Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 7 Issue 2

A quasi exponential distribution

Rama Shanker,1 Kamlesh Kumar Shukla,1 Shambhu Sharma,2 Ravi Shanker3

1lDepartment of Statistics, Eritrea Institute of Technology, Eritrea
2Department of Mathematics, Dayalbagh Educational Institute, India
3Department of Mathematics, N.P University, India

Correspondence: Rama Shanker, Department of Statistics, College of Science, Eritrea Institute of Technology, Asmara, Eritrea

Received: February 23, 2018 | Published: March 9, 2018

Citation: Shanker R, Shukla KK, Sharma S. A quasi exponential distribution. Biom Biostat Int J. 2018;7(2):90–94. DOI: 10.15406/bbij.2018.07.00194

Download PDF

Abstract

In this paper, a quasi exponential distribution has been proposed and studied. Its statistical properties including moments, survival function, hazard rate function, mean residual life function and stochastic ordering have been discussed. Maximum likelihood estimation has been discussed for estimating the parameter of the distribution. Application of the distribution has been explained with a real lifetime data from biomedical science and its goodness of fit shows quite satisfactory over exponential distribution.

Keywords: exponential distribution, moments, hazard rate function, mean residual life function, stochastic ordering, parameter estimation, application.

Abbreviations

QED, quasi exponential distribution; PDF, probability density function; CDF, cumulative distribution function; MLE, maximum likelihood estimate; AIC, Akaike information criterion

Introduction

The exponential distribution having scale parameter  (also known as rate parameter for failure, death, arrival etc) is defined by its probability density function (pdf) and cumulative distribution function (cdf)

f 1 ( x;θ )=θ e -θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFMbWcdaWgaaqcKfaG=haajugWaiaa=fdaaKqaGeqaaKqbaoaabmaa keaajugibiaa=HhacaWF7aaccaGae4hUdehakiaawIcacaGLPaaaju gibiaa=1dacqGF4oqCcaaMc8Uaa8xzaKqbaoaaCaaaleqajqwaa+Fa aKqzadGaa8xlaiab+H7aXjaaykW7caWF4baaaKqzGeGaa83oaiaayk W7caWF4bGaa8Npaiaa=bdacaWFSaGae4hUdeNaa8Npaiaa=bdaaaa@58F3@           (1.1)

F 1 ( x;θ )=1- e -θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFgbqcfa4aaSbaaKazba4=baqcLbmacaWFXaaaleqaaKqbaoaabmaa keaajugibiaa=HhacaWF7aaccaGae4hUdehakiaawIcacaGLPaaaju gibiaa=1dacaWFXaGaa8xlaiaa=vgajuaGdaahaaWcbeqcKfaG=haa jugWaiaa=1cacqGF4oqCcaaMc8Uaa8hEaaaajugibiaaykW7caWF7a Gaa8hEaiaa=5dacaWFWaGaa8hlaiab+H7aXjaa=5dacaWFWaaaaa@575C@           (1.2)

The exponential distribution provides a simple, elegant and closed form solution to many problems in lifetime testing and reliability studies. One reason for the wide popularity of the exponential distribution in reliability is that it is the limiting lifetime distribution of a series system of substantially similar components. Also the exponential distribution is important due to its memory loss property. However, the exponential distribution does not provide a significant fit for some real lifetime applications, where the failure rates are not constant. Epstein1 has detailed study on exponential distribution and its role in life testing. Sato et al.2 obtained a discrete exponential distribution and discussed its properties and applied the distribution to model defect count distribution in semi-conductor deposition equipment and defect count distribution per chips. Gupta & Kundu3 have introduced generalized exponential distribution and discussed its properties and applications. Most of the works done on exponential distribution, its extension, mixture and applications in different fields of knowledge are available in Ahsanullah &Hamedani.4 Although exponential distribution was the first one parameter lifetime distribution for modeling lifetime data from engineering and biomedical sciences, but due to one parameter it is not always a suitable lifetime distribution. Also the hazard rate function and the mean residual life function of exponential distribution are always constant.

The statistical modeling and analysis of lifetime data are crucial in almost all branches of knowledge especially engineering and biomedical sciences. The one parameter exponential distribution is popular in statistics literature for modeling lifetime data. It has been observed that exponential distribution is not always a suitable model either due to theoretical or applied point of view. An attempt has been made to find a one parameter lifetime distribution which competes well with exponential distribution.

In this paper a quasi exponential distribution has been proposed. Its statistical properties including shapes of pdf for varying values of parameter, moments, hazard rate function, mean residual life function, stochastic ordering have been discussed. Estimation of parameter has been discussed using maximum likelihood estimation. Finally, application to a real lifetime data from biomedical science has been presented to test its goodness of fit over exponential distribution.

A quasi exponential distribution

A quasi exponential distribution (QED) having scale parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@37AC@ is defined by its pdf

& f 2 ( x;θ )= 2 θ 1/2 Γ( 1 2 ) e -θ x 2 ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFMbqcfa4aaSbaaKazba4=baqcLbmacaWFYaaaleqaaKqbaoaabmaa keaajugibiaa=HhacaWF7aaccaGae4hUdehakiaawIcacaGLPaaaju gibiaa=1dajuaGdaWcaaGcbaqcLbsacaWFYaGae4hUdexcfa4aaWba aSqabKazba4=baWcdaWcgaqcKfaG=haajugWaiaa=fdaaKazba4=ba qcLbmacaWFYaaaaaaaaOqaaKqzGeGae43KdCucfa4aaeWaaOqaaKqb aoaalaaakeaajugibiaa=fdaaOqaaKqzGeGaa8NmaaaaaOGaayjkai aawMcaaaaajugibiaaykW7caWFLbqcfa4aaWbaaSqabeaajugibiaa =1cacqGF4oqCcaaMc8Uaa8hEaKqbaoaaCaaameqajiaibaqcLbmaca WFYaaaaaaajugibiaa=TdacaaMc8Uaa8hEaiaa=5dacaWFWaGaa8hl aiab+H7aXjaa=5dacaWFWaaaaa@6DCB@           (2.1)

