgkHiTaqaamaabmaapaqaa8qadaGfWbqabSWdaeaape GaamiAaiabg2da9iaaigdaa8aabaWdbiaadYeaa0WdaeaapeGaeyye IuoaaOGaamyua8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpe Gaam4va8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcceWG4bGb aebadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaak8qacaGLOaGaay zkaaWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeWaaybC aeqal8aabaWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaan8 aabaWdbiabggHiLdaakiaadgfapaWaaSbaaSqaa8qacaWGKbGaamiA aaWdaeqaaOWdbiaadEfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdae qaaOWdbiaadohapaWaa0baaSqaa8qacaWGKbGaamiAaaWdaeaapeGa aGinaaaaaOGaayjkaiaawMcaaiabgUcaRmaabmaapaqaa8qadaGfWb qabSWdaeaapeGaamiAaiabg2da9iaaigdaa8aabaWdbiaadYeaa0Wd aeaapeGaeyyeIuoaaOGaamyua8aadaWgaaWcbaWdbiaadsgacaWGOb aapaqabaGcpeGaam4va8aadaWgaaWcbaWdbiaadsgacaWGObaapaqa baGcceWG4bGbaebadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaak8 qacaGLOaGaayzkaaaabaWaaeWaa8aabaWdbmaawahabeWcpaqaa8qa caWGObGaeyypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHri s5aaGccaWGrbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qa caWGxbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qacaWGZb WdamaaDaaaleaapeGaamizaiaadIgaa8aabaWdbiaaikdaaaaakiaa wIcacaGLPaaadaqadaWdaeaapeWaaybCaeqal8aabaWdbiaadIgacq GH9aqpcaaIXaaapaqaa8qacaWGmbaan8aabaWdbiabggHiLdaakiaa dgfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbiaadEfapa WaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaOGabmiEayaaraWaaSba aSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbiaadohapaWaa0baaSqaa8 qacaWGKbGaamiAaaWdaeaapeGaaGOmaaaaaOGaayjkaiaawMcaaiab gUcaRaqaamaabmaapaqaa8qadaGfWbqabSWdaeaapeGaamiAaiabg2 da9iaaigdaa8aabaWdbiaadYeaa0WdaeaapeGaeyyeIuoaaOGaamyu a8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaam4va8aada WgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaam4Ca8aadaqhaaWc baWdbiaadsgacaWGObaapaqaa8qacaaIYaaaaaGccaGLOaGaayzkaa WaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaWGObGaeyypa0JaaGym aaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGccaWGrbWdamaaBa aaleaapeGaamizaiaadIgaa8aabeaak8qacaWGxbWdamaaBaaaleaa peGaamizaiaadIgaa8aabeaakiqadIhagaqeamaaBaaaleaapeGaam izaiaadIgaa8aabeaaaOWdbiaawIcacaGLPaaadaqadaWdaeaapeWa aybCaeqal8aabaWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qacaWGmb aan8aabaWdbiabggHiLdaakiaadgfapaWaaSbaaSqaa8qacaWGKbGa amiAaaWdaeqaaOWdbiaadEfapaWaaSbaaSqaa8qacaWGKbGaamiAaa WdaeqaaOGabmiEayaaraWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqa aOWdbiaadohapaWaa0baaSqaa8qacaWGKbGaamiAaaWdaeaapeGaaG OmaaaaaOGaayjkaiaawMcaaiabgkHiTaqaamaabmaapaqaa8qadaGf WbqabSWdaeaapeGaamiAaiabg2da9iaaigdaa8aabaWdbiaadYeaa0 WdaeaapeGaeyyeIuoaaOGaamyua8aadaWgaaWcbaWdbiaadsgacaWG ObaapaqabaGcpeGaam4va8aadaWgaaWcbaWdbiaadsgacaWGObaapa qabaGcpeGaam4Ca8aadaqhaaWcbaWdbiaadsgacaWGObaapaqaa8qa caaIYaaaaaGccaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaa GcdaqadaWdaeaapeWaaybCaeqal8aabaWdbiaadIgacqGH9aqpcaaI Xaaapaqaa8qacaWGmbaan8aabaWdbiabggHiLdaakiaadgfapaWaaS baaSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbiaadEfapaWaaSbaaSqa a8qacaWGKbGaamiAaaWdaeqaaOGabmiEayaaraWaa0baaSqaa8qaca WGKbGaamiAaaWdaeaapeGaaGOmaaaaaOGaayjkaiaawMcaaaaacaGL BbGaayzxaaaaaa@A2E6@

β 3 d h ) =[ ( h=1 L Q dh W dh )( h=1 L Q dh W dh x ¯ dh 2 )( h=1 L Q dh W dh s dh 2 y ¯ dhr ) ( h=1 L Q dh W dh )( h=1 L Q dh W dh x ¯ dh s dh 2 )( h=1 L Q dh W dh x ¯ dh y ¯ dhr ) ( h=1 L Q dh W dh x ¯ dh )( h=1 L Q dh W dh x ¯ dh )( h=1 L Q dh W dh s dh 2 y ¯ dhr )+ ( h=1 L Q dh W dh x ¯ dh )( h=1 L Q dh W dh s dh 2 )( h=1 L Q dh W dh x ¯ dh y ¯ dhr )+ ( h=1 L Q dh W dh y ¯ dhr )( h=1 L Q dh W dh x ¯ dh )( h=1 L Q dh W dh x ¯ dh s dh 2 ) ( h=1 L Q dh W dh y ¯ dhr )( h=1 L Q dh W dh s dh 2 )( h=1 L Q dh W dh x ¯ dh 2 ) ( h=1 L Q dh W dh )( h=1 L Q dh W dh x ¯ dh )( h=1 L Q dh W dh x ¯ dh s dh 2 ) ( h=1 L Q dh W dh ) ( h=1 L Q dh W dh x ¯ dh s dh 2 ) 2 ( h=1 L Q dh W dh x ¯ dh ) 2 ( h=1 L Q dh W dh s dh 4 )+( h=1 L Q dh W dh x ¯ dh ) ( h=1 L Q dh W dh s dh 2 )( h=1 L Q dh W dh x ¯ dh s dh 2 )+ ( h=1 L Q dh W dh s dh 2 )( h=1 L Q dh W dh x ¯ dh )( h=1 L Q dh W dh x ¯ dh s dh 2 ) ( h=1 L Q dh W dh s dh 2 ) 2 ( h=1 L Q dh W dh x ¯ dh 2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaG4maiaadsgapaWaaSbaaWqaa8qa caWGObaapaqabaWcpeGaaiykaaWdaeqaaOWdbiabg2da9maadmaaea qabeaadaqadaWdaeaapeWaaybCaeqal8aabaWdbiaadIgacqGH9aqp caaIXaaapaqaa8qacaWGmbaan8aabaWdbiabggHiLdaakiaadgfapa WaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbiaadEfapaWaaSba aSqaa8qacaWGKbGaamiAaaWdaeqaaaGcpeGaayjkaiaawMcaamaabm aapaqaa8qadaGfWbqabSWdaeaapeGaamiAaiabg2da9iaaigdaa8aa baWdbiaadYeaa0WdaeaapeGaeyyeIuoaaOGaamyua8aadaWgaaWcba WdbiaadsgacaWGObaapaqabaGcpeGaam4va8aadaWgaaWcbaWdbiaa dsgacaWGObaapaqabaGcceWG4bGbaebadaqhaaWcbaWdbiaadsgaca WGObaapaqaa8qacaaIYaaaaaGccaGLOaGaayzkaaWaaeWaa8aabaWd bmaawahabeWcpaqaa8qacaWGObGaeyypa0JaaGymaaWdaeaapeGaam itaaqdpaqaa8qacqGHris5aaGccaWGrbWdamaaBaaaleaapeGaamiz aiaadIgaa8aabeaak8qacaWGxbWdamaaBaaaleaapeGaamizaiaadI gaa8aabeaak8qacaWGZbWdamaaDaaaleaapeGaamizaiaadIgaa8aa baWdbiaaikdaaaGcpaGabmyEayaaraWaaSbaaSqaa8qacaWGKbGaam iAaiaadkhaa8aabeaaaOWdbiaawIcacaGLPaaacqGHsislaeaadaqa daWdaeaapeWaaybCaeqal8aabaWdbiaadIgacqGH9aqpcaaIXaaapa qaa8qacaWGmbaan8aabaWdbiabggHiLdaakiaadgfapaWaaSbaaSqa a8qacaWGKbGaamiAaaWdaeqaaOWdbiaadEfapaWaaSbaaSqaa8qaca WGKbGaamiAaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qa daGfWbqabSWdaeaapeGaamiAaiabg2da9iaaigdaa8aabaWdbiaadY eaa0WdaeaapeGaeyyeIuoaaOGaamyua8aadaWgaaWcbaWdbiaadsga caWGObaapaqabaGcpeGaam4va8aadaWgaaWcbaWdbiaadsgacaWGOb aapaqabaGcceWG4bGbaebadaWgaaWcbaWdbiaadsgacaWGObaapaqa baGcpeGaam4Ca8aadaqhaaWcbaWdbiaadsgacaWGObaapaqaa8qaca aIYaaaaaGccaGLOaGaayzkaaWaaeWaa8aabaWdbmaawahabeWcpaqa a8qacaWGObGaeyypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacq GHris5aaGccaWGrbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaa k8qacaWGxbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaakiqadI hagaqeamaaBaaaleaapeGaamizaiaadIgaa8aabeaakiqadMhagaqe amaaBaaaleaapeGaamizaiaadIgacaWGYbaapaqabaaak8qacaGLOa GaayzkaaGaeyOeI0cabaWaaeWaa8aabaWdbmaawahabeWcpaqaa8qa caWGObGaeyypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHri s5aaGccaWGrbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qa caWGxbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaakiqadIhaga qeamaaBaaaleaapeGaamizaiaadIgaa8aabeaaaOWdbiaawIcacaGL PaaadaqadaWdaeaapeWaaybCaeqal8aabaWdbiaadIgacqGH9aqpca aIXaaapaqaa8qacaWGmbaan8aabaWdbiabggHiLdaakiaadgfapaWa aSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbiaadEfapaWaaSbaaS qaa8qacaWGKbGaamiAaaWdaeqaaOGabmiEayaaraWaaSbaaSqaa8qa caWGKbGaamiAaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8 qadaGfWbqabSWdaeaapeGaamiAaiabg2da9iaaigdaa8aabaWdbiaa dYeaa0WdaeaapeGaeyyeIuoaaOGaamyua8aadaWgaaWcbaWdbiaads gacaWGObaapaqabaGcpeGaam4va8aadaWgaaWcbaWdbiaadsgacaWG ObaapaqabaGcpeGaam4Ca8aadaqhaaWcbaWdbiaadsgacaWGObaapa qaa8qacaaIYaaaaOWdaiqadMhagaqeamaaBaaaleaapeGaamizaiaa dIgacaWGYbaapaqabaaak8qacaGLOaGaayzkaaGaey4kaScabaWaae Waa8aabaWdbmaawahabeWcpaqaa8qacaWGObGaeyypa0JaaGymaaWd aeaapeGaamitaaqdpaqaa8qacqGHris5aaGccaWGrbWdamaaBaaale aapeGaamizaiaadIgaa8aabeaak8qacaWGxbWdamaaBaaaleaapeGa amizaiaadIgaa8aabeaakiqadIhagaqeamaaBaaaleaapeGaamizai aadIgaa8aabeaaaOWdbiaawIcacaGLPaaadaqadaWdaeaapeWaaybC aeqal8aabaWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaan8 aabaWdbiabggHiLdaakiaadgfapaWaaSbaaSqaa8qacaWGKbGaamiA aaWdaeqaaOWdbiaadEfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdae qaaOWdbiaadohapaWaa0baaSqaa8qacaWGKbGaamiAaaWdaeaapeGa aGOmaaaaaOGaayjkaiaawMcaamaabmaapaqaa8qadaGfWbqabSWdae aapeGaamiAaiabg2da9iaaigdaa8aabaWdbiaadYeaa0WdaeaapeGa eyyeIuoaaOGaamyua8aadaWgaaWcbaWdbiaadsgacaWGObaapaqaba GcpeGaam4va8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcceWG 4bGbaebadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcceWG5bGbae badaWgaaWcbaWdbiaadsgacaWGObGaamOCaaWdaeqaaaGcpeGaayjk aiaawMcaaiabgUcaRaqaamaabmaapaqaa8qadaGfWbqabSWdaeaape GaamiAaiabg2da9iaaigdaa8aabaWdbiaadYeaa0WdaeaapeGaeyye IuoaaOGaamyua8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpe Gaam4va8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcceWG5bGb aebadaWgaaWcbaWdbiaadsgacaWGObGaamOCaaWdaeqaaaGcpeGaay jkaiaawMcaamaabmaapaqaa8qadaGfWbqabSWdaeaapeGaamiAaiab g2da9iaaigdaa8aabaWdbiaadYeaa0WdaeaapeGaeyyeIuoaaOGaam yua8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaam4va8aa daWgaaWcbaWdbiaadsgacaWGObaapaqabaGcceWG4bGbaebadaWgaa WcbaWdbiaadsgacaWGObaapaqabaaak8qacaGLOaGaayzkaaWaaeWa a8aabaWdbmaawahabeWcpaqaa8qacaWGObGaeyypa0JaaGymaaWdae aapeGaamitaaqdpaqaa8qacqGHris5aaGccaWGrbWdamaaBaaaleaa peGaamizaiaadIgaa8aabeaak8qacaWGxbWdamaaBaaaleaapeGaam izaiaadIgaa8aabeaakiqadIhagaqeamaaBaaaleaapeGaamizaiaa dIgaa8aabeaak8qacaWGZbWdamaaDaaaleaapeGaamizaiaadIgaa8 aabaWdbiaaikdaaaaakiaawIcacaGLPaaacqGHsislaeaadaqadaWd aeaapeWaaybCaeqal8aabaWdbiaadIgacqGH9aqpcaaIXaaapaqaa8 qacaWGmbaan8aabaWdbiabggHiLdaakiaadgfapaWaaSbaaSqaa8qa caWGKbGaamiAaaWdaeqaaOWdbiaadEfapaWaaSbaaSqaa8qacaWGKb GaamiAaaWdaeqaaOGabmyEayaaraWaaSbaaSqaa8qacaWGKbGaamiA aiaadkhaa8aabeaaaOWdbiaawIcacaGLPaaadaqadaWdaeaapeWaay bCaeqal8aabaWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaa n8aabaWdbiabggHiLdaakiaadgfapaWaaSbaaSqaa8qacaWGKbGaam iAaaWdaeqaaOWdbiaadEfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWd aeqaaOWdbiaadohapaWaa0baaSqaa8qacaWGKbGaamiAaaWdaeaape GaaGOmaaaaaOGaayjkaiaawMcaamaabmaapaqaa8qadaGfWbqabSWd aeaapeGaamiAaiabg2da9iaaigdaa8aabaWdbiaadYeaa0Wdaeaape GaeyyeIuoaaOGaamyua8aadaWgaaWcbaWdbiaadsgacaWGObaapaqa baGcpeGaam4va8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcce WG4bGbaebadaqhaaWcbaWdbiaadsgacaWGObaapaqaa8qacaaIYaaa aaGccaGLOaGaayzkaaWaaSGaa8aabaaabaaaaaWdbeaadaqadaWdae aapeWaaybCaeqal8aabaWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qa caWGmbaan8aabaWdbiabggHiLdaakiaadgfapaWaaSbaaSqaa8qaca WGKbGaamiAaaWdaeqaaOWdbiaadEfapaWaaSbaaSqaa8qacaWGKbGa amiAaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qadaGfWb qabSWdaeaapeGaamiAaiabg2da9iaaigdaa8aabaWdbiaadYeaa0Wd aeaapeGaeyyeIuoaaOGaamyua8aadaWgaaWcbaWdbiaadsgacaWGOb aapaqabaGcpeGaam4va8aadaWgaaWcbaWdbiaadsgacaWGObaapaqa baGcceWG4bGbaebadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaak8 qacaGLOaGaayzkaaWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaWG ObGaeyypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aa GccaWGrbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qacaWG xbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaakiqadIhagaqeam aaBaaaleaapeGaamizaiaadIgaa8aabeaak8qacaWGZbWdamaaDaaa leaapeGaamizaiaadIgaa8aabaWdbiaaikdaaaaakiaawIcacaGLPa aacqGHsislaeaadaqadaWdaeaapeWaaybCaeqal8aabaWdbiaadIga cqGH9aqpcaaIXaaapaqaa8qacaWGmbaan8aabaWdbiabggHiLdaaki aadgfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbiaadEfa paWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaGcpeGaayjkaiaawM caamaabmaapaqaa8qadaGfWbqabSWdaeaapeGaamiAaiabg2da9iaa igdaa8aabaWdbiaadYeaa0WdaeaapeGaeyyeIuoaaOGaamyua8aada WgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaam4va8aadaWgaaWc baWdbiaadsgacaWGObaapaqabaGcceWG4bGbaebadaWgaaWcbaWdbi aadsgacaWGObaapaqabaGcpeGaam4Ca8aadaqhaaWcbaWdbiaadsga caWGObaapaqaa8qacaaIYaaaaaGccaGLOaGaayzkaaWdamaaCaaale qabaWdbiaaikdaaaGccqGHsislaeaadaqadaWdaeaapeWaaybCaeqa l8aabaWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaan8aaba WdbiabggHiLdaakiaadgfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWd aeqaaOWdbiaadEfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaO GabmiEayaaraWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaGcpeGa ayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aaba WdbmaawahabeWcpaqaa8qacaWGObGaeyypa0JaaGymaaWdaeaapeGa amitaaqdpaqaa8qacqGHris5aaGccaWGrbWdamaaBaaaleaapeGaam izaiaadIgaa8aabeaak8qacaWGxbWdamaaBaaaleaapeGaamizaiaa dIgaa8aabeaak8qacaWGZbWdamaaDaaaleaapeGaamizaiaadIgaa8 aabaWdbiaaisdaaaaakiaawIcacaGLPaaacqGHRaWkdaqadaWdaeaa peWaaybCaeqal8aabaWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qaca WGmbaan8aabaWdbiabggHiLdaakiaadgfapaWaaSbaaSqaa8qacaWG KbGaamiAaaWdaeqaaOWdbiaadEfapaWaaSbaaSqaa8qacaWGKbGaam iAaaWdaeqaaOGabmiEayaaraWaaSbaaSqaa8qacaWGKbGaamiAaaWd aeqaaaGcpeGaayjkaiaawMcaaaqaamaabmaapaqaa8qadaGfWbqabS WdaeaapeGaamiAaiabg2da9iaaigdaa8aabaWdbiaadYeaa0Wdaeaa peGaeyyeIuoaaOGaamyua8aadaWgaaWcbaWdbiaadsgacaWGObaapa qabaGcpeGaam4va8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGc peGaam4Ca8aadaqhaaWcbaWdbiaadsgacaWGObaapaqaa8qacaaIYa aaaaGccaGLOaGaayzkaaWaaeWaa8aabaWdbmaawahabeWcpaqaa8qa caWGObGaeyypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHri s5aaGccaWGrbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qa caWGxbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaakiqadIhaga qeamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qacaWGZbWdamaa DaaaleaapeGaamizaiaadIgaa8aabaWdbiaaikdaaaaakiaawIcaca GLPaaacqGHRaWkaeaadaqadaWdaeaapeWaaybCaeqal8aabaWdbiaa dIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaan8aabaWdbiabggHiLd aakiaadgfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbiaa dEfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbiaadohapa Waa0baaSqaa8qacaWGKbGaamiAaaWdaeaapeGaaGOmaaaaaOGaayjk aiaawMcaamaabmaapaqaa8qadaGfWbqabSWdaeaapeGaamiAaiabg2 da9iaaigdaa8aabaWdbiaadYeaa0WdaeaapeGaeyyeIuoaaOGaamyu a8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaam4va8aada WgaaWcbaWdbiaadsgacaWGObaapaqabaGcceWG4bGbaebadaWgaaWc baWdbiaadsgacaWGObaapaqabaaak8qacaGLOaGaayzkaaWaaeWaa8 aabaWdbmaawahabeWcpaqaa8qacaWGObGaeyypa0JaaGymaaWdaeaa peGaamitaaqdpaqaa8qacqGHris5aaGccaWGrbWdamaaBaaaleaape GaamizaiaadIgaa8aabeaak8qacaWGxbWdamaaBaaaleaapeGaamiz aiaadIgaa8aabeaakiqadIhagaqeamaaBaaaleaapeGaamizaiaadI gaa8aabeaak8qacaWGZbWdamaaDaaaleaapeGaamizaiaadIgaa8aa baWdbiaaikdaaaaakiaawIcacaGLPaaacqGHsislaeaadaqadaWdae aapeWaaybCaeqal8aabaWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qa caWGmbaan8aabaWdbiabggHiLdaakiaadgfapaWaaSbaaSqaa8qaca WGKbGaamiAaaWdaeqaaOWdbiaadEfapaWaaSbaaSqaa8qacaWGKbGa amiAaaWdaeqaaOWdbiaadohapaWaa0baaSqaa8qacaWGKbGaamiAaa WdaeaapeGaaGOmaaaaaOGaayjkaiaawMcaa8aadaahaaWcbeqaa8qa caaIYaaaaOWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaWGObGaey ypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGccaWG rbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qacaWGxbWdam aaBaaaleaapeGaamizaiaadIgaa8aabeaakiqadIhagaqeamaaDaaa leaapeGaamizaiaadIgaa8aabaWdbiaaikdaaaaakiaawIcacaGLPa aaaaGaay5waiaaw2faaaaa@AFD6@

