Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 11 Issue 1

A note on weighted Aradhana distribution with an application

Rama Shanker,1 Kamlesh Kumar Shukla,2 Ravi Shanker3

1Department of Statistics, Assam University, Silchar, India
2Department of Community Medicine, Noida International Institute of Medical Science, NIU, Gautam Buddh Nagar, India
3Department of Mathematics, G.L.A. College, N.P University, Jharkhand, India

Correspondence: Rama Shanker, Department of Statistics, Assam University, Silchar, India

Received: December 20, 2021 | Published: January 24, 2022

Citation: Shanker R, Shukla KK, Shanker R. A note on weighted Aradhana distribution with an application. Biom Biostat Int J. 2022;11(1):22-26. DOI: 10.15406/bbij.2022.11.00350

Download PDF

Abstract

In this paper moments based measures including coefficient of skweness, kurtosis, index of dispersion and mean residual life function of the weighted Aradhana distribution has been derived and discussed. A numerical example has been presented to test its goodness of fit.

Keywords: aradhana distribution, skewness, kurtosis, mean residual life function, maximum likelihood estimation, application

Introduction

Shanker1 introduced Aradhana distribution defined by probability density function (pdf) and cumulative distribution function (cdf)

f 0 ( x;θ )= θ 3 θ 2 +2θ+2 ( 1+x ) 2 e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGimaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdehacaGL OaGaayzkaaGaeyypa0ZaaSaaaeaacqaH4oqCdaahaaWcbeqaaiaaio daaaaakeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI YaGaeqiUdeNaey4kaSIaaGOmaaaadaqadaqaaiaaigdacqGHRaWkca WG4baacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaamyzamaa CaaaleqabaGaeyOeI0IaeqiUdeNaamiEaaaakiaaykW7caaMc8UaaG PaVlaaykW7caGG7aGaamiEaiabg6da+iaaicdacaGGSaGaaGPaVlaa ykW7cqaH4oqCcqGH+aGpcaaIWaaaaa@63FE@ (1.1)

F 0 ( x,θ )=1[ 1+ θx( θx+2θ+2 ) θ 2 +2θ+2 ] e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaGimaaqabaGcdaqadaqaaiaadIhacaGGSaGaeqiUdehacaGL OaGaayzkaaGaeyypa0JaaGymaiabgkHiTmaadmaabaGaaGymaiabgU caRmaalaaabaGaeqiUdeNaamiEamaabmaabaGaeqiUdeNaamiEaiab gUcaRiaaikdacqaH4oqCcqGHRaWkcaaIYaaacaGLOaGaayzkaaaaba GaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeI7a XjabgUcaRiaaikdaaaaacaGLBbGaayzxaaGaamyzamaaCaaaleqaba GaeyOeI0IaeqiUdeNaamiEaaaakiaaykW7caaMc8Uaai4oaiaadIha cqGH+aGpcaaIWaGaaiilaiabeI7aXjabg6da+iaaicdaaaa@66FB@ (1.2)

Aradhana distribution is a convex combination of an exponential ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdehacaGLOaGaayzkaaaaaa@3A4D@ , a gamma ( 2,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG OmaiaacYcacqaH4oqCaiaawIcacaGLPaaaaaa@3BB9@ and a gamma ( 3,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG 4maiaacYcacqaH4oqCaiaawIcacaGLPaaaaaa@3BBA@ distributions with their mixing proportions θ 2 θ 2 +2θ+2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq iUde3aaWbaaSqabeaacaaIYaaaaaGcbaGaeqiUde3aaWbaaSqabeaa caaIYaaaaOGaey4kaSIaaGOmaiabeI7aXjabgUcaRiaaikdaaaaaaa@4162@ , 2θ θ 2 +2θ+2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG OmaiabeI7aXbqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUca RiaaikdacqaH4oqCcqGHRaWkcaaIYaaaaaaa@412B@ and 2 θ 2 +2θ+2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG OmaaqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikda cqaH4oqCcqGHRaWkcaaIYaaaaaaa@3F75@ , respectively. Its properties, parameter estimation and applications are available in Shanker1. Ganaie et al.2 derived the weighted version of the Aradhana distribution and discussed some of its properties with estimation of parameters and applications. Rajgopalan et al.3 obtained length-biased Aradhana distribution and Gharaibeh4 derived transmuted Aradhana distribution.