The survival (reliability) function of QED (2.1) can be obtained as

S( x;θ )=P( X>x )= 2 θ 1/2 Γ( 1 2 ) x e -θ t 2 dt= Γ( 1 2 ,θ x 2 ) Γ( 1 2 ) ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0J>>e9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFtbqcfa4aaeWaaOqaaKqzGeGaa8hEaiaa=TdaiiaacqGF4oqCaOGa ayjkaiaawMcaaKqzGeGaa8xpaiaa=bfajuaGdaqadaGcbaqcLbsaca WFybGaa8Npaiaa=HhaaOGaayjkaiaawMcaaKqzGeGaa8xpaKqbaoaa laaakeaajugibiaa=jdacqGF4oqCjuaGdaahaaWcbeqcKfaG=haalm aalyaajqwaa+FaaKqzadGaa8xmaaqcKfaG=haajugWaiaa=jdaaaaa aaGcbaqcLbsacqGFtoWrjuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGe Gaa8xmaaGcbaqcLbsacaWFYaaaaaGccaGLOaGaayzkaaaaaKqbaoaa pehakeaajugibiaa=vgajuaGdaahaaWcbeqcbasaaKqzGeGaa8xlai aa=H7acaaMc8Uaa8hDaKqbaoaaCaaajiaibeqaaKqzadGaa8Nmaaaa aaaajeaibaqcLbsacaWF4baajeaibaqcLbsacqGFEisPaiabgUIiYd Gaa8hzaiaa=rhacaWF9aqcfa4aaSaaaOqaaKqzGeGae43KdCucfa4a aeWaaOqaaKqbaoaalaaakeaajugibiaa=fdaaOqaaKqzGeGaa8Nmaa aacaWFSaGae4hUdeNaaGPaVlaa=HhajuaGdaahaaWcbeqcKfaG=haa jugWaiaa=jdaaaaakiaawIcacaGLPaaaaeaajugibiab+n5ahLqbao aabmaakeaajuaGdaWcaaGcbaqcLbsacaWFXaaakeaajugibiaa=jda aaaakiaawIcacaGLPaaaaaqcLbsacaWF7aGaa8hEaiaa=5dacaWFWa Gaa8hlaiab+H7aXjaa=5dacaWFWaaaaa@8F30@         (2.2)

Where the function  is the upper incomplete gamma function defined as

Γ( α,z )= z e y y α1 dy;α>0,z0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbsacq WFtoWrjuaGdaqadaGcbaqcLbsacqaHXoqycaGGSaGaamOEaaGccaGL OaGaayzkaaqcLbsacqGH9aqpjuaGdaWdXbGcbaqcLbsacaWGLbqcfa 4aaWbaaSqabKqaGeaajugWaiabgkHiTiaadMhaaaqcLbsacaaMc8Ua amyEaKqbaoaaCaaaleqajeaibaqcLbmacqaHXoqycqGHsislcaaIXa aaaKqzGeGaaGPaVlaadsgacaWG5bGaaGPaVlaacUdacqaHXoqycqGH +aGpcaaIWaGaaiilaiaaykW7caaMc8UaamOEaiabgwMiZkaaicdaaK qaGeaajugWaiaadQhaaKqaGeaajugWaiabg6HiLcqcLbsacqGHRiI8 aaaa@6700@ ,          (2.3)

Thus the cdf of QED (2.1) can be defined as

F 2 ( x;θ )=1-S( x;θ )=1- Γ( 1 2 ,θ x 2 ) Γ( 1 2 ) ; x>0, θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFgbqcfa4aaSbaaKqaGeaajugWaiaa=jdaaSqabaqcfa4aaeWaaOqa aKqzGeGaa8hEaiaa=TdaiiaacqGF4oqCaOGaayjkaiaawMcaaKqzGe Gaa8xpaiaa=fdacaWFTaGaa83uaKqbaoaabmaakeaajugibiaa=Hha caWF7aGae4hUdehakiaawIcacaGLPaaajugibiaa=1dacaWFXaGaa8 xlaKqbaoaalaaakeaajugibiab+n5ahLqbaoaabmaakeaajuaGdaWc aaGcbaqcLbsacaWFXaaakeaajugibiaa=jdaaaGaa8hlaiab+H7aXj aa=HhajuaGdaahaaWcbeqcbasaaKqzadGaa8NmaaaaaOGaayjkaiaa wMcaaaqaaKqzGeGae43KdCucfa4aaeWaaOqaaKqbaoaalaaakeaaju gibiaa=fdaaOqaaKqzGeGaa8NmaaaaaOGaayjkaiaawMcaaaaajugi biaa=TdacaWFGaGaa8hiaiaa=bcacaWF4bGaa8Npaiaa=bdacaWFSa GaaGjbVlaa=bcacqGF4oqCcaWF+aGaa8hmaaaa@6D86@     (2.4)

The behavior of the pdf and cdf of QED and exponential distribution (ED) for varying values of parameter have been shown in figures 1 and 2 respectively.

  • Figure 1 Behavior of the pdf of the QED and ED for varying varying values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WF4oaaaa@37CA@ .

  • Figure 2Behavior of the cdf of the QED and ED for varying values of parameter . θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WF4oaaaa@37CA@ .

Moments

The rth moment about origin of QED can be obtained as

μ r =E( X r )= 2 θ 1/2 Γ( 1 2 ) 0 e -θ x 2 x r dx= Γ( r+1 2 ) θ r/2 Γ( 1 2 ) ;r=1,2,3,.... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBjuaGdaqhaaqcbasaaGqaaKqzadGaa8NCaaqcbasaaGGaaKqzadGa e4NmGikaaKqzGeGaa8xpaiaa=veajuaGdaqadaGcbaqcLbsacaWFyb qcfa4aaWbaaSqabKqaGeaajugWaiaa=jhaaaaakiaawIcacaGLPaaa jugibiaa=1dajuaGdaWcaaGcbaqcLbsacaWFYaGae4hUdexcfa4aaW baaSqabKqaGeaalmaalyaajeaibaqcLbmacaWFXaaajeaibaqcLbma caWFYaaaaaaaaOqaaKqzGeGae43KdCucfa4aaeWaaOqaaKqbaoaala aakeaajugibiaa=fdaaOqaaKqzGeGaa8NmaaaaaOGaayjkaiaawMca aaaajuaGdaWdXbGcbaqcLbsacaWFLbqcfa4aaWbaaSqabKqaGeaaju gWaiaa=1cacqGF4oqCcaWF4bWcdaahaaqccasabeaajugWaiaa=jda aaaaaaqcbasaaKqzadGaa8hmaaqcbasaaKqzadGae4xhIulajugibi abgUIiYdGaa8hEaKqbaoaaCaaaleqajeaibaqcLbmacaWFYbaaaKqz GeGaa8hzaiaa=HhacaWF9aqcfa4aaSaaaOqaaKqzGeGae43KdCucfa 4aaeWaaOqaaKqbaoaalaaakeaajugibiaa=jhacaWFRaGaa8xmaaGc baqcLbsacaWFYaaaaaGccaGLOaGaayzkaaaabaqcLbsacqGF4oqCju aGdaahaaWcbeqcbasaaSWaaSGbaKqaGeaajugWaiaa=jhaaKqaGeaa jugWaiaa=jdaaaaaaKqzGeGae43KdCucfa4aaeWaaOqaaKqbaoaala aakeaajugibiaa=fdaaOqaaKqzGeGaa8NmaaaaaOGaayjkaiaawMca aaaajugibiaaykW7caaMc8Uaa83oaiaa=jhacaWF9aGaa8xmaiaa=X cacaWFYaGaa8hlaiaa=ndacaWFSaGaa8Nlaiaa=5cacaWFUaGaa8Nl aaaa@9624@      (3.1)