Bias and variance of the proposed estimator

From the proposed estimator above

Let

e 0 = ( y ¯ dh * Y ¯ dh ) Y ¯ dh W dh * = W dh + Q dh W dh ( λ 1 + λ 2 x ¯ dh + λ 3 s dh 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGLbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da 9maalaaapaqaa8qadaqadaWdaeaapeGabmyEayaaraWdamaaDaaale aapeGaamizaiaadIgaa8aabaWdbiaacQcaaaGccqGHsislceWGzbGb aebapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaGcpeGaayjkai aawMcaaaWdaeaapeGabmywayaaraWdamaaBaaaleaapeGaamizaiaa dIgaa8aabeaaaaaakeaapeGaeyO0H4Taam4va8aadaqhaaWcbaWdbi aadsgacaWGObaapaqaa8qacaGGQaaaaOGaeyypa0Jaam4va8aadaWg aaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaey4kaSIaamyua8aada WgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGaam4va8aadaWgaaWc baWdbiaadsgacaWGObaapaqabaGcpeWaaeWaa8aabaWdbiabeU7aS9 aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHRaWkcqaH7oaBpaWa aSbaaSqaa8qacaaIYaaapaqabaGcpeGabmiEayaaraWdamaaBaaale aapeGaamizaiaadIgaa8aabeaak8qacqGHRaWkcqaH7oaBpaWaaSba aSqaa8qacaaIZaaapaqabaGcpeGaam4Ca8aadaqhaaWcbaWdbiaads gacaWGObaapaqaa8qacaaIYaaaaaGccaGLOaGaayzkaaaaaaa@6CC1@ ,

e 1 = ( x ¯ dh X ¯ dh ) X ¯ dh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeWaaeWaa8aabaGabmiEayaaraWaaSbaaSqaa8qacaWGKb GaamiAaaWdaeqaaOWdbiabgkHiTiqadIfagaqea8aadaWgaaWcbaWd biaadsgacaWGObaapaqabaaak8qacaGLOaGaayzkaaaapaqaa8qace WGybGbaebapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaaaaaa@46D4@ ,

e 2 = ( s xdh 2 S xdh 2 ) S xdh 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeWaaeWaa8aabaWdbiaadohapaWaa0baaSqaa8qacaWG4b GaamizaiaadIgaa8aabaWdbiaaikdaaaGccqGHsislcaWGtbWdamaa DaaaleaapeGaamiEaiaadsgacaWGObaapaqaa8qacaaIYaaaaaGcca GLOaGaayzkaaaapaqaa8qacaWGtbWdamaaDaaaleaapeGaamiEaiaa dsgacaWGObaapaqaa8qacaaIYaaaaaaaaaa@4BDB@

Where

y ¯ dh * = h=1 L y dh * n dh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmyEayaaraWdamaaDaaaleaapeGaamizaiaadIgaa8aabaWdbiaa cQcaaaGccqGH9aqpdaWcaaWdaeaapeWaaubmaeqal8aabaWdbiaadI gacqGH9aqpcaaIXaaapaqaa8qacaWGmbaan8aabaWdbiabggHiLdaa kiaadMhapaWaa0baaSqaa8qacaWGKbGaamiAaaWdaeaapeGaaiOkaa aaaOWdaeaapeGaamOBa8aadaWgaaWcbaWdbiaadsgacaWGObaapaqa baaaaaaa@499A@ , x ¯ dh = h=1 L x dh n dh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiEayaaraWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qa cqGH9aqpdaWcaaWdaeaapeWaaubmaeqal8aabaWdbiaadIgacqGH9a qpcaaIXaaapaqaa8qacaWGmbaan8aabaWdbiabggHiLdaakiaadIha paWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaGcbaWdbiaad6gapa WaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaaaaaa@481B@ , X ¯ dh = h=1 L X dh N dh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiwayaaraWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qa cqGH9aqpdaWcaaWdaeaapeWaaubmaeqal8aabaWdbiaadIgacqGH9a qpcaaIXaaapaqaa8qacaWGmbaan8aabaWdbiabggHiLdaakiaadIfa paWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaGcbaWdbiaad6eapa WaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaaaaaa@47BB@ , s dh 2 = h=1 L ( x ¯ dh X ¯ dh ) 2 n dh 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Ca8aadaqhaaWcbaWdbiaadsgacaWGObaapaqaa8qacaaIYaaa aOGaeyypa0ZaaSaaa8aabaWdbmaavadabeWcpaqaa8qacaWGObGaey ypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGcdaqa daWdaeaapeGabmiEayaaraWdamaaBaaaleaapeGaamizaiaadIgaa8 aabeaak8qacqGHsislceWGybGbaebapaWaaSbaaSqaa8qacaWGKbGa amiAaaWdaeqaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qaca aIYaaaaaGcpaqaa8qacaWGUbWdamaaBaaaleaapeGaamizaiaadIga a8aabeaak8qacqGHsislcaaIXaaaaaaa@519A@  and  S dh 2 = h=1 L ( X ¯ dh X ¯ ) 2 N dh 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaqhaaWcbaWdbiaadsgacaWGObaapaqaa8qacaaIYaaa aOGaeyypa0ZaaSaaa8aabaWdbmaavadabeWcpaqaa8qacaWGObGaey ypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGcdaqa daWdaeaapeGabmiwayaaraWdamaaBaaaleaapeGaamizaiaadIgaa8 aabeaak8qacqGHsislceWGybGbaebaaiaawIcacaGLPaaapaWaaWba aSqabeaapeGaaGOmaaaaaOWdaeaapeGaamOta8aadaWgaaWcbaWdbi aadsgacaWGObaapaqabaGcpeGaeyOeI0IaaGymaaaaaaa@4EF0@

Also,

y ¯ dh * = Y ¯ dh ( 1+ e 0 ) x ¯ dh = X ¯ dh ( 1+ e 1 ) s xdh 2 = S xdh 2 ( 1+ e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qaceWG5bGbaebapaWaa0baaSqaa8qacaWGKbGaamiAaaWdaeaa peGaaiOkaaaakiabg2da9iqadMfagaqea8aadaWgaaWcbaWdbiaads gacaWGObaapaqabaGcpeWaaeWaa8aabaWdbiaaigdacqGHRaWkcaWG LbWdamaaBaaaleaapeGaaGimaaWdaeqaaaGcpeGaayjkaiaawMcaaa qaaiqadIhagaqea8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGc peGaeyypa0JabmiwayaaraWdamaaBaaaleaapeGaamizaiaadIgaa8 aabeaak8qadaqadaWdaeaapeGaaGymaiabgUcaRiaadwgapaWaaSba aSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaaabaGaam4Ca8 aadaqhaaWcbaWdbiaadIhacaWGKbGaamiAaaWdaeaapeGaaGOmaaaa kiabg2da9iaadofapaWaa0baaSqaa8qacaWG4bGaamizaiaadIgaa8 aabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaGymaiabgUcaRiaadwga paWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaaaaa a@6227@