There are several statistical properties of weighted Aradhana distribution which has not been discussed by Ganaie et al.2 including moments based measures such as coefficient of skweness, kurtosis; mean residual life function and index of dispersion. Further, there are two serious drawbacks of the weighted Aradhana distribution proposed by Ganaie et al.,2 namely (i) The goodness of fit was compared with Aradhana distribution which is not justifiable due to the fact that a comparison of weighted distribution with unweighted distribution is completely illogical, (ii) two-parameter weighted Aradhana distribution was compared with one parameter Aradhana distribution without K-S and p-value, and concluded that weighted Aradhana distribution gives better fit over Aradhana distribution, which is amazing to digest the conclusion.

In this paper the weighted Aradhana distribution has been compared with weighted Sujatha distribution because it is related to weighted Sujatha distribution and some unweighted one parameter and two-parameter lifetime distributions.

Taking the weight function w( x )= x c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWG4bWaaWbaaSqabeaa caWGJbaaaaaa@3DA8@ , Ganaie et al.2 derived the pdf of the weighted Aradhana distribution as

f 1 ( x;θ,c )= θ c+3 θ 2 Γ( c+1 )+2θΓ( c+2 )+Γ( c+2 ) x α1 ( 1+2x+ x 2 ) e θx ;x>0,θ>0,c>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiaadogaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaaCa aaleqabaGaam4yaiabgUcaRiaaiodaaaaakeaacqaH4oqCdaahaaWc beqaaiaaikdaaaGccqqHtoWrdaqadaqaaiaadogacqGHRaWkcaaIXa aacaGLOaGaayzkaaGaey4kaSIaaGOmaiabeI7aXjaaykW7cqqHtoWr daqadaqaaiaadogacqGHRaWkcaaIYaaacaGLOaGaayzkaaGaey4kaS Iaeu4KdC0aaeWaaeaacaWGJbGaey4kaSIaaGOmaaGaayjkaiaawMca aaaacaWG4bWaaWbaaSqabeaacqaHXoqycqGHsislcaaIXaaaaOWaae WaaeaacaaIXaGaey4kaSIaaGOmaiaadIhacqGHRaWkcaWG4bWaaWba aSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaamyzamaaCaaaleqaba GaeyOeI0IaeqiUdeNaamiEaaaakiaaykW7caaMc8UaaGPaVlaaykW7 caGG7aGaamiEaiabg6da+iaaicdacaGGSaGaaGPaVlaaykW7cqaH4o qCcqGH+aGpcaaIWaGaaiilaiaadogacqGH+aGpcaaIWaaaaa@8304@ (1.3)

Taking the weight function w( x )= x α1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWG4bWaaWbaaSqabeaa cqaHXoqycqGHsislcaaIXaaaaaaa@4007@ or c=α1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogacqGH9a qpcqaHXoqycqGHsislcaaIXaaaaa@3C43@ , the pdf and the cdf of weighted Aradhana distribution can be expressed as

f 2 ( x;θ,α )= θ α+2 θ 2 +2θα+α( α+1 ) x α1 Γ( α ) ( 1+2x+ x 2 ) e θx ;x>0,θ>0,α>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGOmaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiabeg7aHbGaayjkaiaawMcaaiabg2da9maalaaabaGaeqiUde3aaW baaSqabeaacqaHXoqycqGHRaWkcaaIYaaaaaGcbaGaeqiUde3aaWba aSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeI7aXjaaykW7cqaHXo qycqGHRaWkcqaHXoqydaqadaqaaiabeg7aHjabgUcaRiaaigdaaiaa wIcacaGLPaaaaaWaaSaaaeaacaWG4bWaaWbaaSqabeaacqaHXoqycq GHsislcaaIXaaaaaGcbaGaeu4KdC0aaeWaaeaacqaHXoqyaiaawIca caGLPaaaaaWaaeWaaeaacaaIXaGaey4kaSIaaGOmaiaadIhacqGHRa WkcaWG4bWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaamyz amaaCaaaleqabaGaeyOeI0IaeqiUdeNaamiEaaaakiaaykW7caaMc8 UaaGPaVlaaykW7caGG7aGaamiEaiabg6da+iaaicdacaGGSaGaaGPa VlaaykW7cqaH4oqCcqGH+aGpcaaIWaGaaiilaiabeg7aHjabg6da+i aaicdaaaa@8168@ (1.4)