& μ r =E( X r )= 2 θ 1/2 Γ( 1 2 ) 0 e -θ x 2 x r dx= Γ( r+1 2 ) θ r/2 Γ( 1 2 ) ;r=1,2,3,.... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBjuaGdaqhaaqcbasaaGqaaKqzadGaa8NCaaqcbasaaGGaaKqzadGa e4NmGikaaKqzGeGaa8xpaiaa=veajuaGdaqadaGcbaqcLbsacaWFyb qcfa4aaWbaaSqabKqaGeaajugWaiaa=jhaaaaakiaawIcacaGLPaaa jugibiaa=1dajuaGdaWcaaGcbaqcLbsacaWFYaGae4hUdexcfa4aaW baaSqabKqaGeaalmaalyaajeaibaqcLbmacaWFXaaajeaibaqcLbma caWFYaaaaaaaaOqaaKqzGeGae43KdCucfa4aaeWaaOqaaKqbaoaala aakeaajugibiaa=fdaaOqaaKqzGeGaa8NmaaaaaOGaayjkaiaawMca aaaajuaGdaWdXbGcbaqcLbsacaWFLbqcfa4aaWbaaSqabKqaGeaaju gWaiaa=1cacqGF4oqCcaWF4bWcdaahaaqccasabeaajugWaiaa=jda aaaaaaqcbasaaKqzadGaa8hmaaqcbasaaKqzadGae4xhIulajugibi abgUIiYdGaa8hEaKqbaoaaCaaaleqajeaibaqcLbmacaWFYbaaaKqz GeGaa8hzaiaa=HhacaWF9aqcfa4aaSaaaOqaaKqzGeGae43KdCucfa 4aaeWaaOqaaKqbaoaalaaakeaajugibiaa=jhacaWFRaGaa8xmaaGc baqcLbsacaWFYaaaaaGccaGLOaGaayzkaaaabaqcLbsacqGF4oqCju aGdaahaaWcbeqcbasaaSWaaSGbaKqaGeaajugWaiaa=jhaaKqaGeaa jugWaiaa=jdaaaaaaKqzGeGae43KdCucfa4aaeWaaOqaaKqbaoaala aakeaajugibiaa=fdaaOqaaKqzGeGaa8NmaaaaaOGaayjkaiaawMca aaaajugibiaaykW7caaMc8Uaa83oaiaa=jhacaWF9aGaa8xmaiaa=X cacaWFYaGaa8hlaiaa=ndacaWFSaGaa8Nlaiaa=5cacaWFUaGaa8Nl aaaa@9624@

Taking r=1,2,3,and4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFYbGaa8xpaiaa=fdacaWFSaGaaGPaVlaaykW7caWFYaGaa8hlaiaa ykW7caaMc8Uaa83maiaa=XcacaaMc8UaaGPaVlaa=fgacaWFUbGaa8 hzaiaaykW7caaMc8Uaa8hnaaaa@4C22@ ;in (3.1), the first four moments about origin of QED are obtained as

μ 1 = 1 θ 1/2 Γ( 1 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBjuaGdaqhaaqcbasaaKqzadGaaGymaaqcbasaaGGaaKqzadGae8Nm GikaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLb sacqWF4oqCjuaGdaahaaWcbeqcbasaaSWaaSGbaKqaGeaajugWaiaa igdaaKqaGeaajugWaiaaikdaaaaaaKqzGeGae83KdCucfa4aaeWaaO qaaKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaaGOmaaaaaOGa ayjkaiaawMcaaaaaaaa@503A@ , μ 2 = 1 2θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBjuaGdaqhaaqcfasaaGqaaKqzadGaa8NmaaqcfasaaGGaaKqzadGa e4NmGikaaKqzGeGaa8xpaKqbaoaalaaakeaajugibiaa=fdaaOqaaK qzGeGaa8Nmaiab+H7aXbaaaaa@4413@ , μ 3 = 1 θ 3/2 Γ( 1 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WF8oqcfa4aa0baaKqaGeaajugWaiaaiodaaKqaGeaaiiaajugWaiab +jdiIcaajugibiaa=1dajuaGdaWcaaGcbaqcLbsacaWFXaaakeaaju gibiab+H7aXLqbaoaaCaaaleqajeaibaWcdaWcgaqcbasaaKqzadGa a83maaqcbasaaKqzadGaa8NmaaaaaaqcLbsacqGFtoWrjuaGdaqada Gcbaqcfa4aaSaaaOqaaKqzGeGaa8xmaaGcbaqcLbsacaWFYaaaaaGc caGLOaGaayzkaaaaaaaa@4F59@ ;and μ 4 = 3 4 θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbsacq WF8oqBjuaGdaqhaaqcbasaaGqaaKqzadGaa4hnaaqcbasaaKqzadGa e8NmGikaaKqzGeGaa4xpaKqbaoaalaaakeaajugibiaa+ndaaOqaaK qzGeGaa4hnaiab=H7aXLqbaoaaCaaaleqajeaibaqcLbmacaGFYaaa aaaaaaa@46CF@

The variance of QED can be obtained as

μ 2 = ( Γ( 1 2 ) ) 2 -2 2θ ( Γ( 1 2 ) ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbsacq WF8oqBjuaGdaWgaaqcbasaaGqaaKqzadGaa4NmaaWcbeaajugibiaa +1dajuaGdaWcaaGcbaqcfa4aaeWaaOqaaKqzGeGae83KdCucfa4aae WaaOqaaKqbaoaalaaakeaajugibiaa+fdaaOqaaKqzGeGaa4Nmaaaa aOGaayjkaiaawMcaaaGaayjkaiaawMcaaKqbaoaaCaaaleqajeaiba qcLbmacaGFYaaaaKqzGeGaa4xlaiaa+jdaaOqaaKqzGeGaa4Nmaiaa ykW7cqWF4oqCcaaMc8Ecfa4aaeWaaOqaaKqzGeGae83KdCucfa4aae WaaOqaaKqbaoaalaaakeaajugibiaa+fdaaOqaaKqzGeGaa4Nmaaaa aOGaayjkaiaawMcaaaGaayjkaiaawMcaaKqbaoaaCaaaleqajeaiba qcLbmacaGFYaaaaaaaaaa@5D6B@ .