Let

E[ e 0 2 ]= Var( y ¯ dh * ) Y ¯ dh 2 =( 1 n dh 1 N dh ) C y dh 2 + ( K dh 1 ) n dh2 W dh2 C ydh2 2 =( 1 n dh 1 N dh ) S ydh 2 Y ¯ dh 2 + ( K dh 1 ) n dh Y ¯ dh 2 W dh2 S ydh2 2 E[ e 1 2 ]= Var( x ¯ dh ) X ¯ dh 2 =( 1 n dh 1 N dh ) C xdh 2 =( 1 n dh 1 N dh ) S xdh 2 X ¯ dh 2 E[ e 2 2 ]= Var( s xdh 2 ) S xd 2 =( 1 n dh 1 N dh ) S xdh 4 S xdh 2 =( 1 n dh 1 N dh ) S xdh 2 E[ e 0 e 1 ]= COV( x ¯ dh, y ¯ dh * ) X ¯ dh Y ¯ dh = 1 X ¯ dh Y ¯ dh [ C( E[ x ¯ dh ],E[ y ¯ dh * ] ) ] =( 1 n dh 1 N dh ) ρ xy C ydh C xdh = 1 X ¯ dh Y ¯ dh ( 1 n dh 1 N dh ) ρ xy S xdh S ydh E[ e 0 ]=E[ e 1 ]=E[ e 2 ]=0 E[ e 1 e 2 ]=( 1 n dh 1 N dh ) C xdh λ 03 =( 1 n dh 1 N dh ) S xdh X ¯ dh λ 03 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGfbWaamWaa8aabaWdbiaadwgapaWaa0baaSqaa8qacaaI Waaapaqaa8qacaaIYaaaaaGccaGLBbGaayzxaaGaeyypa0ZaaSaaa8 aabaWdbiaadAfacaWGHbGaamOCamaabmaapaqaaiqadMhagaqeamaa DaaaleaapeGaamizaiaadIgaa8aabaWdbiaacQcaaaaakiaawIcaca GLPaaaa8aabaGabmywayaaraWaa0baaSqaa8qacaWGKbGaamiAaaWd aeaapeGaaGOmaaaaaaGccqGH9aqpdaqadaWdaeaapeWaaSaaa8aaba Wdbiaaigdaa8aabaWdbiaad6gapaWaaSbaaSqaa8qacaWGKbGaamiA aaWdaeqaaaaak8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaape GaamOta8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaaGcpeGa ayjkaiaawMcaaiaadoeapaWaa0baaSqaa8qacaWG5bWdamaaBaaame aapeGaamizaiaadIgaa8aabeaaaSqaa8qacaaIYaaaaOGaey4kaSYa aSaaa8aabaWdbmaabmaapaqaa8qacaWGlbWdamaaBaaaleaapeGaam izaiaadIgaa8aabeaak8qacqGHsislcaaIXaaacaGLOaGaayzkaaaa paqaa8qacaWGUbWdamaaBaaaleaapeGaamizaiaadIgacaaIYaaapa qabaaaaOWdbiaadEfapaWaaSbaaSqaa8qacaWGKbGaamiAaiaaikda a8aabeaak8qacaWGdbWdamaaDaaaleaapeGaamyEaiaadsgacaWGOb GaaGOmaaWdaeaapeGaaGOmaaaaaOWdaeaapeGaeyypa0ZaaeWaa8aa baWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGUbWdamaaBaaale aapeGaamizaiaadIgaa8aabeaaaaGcpeGaeyOeI0YaaSaaa8aabaWd biaaigdaa8aabaWdbiaad6eapaWaaSbaaSqaa8qacaWGKbGaamiAaa WdaeqaaaaaaOWdbiaawIcacaGLPaaadaWcaaWdaeaapeGaam4ua8aa daqhaaWcbaWdbiaadMhacaWGKbGaamiAaaWdaeaapeGaaGOmaaaaaO WdaeaapeGabmywayaaraWdamaaDaaaleaapeGaamizaiaadIgaa8aa baWdbiaaikdaaaaaaOGaey4kaSYaaSaaa8aabaWdbmaabmaapaqaa8 qacaWGlbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qacqGH sislcaaIXaaacaGLOaGaayzkaaaapaqaa8qacaWGUbWdamaaBaaale aapeGaamizaiaadIgaa8aabeaak8qaceWGzbGbaebapaWaa0baaSqa a8qacaWGKbGaamiAaaWdaeaapeGaaGOmaaaaaaGccaWGxbWdamaaBa aaleaapeGaamizaiaadIgacaaIYaaapaqabaGcpeGaam4ua8aadaqh aaWcbaWdbiaadMhacaWGKbGaamiAaiaaikdaa8aabaWdbiaaikdaaa aak8aabaWdbiaadweadaWadaWdaeaapeGaamyza8aadaqhaaWcbaWd biaaigdaa8aabaWdbiaaikdaaaaakiaawUfacaGLDbaacqGH9aqpda WcaaWdaeaapeGaamOvaiaadggacaWGYbWaaeWaa8aabaGabmiEayaa raWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaGcpeGaayjkaiaawM caaaWdaeaaceWGybGbaebadaqhaaWcbaWdbiaadsgacaWGObaapaqa a8qacaaIYaaaaaaakiabg2da9maabmaapaqaa8qadaWcaaWdaeaape GaaGymaaWdaeaapeGaamOBa8aadaWgaaWcbaWdbiaadsgacaWGObaa paqabaaaaOWdbiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qaca WGobWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaaaaaak8qacaGL OaGaayzkaaGaam4qa8aadaqhaaWcbaWdbiaadIhacaWGKbGaamiAaa WdaeaapeGaaGOmaaaakiabg2da9maabmaapaqaa8qadaWcaaWdaeaa peGaaGymaaWdaeaapeGaamOBa8aadaWgaaWcbaWdbiaadsgacaWGOb aapaqabaaaaOWdbiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qa caWGobWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaaaaaak8qaca GLOaGaayzkaaWaaSaaa8aabaWdbiaadofapaWaa0baaSqaa8qacaWG 4bGaamizaiaadIgaa8aabaWdbiaaikdaaaaak8aabaGabmiwayaara Waa0baaSqaa8qacaWGKbGaamiAaaWdaeaapeGaaGOmaaaaaaaakeaa caWGfbWaamWaa8aabaWdbiaadwgapaWaa0baaSqaa8qacaaIYaaapa qaa8qacaaIYaaaaaGccaGLBbGaayzxaaGaeyypa0ZaaSaaa8aabaWd biaadAfacaWGHbGaamOCamaabmaapaqaa8qacaWGZbWdamaaDaaale aapeGaamiEaiaadsgacaWGObaapaqaa8qacaaIYaaaaaGccaGLOaGa ayzkaaaapaqaa8qacaWGtbWdamaaDaaaleaapeGaamiEaiaadsgaa8 aabaWdbiaaikdaaaaaaOGaeyypa0ZaaeWaa8aabaWdbmaalaaapaqa a8qacaaIXaaapaqaa8qacaWGUbWdamaaBaaaleaapeGaamizaiaadI gaa8aabeaaaaGcpeGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWd biaad6eapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaaaaOWdbi aawIcacaGLPaaadaWcaaWdaeaapeGaam4ua8aadaqhaaWcbaWdbiaa dIhacaWGKbGaamiAaaWdaeaapeGaaGinaaaaaOWdaeaapeGaam4ua8 aadaqhaaWcbaWdbiaadIhacaWGKbGaamiAaaWdaeaapeGaaGOmaaaa aaGccqGH9aqpdaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aaba Wdbiaad6gapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaaak8qa cqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOta8aadaWgaa WcbaWdbiaadsgacaWGObaapaqabaaaaaGcpeGaayjkaiaawMcaaiaa dofapaWaa0baaSqaa8qacaWG4bGaamizaiaadIgaa8aabaWdbiaaik daaaaak8aabaWdbiaadweadaWadaWdaeaapeGaamyza8aadaWgaaWc baWdbiaaicdaa8aabeaak8qacaWGLbWdamaaBaaaleaapeGaaGymaa WdaeqaaaGcpeGaay5waiaaw2faaiabg2da9maalaaapaqaa8qacaWG dbGaam4taiaadAfadaqadaWdaeaapeGabmiEayaaraWdamaaBaaale aapeGaamizaiaadIgacaGGSaaapaqabaGcpeGabmyEayaaraWdamaa DaaaleaapeGaamizaiaadIgaa8aabaWdbiaacQcaaaaakiaawIcaca GLPaaaa8aabaWdbiqadIfagaqea8aadaWgaaWcbaWdbiaadsgacaWG ObaapaqabaGcpeGabmywayaaraWdamaaBaaaleaapeGaamizaiaadI gaa8aabeaaaaGcpeGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWd biqadIfagaqea8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpe GabmywayaaraWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaaaaGc peWaamWaa8aabaWdbiaadoeadaqadaWdaeaapeGaamyramaadmaapa qaa8qaceWG4bGbaebapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqa aaGcpeGaay5waiaaw2faaiaacYcacaWGfbWaamWaa8aabaWdbiqadM hagaqea8aadaqhaaWcbaWdbiaadsgacaWGObaapaqaa8qacaGGQaaa aaGccaGLBbGaayzxaaaacaGLOaGaayzkaaaacaGLBbGaayzxaaaaba Gaeyypa0ZaaeWaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qa caWGUbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaaaaGcpeGaey OeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaad6eapaWaaSbaaSqa a8qacaWGKbGaamiAaaWdaeqaaaaaaOWdbiaawIcacaGLPaaacqaHbp GCpaWaaSbaaSqaa8qacaWG4bGaamyEaaWdaeqaaOWdbiaadoeapaWa aSbaaSqaa8qacaWG5bGaamizaiaadIgaa8aabeaak8qacaWGdbWdam aaBaaaleaapeGaamiEaiaadsgacaWGObaapaqabaaakeaapeGaeyyp a0ZaaSaaa8aabaWdbiaaigdaa8aabaGabmiwayaaraWaaSbaaSqaa8 qacaWGKbGaamiAaaWdaeqaaOGabmywayaaraWaaSbaaSqaa8qacaWG KbGaamiAaaWdaeqaaaaak8qadaqadaWdaeaapeWaaSaaa8aabaWdbi aaigdaa8aabaWdbiaad6gapaWaaSbaaSqaa8qacaWGKbGaamiAaaWd aeqaaaaak8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaam Ota8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaaGcpeGaayjk aiaawMcaaiabeg8aY9aadaWgaaWcbaWdbiaadIhacaWG5baapaqaba GcpeGaam4ua8aadaWgaaWcbaWdbiaadIhacaWGKbGaamiAaaWdaeqa aOWdbiaadofapaWaaSbaaSqaa8qacaWG5bGaamizaiaadIgaa8aabe aaaOqaa8qacqGH0icxcaWGfbWaamWaa8aabaWdbiaadwgapaWaaSba aSqaa8qacaaIWaaapaqabaaak8qacaGLBbGaayzxaaGaeyypa0Jaam yramaadmaapaqaa8qacaWGLbWdamaaBaaaleaapeGaaGymaaWdaeqa aaGcpeGaay5waiaaw2faaiabg2da9iaadweadaWadaWdaeaapeGaam yza8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawUfacaGLDbaa cqGH9aqpcaaIWaaabaWdaiaadweadaWadaqaaiaadwgadaWgaaWcba GaaGymaaqabaGccaWGLbWaaSbaaSqaaiaaikdaaeqaaaGccaGLBbGa ayzxaaGaeyypa0ZaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGUbWaaS baaSqaaiaadsgacaWGObaabeaaaaGccqGHsisldaWcaaqaaiaaigda aeaacaWGobWaaSbaaSqaaiaadsgacaWGObaabeaaaaaakiaawIcaca GLPaaacaWGdbWaaSbaaSqaaiaadIhacaWGKbGaamiAaaqabaGccqaH 7oaBdaWgaaWcbaGaaGimaiaaiodaaeqaaOGaeyypa0ZaaeWaaeaada WcaaqaaiaaigdaaeaacaWGUbWaaSbaaSqaaiaadsgacaWGObaabeaa aaGccqGHsisldaWcaaqaaiaaigdaaeaacaWGobWaaSbaaSqaaiaads gacaWGObaabeaaaaaakiaawIcacaGLPaaadaWcaaqaaiaadofadaWg aaWcbaGaamiEaiaadsgacaWGObaabeaaaOqaaiqadIfagaqeamaaBa aaleaacaWGKbGaamiAaaqabaaaaOGaeq4UdW2aaSbaaSqaaiaaicda caaIZaaabeaaaaaa@C1EE@

where

λ rs = μ rs μ 20 r/2 μ 02 s/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaamOCaiaadohaa8aabeaak8qacqGH 9aqpdaWcaaWdaeaapeGaeqiVd02damaaBaaaleaapeGaamOCaiaado haa8aabeaaaOqaa8qacqaH8oqBpaWaa0baaSqaa8qacaaIYaGaaGim aaWdaeaapeGaamOCaiaac+cacaaIYaaaaOGaeqiVd02damaaDaaale aapeGaaGimaiaaikdaa8aabaWdbiaadohacaGGVaGaaGOmaaaaaaaa aa@4C98@