The third and fourth central moments are not being given here because their expressions are lengthy. However, they can be calculated using relationship μ r =E ( Y- μ 1 ) r = k=0 r ( r k ) μ k ( - μ 1 ) r-k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBjuaGdaWgaaqcbasaaGqaaKqzadGaa8NCaaWcbeaajugibiaa=1da caWFfbqcfa4aaeWaaOqaaKqzGeGaa8xwaiaa=1cacqaH8oqBjuaGda qhaaqcbasaaKqzadGaaGymaaqcbasaaGGaaKqzadGae4NmGikaaaGc caGLOaGaayzkaaqcfa4aaWbaaSqabKqaGeaajugWaiaa=jhaaaqcLb sacaWF9aqcfa4aaabCaOqaaKqbaoaabmaakeaajugibuaabeqaceaa aOqaaKqzGeGaa8NCaaGcbaqcLbsacaWFRbaaaaGccaGLOaGaayzkaa aajeaibaqcLbmacaWFRbGaa8xpaiaa=bdaaKqaGeaajugWaiaa=jha aKqzGeGaeyyeIuoacqGF8oqBjuaGdaqhaaqcbasaaKqzadGaa83Aaa qcbasaaKqzadGae4NmGikaaKqbaoaabmaakeaajugibiaa=1cacqaH 8oqBjuaGdaqhaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGae4NmGi kaaaGccaGLOaGaayzkaaqcfa4aaWbaaSqabKqaGeaajugWaiaa=jha caWFTaGaa83Aaaaaaaa@7330@ ;between central moments and moments about mean.

Hazard rate function and mean residual life function

Let X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFybaaaa@3767@ be a continuous random variable with pdf f( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFMbqcfa4aaeWaaOqaaKqzGeGaa8hEaaGccaGLOaGaayzkaaaaaa@3B28@ and cdf F( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFgbqcfa4aaeWaaOqaaKqzGeGaa8hEaaGccaGLOaGaayzkaaaaaa@3B08@ . The hazard rate     function (also known as the failure rate function) and the mean residual life                 function of are respectively defined as

h( x )= lim Δx0 P( X<x+Δx|X>x ) Δx = f( x ) 1-F( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFObqcfa4aaeWaaOqaaKqzGeGaa8hEaaGccaGLOaGaayzkaaqcLbsa caWF9aqcfa4aaCbeaOqaaKqzGeGaa8hBaiaa=LgacaWFTbaajeaiba qcLbmacqGHuoarcaWF4bGaeyOKH4Qaa8hmaaWcbeaajuaGdaWcaaGc baqcLbsacaWFqbqcfa4aaeWaaOqaaKqbaoaaeiaakeaajugibiaa=H facaWF8aGaa8hEaiaa=TcacqGHuoarcaWF4bGaaGPaVlaaykW7aOGa ayjcSdqcLbsacaWFybGaa8Npaiaa=HhaaOGaayjkaiaawMcaaaqaaK qzGeGaeyiLdqKaa8hEaaaacaWF9aqcfa4aaSaaaOqaaKqzGeGaa8Nz aKqbaoaabmaakeaajugibiaa=HhaaOGaayjkaiaawMcaaaqaaKqzGe Gaa8xmaiaa=1cacaWFgbqcfa4aaeWaaOqaaKqzGeGaa8hEaaGccaGL OaGaayzkaaaaaaaa@69A4@          (4.1)

and  m( x )=E[ Xx|X>x ]= 1 1F( x ) x [ 1F( t ) ] dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabccacaWGTb WaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0Jaamyramaadmaa baWaaqGaaeaacaWGybGaeyOeI0IaamiEaaGaayjcSdGaamiwaiabg6 da+iaadIhaaiaawUfacaGLDbaacqGH9aqpdaWcaaqaaiaaigdaaeaa caaIXaGaeyOeI0IaamOramaabmaabaGaamiEaaGaayjkaiaawMcaaa aadaWdXaqaamaadmaabaGaaGymaiabgkHiTiaadAeadaqadaqaaiaa dshaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaSqaaiaadIhaaeaacq GHEisPa0Gaey4kIipakiaadsgacaWG0baaaa@5A5E@ = 1 S( x ) x tf( t )dtx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaaGymaaqaaiaadofadaqadaqaaiaadIhaaiaawIcacaGLPaaa aaWaa8qCaeaacaWG0bGaamOzamaabmaabaGaamiDaaGaayjkaiaawM caaiaadsgacaWG0bGaeyOeI0IaamiEaaWcbaGaamiEaaqaaiabg6Hi LcqdcqGHRiI8aaaa@4946@        (4.2)

The corresponding hazard rate function, h( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFObqcfa4aaeWaaOqaaKqzGeGaa8hEaaGccaGLOaGaayzkaaaaaa@3B2A@ and the mean residual life function, m( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFTbqcfa4aaeWaaOqaaKqzGeGaa8hEaaGccaGLOaGaayzkaaaaaa@3B2F@ of QED (2.1) are obtained as

h( x )= 2 θ 1/2 e -θ x 2 Γ( 1 2 ,θ x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFObqcfa4aaeWaaOqaaKqzGeGaa8hEaaGccaGLOaGaayzkaaqcLbsa caWF9aqcfa4aaSaaaOqaaKqzGeGaa8NmaGGaaiab+H7aXLqbaoaaCa aaleqajeaibaWcdaWcgaqcbasaaKqzadGaa8xmaaqcbasaaKqzadGa a8NmaaaaaaqcLbsacaWFLbqcfa4aaWbaaSqabeaajugibiaa=1caca aMc8+ccqGF4oqCjugibiaa=HhajuaGdaahaaadbeqccasaaKqzadGa a8NmaaaajugibiaaykW7aaaakeaajugibiab+n5ahLqbaoaabmaake aajuaGdaWcaaGcbaqcLbsacaWFXaaakeaajugibiaa=jdaaaGaa8hl aiab+H7aXjaaykW7caWF4bqcfa4aaWbaaSqabKqaGeaajugWaiaa=j daaaaakiaawIcacaGLPaaaaaaaaa@6154@        (4.3)

and

m( x )= 1 S( x;θ ) x t f 2 ( t;θ )dtx = Γ( 1,θ x 2 ) θ 1/2 Γ( 1 2 ,θ x 2 ) x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaa caWGtbWaaeWaaeaacaWG4bGaai4oaiabeI7aXbGaayjkaiaawMcaaa aadaWdXbqaaiaadshacaWGMbWaaSbaaSqaaiaaikdaaeqaaOWaaeWa aeaacaWG0bGaai4oaiabeI7aXbGaayjkaiaawMcaaiaadsgacaWG0b GaeyOeI0IaamiEaaWcbaGaamiEaaqaaiabg6HiLcqdcqGHRiI8aOGa eyypa0ZaaSaaaeaacqqHtoWrdaqadaqaaiaaigdacaGGSaGaeqiUde NaamiEamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaqaaiab eI7aXnaaCaaaleqabaWaaSGbaeaacaaIXaaabaGaaGOmaaaaaaGccq qHtoWrdaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaGaaiilaiab eI7aXjaadIhadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaaaa GaeyOeI0IaamiEaaaa@69EE@ = e θ x 2 θ 1/2 Γ( 1 2 ,θ x 2 ) x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaamiEamaaCaaa meqabaGaaGOmaaaaaaaakeaacqaH4oqCdaahaaWcbeqaamaalyaaba GaaGymaaqaaiaaikdaaaaaaOGaeu4KdC0aaeWaaeaadaWcaaqaaiaa igdaaeaacaaIYaaaaiaacYcacqaH4oqCcaWG4bWaaWbaaSqabeaaca aIYaaaaaGccaGLOaGaayzkaaaaaiabgkHiTiaadIhaaaa@4C01@       (4.4)

The hazard rate function and the mean residual life function of the QED show flexibility over exponential distribution because in case of exponential distribution these measures are always constant. The behavior of  and  of QED for varying values of parameter are shown in Figure 3 &Figure 4.

Figure 3 Behavior of the hazard rate function of QED for varying values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WF4oaaaa@37CA@ .

Figure 4Behavior of the mean residual life function of QED for varying values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WF4oaaaa@37CA@ .

Stochastic ordering

Stochastic ordering of positive continuous random variables is an important tool for judging their comparative behavior.6 A random variable X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFybaaaa@3767@ is said to be smaller than a random variable Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFzbaaaa@3768@ in the

  1. stochastic order ( X st Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaGqaaKqzGeGaa8hwaGGaaiab+rMiJMqbaoaaBaaajeaibaqcLbma caWFZbGaa8hDaaWcbeaajugibiaa=LfaaOGaayjkaiaawMcaaaaa@40AD@ if F X ( x ) F Y ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFgbqcfa4aaSbaaKqaGeaajugWaiaa=HfaaSqabaqcfa4aaeWaaOqa aKqzGeGaa8hEaaGccaGLOaGaayzkaaaccaqcLbsacqGFLjYScaWFgb qcfa4aaSbaaKqaGeaajugWaiaa=LfaaSqabaqcfa4aaeWaaOqaaKqz GeGaa8hEaaGccaGLOaGaayzkaaaaaa@47B0@ for all x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WF4baaaa@3787@
  2. hazard rate order ( X hr Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaGqaaKqzGeGaa8hwaGGaaiab+rMiJMqbaoaaBaaajeaibaqcLbma caWFObGaa8NCaaWcbeaajugibiaa=LfaaOGaayjkaiaawMcaaaaa@40A0@ if h X ( x ) h Y ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFObqcfa4aaSbaaKqaGeaajugWaiaa=HfaaSqabaqcfa4aaeWaaOqa aKqzGeGaa8hEaaGccaGLOaGaayzkaaaccaqcLbsacqGFLjYScaWFOb qcfa4aaSbaaKqaGeaajugWaiaa=LfaaSqabaqcfa4aaeWaaOqaaKqz GeGaa8hEaaGccaGLOaGaayzkaaaaaa@47F4@ for all x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F3@
  3. mean residual life order ( X mrl Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaGqaaKqzGeGaa8hwaGGaaiab+rMiJMqbaoaaBaaajeaibaqcLbma caWFTbGaa8NCaiaa=XgaaSqabaqcLbsacaWFzbaakiaawIcacaGLPa aaaaa@4192@ if m X ( x ) m Y ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFTbqcfa4aaSbaaKqaGeaajugWaiaa=HfaaSqabaqcfa4aaeWaaOqa aKqzGeGaa8hEaaGccaGLOaGaayzkaaaccaqcLbsacqGFKjYOcaWFTb qcfa4aaSbaaKqaGeaajugWaiaa=LfaaSqabaqcfa4aaeWaaOqaaKqz GeGaa8hEaaGccaGLOaGaayzkaaaaaa@47ED@ for all x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WF4baaaa@3787@
  4. likelihood ratio ( X lr Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaGqaaKqzGeGaa8hwaGGaaiab+rMiJMqbaoaaBaaajeaibaqcLbma caWFSbGaa8NCaaWcbeaajugibiaa=LfaaOGaayjkaiaawMcaaaaa@40A4@ order if f X ( x ) f Y ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaGqaaKqzGeGaa8NzaKqbaoaaBaaajeaibaqcLbmacaWFybaaleqa aKqbaoaabmaakeaajugibiaa=HhaaOGaayjkaiaawMcaaaqaaKqzGe Gaa8NzaKqbaoaaBaaajeaibaqcLbmacaWFzbaaleqaaKqbaoaabmaa keaajugibiaa=HhaaOGaayjkaiaawMcaaaaaaaa@46D0@ decreases in x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WF4baaaa@3787@ .

The following results due to Shaked & Shanthikumar5 are well known for establishing stochastic ordering of distributions

X lr YX hr YX mrl Y X st Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaieaaju gibiaa=HfaiiaacqGFKjYOjuaGdaWgaaqcbasaaKqzadGaa8hBaiaa =jhaaSqabaqcLbsacaWFzbGae4N0H4Taa8hwaiab+rMiJMqbaoaaBa aajeaibaqcLbmacaWFObGaa8NCaaWcbeaajugibiaa=LfacqGFshI3 caWFybGae4hzImAcfa4aaSbaaKqaGeaajugWaiaa=1gacaWFYbGaa8 hBaaWcbeaajugibiaa=LfaaOqaaKqzGeGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ecfa 4aaCbeaOqaaKqzGeGae430H8naleaajugibiaa=HfacqGFKjYOjuaG daWgaaqccasaaKqzadGaa83Caiaa=rhaaWqabaqcLbsacaWFzbaale qaaaaaaa@8A55@

The QED is ordered with respect to the strongest ‘likelihood ratio ordering’ as established in the following theorem