And

μ rs = 1 N dh 1 i=1 N ( Y dhi Y ¯ dh ) r ( X dhi X ¯ dh ) s μ 20 = S ydh 2 μ 02 = S xdh 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacqaH8oqBpaWaaSbaaSqaa8qacaWGYbGaam4CaaWdaeqaaOWd biabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaWGobWdamaaBa aaleaapeGaamizaiaadIgaa8aabeaak8qacqGHsislcaaIXaaaamaa wahabeWcpaqaa8qacaWGPbGaeyypa0JaaGymaaWdaeaapeGaamOtaa qdpaqaa8qacqGHris5aaGcdaqadaWdaeaapeGaamywa8aadaWgaaWc baWdbiaadsgacaWGObGaamyAaaWdaeqaaOWdbiabgkHiT8aaceWGzb GbaebadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaak8qacaGLOaGa ayzkaaWdamaaCaaaleqabaWdbiaadkhaaaGcdaqadaWdaeaapeGaam iwa8aadaWgaaWcbaWdbiaadsgacaWGObGaamyAaaWdaeqaaOWdbiab gkHiT8aaceWGybGbaebadaWgaaWcbaWdbiaadsgacaWGObaapaqaba aak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaadohaaaaak8aa baWdbiabeY7aT9aadaWgaaWcbaWdbiaaikdacaaIWaaapaqabaGcpe Gaeyypa0Jaam4ua8aadaqhaaWcbaWdbiaadMhacaWGKbGaamiAaaWd aeaapeGaaGOmaaaaaOWdaeaapeGaeqiVd02damaaBaaaleaapeGaaG imaiaaikdaa8aabeaak8qacqGH9aqpcaWGtbWdamaaDaaaleaapeGa amiEaiaadsgacaWGObaapaqaa8qacaaIYaaaaaaaaa@71FE@

Hence

λ 03 = μ 03 μ 20 0/2 μ 02 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaaGimaiaaiodaa8aabeaak8qacqGH 9aqpdaWcaaWdaeaapeGaeqiVd02damaaBaaaleaapeGaaGimaiaaio daa8aabeaaaOqaa8qacqaH8oqBpaWaa0baaSqaa8qacaaIYaGaaGim aaWdaeaapeGaaGimaiaac+cacaaIYaaaaOGaeqiVd02damaaDaaale aapeGaaGimaiaaikdaa8aabaWdbiaaiodacaGGVaGaaGOmaaaaaaaa aa@4B30@

E[ e 0 e 2 ]=( 1 n dh 1 N dh ) C ydh λ 12 =( 1 n dh 1 N dh ) S ydh Y ¯ dh λ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyramaadmaapaqaa8qacaWGLbWdamaaBaaaleaapeGaaGimaaWd aeqaaOWdbiaadwgapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qaca GLBbGaayzxaaGaeyypa0ZaaeWaa8aabaWdbmaalaaapaqaa8qacaaI Xaaapaqaa8qacaWGUbWdamaaBaaaleaapeGaamizaiaadIgaa8aabe aaaaGcpeGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaad6ea paWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaaaaOWdbiaawIcaca GLPaaacaWGdbWdamaaBaaaleaapeGaamyEaiaadsgacaWGObaapaqa baGcpeGaeq4UdW2damaaBaaaleaapeGaaGymaiaaikdaa8aabeaak8 qacqGH9aqpdaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWd biaad6gapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaaak8qacq GHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOta8aadaWgaaWc baWdbiaadsgacaWGObaapaqabaaaaaGcpeGaayjkaiaawMcaamaala aapaqaa8qacaWGtbWdamaaBaaaleaapeGaamyEaiaadsgacaWGObaa paqabaaakeaapeGabmywayaaraWdamaaBaaaleaapeGaamizaiaadI gaa8aabeaaaaGcpeGaeq4UdW2damaaBaaaleaapeGaaGymaiaaikda a8aabeaaaaa@690C@

Where  λ 12 = μ 12 μ 20 1/2 μ 02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaaGymaiaaikdaa8aabeaak8qacqGH 9aqpdaWcaaWdaeaapeGaeqiVd02damaaBaaaleaapeGaaGymaiaaik daa8aabeaaaOqaa8qacqaH8oqBpaWaa0baaSqaa8qacaaIYaGaaGim aaWdaeaapeGaaGymaiaac+cacaaIYaaaaOGaeqiVd02damaaBaaale aapeGaaGimaiaaikdaa8aabeaaaaaaaa@48F4@

y ¯ dhr = y ¯ dh * x ¯ dh X ¯ dh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadMhagaqeam aaBaaaleaaqaaaaaaaaaWdbiaadsgacaWGObGaamOCaaWdaeqaaOWd biabg2da9maalaaapaqaa8qaceWG5bGbaebapaWaa0baaSqaa8qaca WGKbGaamiAaaWdaeaapeGaaiOkaaaaaOWdaeaaceWG4bGbaebadaWg aaWcbaWdbiaadsgacaWGObaapaqabaaaaOWdbiqadIfagaqea8aada WgaaWcbaWdbiaadsgacaWGObaapaqabaaaaa@472E@

= Y ¯ dh ( 1+ e 0 e 1 + e 1 2 e 0 e 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0ZdaiqadMfagaqeamaaBaaaleaapeGaamizaiaadIgaa8aa beaak8qadaqadaWdaeaapeGaaGymaiabgUcaRiaadwgapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyOeI0Iaamyza8aadaWgaaWcbaWd biaaigdaa8aabeaak8qacqGHRaWkcaWGLbWdamaaDaaaleaapeGaaG ymaaWdaeaapeGaaGOmaaaakiabgkHiTiaadwgapaWaaSbaaSqaa8qa caaIWaaapaqabaGcpeGaamyza8aadaWgaaWcbaWdbiaaigdaa8aabe aaaOWdbiaawIcacaGLPaaaaaa@4CAD@

To obtain the bias

B( t cal * )=E[ t cal * Y ¯ d ] =E[ h=1 L W dh [ Y ¯ dh ( 1+ e 0 e 1 + e 1 2 e 0 e 1 ) ] β 2( dh ) h=1 L W dh X ¯ dh e 1 β 3( dh ) h=1 L W dh S xdh 2 e 2 Y ¯ d ] =E[ h=1 L W dh [ Y ¯ dh ( e 0 e 1 + e 1 2 e 0 e 1 ) ] β 2( dh ) h=1 L W dh X ¯ dh e 1 β 3( dh ) h=1 L W dh S xdh 2 e 2 ] = h=1 L W dh Y ¯ dh [ ( E( e 1 2 )E( e 0 e 1 ) ) ] B( t cal * )= h=1 L W dh Y ¯ dh [ ( 1 n dh 1 N dh ) S xdh 2 X ¯ dh 2 ] h=1 L W dh Y ¯ dh [ 1 X ¯ dh Y ¯ dh ( 1 n dh 1 N dh ) ρ xy S xdh S ydh ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGcbWaaeWaa8aabaWdbiaadshapaWaa0baaSqaa8qacaWG JbGaamyyaiaadYgaa8aabaWdbiaacQcaaaaakiaawIcacaGLPaaacq GH9aqpcaWGfbWaamWaa8aabaWdbiaadshapaWaa0baaSqaa8qacaWG JbGaamyyaiaadYgaa8aabaWdbiaacQcaaaGccqGHsislceWGzbGbae bapaWaaSbaaSqaa8qacaWGKbaapaqabaaak8qacaGLBbGaayzxaaaa baGaeyypa0JaamyramaadmaapaabaeqabaWdbmaawahabeWcpaqaa8 qacaWGObGaeyypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGH ris5aaGccaWGxbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8 qadaWadaWdaeaaceWGzbGbaebadaWgaaWcbaWdbiaadsgacaWGObaa paqabaGcpeWaaeWaa8aabaWdbiaaigdacqGHRaWkcaWGLbWdamaaBa aaleaapeGaaGimaaWdaeqaaOWdbiabgkHiTiaadwgapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaey4kaSIaamyza8aadaqhaaWcbaWdbi aaigdaa8aabaWdbiaaikdaaaGccqGHsislcaWGLbWdamaaBaaaleaa peGaaGimaaWdaeqaaOWdbiaadwgapaWaaSbaaSqaa8qacaaIXaaapa qabaaak8qacaGLOaGaayzkaaaacaGLBbGaayzxaaaabaGaeyOeI0Ia eqOSdi2damaaBaaaleaapeGaaGOmamaabmaapaqaa8qacaWGKbGaam iAaaGaayjkaiaawMcaaaWdaeqaaOWdbmaawahabeWcpaqaa8qacaWG ObGaeyypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aa GccaWGxbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qaceWG ybGbaebapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbiaadw gapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyOeI0IaeqOSdi2d amaaBaaaleaapeGaaG4mamaabmaapaqaa8qacaWGKbGaamiAaaGaay jkaiaawMcaaaWdaeqaaOWdbmaawahabeWcpaqaa8qacaWGObGaeyyp a0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGccaWGxb WdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qacaWGtbWdamaa DaaaleaapeGaamiEaiaadsgacaWGObaapaqaa8qacaaIYaaaaOGaam yza8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHsislpaGabmyw ayaaraWaaSbaaSqaa8qacaWGKbaapaqabaaaaOWdbiaawUfacaGLDb aaaeaacqGH9aqpcaWGfbWaamWaa8aaeaqabeaapeWaaybCaeqal8aa baWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaan8aabaWdbi abggHiLdaakiaadEfapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqa aOWdbmaadmaapaqaaiqadMfagaqeamaaBaaaleaapeGaamizaiaadI gaa8aabeaak8qadaqadaWdaeaapeGaamyza8aadaWgaaWcbaWdbiaa icdaa8aabeaak8qacqGHsislcaWGLbWdamaaBaaaleaapeGaaGymaa WdaeqaaOWdbiabgUcaRiaadwgapaWaa0baaSqaa8qacaaIXaaapaqa a8qacaaIYaaaaOGaeyOeI0Iaamyza8aadaWgaaWcbaWdbiaaicdaa8 aabeaak8qacaWGLbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGa ayjkaiaawMcaaaGaay5waiaaw2faaaqaaiabgkHiTiabek7aI9aada WgaaWcbaWdbiaaikdadaqadaWdaeaapeGaamizaiaadIgaaiaawIca caGLPaaaa8aabeaak8qadaGfWbqabSWdaeaapeGaamiAaiabg2da9i aaigdaa8aabaWdbiaadYeaa0WdaeaapeGaeyyeIuoaaOGaam4va8aa daWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeGabmiwayaaraWdam aaBaaaleaapeGaamizaiaadIgaa8aabeaak8qacaWGLbWdamaaBaaa leaapeGaaGymaaWdaeqaaOWdbiabgkHiTiabek7aI9aadaWgaaWcba WdbiaaiodadaqadaWdaeaapeGaamizaiaadIgaaiaawIcacaGLPaaa a8aabeaak8qadaGfWbqabSWdaeaapeGaamiAaiabg2da9iaaigdaa8 aabaWdbiaadYeaa0WdaeaapeGaeyyeIuoaaOGaam4va8aadaWgaaWc baWdbiaadsgacaWGObaapaqabaGcpeGaam4ua8aadaqhaaWcbaWdbi aadIhacaWGKbGaamiAaaWdaeaapeGaaGOmaaaakiaadwgapaWaaSba aSqaa8qacaaIYaaapaqabaaaaOWdbiaawUfacaGLDbaaaeaacqGH9a qpdaGfWbqabSWdaeaapeGaamiAaiabg2da9iaaigdaa8aabaWdbiaa dYeaa0WdaeaapeGaeyyeIuoaaOGaam4va8aadaWgaaWcbaWdbiaads gacaWGObaapaqabaGcpeGabmywayaaraWdamaaBaaaleaapeGaamiz aiaadIgaa8aabeaak8qadaWadaWdaeaapeWaaeWaa8aabaWdbiaadw eadaqadaWdaeaapeGaamyza8aadaqhaaWcbaWdbiaaigdaa8aabaWd biaaikdaaaaakiaawIcacaGLPaaacqGHsislcaWGfbWaaeWaa8aaba WdbiaadwgapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaamyza8aa daWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaaaiaawI cacaGLPaaaaiaawUfacaGLDbaaaeaacaWGcbWaaeWaa8aabaWdbiaa dshapaWaa0baaSqaa8qacaWGJbGaamyyaiaadYgaa8aabaWdbiaacQ caaaaakiaawIcacaGLPaaacqGH9aqpdaGfWbqabSWdaeaapeGaamiA aiabg2da9iaaigdaa8aabaWdbiaadYeaa0WdaeaapeGaeyyeIuoaaO Gaam4va8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcceWGzbGb aebadaWgaaWcbaWdbiaadsgacaWGObaapaqabaGcpeWaamWaa8aaba Wdbmaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOB a8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaOWdbiabgkHiTm aalaaapaqaa8qacaaIXaaapaqaa8qacaWGobWdamaaBaaaleaapeGa amizaiaadIgaa8aabeaaaaaak8qacaGLOaGaayzkaaWaaSaaa8aaba WdbiaadofapaWaa0baaSqaa8qacaWG4bGaamizaiaadIgaa8aabaWd biaaikdaaaaak8aabaWdbiqadIfagaqea8aadaqhaaWcbaWdbiaads gacaWGObaapaqaa8qacaaIYaaaaaaaaOGaay5waiaaw2faaiabgkHi TaqaamaawahabeWcpaqaa8qacaWGObGaeyypa0JaaGymaaWdaeaape Gaamitaaqdpaqaa8qacqGHris5aaGccaWGxbWdamaaBaaaleaapeGa amizaiaadIgaa8aabeaakiqadMfagaqeamaaBaaaleaapeGaamizai aadIgaa8aabeaak8qadaWadaWdaeaapeWaaSaaa8aabaWdbiaaigda a8aabaWdbiqadIfagaqea8aadaWgaaWcbaWdbiaadsgacaWGObaapa qabaGcceWGzbGbaebadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaa aOWdbmaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaam OBa8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaOWdbiabgkHi Tmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGobWdamaaBaaaleaape GaamizaiaadIgaa8aabeaaaaaak8qacaGLOaGaayzkaaGaeqyWdi3d amaaBaaaleaapeGaamiEaiaadMhaa8aabeaak8qacaWGtbWdamaaBa aaleaapeGaamiEaiaadsgacaWGObaapaqabaGcpeGaam4ua8aadaWg aaWcbaWdbiaadMhacaWGKbGaamiAaaWdaeqaaaGcpeGaay5waiaaw2 faaaaaaa@65D3@    (8)

=E [ h=1 L W dh [ Y ¯ dh ( 1+ e 0 e 1 + e 1 2 e 0 e 1 ) ] β 2( dh ) h=1 L W dh X ¯ dh e 1 β 3( dh ) h=1 L W dh S xdh 2 e 2 Y ¯ d ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0JaamyramaadmaapaabaeqabaWdbmaawahabeWcpaqaa8qa caWGObGaeyypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHri s5aaGccaWGxbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qa daWadaWdaeaaceWGzbGbaebadaWgaaWcbaWdbiaadsgacaWGObaapa qabaGcpeWaaeWaa8aabaWdbiaaigdacqGHRaWkcaWGLbWdamaaBaaa leaapeGaaGimaaWdaeqaaOWdbiabgkHiTiaadwgapaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaey4kaSIaamyza8aadaqhaaWcbaWdbiaa igdaa8aabaWdbiaaikdaaaGccqGHsislcaWGLbWdamaaBaaaleaape GaaGimaaWdaeqaaOWdbiaadwgapaWaaSbaaSqaa8qacaaIXaaapaqa baaak8qacaGLOaGaayzkaaaacaGLBbGaayzxaaGaeyOeI0cabaGaeq OSdi2damaaBaaaleaapeGaaGOmamaabmaapaqaa8qacaWGKbGaamiA aaGaayjkaiaawMcaaaWdaeqaaOWdbmaawahabeWcpaqaa8qacaWGOb Gaeyypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGc caWGxbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qaceWGyb GbaebapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaOWdbiaadwga paWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyOeI0IaeqOSdi2dam aaBaaaleaapeGaaG4mamaabmaapaqaa8qacaWGKbGaamiAaaGaayjk aiaawMcaaaWdaeqaaOWdbmaawahabeWcpaqaa8qacaWGObGaeyypa0 JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGccaWGxbWd amaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qacaWGtbWdamaaDa aaleaapeGaamiEaiaadsgacaWGObaapaqaa8qacaaIYaaaaOGaamyz a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHsislpaGabmyway aaraWaaSbaaSqaa8qacaWGKbaapaqabaaaaOWdbiaawUfacaGLDbaa paWaaWbaaSqabeaapeGaaGOmaaaaaaa@8C92@  ignoring terms with power >2

MSE( t cal * )= h=1 L W dh 2 [ ( 1 n dh 1 N dh ) S ydh 2 + ( K dh 1 ) n dh W dh2 S ydh2 2 ] 2 h=1 L W dh 2 [ Y ¯ dh X ¯ dh ( 1 n dh 1 N dh ) ρ xy S xdh S ydh ] 2 β 2dh h=1 L W dh 2 [ ( 1 n dh 1 N dh ) ρ xy S xdh S ydh ] 2 β 3( dh ) h=1 L W dh 2 [ ( 1 n dh 1 N dh ) S xdh 2 S ydh λ 12 ] + h=1 L W dh 2 Y ¯ dh 2 X ¯ dh 2 ( 1 n dh 1 N dh ) S xdh 2 + 2 β 2dh h=1 L W dh 2 Y ¯ dh X ¯ dh ( 1 n dh 1 N dh ) S xdh 2 + 2 β 3( dh ) h=1 L W dh 2 Y ¯ dh X ¯ dh [ ( 1 n dh 1 N dh ) S xdh 3 λ 03 ] + β 2dh 2 h=1 L W dh 2 ( 1 n dh 1 N dh ) S xdh 2 + β 3dh 2 h=1 L W dh 2 [ ( 1 n dh 1 N dh ) S dh 4 ( λ 04 1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGnbGaam4uaiaadweadaqadaWdaeaapeGaamiDa8aadaqh aaWcbaWdbiaadogacaWGHbGaamiBaaWdaeaapeGaaiOkaaaaaOGaay jkaiaawMcaaiabg2da9maawahabeWcpaqaa8qacaWGObGaeyypa0Ja aGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGccaWGxbWdam aaDaaaleaapeGaamizaiaadIgaa8aabaWdbiaaikdaaaGcdaWadaWd aeaapeWaaeWaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qaca WGUbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaaaaGcpeGaeyOe I0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaad6eapaWaaSbaaSqaa8 qacaWGKbGaamiAaaWdaeqaaaaaaOWdbiaawIcacaGLPaaacaWGtbWd amaaDaaaleaapeGaamyEaiaadsgacaWGObaapaqaa8qacaaIYaaaaO Gaey4kaSYaaSaaa8aabaWdbmaabmaapaqaa8qacaWGlbWdamaaBaaa leaapeGaamizaiaadIgaa8aabeaak8qacqGHsislcaaIXaaacaGLOa Gaayzkaaaapaqaa8qacaWGUbWdamaaBaaaleaapeGaamizaiaadIga a8aabeaaaaGcpeGaam4va8aadaWgaaWcbaWdbiaadsgacaWGObGaaG OmaaWdaeqaaOWdbiaadofapaWaa0baaSqaa8qacaWG5bGaamizaiaa dIgacaaIYaaapaqaa8qacaaIYaaaaaGccaGLBbGaayzxaaaabaGaey OeI0IaaGOmamaawahabeWcpaqaa8qacaWGObGaeyypa0JaaGymaaWd aeaapeGaamitaaqdpaqaa8qacqGHris5aaGccaWGxbWdamaaDaaale aapeGaamizaiaadIgaa8aabaWdbiaaikdaaaGcdaWadaWdaeaapeWa aSaaa8aabaGabmywayaaraWaaSbaaSqaa8qacaWGKbGaamiAaaWdae qaaaGcbaGabmiwayaaraWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqa aaaak8qadaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbi aad6gapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaaak8qacqGH sisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOta8aadaWgaaWcba WdbiaadsgacaWGObaapaqabaaaaaGcpeGaayjkaiaawMcaaiabeg8a Y9aadaWgaaWcbaWdbiaadIhacaWG5baapaqabaGcpeGaam4ua8aada WgaaWcbaWdbiaadIhacaWGKbGaamiAaaWdaeqaaOWdbiaadofapaWa aSbaaSqaa8qacaWG5bGaamizaiaadIgaa8aabeaaaOWdbiaawUfaca GLDbaacqGHsislaeaacaaIYaGaeqOSdi2damaaBaaaleaapeGaaGOm aiaadsgacaWGObaapaqabaGcpeWaaybCaeqal8aabaWdbiaadIgacq GH9aqpcaaIXaaapaqaa8qacaWGmbaan8aabaWdbiabggHiLdaakiaa dEfapaWaa0baaSqaa8qacaWGKbGaamiAaaWdaeaapeGaaGOmaaaakm aadmaapaqaa8qadaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aa baWdbiaad6gapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaaak8 qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOta8aadaWg aaWcbaWdbiaadsgacaWGObaapaqabaaaaaGcpeGaayjkaiaawMcaai abeg8aY9aadaWgaaWcbaWdbiaadIhacaWG5baapaqabaGcpeGaam4u a8aadaWgaaWcbaWdbiaadIhacaWGKbGaamiAaaWdaeqaaOWdbiaado fapaWaaSbaaSqaa8qacaWG5bGaamizaiaadIgaa8aabeaaaOWdbiaa wUfacaGLDbaacqGHsislaeaacaaIYaGaeqOSdi2damaaBaaaleaape GaaG4mamaabmaapaqaa8qacaWGKbGaamiAaaGaayjkaiaawMcaaaWd aeqaaOWdbmaawahabeWcpaqaa8qacaWGObGaeyypa0JaaGymaaWdae aapeGaamitaaqdpaqaa8qacqGHris5aaGccaWGxbWdamaaDaaaleaa peGaamizaiaadIgaa8aabaWdbiaaikdaaaGcdaWadaWdaeaapeWaae Waa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGUbWdamaa BaaaleaapeGaamizaiaadIgaa8aabeaaaaGcpeGaeyOeI0YaaSaaa8 aabaWdbiaaigdaa8aabaWdbiaad6eapaWaaSbaaSqaa8qacaWGKbGa amiAaaWdaeqaaaaaaOWdbiaawIcacaGLPaaacaWGtbWdamaaDaaale aapeGaamiEaiaadsgacaWGObaapaqaa8qacaaIYaaaaOGaam4ua8aa daWgaaWcbaWdbiaadMhacaWGKbGaamiAaaWdaeqaaOWdbiabeU7aS9 aadaWgaaWcbaWdbiaaigdacaaIYaaapaqabaaak8qacaGLBbGaayzx aaaabaGaey4kaSYaaybCaeqal8aabaWdbiaadIgacqGH9aqpcaaIXa aapaqaa8qacaWGmbaan8aabaWdbiabggHiLdaakiaadEfapaWaa0ba aSqaa8qacaWGKbGaamiAaaWdaeaapeGaaGOmaaaakmaalaaapaqaai qadMfagaqeamaaDaaaleaapeGaamizaiaadIgaa8aabaWdbiaaikda aaaak8aabaGabmiwayaaraWaa0baaSqaa8qacaWGKbGaamiAaaWdae aapeGaaGOmaaaaaaGcdaqadaWdaeaapeWaaSaaa8aabaWdbiaaigda a8aabaWdbiaad6gapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaa aak8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOta8aa daWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaaGcpeGaayjkaiaawM caaiaadofapaWaa0baaSqaa8qacaWG4bGaamizaiaadIgaa8aabaWd biaaikdaaaGccqGHRaWkaeaacaaIYaGaeqOSdi2damaaBaaaleaape GaaGOmaiaadsgacaWGObaapaqabaGcpeWaaybCaeqal8aabaWdbiaa dIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaan8aabaWdbiabggHiLd aakiaadEfapaWaa0baaSqaa8qacaWGKbGaamiAaaWdaeaapeGaaGOm aaaakmaalaaapaqaaiqadMfagaqeamaaBaaaleaapeGaamizaiaadI gaa8aabeaaaOqaa8qaceWGybGbaebapaWaaSbaaSqaa8qacaWGKbGa amiAaaWdaeqaaaaak8qadaqadaWdaeaapeWaaSaaa8aabaWdbiaaig daa8aabaWdbiaad6gapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqa aaaak8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOta8 aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaaGcpeGaayjkaiaa wMcaaiaadofapaWaa0baaSqaa8qacaWG4bGaamizaiaadIgaa8aaba WdbiaaikdaaaGccqGHRaWkaeaacaaIYaGaeqOSdi2damaaBaaaleaa peGaaG4mamaabmaapaqaa8qacaWGKbGaamiAaaGaayjkaiaawMcaaa WdaeqaaOWdbmaawahabeWcpaqaa8qacaWGObGaeyypa0JaaGymaaWd aeaapeGaamitaaqdpaqaa8qacqGHris5aaGccaWGxbWdamaaDaaale aapeGaamizaiaadIgaa8aabaWdbiaaikdaaaGcdaWcaaWdaeaaceWG zbGbaebadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaakeaapeGabm iwayaaraWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaaaaGcpeWa amWaa8aabaWdbmaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdae aapeGaamOBa8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaOWd biabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGobWdamaaBa aaleaapeGaamizaiaadIgaa8aabeaaaaaak8qacaGLOaGaayzkaaGa am4ua8aadaqhaaWcbaWdbiaadIhacaWGKbGaamiAaaWdaeaapeGaaG 4maaaakiabeU7aS9aadaWgaaWcbaWdbiaaicdacaaIZaaapaqabaaa k8qacaGLBbGaayzxaaaabaGaey4kaSIaeqOSdi2damaaDaaaleaape GaaGOmaiaadsgacaWGObaapaqaa8qacaaIYaaaaOWaaybCaeqal8aa baWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaan8aabaWdbi abggHiLdaakiaadEfapaWaa0baaSqaa8qacaWGKbGaamiAaaWdaeaa peGaaGOmaaaakmaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdae aapeGaamOBa8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaOWd biabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGobWdamaaBa aaleaapeGaamizaiaadIgaa8aabeaaaaaak8qacaGLOaGaayzkaaGa am4ua8aadaqhaaWcbaWdbiaadIhacaWGKbGaamiAaaWdaeaapeGaaG OmaaaakiabgUcaRaqaaiabek7aI9aadaqhaaWcbaWdbiaaiodacaWG KbGaamiAaaWdaeaapeGaaGOmaaaakmaawahabeWcpaqaa8qacaWGOb Gaeyypa0JaaGymaaWdaeaapeGaamitaaqdpaqaa8qacqGHris5aaGc caWGxbWdamaaDaaaleaapeGaamizaiaadIgaa8aabaWdbiaaikdaaa GcdaWadaWdaeaapeWaaeWaa8aabaWdbmaalaaapaqaa8qacaaIXaaa paqaa8qacaWGUbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaaaa GcpeGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaad6eapaWa aSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaaaaOWdbiaawIcacaGLPa aacaWGtbWdamaaDaaaleaapeGaamizaiaadIgaa8aabaWdbiaaisda aaGcdaqadaWdaeaapeGaeq4UdW2damaaBaaaleaapeGaaGimaiaais daa8aabeaak8qacqGHsislcaaIXaaacaGLOaGaayzkaaaacaGLBbGa ayzxaaaaaaa@B305@    (9)