Theorem: Let X QED( θ 1 , α 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFybaccaGae4NKH4Qaa8hiaiaa=ffacaWFfbGaa8hraKqbaoaabmaa keaajugibiab+H7aXLqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaK qzGeGaaiilaiab+f7aHLqbaoaaBaaajeaibaqcLbmacaaIXaaaleqa aaGccaGLOaGaayzkaaaaaa@4930@ and Y QED( θ 2 , α 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFzbaccaGae4NKH4Qaa8hiaiaa=ffacaWFfbGaa8hraKqbaoaabmaa keaajugibiab+H7aXLqbaoaaBaaajuaibaqcLbmacaaIYaaajuaGbe aajugibiaacYcacqGFXoqyjuaGdaWgaaqcfasaaKqzadGae4Nmaida juaGbeaaaOGaayjkaiaawMcaaaaa@4A6D@ If θ 1 > θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbsacq WF4oqCjuaGdaWgaaqcbasaaGqaaKqzadGaa4xmaaWcbeaajugibiab =5da+iab=H7aXLqbaoaaBaaajeaibaqcLbmacaGFYaaaleqaaaaa@4111@ , then X lr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFybaccaGae4hzImAcfa4aaSbaaKqaGeaajugWaiaa=XgacaWFYbaa leqaaKqzGeGaa8xwaaaa@3E79@ and hence X hr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFybaccaGae4hzImAcfa4aaSbaaKqaGeaajugWaiaa=HgacaWFYbaa leqaaKqzGeGaa8xwaaaa@3E75@ X mrl Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFybaccaGae4hzImAcfa4aaSbaaKqaGeaajugWaiaa=1gacaWFYbGa a8hBaaWcbeaajugibiaa=Lfaaaa@3F67@ , and X ST Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFybaccaGae4hzImAcfa4aaSbaaKqaGeaajugWaiaa=nfacaWFubaa leqaaKqzGeGaa8xwaaaa@3E42@ .

Proof: We have

f X ( x; θ 1 , α 1 ) f Y ( x; θ 2 , α 2 ) = ( θ 1 θ 2 ) 1/2 e -( θ 1 - θ 2 ) x 2 ; x>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSqaaS qaaGqaaKqzGeGaa8NzaKqbaoaaBaaajiaibaqcLbmacaWFybaameqa aKqbaoaabmaaleaajugibiaa=HhacaWF7aaccaGae4hUdexcfa4aaS baaKGaGeaajugWaiaa=fdaaWqabaqcLbsacaWFSaGae4xSdewcfa4a aSbaaKGaGeaajugWaiaa=fdaaWqabaaaliaawIcacaGLPaaaaeaaju gibiaa=zgajuaGdaWgaaqccasaaKqzadGaa8xwaaadbeaajuaGdaqa daWcbaqcLbsacaWF4bGaa83oaiab+H7aXLqbaoaaBaaajiaibaqcLb macaWFYaaameqaaKqzGeGaa8hlaiab+f7aHLqbaoaaBaaajiaibaqc LbmacaWFYaaameqaaaWccaGLOaGaayzkaaaaaKqzGeGaa8xpaKqbao aabmaakeaajuaGdaWcaaGcbaqcLbsacqGF4oqCjuaGdaWgaaqcbasa aKqzadGaa8xmaaWcbeaaaOqaaKqzGeGae4hUdexcfa4aaSbaaKqaGe aajugWaiaa=jdaaSqabaaaaaGccaGLOaGaayzkaaqcfa4aaWbaaSqa bKqaGeaalmaalyaajeaibaqcLbmacaWFXaaajeaibaqcLbmacaWFYa aaaaaajugibiaaykW7caWFLbqcfa4aaWbaaSqabeaajugibiaa=1ca juaGdaqadaWcbaqcLbsacqGF4oqCjuaGdaWgaaqccasaaKqzadGaa8 xmaaadbeaajugibiaa=1cacqGF4oqCjuaGdaWgaaqccasaaKqzadGa a8NmaaadbeaaaSGaayjkaiaawMcaaKqzGeGaa8hEaKqbaoaaCaaame qajiaibaqcLbmacaWFYaaaaaaajugibiab+Tda7iaa=bcacaWF4bGa a8Npaiaa=bdaaaa@8A8D@

Now, ln f X ( x; θ 1 , α 1 ) f Y ( x; θ 2 , α 2 ) = 1 2 ln( θ 1 θ 2 )-( θ 1 - θ 2 ) x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFSbGaa8NBaKqbaoaaleaajeaybaqcLbsacaWFMbqcfa4aaSbaaKGa GeaajugWaiaa=HfaaKGaGfqaaKqbaoaabmaajeaybaqcLbsacaWF4b Gaa83oaGGaaiab+H7aXLqbaoaaBaaajiaibaqcLbmacaWFXaaajiay beaajugibiaa=XcacqGFXoqyjuaGdaWgaaqccasaaKqzadGaa8xmaa qccawabaaajeaycaGLOaGaayzkaaaabaqcLbsacaWFMbqcfa4aaSba aKGaGeaajugWaiaa=LfaaKGaGfqaaKqbaoaabmaajeaybaqcLbsaca WF4bGaa83oaiab+H7aXLqbaoaaBaaajiaibaqcLbmacaWFYaaajiay beaajugibiaa=XcacqGFXoqyjuaGdaWgaaqccasaaKqzadGaa8Nmaa qccawabaaajeaycaGLOaGaayzkaaaaaKqzGeGaa8xpaKqbaoaalaaa jaaybaqcLbsacaWFXaaajaaybaqcLbsacaWFYaaaaiaa=XgacaWFUb qcfa4aaeWaaKaaGfaajuaGdaWcaaqcaawaaKqzGeGae4hUdexcfa4a aSbaaKazba4=baqcLbmacaWFXaaajeaybeaaaKaaGfaajugibiab+H 7aXLqbaoaaBaaajqwaa+FaaKqzadGaa8NmaaqcbawabaaaaaqcaaMa ayjkaiaawMcaaKqzGeGaa8xlaKqbaoaabmaajaaybaqcLbsacqGF4o qCjuaGdaWgaaqcKfaG=haajugWaiaa=fdaaKqaGfqaaKqzGeGaa8xl aiab+H7aXLqbaoaaBaaajqwaa+FaaKqzadGaa8Nmaaqcbawabaaaja aycaGLOaGaayzkaaqcLbsacaWF4bqcfa4aaWbaaKqaGfqajqwaa+Fa aKqzadGaa8Nmaaaaaaa@964F@