To obtain minimum variance, we differentiate (9) partially with respect to and

Such that

β 2( dh ) = h=1 L W dh 2 [ ( 1 n dh 1 N dh ) ρ xy S xdh S ydh ] h=1 L W dh 2 Y ¯ dh X ¯ dh ( 1 n dh 1 N dh ) S xdh 2 h=1 L W dh 2 ( 1 n dh 1 N dh ) S xdh 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqacabaaaaaaa aapeGaa8NSd8aadaWgaaWcbaWdbiaaikdadaqadaWdaeaapeGaamiz aiaadIgaaiaawIcacaGLPaaaa8aabeaak8qacqGH9aqpdaWcaaWdae aapeWaaubmaeqal8aabaWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qa caWGmbaan8aabaqcLbsapeGaeyyeIuoaaOGaam4va8aadaqhaaWcba WdbiaadsgacaWGObaapaqaa8qacaaIYaaaaOWaamWaa8aabaWdbmaa bmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOBa8aada WgaaWcbaWdbiaadsgacaWGObaapaqabaaaaOWdbiabgkHiTmaalaaa paqaa8qacaaIXaaapaqaa8qacaWGobWdamaaBaaaleaapeGaamizai aadIgaa8aabeaaaaaak8qacaGLOaGaayzkaaGaa8xWd8aadaWgaaWc baWdbiaa=HhacaWF5baapaqabaGcpeGaa83ua8aadaWgaaWcbaWdbi aa=HhacaWFKbGaa8hAaaWdaeqaaOWdbiaa=nfapaWaaSbaaSqaa8qa caWF5bGaa8hzaiaa=Hgaa8aabeaaaOWdbiaawUfacaGLDbaacqGHsi sldaqfWaqabSWdaeaapeGaamiAaiabg2da9iaaigdaa8aabaWdbiaa dYeaa0Wdaeaajugib8qacqGHris5aaGccaWGxbWdamaaDaaaleaape GaamizaiaadIgaa8aabaWdbiaaikdaaaGcdaWcaaWdaeaaceWGzbGb aebadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaakeaaceWGybGbae badaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaOWdbmaabmaapaqa a8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOBa8aadaWgaaWcba WdbiaadsgacaWGObaapaqabaaaaOWdbiabgkHiTmaalaaapaqaa8qa caaIXaaapaqaa8qacaWGobWdamaaBaaaleaapeGaamizaiaadIgaa8 aabeaaaaaak8qacaGLOaGaayzkaaGaam4ua8aadaqhaaWcbaWdbiaa dIhacaWGKbGaamiAaaWdaeaapeGaaGOmaaaaaOWdaeaapeWaaubmae qal8aabaWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaan8aa baqcLbsapeGaeyyeIuoaaOGaam4va8aadaqhaaWcbaWdbiaadsgaca WGObaapaqaa8qacaaIYaaaaOWaaeWaa8aabaWdbmaalaaapaqaa8qa caaIXaaapaqaa8qacaWGUbWdamaaBaaaleaapeGaamizaiaadIgaa8 aabeaaaaGcpeGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaa d6eapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaaaaOWdbiaawI cacaGLPaaacaWGtbWdamaaDaaaleaapeGaamiEaiaadsgacaWGObaa paqaa8qacaaIYaaaaaaaaaa@9D7C@    (10)

β 3( dh ) = h=1 L W dh 2 [ ( 1 n dh 1 N dh ) S xdh 2 S ydh λ 12 ] h=1 L W dh 2 Y ¯ dh X ¯ dh [ ( 1 n dh 1 N dh ) S xdh 3 λ 03 ] h=1 L W dh 2 [ ( 1 n dh 1 N dh ) S dh 4 ( λ 04 1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqacabaaaaaaa aapeGaa8NSd8aadaWgaaWcbaWdbiaaiodadaqadaWdaeaapeGaamiz aiaadIgaaiaawIcacaGLPaaaa8aabeaak8qacqGH9aqpdaWcaaWdae aapeWaaubmaeqal8aabaWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qa caWGmbaan8aabaqcLbsapeGaeyyeIuoaaOGaam4va8aadaqhaaWcba WdbiaadsgacaWGObaapaqaa8qacaaIYaaaaOWaamWaa8aabaWdbmaa bmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOBa8aada WgaaWcbaWdbiaadsgacaWGObaapaqabaaaaOWdbiabgkHiTmaalaaa paqaa8qacaaIXaaapaqaa8qacaWGobWdamaaBaaaleaapeGaamizai aadIgaa8aabeaaaaaak8qacaGLOaGaayzkaaGaam4ua8aadaqhaaWc baWdbiaadIhacaWGKbGaamiAaaWdaeaapeGaaGOmaaaakiaadofapa WaaSbaaSqaa8qacaWG5bGaamizaiaadIgaa8aabeaak8qacqaH7oaB paWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaaGcpeGaay5waiaaw2 faaiabgkHiTmaavadabeWcpaqaa8qacaWGObGaeyypa0JaaGymaaWd aeaapeGaamitaaqdpaqaaKqzGeWdbiabggHiLdaakiaadEfapaWaa0 baaSqaa8qacaWGKbGaamiAaaWdaeaapeGaaGOmaaaakmaalaaapaqa aiqadMfagaqeamaaBaaaleaapeGaamizaiaadIgaa8aabeaaaOqaai qadIfagaqeamaaBaaaleaapeGaamizaiaadIgaa8aabeaaaaGcpeWa amWaa8aabaWdbmaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdae aapeGaamOBa8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaOWd biabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGobWdamaaBa aaleaapeGaamizaiaadIgaa8aabeaaaaaak8qacaGLOaGaayzkaaGa am4ua8aadaqhaaWcbaWdbiaadIhacaWGKbGaamiAaaWdaeaapeGaaG 4maaaakiabeU7aS9aadaWgaaWcbaWdbiaaicdacaaIZaaapaqabaaa k8qacaGLBbGaayzxaaaapaqaa8qadaqfWaqabSWdaeaapeGaamiAai abg2da9iaaigdaa8aabaWdbiaadYeaa0Wdaeaajugib8qacqGHris5 aaGccaWGxbWdamaaDaaaleaapeGaamizaiaadIgaa8aabaWdbiaaik daaaGcpaGaaGPaV=qadaWadaWdaeaapeWaaeWaa8aabaWdbmaalaaa paqaa8qacaaIXaaapaqaa8qacaWGUbWdamaaBaaaleaapeGaamizai aadIgaa8aabeaaaaGcpeGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aa baWdbiaad6eapaWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaaaaO WdbiaawIcacaGLPaaacaWGtbWdamaaDaaaleaapeGaamizaiaadIga a8aabaWdbiaaisdaaaGcdaqadaWdaeaapeGaeq4UdW2damaaBaaale aapeGaaGimaiaaisdaa8aabeaak8qacqGHsislcaaIXaaacaGLOaGa ayzkaaaacaGLBbGaayzxaaaaaaaa@ADB8@    (11)

minMSE( t cal * )= h=1 L W dh 2 [ ( 1 n dh 1 N dh ) S ydh 2 + ( K dh 1 ) n dh2 W dh2 S ydh2 2 ] 2 h=1 L W dh 2 Y ¯ dh X ¯ dh ( 1 n dh 1 N dh ) ρ xy S xdh S ydh + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaacbiaeaa aaaaaaa8qacaWFTbGaa8xAaiaa=5gacaaMc8UaamytaiaadofacaWG fbWaaeWaa8aabaWdbiaadshapaWaa0baaSqaa8qacaWGJbGaamyyai aadYgaa8aabaWdbiaacQcaaaaakiaawIcacaGLPaaacqGH9aqpdaWf WaqaaiabggHiLdWcbaGaamiAaiabg2da9iaaigdaaeaacaWGmbaaaO GaaGPaVlaadEfadaqhaaWcbaGaamizaiaadIgaaeaacaaIYaaaaOWa amWaa8aabaWdbmaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdae aapeGaamOBa8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaOWd biabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGobWdamaaBa aaleaapeGaamizaiaadIgaa8aabeaaaaaak8qacaGLOaGaayzkaaGa aGPaVlaaykW7caWGtbWdamaaDaaaleaapeGaamyEaiaadsgacaWGOb aapaqaa8qacaaIYaaaaOGaey4kaSYaaSaaa8aabaWdbmaabmaapaqa a8qacaWGlbWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaak8qacq GHsislcaaIXaaacaGLOaGaayzkaaaapaqaa8qacaWGUbWdamaaBaaa leaapeGaamizaiaadIgacaaIYaaapaqabaaaaOWdbiaadEfapaWaaS baaSqaa8qacaWGKbGaamiAaiaaikdaa8aabeaak8qacaWGtbWdamaa DaaaleaapeGaamyEaiaadsgacaWGObGaaGOmaaWdaeaapeGaaGOmaa aaaOGaay5waiaaw2faaaqaaiabgkHiTiaaikdadaWfWaqaaiabggHi LdWcbaGaamiAaiabg2da9iaaigdaaeaacaWGmbaaaOGaaGPaVlaadE fadaqhaaWcbaGaamizaiaadIgaaeaacaaIYaaaaOWaaSaaa8aabaGa bmywayaaraWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaGcbaGabm iwayaaraWaaSbaaSqaa8qacaWGKbGaamiAaaWdaeqaaaaak8qadaqa daWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaad6gapaWaaS baaSqaa8qacaWGKbGaamiAaaWdaeqaaaaak8qacqGHsisldaWcaaWd aeaapeGaaGymaaWdaeaapeGaamOta8aadaWgaaWcbaWdbiaadsgaca WGObaapaqabaaaaaGcpeGaayjkaiaawMcaaiabeg8aY9aadaWgaaWc baWdbiaadIhacaWG5baapaqabaGcpeGaam4ua8aadaWgaaWcbaWdbi aadIhacaWGKbGaamiAaaWdaeqaaOWdbiaadofapaWaaSbaaSqaa8qa caWG5bGaamizaiaadIgaa8aabeaak8qacqGHRaWkaaaa@A574@

h=1 L W dh 2 Y ¯ dh X ¯ dh ( 1 n dh 1 N dh ) S xdh 2 [ h=1 L W dh 2 ( 1 n dh 1 N dh ) ρ xy S xdh S ydh h=1 L W dh 2 Y ¯ dh X ¯ dh ( 1 n dh 1 N dh ) S xdh 2 ] 2 h=1 L W dh 2 ( 1 n dh 1 N dh ) S xdh 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaKaaGeaaqaaaaaaaaa WdbmaaxadabaGaeyyeIuoajeaibaGaamiAaiabg2da9iaaigdaaeaa caWGmbaaaKaaGiaaykW7caWGxbWaa0baaKqaGeaacaWGKbGaamiAaa qaaiaaikdaaaqcaaYaaSaaa8aabaGabmywayaaraWaaSbaaKqaGeaa peGaamizaiaadIgaa8aabeaaaKaaGeaaceWGybGbaebadaWgaaqcba saa8qacaWGKbGaamiAaaWdaeqaaaaajaaipeWaaeWaa8aabaWdbmaa laaapaqaa8qacaaIXaaapaqaa8qacaWGUbWdamaaBaaajeaibaWdbi aadsgacaWGObaapaqabaaaaKaaG8qacqGHsisldaWcaaWdaeaapeGa aGymaaWdaeaapeGaamOta8aadaWgaaqcbasaa8qacaWGKbGaamiAaa WdaeqaaaaaaKaaG8qacaGLOaGaayzkaaGaam4ua8aadaqhaaqcbasa a8qacaWG4bGaamizaiaadIgaa8aabaWdbiaaikdaaaqcaaIaeyOeI0 YaaSaaa8aabaWdbmaadmaapaqaa8qadaqfWaqabKqaG8aabaWdbiaa dIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaajmaipaqaaKqzadWdbi abggHiLdaajaaicaWGxbWdamaaDaaajeaibaWdbiaadsgacaWGObaa paqaa8qacaaIYaaaaKaaGmaabmaapaqaa8qadaWcaaWdaeaapeGaaG ymaaWdaeaapeGaamOBa8aadaWgaaqcbasaa8qacaWGKbGaamiAaaWd aeqaaaaajaaipeGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbi aad6eapaWaaSbaaKqaGeaapeGaamizaiaadIgaa8aabeaaaaaajaai peGaayjkaiaawMcaaiabeg8aY9aadaWgaaqcbasaa8qacaWG4bGaam yEaaWdaeqaaKaaG8qacaWGtbWdamaaBaaajeaibaWdbiaadIhacaWG KbGaamiAaaWdaeqaaKaaG8qacaWGtbWdamaaBaaajeaibaWdbiaadM hacaWGKbGaamiAaaWdaeqaaKaaG8qacqGHsisldaqfWaqabKqaG8aa baWdbiaadIgacqGH9aqpcaaIXaaapaqaa8qacaWGmbaajmaipaqaaK qzadWdbiabggHiLdaajaaicaWGxbWdamaaDaaajeaibaWdbiaadsga caWGObaapaqaa8qacaaIYaaaaKaaGmaalaaapaqaaiqadMfagaqeam aaBaaajeaibaWdbiaadsgacaWGObaapaqabaaajaaibaGabmiwayaa raWaaSbaaKqaGeaapeGaamizaiaadIgaa8aabeaaaaqcaaYdbmaabm aapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOBa8aadaWg aaqcbasaa8qacaWGKbGaamiAaaWdaeqaaaaajaaipeGaeyOeI0YaaS aaa8aabaWdbiaaigdaa8aabaWdbiaad6eapaWaaSbaaKqaGeaapeGa amizaiaadIgaa8aabeaaaaaajaaipeGaayjkaiaawMcaaiaadofapa Waa0baaKqaGeaapeGaamiEaiaadsgacaWGObaapaqaa8qacaaIYaaa aaqcaaIaay5waiaaw2faa8aadaahaaqcbasabeaapeGaaGOmaaaaaK aaG8aabaWdbmaavadabeqcbaYdaeaapeGaamiAaiabg2da9iaaigda a8aabaWdbiaadYeaaKWaG8aabaqcLbmapeGaeyyeIuoaaKaaGiaadE fapaWaa0baaKqaGeaapeGaamizaiaadIgaa8aabaWdbiaaikdaaaqc aaYaaeWaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGUb WdamaaBaaajeaibaWdbiaadsgacaWGObaapaqabaaaaKaaG8qacqGH sisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOta8aadaWgaaqcba saa8qacaWGKbGaamiAaaWdaeqaaaaaaKaaG8qacaGLOaGaayzkaaGa am4ua8aadaqhaaqcbasaa8qacaWG4bGaamizaiaadIgaa8aabaWdbi aaikdaaaaaaaaa@C2EF@