This gives

d dx { ln f X ( x; θ 1 , α 1 ) f Y ( x; θ 2 , α 2 ) }=-2( θ 1 - θ 2 )x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaGqaaKqzGeGaa8hzaaGcbaqcLbsacaWFKbGaa8hEaaaajuaGdaGa daGcbaqcLbsacaWFSbGaa8NBaKqbaoaaleaaleaajugibiaa=zgaju aGdaWgaaqccasaaKqzadGaa8hwaaadbeaajuaGdaqadaWcbaqcLbsa caWF4bGaa83oaGGaaiab+H7aXLqbaoaaBaaajiaibaqcLbmacaWFXa aameqaaKqzGeGaa8hlaiab+f7aHLqbaoaaBaaajiaibaqcLbmacaWF XaaameqaaaWccaGLOaGaayzkaaaabaqcLbsacaWFMbqcfa4aaSbaaK GaGeaajugWaiaa=LfaaWqabaqcfa4aaeWaaSqaaKqzGeGaa8hEaiaa =TdacqGF4oqCjuaGdaWgaaqccasaaKqzadGaa8Nmaaadbeaajugibi aa=XcacqGFXoqyjuaGdaWgaaqccasaaKqzadGaa8NmaaadbeaaaSGa ayjkaiaawMcaaaaaaOGaay5Eaiaaw2haaKqzGeGaa8xpaiaa=1caca WFYaqcfa4aaeWaaOqaaKqzGeGae4hUdexcfa4aaSbaaKqaGeaajugW aiaa=fdaaSqabaqcLbsacaWFTaGae4hUdexcfa4aaSbaaKqaGeaaju gWaiaa=jdaaSqabaaakiaawIcacaGLPaaajugibiaa=Hhaaaa@7767@

Thus if θ 1 > θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WF4oqcfa4aaSbaaKqaGeaajugWaiaa=fdaaSqabaaccaqcLbsacqGF +aGpcaWF4oqcfa4aaSbaaKqaGeaajugWaiaa=jdaaSqabaaaaa@4028@ , d dx { ln f X ( x; θ 1 , α 1 ) f Y ( x; θ 2 , α 2 ) }<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaGqaaKqzGeGaa8hzaaGcbaqcLbsacaWFKbGaa8hEaaaajuaGdaGa daGcbaqcLbsacaWFSbGaa8NBaKqbaoaaleaaleaajugibiaa=zgaju aGdaWgaaqccasaaKqzadGaa8hwaaadbeaajuaGdaqadaWcbaqcLbsa caWF4bGaa83oaGGaaiab+H7aXLqbaoaaBaaajiaibaqcLbmacaWFXa aameqaaKqzGeGaa8hlaiab+f7aHLqbaoaaBaaajiaibaqcLbmacaWF XaaameqaaaWccaGLOaGaayzkaaaabaqcLbsacaWFMbqcfa4aaSbaaK GaGeaajugWaiaa=LfaaWqabaqcfa4aaeWaaSqaaKqzGeGaa8hEaiaa =TdacqGF4oqCjuaGdaWgaaqccasaaKqzadGaa8Nmaaadbeaajugibi aa=XcacqGFXoqyjuaGdaWgaaqccasaaKqzadGaa8NmaaadbeaaaSGa ayjkaiaawMcaaaaaaOGaay5Eaiaaw2haaKqzGeGaa8hpaiaa=bdaaa a@684E@ . This means that X lr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFybaccaGae4hzImAcfa4aaSbaaKqaGeaajugWaiaa=XgacaWFYbaa leqaaKqzGeGaa8xwaaaa@3E79@ and hence X hr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFybaccaGae4hzImAcfa4aaSbaaKqaGeaajugWaiaa=HgacaWFYbaa leqaaKqzGeGaa8xwaaaa@3E75@ , X mrl Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFybaccaGae4hzImAcfa4aaSbaaKqaGeaajugWaiaa=1gacaWFYbGa a8hBaaWcbeaajugibiaa=Lfaaaa@3F67@ and X st Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFybaccaGae4hzImAcfa4aaSbaaKqaGeaajugWaiaa=nhacaWF0baa leqaaKqzGeGaa8xwaaaa@3E82@ . This shows flexibility of QED over exponential distribution.

Estimation of parameter

In this section, the estimation of parameters of QED has been discussed using method of maximum likelihood. Let ( x 1 , x 2 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaGqaaKqzGeGaa8hEaKqbaoaaBaaaleaajugibiaa=fdaaSqabaqc LbsacaWFSaGaa8hEaKqbaoaaBaaaleaajugibiaa=jdaaSqabaqcLb sacaWFSaGaa8Nlaiaa=5cacaWFUaGaa8hlaiaa=HhajuaGdaWgaaWc baqcLbsacaWFUbaaleqaaaGccaGLOaGaayzkaaaaaa@4726@ be a random sample of size from the QED (2.1). The natural log likelihood function of QED (2.1) can be given by

ln L=n[ ln 2+ 1 2 ln θ-ln Γ( 1 2 ) ]-θ i=1 n x i 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFSbGaa8NBaiaa=bcacaWFmbGaa8xpaiaa=5gajuaGdaWadaGcbaqc LbsacaWFSbGaa8NBaiaa=bcacaWFYaGaa83kaKqbaoaalaaakeaaju gibiaa=fdaaOqaaKqzGeGaa8NmaaaacaWFSbGaa8NBaiaa=bcaiiaa cqGF4oqCcaWFTaGaa8hBaiaa=5gacaWFGaGae43KdCucfa4aaeWaaO qaaKqbaoaalaaakeaajugibiaa=fdaaOqaaKqzGeGaa8NmaaaaaOGa ayjkaiaawMcaaaGaay5waiaaw2faaKqzGeGaa8xlaiab+H7aXjaayk W7juaGdaaeWbGcbaqcLbsacaWG4bqcfa4aaSbaaKqaGeaajugWaiaa =LgaaSqabaqcfa4aaWbaaSqabKqaGeaajugWaiaa=jdaaaaajeaiba qcLbmacaWFPbGaa8xpaiaa=fdaaKqaGeaajugWaiaa=5gaaKqzGeGa eyyeIuoaaaa@68E2@

The maximum likelihood estimate (MLE) of the parameter  of QED (2.1) is the solutions of log likelihood equation

d ln L dθ = n 2θ - i=1 n x i 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaGqaaKqzGeGaa8hzaiaa=bcacaWFSbGaa8NBaiaa=bcacaWFmbaa keaajugibiaa=rgaiiaacqGF4oqCaaGaa8xpaKqbaoaalaaakeaaju gibiaa=5gaaOqaaKqzGeGaa8Nmaiab+H7aXbaacaWFTaqcfa4aaabC aOqaaKqzGeGaamiEaKqbaoaaBaaajeaibaqcLbmacaWFPbaaleqaaK qbaoaaCaaaleqajeaibaqcLbmacaWFYaaaaaqcbasaaKqzadGaa8xA aiaa=1dacaWFXaaajeaibaqcLbmacaWFUbaajugibiabggHiLdGaa8 xpaiaa=bdaaaa@57D3@

which gives

θ = n 2 i=1 n x i 2 = 1 2 n i=1 n x i 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbiae aaiiaajugibiab=H7aXbqcfayabKazfa0=baqcLbmacqWFNis2aaac baqcLbsacaGF9aqcfa4aaSaaaOqaaKqzGeGaa4NBaaGcbaqcLbsaca GFYaqcfa4aaabCaOqaaKqzGeGaamiEaKqbaoaaBaaajeaibaqcLbma caGFPbaaleqaaKqbaoaaCaaaleqajeaibaqcLbmacaGFYaaaaaqcba saaKqzadGaa4xAaiaa+1dacaGFXaaajeaibaqcLbmacaGFUbaajugi biabggHiLdaaaiaa+1dajuaGdaWcaaGcbaqcLbsacaGFXaaakeaaju aGdaWcaaGcbaqcLbsacaGFYaaakeaajugibiaa+5gaaaqcfa4aaabC aOqaaKqzGeGaamiEaKqbaoaaBaaajeaibaqcLbmacaGFPbaaleqaaK qbaoaaCaaaleqajeaibaqcLbmacaGFYaaaaaqcbasaaKqzadGaa4xA aiaa+1dacaGFXaaajeaibaqcLbmacaGFUbaajugibiabggHiLdaaaa aa@6A28@

Note that the method of moment estimate θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbiaO qaaGGaaKqzGeGae8hUdehaleqajeaibaqcLbmacqWF8iIFaaaaaa@3BDA@ of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbsacq WF4oqCaaa@3840@ is also the same as the MLE of the parameter.

Goodness of fit

The goodness of fit of the QGD has been explained with a real dataset from medical science. The following data represents the lifetime’s data relating to relief times (in minutes) of 20 patients receiving an analgesic and reported by Gross & Clark.6

1.1          1.4          1.3          1.7          1.9          1.8          1.6          2.2          1.7          2.7          4.1          1.8

1.5          1.2          1.4          3.0          1.7          2.3          1.6          2.0

For this data set, QED has been fitted along with one parameter exponential distribution.

The ML estimates, -2 ln L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFTaGaa8Nmaiaa=bcacaWFSbGaa8NBaiaa=bcacaWFmbaaaa@3BDA@ values of , Akaike Information criteria (AIC), and K-S statistics of the fitted distributions are presented in Table 1. The AIC and K-S Statistics are computed using the following formulae:

AIC=-2 ln L+2k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFbbGaa8xsaiaa=neacaWF9aGaa8xlaiaa=jdacaWFGaGaa8hBaiaa =5gacaWFGaGaa8htaiaa=TcacaWFYaGaa83Aaaaa@4133@ ;and K-S= Sup x | F n ( x )- F 0 ( x ) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFlbGaa8xlaiaa=nfacaWF9aqcfa4aaCbeaOqaaKqzGeGaa83uaiaa =vhacaWFWbaajeaibaqcLbmacaWG4baaleqaaKqbaoaaemaakeaaju gibiaa=zeajuaGdaWgaaqcbasaaKqzadGaa8NBaaWcbeaajuaGdaqa daGcbaqcLbsacaWG4baakiaawIcacaGLPaaajugibiaa=1cacaWFgb qcfa4aaSbaaKqaGeaajugWaiaa=bdaaSqabaqcfa4aaeWaaOqaaKqz GeGaamiEaaGccaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@5450@ ,

Where k= the number of parameters, n= the sample size, F n ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFgbqcfa4aaSbaaKqaGeaajugWaiaa=5gaaSqabaqcfa4aaeWaaOqa aiaadIhaaiaawIcacaGLPaaaaaa@3D74@ is the empirical (sample) cumulative distribution function, and F 0 ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFgbqcfa4aaSbaaKqaGeaajugWaiaa=bdaaSqabaqcfa4aaeWaaOqa aiaadIhaaiaawIcacaGLPaaaaaa@3D36@ is the theoretical cumulative distribution function. The best distribution is the distribution corresponding to lower values of , AIC, and K-S statistics. It is clear from the goodness of fit in Table 1 that QED gives better fit than exponential distribution and hence it can be considered an important lifetime distribution to model lifetime data from medical science.

The profiles of the likelihood estimate θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbiae aaiiaajugibiab=H7aXbqcfayabKqbGeaajugWaiab=DIizdaaaaa@3C9D@ of QED for the given dataset is presented in Figure 5. The fitted plots of the considered distributions for the given dataset are presented in Figure 6.

 

Model

ML estimate ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqbaoaaxacabaaccaqcLbsacqWF4oqCaKqbagqajqwba9FaaKqz adGae83jIKnaaaGccaGLOaGaayzkaaaaaa@404B@

S.E ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqbaoaaxacabaaccaqcLbsacqWF4oqCaKqbagqajqwba9FaaKqz adGae83jIKnaaaGccaGLOaGaayzkaaaaaa@404B@

 

- 2 log L

 

AIC

 

K-S

QED

0.122518

0.03874

57.16

59.16

0.461

Exponential

0.526314

0.11768

65.67

67.67

0.471

Table 1 Summary of ML estimates, -2 ln L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFTaGaa8Nmaiaa=bcacaWFSbGaa8NBaiaa=bcacaWFmbaaaa@3BDA@ , AIC, and K-S of the fitted distributions

Figure 5 Profiles of the likelihood estimates of of QED for the considered dataset.

Figure 6 Fitted plots of the quasi exponential and exponential distributions for the given dataset.

Concluding remarks

This paper proposes a quasi exponential distribution for modeling real lifetime data from medical science. Its statistical properties including moments, survival function, hazard rate function, mean residual life function and stochastic ordering have been studied. The estimation of parameter has been discussed using maximum likelihood. Profile of the likelihood estimate of the parameter for QED has been shown graphically. Application of the distribution has been explained with a real lifetime data from biomedical science and its goodness of fit shows quite satisfactory over exponential distribution.

Acknowledgement

None.

Conflict of interest

Authors declares there is no conflict of interest.

References

Creative Commons Attribution License

©2018 Shanker, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.