[ h=1 L W dh 2 ( 1 n dh 1 N dh ) S xdh 2 S ydh λ 12 h=1 L W dh 2 Y ¯ dh X ¯ dh ( 1 n dh 1 N dh ) S xdh 3 λ 03 ] 2 h=1 L W dh 2 ( 1 n dh 1 N dh ) S dh 4 ( λ 04 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaKaaafaaqaaaaaaaaa Wdbmaalaaapaqaa8qadaWadaWdaeaapeWaaubmaeqajeaqpaqaa8qa caWGObGaeyypa0JaaGymaaWdaeaapeGaamitaaqcda0daeaajug4a8 qacqGHris5aaqcaaKaam4va8aadaqhaaqcbauaa8qacaWGKbGaamiA aaWdaeaapeGaaGOmaaaajaaqdaqadaWdaeaapeWaaSaaa8aabaWdbi aaigdaa8aabaWdbiaad6gapaWaaSbaaKqaafaapeGaamizaiaadIga a8aabeaaaaqcaa0dbiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8 qacaWGobWdamaaBaaajeaqbaWdbiaadsgacaWGObaapaqabaaaaaqc aa0dbiaawIcacaGLPaaacaWGtbWdamaaDaaajeaqbaWdbiaadIhaca WGKbGaamiAaaWdaeaapeGaaGOmaaaajaaqcaWGtbWdamaaBaaajeaq baWdbiaadMhacaWGKbGaamiAaaWdaeqaaKaaa9qacqaH7oaBpaWaaS baaKqaafaapeGaaGymaiaaikdaa8aabeaajaaqpeGaeyOeI0Yaaubm aeqajeaqpaqaa8qacaWGObGaeyypa0JaaGymaaWdaeaapeGaamitaa qcda0daeaajug4a8qacqGHris5aaqcaaKaam4va8aadaqhaaqcbaua a8qacaWGKbGaamiAaaWdaeaapeGaaGOmaaaajaaqdaWcaaWdaeaace WGzbGbaebadaWgaaqcbauaa8qacaWGKbGaamiAaaWdaeqaaaqcaaua aiqadIfagaqeamaaBaaajeaqbaWdbiaadsgacaWGObaapaqabaaaaK aaa9qadaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaa d6gapaWaaSbaaKqaafaapeGaamizaiaadIgaa8aabeaaaaqcaa0dbi abgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGobWdamaaBaaa jeaqbaWdbiaadsgacaWGObaapaqabaaaaaqcaa0dbiaawIcacaGLPa aacaWGtbWdamaaDaaajeaqbaWdbiaadIhacaWGKbGaamiAaaWdaeaa peGaaG4maaaajaaqcqaH7oaBpaWaaSbaaKqaafaapeGaaGimaiaaio daa8aabeaaaKaaa9qacaGLBbGaayzxaaWdamaaCaaajeaqbeqaa8qa caaIYaaaaaqcaa0daeaapeWaaubmaeqajeaqpaqaa8qacaWGObGaey ypa0JaaGymaaWdaeaapeGaamitaaqcda0daeaajug4a8qacqGHris5 aaqcaaKaaGPaVlaadEfapaWaa0baaKqaafaapeGaamizaiaadIgaa8 aabaWdbiaaikdaaaqcaa0aaeWaa8aabaWdbmaalaaapaqaa8qacaaI Xaaapaqaa8qacaWGUbWdamaaBaaajeaqbaWdbiaadsgacaWGObaapa qabaaaaKaaa9qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGa amOta8aadaWgaaqcbauaa8qacaWGKbGaamiAaaWdaeqaaaaaaKaaa9 qacaGLOaGaayzkaaGaam4ua8aadaqhaaqcbauaa8qacaWGKbGaamiA aaWdaeaapeGaaGinaaaajaaqdaqadaWdaeaapeGaeq4UdW2damaaBa aajeaqbaWdbiaaicdacaaI0aaapaqabaqcaa0dbiabgkHiTiaaigda aiaawIcacaGLPaaaaaaaaa@B1A0@    (12)

Equation (12) is the minimum variance for the proposed estimator

Percentage relative efficiency of the estimators

The percentage relative efficiency of the proposed estimators with respect to the existing estimators is given as:

PRE= MSE( P ) MSE( E ) ×100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiuaiaadkfacaWGfbGaeyypa0ZaaSaaa8aabaWdbiaad2eacaWG tbGaamyramaabmaapaqaa8qacaWGqbaacaGLOaGaayzkaaaapaqaa8 qacaWGnbGaam4uaiaadweadaqadaWdaeaapeGaamyraaGaayjkaiaa wMcaaaaacqGHxdaTcaaIXaGaaGimaiaaicdaaaa@4915@

Empirical study

We take the Sweden municipalities MU284,16 (appendix B). The population is geographically sub-divided (domain) into eight different parts 1, 2, 3, 4, 5, 6, 7 and 8 having their sizes 25, 48, 32, 38, 56, 41, 15 and 29 respectively. However, we considered only four domains 1, 3, 7 and 8 because these domains have small units compared to other domains. The proposed estimator is a calibration estimator. Variables like n dh1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWdamaaBaaaleaapeGaamizaiaadIgacaaIXaaapaqabaaa aa@39F5@ and n dh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWdamaaBaaaleaapeGaamizaiaadIgacaaIXaaapaqabaaa aa@39F5@ were computed based on existing information from the populations. Then each of the domains is classified into homogeneous groups according to our convenient into two strata: value of below 1500 (millions of kronor) and above 1500 (millions of kronor). We consider two cases 1 and 2 of non-response (in both Population I and Population II).

Case 1: If non-respondents are available in both strata (1 and 2) as well as in the domains (approximately 30%).

Case 2: If different non-respondents are available in both strata 1 and 2 approximately 20% and 40% respectively.

Population I

Y: Real estate values according to 1984 assessment (in millions of kronor).

X: Total number of municipal employees in 1984.

Population II

Another population is considered ([16] appendix B) which is classified in to four domains with stratum 1 and 2 according to the revenues less than 100 (in millions of kronor) and revenues above 100 (in millions of kronor).

Y: Revenues of 1985 municipal taxation assessment (in millions of kronor).

X: 1985 population (in thousands).

Discussion

This discussion is based on the empirical analysis carried out and results presented in Tables 1–7. From Table 7 (Populations I and II) with respect to single stage sampling (MSE of estimators for domain mean), it is observed that the mean square error of the proposed estimator  is less than the MSE of the existing estimators in all the domains. This is seen in both cases of non-response where the non-response rate was uniform across the strata and where it was non-uniform as specified in the data. The Average Mean Squared Errors (AMSE) also confirms the behavior of the MSE in both populations and cases. From Table 8 (Populations I and II) with respect to single stage sampling, it is observed that the Percentage Relative Efficiency (PRE) for the proposed estimators kept at a benchmark of 100% had greater gains in efficiency than the existing estimators for all the domains.

Domain Parameter

Domain

 

 

 

 

 

 

 

Domain Size

25

 

32

 

15

 

29

 

Stratum

1

2

1

2

1

2

1

2

N dh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaa@3A32@

2

23

12

20

2

13

18

11

W dh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaa@3A3B@

0.080

0.920

0.375

0.625

0.133

0.867

0.620

0.379

Y ¯ dh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmywayaaraWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaaaaa@3A55@

955.50

6888

1056.9

3364

1231

4020

723.2

4799

X ¯ dh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIfagaqeam aaBaaaleaaqaaaaaaaaaWdbiaadsgacaWGObaapaqabaaaaa@3A35@

529

4385

485.4

1816

493

1694

354.1

2205

S Ydh 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaqhaaWcbaWdbiaadMfacaWGKbGaamiAaaWdaeaapeGa aGOmaaaaaaa@3BE2@

40.5

136775663

71715.5

4652460

135721

5643626

81863.7

10236271

S Xdh 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaqhaaWcbaWdbiaadIfacaWGKbGaamiAaaWdaeaapeGa aGOmaaaaaaa@3BE1@

101250

81259476

29239.7

2530489

162

2354475

18128.3

2902966

S XYdh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadIfacaWGzbGaamizaiaadIgaa8aa beaaaaa@3BF2@ ;

-2025

104701660

34761.1

3144594

-4689

2999017

13306

3557068

ρ XYdh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamiwaiaadMfacaWGKbGaamiAaaWd aeqaaaaa@3CDA@

-1.000

0.993

0.759

0.916

-1.000

0.823

0.345

0.653

Table 1 Value of parameters of the strata (1 and 2) and domains
Source: Statistical computation from original data 2023.

Domain

Strata

S Ydh2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa83ua8aadaqhaaWcbaWdbiaa=LfacaWFKbGaa8hAaiaaikda a8aabaWdbiaaikdaaaaaaa@3C9A@

S Xdh2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa83ua8aadaqhaaWcbaWdbiaa=HfacaWFKbGaa8hAaiaaikda a8aabaWdbiaaikdaaaaaaa@3C99@

S XYdh2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa83ua8aadaWgaaWcbaWdbiaa=HfacaWFzbGaa8hzaiaa=Hga caaIYaaapaqabaaaaa@3CA6@

K dh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa83sa8aadaWgaaWcbaWdbiaa=rgacaWFObaapaqabaaaaa@3A2F@

n dh2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8NBa8aadaWgaaWcbaWdbiaa=rgacaWFObGaaGOmaaWdaeqa aaaa@3B0E@

w dh2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa83Da8aadaWgaaWcbaWdbiaa=rgacaWFObGaaGOmaaWdaeqa aaaa@3B17@

n dh1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaWgaaWcbaWdbiaadsgacaWGObGaaGymaaWdaeqaaaaa @3B0D@

n dh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaa@3A52@

1

1

0

0

0

3

0

0.3

0

0

 

2

223415888

132328227

171255299

2

4

0.3

10

14

2

1

120583

9862.3

28095.5

2

1

0.3

2

3

 

2

3977507

2517165

2669307

2

3

0.3

8

11

3

1

0

0

0

2

0

0.3

0

0

 

2

987699

1771955

1137277

3

1

0.3

3

4

4

1

79129

20311.8

8114.3

2

3

0.3

6

9

 

2

141512

5618

-28196

2

1

0.3

1

2

Table 2 The parameter values of strata (1 and 2) for domains (1, 2, 3 and 4) in case 1
Source: Statistical computation from original data 2023.

Domain

Strata

S Ydh2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaqhaaWcbaWdbiaadMfacaWGKbGaamiAaiaaikdaa8aa baWdbiaaikdaaaaaaa@3C9E@

S Xdh2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaqhaaWcbaWdbiaadIfacaWGKbGaamiAaiaaikdaa8aa baWdbiaaikdaaaaaaa@3C9D@

S XYdh2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadIfacaWGzbGaamizaiaadIgacaaI Yaaapaqabaaaaa@3CAE@

k dh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaa@3A4F@ n dh2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaWgaaWcbaWdbiaadsgacaWGObGaaGOmaaWdaeqaaaaa @3B0E@

W dh2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaadsgacaWGObGaaGOmaaWdaeqaaaaa @3AF7@

n dh1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaWgaaWcbaWdbiaadsgacaWGObGaaGymaaWdaeqaaaaa @3B0D@

n dh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaa@3A52@

1

1

0

0

0

2

0

0.2

0

0

 

2

256872328

152987958

197463945

3

5

0.4

7

12

2

1

120583

9862.3

28095.5

2

1

0.2

2

3

 

2

3977507

2517165

2669307

3

4

0.4

7

11

3

1

0

0

0

2

0

0.2

0

0

 

2

987699

1771955

1137277

4

2

0.4

2

4

4

1

79129

20311.8

8114.3

2

2

0.2

7

9

 

2

141512

5618

-28196

3

1

0.4

1

2

Table 3 The parameter values of Strata (1 and 2) for domain (1,2,3 and 4) in case 2
Source: Statistical computation from original data 2023.

Domain Parameter

Domain

 

 

 

 

 

 

 

Domain Size

25

 

32

 

15

 

29

 

Stratum

1

2

1

2

1

2

1

2

N dh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaa@3A32@

2

23

14

18

7

8

20

9

W dh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaa@3A3B@

0.08

0.92

0.438

0.563

0.467

0.533

0.69

0.31

Y ¯ dh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadMfagaqeam aaBaaaleaaqaaaaaaaaaWdbiaadsgacaWGObaapaqabaaaaa@3A36@

75.5

594

67.5

260.6

73

315

44.55

345.2

X ¯ dh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiwayaaraWdamaaBaaaleaapeGaamizaiaadIgaa8aabeaaaaa@3A54@

9.00

67.1

10.643

34.5

10.714

40.63

6.55

41.89

S Ydh 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaqhaaWcbaWdbiaadMfacaWGKbGaamiAaaWdaeaapeGa aGOmaaaaaaa@3BE2@

840.5

1551426

275.96

41200.8

369.67

51631.7

187.21

54848.9

S Xdh 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaqhaaWcbaWdbiaadIfacaWGKbGaamiAaaWdaeaapeGa aGOmaaaaaaa@3BE1@

18.00

16649.6

4.555

544.97

6.905

731.13

5.103

681.61

S XYdh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadIfacaWGzbGaamizaiaadIgaa8aa beaaaaa@3BF2@

123

160633.5

32.038

4559.147

49.5

6116.143

29.839

6076.778

ρ XYdh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamiwaiaadMfacaWGKbGaamiAaaWd aeqaaaaa@3CD9@

1.00

0.999

0.904

0.962

0.98

0.995

0.965

0.994

λ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaaGymaiaaikdaa8aabeaaaaa@3AB3@

0.003414

0.0000163

0.0004078

0.0000537

0.005061

0.0001168

0.0003394

0.0000987

λ 03 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaaGimaiaaiodaa8aabeaaaaa@3AB3@

0.001047

0.0000066

0.000086

0.0000156

0.000813

0.0000207

0.0000813

0.0000208

λ 04 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaaGimaiaaisdaa8aabeaaaaa@3AB4@

0.250000

0.5941080

0.407718

0.543903

0.001194

0.417192

0.221445

0.283596

Table 4 The parameter value of the strata for the domains (1, 2, 3 and 4)

Domain

Strata

S Ydh2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaqhaaWcbaWdbiaadMfacaWGKbGaamiAaiaaikdaa8aa baWdbiaaikdaaaaaaa@3C9D@

S Xdh2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaqhaaWcbaWdbiaadIfacaWGKbGaamiAaiaaikdaa8aa baWdbiaaikdaaaaaaa@3C9C@

S XYdh2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadIfacaWGzbGaamizaiaadIgacaaI Yaaapaqabaaaaa@3CAD@

k dh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaa@3A4E@

n dh2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaWgaaWcbaWdbiaadsgacaWGObGaaGOmaaWdaeqaaaaa @3B0D@

W dh2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaadsgacaWGObGaaGOmaaWdaeqaaaaa @3AF6@

n dh1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaWgaaWcbaWdbiaadsgacaWGObGaaGymaaWdaeqaaaaa @3B0C@

n dh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaa@3A51@

1

1

0

0

0

2

0

0.3

0

0

 

2

2478255

26533

256331

2

4

0.3

10

14

2

1

373.7

4.200

35.05

2

2

0.3

3

5

 

2

64541.6

875.25

7146.75

2

3

0.3

6

9

3

1

0

0

0

2

0

0.3

0

0

 

2

0

0

0

2

0

0.3

0

0

4

1

168.16

5.018

27.945

3

3

0.3

8

11

 

2

0

0

0

2

0

0.3

0

0

Table 5 The parameter values of Strata (1 and 2) for domain (1,2,3 and 4) in case 1
Source: Statistical computation from original data 2023.

Domain

Strata

S Ydh2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaqhaaWcbaWdbiaadMfacaWGKbGaamiAaiaaikdaa8aa baWdbiaaikdaaaaaaa@3C9D@

S Xdh2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaqhaaWcbaWdbiaadIfacaWGKbGaamiAaiaaikdaa8aa baWdbiaaikdaaaaaaa@3C9C@ S XYdh2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadIfacaWGzbGaamizaiaadIgacaaI Yaaapaqabaaaaa@3CAD@ k dh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaa@3A4E@ n dh2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaWgaaWcbaWdbiaadsgacaWGObGaaGOmaaWdaeqaaaaa @3B0D@

W dh2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaadsgacaWGObGaaGOmaaWdaeqaaaaa @3AF6@

n dh1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaWgaaWcbaWdbiaadsgacaWGObGaaGymaaWdaeqaaaaa @3B0C@ n dh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaWgaaWcbaWdbiaadsgacaWGObaapaqabaaaaa@3A51@

1

1

0

0

0

2

0

0.2

0

0

 

2

2654913

28395.1

274463.7

3

5

0.4

8

13

2

1

176.25

1.333

9.667

2

1

0.2

3

4

 

2

64184.8

874.3

7069.214

2

3

0.4

5

8

3

1

0

0

0

2

0

0.2

0

0

 

2

0

0

0

3

0

0.4

0

0

4

1

169.778

5.511

30

2

2

0.2

8

10

 

2

0

0

0

3

0

0.4

0

0

Table 6 Parameter values of strata (1 and 2) for each domain in the case 2

Estimator

1

2

3

4

AMSE

 

Case 1 (Population 1)

     
t 2j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaikdacaWGQbaapaqabaaaaa@3A2C@

1950061

74298

817651

367172

802295.5

T DG.st.1.d * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaqhaaWcbaWdbiaadseacaWGhbGaaiOlaiaadohacaWG 0bGaaiOlaiabgkHiTiaaigdacaGGUaGaamizaaWdaeaapeGaaiOkaa aaaaa@414D@

969486

1524915

8225052

7635549

4588751

t exp1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiGacwgacaGG4bGaaiiCaiaaigdaa8aa beaaaaa@3C17@

3388887

2662270

2108968

1580771

2435224

t cal * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hDa8aadaqhaaWcbaWdbiaa=ngacaWFHbGaa8hBaaWdaeaa peGaa8Nkaaaaaaa@3BF8@

389212

68914.02

613475

41078.01

278169.8

 

Case2 (Population 1)

     
t 2j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaikdacaWGQbaapaqabaaaaa@3A2C@

1724942

69614.41

771605.6

36752.6

650728.7

T (DG.st.1.d) * i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaqhaaWcbaWdbiaacIcacaWGebGaam4raiaac6cacaWG ZbGaamiDaiaac6cacqGHsislcaaIXaGaaiOlaiaadsgacaGGPaaapa qaa8qacaGGQaaaaOGaamyAaaaa@439E@

531387

334565

501732.17

1024511

598048.8

t exp1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiGacwgacaGG4bGaaiiCaiaaigdaa8aa beaaaaa@3C17@

1190074

28456.45

270455

927116.3

604025.4

t cal * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hDa8aadaqhaaWcbaWdbiaa=ngacaWFHbGaa8hBaaWdaeaa peGaa8Nkaaaaaaa@3BF8@

31623

2178.416

35028.05

32543.11

25343.14

 

Case 1 (Population 2)

     

t 2j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaikdacaWGQbaapaqabaaaaa@3A2C@

716146

115492

-

721

208089.8

T DG.st.1.d * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaqhaaWcbaWdbiaadseacaWGhbGaaiOlaiaadohacaWG 0bGaaiOlaiabgkHiTiaaigdacaGGUaGaamizaaWdaeaapeGaaiOkaa aaaaa@414D@

279503

68413

-

409

87081.25

t exp1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiGacwgacaGG4bGaaiiCaiaaigdaa8aa beaaaaa@3C17@

30790869

615419.7

-

246

7851634

t cal * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hDa8aadaqhaaWcbaWdbiaa=ngacaWFHbGaa8hBaaWdaeaa peGaa8Nkaaaaaaa@3BF8@

222071

21236

-

169

60869

 

Case 2 (Population 2)

     

t 2j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaikdacaWGQbaapaqabaaaaa@3A2C@

11048.4

246.8

-

9

2826.05

T DG.st.1.d * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaqhaaWcbaWdbiaadseacaWGhbGaaiOlaiaadohacaWG 0bGaaiOlaiabgkHiTiaaigdacaGGUaGaamizaaWdaeaapeGaaiOkaa aaaaa@414D@

11989.8

639.6

-

313

3235.6

t exp1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiGacwgacaGG4bGaaiiCaiaaigdaa8aa beaaaaa@3C17@

97184

942

-

206

24583

t cal * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hDa8aadaqhaaWcbaWdbiaa=ngacaWFHbGaa8hBaaWdaeaa peGaa8Nkaaaaaaa@3BF8@

10431

127.3

-

4.8

2640.775

Table 7 MSE of Estimators for domain mean in both cases 1 and 2(Population 1&2)
Note: AMSE, average mean square error.
Source: Statistical computation from original data 2023.

 

D1

D2

D3

D4

Estimator

Case 1 ( Population 1)

   
t 2j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaikdacaWGQbaapaqabaaaaa@3A2C@

19.95897

92.75353

75.02895

11.18767

T DG.st.1. d i * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaqhaaWcbaWdbiaadseacaWGhbGaaiOlaiaadohacaWG 0bGaaiOlaiabgkHiTiaaigdacaGGUaGaamiza8aadaahaaadbeqaa8 qacaWGPbaaaaWcpaqaa8qacaGGQaaaaaaa@4293@

40.14622

4.519204

7.458615

0.537984

t exp1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiGacwgacaGG4bGaaiiCaiaaigdaa8aa beaaaaa@3C17@

11.48495

2.588544

29.08887

2.598606

t cal * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hDa8aadaqhaaWcbaWdbiaa=ngacaWFHbGaa8hBaaWdaeaa peGaa8Nkaaaaaaa@3BF8@

100

100

100

100

 

Case 2( Population 1)

   
t 2j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaikdacaWGQbaapaqabaaaaa@3A2C@

1.833279

3.12926

4.539631

88.54642

T DG.st.1. d i * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaqhaaWcbaWdbiaadseacaWGhbGaaiOlaiaadohacaWG 0bGaaiOlaiabgkHiTiaaigdacaGGUaGaamiza8aadaahaaadbeqaa8 qacaWGPbaaaaWcpaqaa8qacaGGQaaaaaaa@4293@

5.95103

0.651119

6.981424

3.176453

t exp1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiGacwgacaGG4bGaaiiCaiaaigdaa8aa beaaaaa@3C17@

2.65723

7.655263

12.95153

3.510143

t cal * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hDa8aadaqhaaWcbaWdbiaa=ngacaWFHbGaa8hBaaWdaeaa peGaa8Nkaaaaaaa@3BF8@

100

100

100

100

 

Case 1( Population 2)

   
t 2j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaikdacaWGQbaapaqabaaaaa@3A2C@

31.00918

18.38742

0

23.43967

T DG.st.1. d i * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaqhaaWcbaWdbiaadseacaWGhbGaaiOlaiaadohacaWG 0bGaaiOlaiabgkHiTiaaigdacaGGUaGaamiza8aadaahaaadbeqaa8 qacaWGPbaaaaWcpaqaa8qacaGGQaaaaaaa@4293@

79.4521

31.04088

0

41.32029

t exp1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiGacwgacaGG4bGaaiiCaiaaigdaa8aa beaaaaa@3C17@

0.721224

3.450653

0

68.69919

t cal * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hDa8aadaqhaaWcbaWdbiaa=ngacaWFHbGaa8hBaaWdaeaa peGaa8Nkaaaaaaa@3BF8@

100

100

0

100

 

Case 2( Population 2)

   
t 2j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaikdacaWGQbaapaqabaaaaa@3A2C@

94.41186

51.58023

0

53.33333

T DG.st.1. d i * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaqhaaWcbaWdbiaadseacaWGhbGaaiOlaiaadohacaWG 0bGaaiOlaiabgkHiTiaaigdacaGGUaGaamiza8aadaahaaadbeqaa8 qacaWGPbaaaaWcpaqaa8qacaGGQaaaaaaa@4293@

86.99895

19.90306

0

1.533546

t exp1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiGacwgacaGG4bGaaiiCaiaaigdaa8aa beaaaaa@3C17@

10.73325

13.5138

0

2.330097

t cal * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hDa8aadaqhaaWcbaWdbiaa=ngacaWFHbGaa8hBaaWdaeaa peGaa8Nkaaaaaaa@3BF8@

100

100

0

100

Table 8 PRE of the estimators for domain mean in both cases 1 and 2(Population 1 and 2)

Conclusion

This study develops the concept of calibration estimator for ratio estimation and proposes calibration ratio estimators of population mean in single stage sampling. The study contributes to the theory of domain estimation in stratified random sampling of the population mean of the study variable with sub-sampling the non-respondents when there is non-response in the study variable and auxiliary variable is free from non-response.

The proposed class of estimators provide opportunity for different known values of the domain population parameters of the auxiliary variable to be incorporated in constructing estimators in the presence of non-response using the concept of calibration. The study revealed that the first constraint is just the sum of the calibration weight equals to one and the third constraint which has to do with the stratum variance also contributes immensely to the efficiency of the proposed estimator. Furthermore, with the adoption of the procedure of sub-sampling the non-respondents even with ratio estimator, the study has reveal that subjecting an estimator to conditions where the study variable is affected by non-response while the auxiliary variable is free of non-response has no effect in the mean estimate.

From the efficiency comparison and empirical work, it becomes pertinent that the use of calibration technique has really paid off in providing estimates of the population mean with sub-sampling the non-respondents that provides greater gains in efficiency better than the existing estimators. This will proffer useful results to users of statistics and researchers when working on economic data that requires the use of auxiliary data either from the records or from previous survey.

However, it could be seen clearly from Table 7 that it was impossible to compute estimates for domain 3 in both cases of population II and hence, the mean square error was not computed. As a result, the PRE was accorded zero value. This is as a result of no sample size for both the respondents and the non-respondents as indicated in Table 6. Future research is encouraged in the light of this through the use of synthetic estimation technique.

Acknowledgments

None.

Conflicts of interest

The authors declare there is not any conflict of interest.

Funding

None.

References

  1. Deville JC, Särndal C. E. Calibration estimators in survey sampling. JASA. 1992;87:376–382.
  2. Koyuncu N, Kadilar, C. (2013). Calibration estimators using different measures in stratified random sampling. International Journal of Modern Engineering Research. 2013;3(1):415–419.
  3. Clement EP, Udofia GA, Enang EI. Sample design for domain calibration estimators. International Journal of Probability and Statistics. 2014;3(1):8–14.
  4. Clement EP, Enang E I. Calibration approach alternative ratio estimator for population mean in stratified sampling. International Journal of Statistics and Economics. 2015;16(1):83–93.
  5. Godwin A Udofia. Ratio estimation for small domains with subsampling the non-respondents:an application of Rao strategy. Statistics in Transition. 2004;6(5):713—724.
  6. Rao Poduri SRS. Ratio estimation with sub-sampling the non-respondents. Survey Methodology. 1986;12:217—230.
  7. Iseh, MJ, Bassey MO. Calibration estimators for population mean with subsampling the nonrespondents under stratified sampling. Science Journal of Applied Mathematics and Statistics. 2022;10(4):45–56.
  8. Iseh Matthew, Bassey Mbuotidem. Smoothing of estimators of population mean using calibration technique with sample errors. Journal of Modern Applied Statistical Methods. 2024; 23(1):.
  9. Cochran WG. Sampling Techniques, 3rd edition, New York: Wiley. 1977.
  10. Ashutosh (2021) Estimator of domain mean using stratified sampling in the presence on non-response.,Sri Lankan Journal of Applied Statistics. 2021;22(1):13–29.
  11. Clement EP, Inyang EJ. Improving the efficiency of ratio estimators by calibration weightings. International Journal of Statistics and Mathematics. 2021;8(1):164–172.
  12. Iseh, M J, Bassey KJ. A New calibration estimator of population mean for small area with nonresponse. Asian Journal of Probability and Statistics. 2021(a);12(2):14–51.
  13. Iseh, M. J, Bassey, KJ. Calibration estimator for population mean in small sample size with non-response. European Journal of Statistics and Probability. 2021(b);9(1):32–42.
  14. Iseh, M.J, Enang EI. A calibration synthetic estimator of population mean in small area under stratified sampling design. Transition in Statistics new series. 2021;22(3):15–30.
  15. Pal SK, Singh HP. A class of ratio-cum-ratio-type exponential estimators for population mean with subsampling the non-respondents. Jordan Journal of Mathematics and Statistics. 2017;10(1):73–94.
  16. Sarndal CE, Swensson B, Wretman J. Model-assisted surveys. New York: Springer-Verlag. 1992.
Creative Commons Attribution License

©2024 Ikot, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.