F 2 ( x;θ,α )=1 [ θ 2 +2θα+α( α+1 ) ]Γ( α,θx )+ ( θx ) α ( θx+2θ+α+1 ) e θx [ θ 2 +2θα+α( α+1 ) ]Γ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaGOmaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiabeg7aHbGaayjkaiaawMcaaiabg2da9iaaigdacqGHsisldaWcaa qaamaadmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIa aGOmaiaaykW7cqaH4oqCcaaMc8UaeqySdeMaey4kaSIaeqySde2aae WaaeaacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaaacaGLBbGa ayzxaaGaeu4KdC0aaeWaaeaacqaHXoqycaGGSaGaeqiUdeNaamiEaa GaayjkaiaawMcaaiabgUcaRmaabmaabaGaeqiUdeNaamiEaaGaayjk aiaawMcaamaaCaaaleqabaGaeqySdegaaOWaaeWaaeaacqaH4oqCca aMc8UaamiEaiabgUcaRiaaikdacqaH4oqCcqGHRaWkcqaHXoqycqGH RaWkcaaIXaaacaGLOaGaayzkaaGaamyzamaaCaaaleqabaGaeyOeI0 IaeqiUdeNaaGPaVlaadIhaaaaakeaadaWadaqaaiabeI7aXnaaCaaa leqabaGaaGOmaaaakiabgUcaRiaaikdacqaH4oqCcaaMc8UaeqySde MaaGPaVlabgUcaRiabeg7aHnaabmaabaGaeqySdeMaey4kaSIaaGym aaGaayjkaiaawMcaaaGaay5waiaaw2faaiabfo5ahnaabmaabaGaeq ySdegacaGLOaGaayzkaaaaaaaa@91A3@ (1.5)

where Γ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfo5ahnaabm aabaGaeqySdegacaGLOaGaayzkaaaaaa@3B9E@ and Γ( α,z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfo5ahnaabm aabaGaeqySdeMaaiilaiaadQhaaiaawIcacaGLPaaaaaa@3D4D@ are respectively the complete gamma function and the upper incomplete gamma function and are defined as

Γ( α )= 0 e y y α1 dy;y>0,α>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfo5ahnaabm aabaGaeqySdegacaGLOaGaayzkaaGaeyypa0Zaa8qCaeaacaWGLbWa aWbaaSqabeaacqGHsislcaWG5baaaaqaaiaaicdaaeaacqGHEisPa0 Gaey4kIipakiaadMhadaahaaWcbeqaaiabeg7aHjabgkHiTiaaigda aaGccaWGKbGaamyEaiaaykW7caaMc8Uaai4oaiaadMhacqGH+aGpca aIWaGaaiilaiabeg7aHjabg6da+iaaicdaaaa@5542@ and Γ( α,z )= z e y y α1 dy;y0,α>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfo5ahnaabm aabaGaeqySdeMaaiilaiaadQhaaiaawIcacaGLPaaacqGH9aqpdaWd XbqaaiaadwgadaahaaWcbeqaaiabgkHiTiaadMhaaaGccaWG5bWaaW baaSqabeaacqaHXoqycqGHsislcaaIXaaaaOGaaGPaVlaadsgacaWG 5bGaaGPaVlaaykW7caaMc8Uaai4oaiaadMhacqGHLjYScaaIWaGaai ilaiabeg7aHjabg6da+iaaicdaaSqaaiaadQhaaeaacqGHEisPa0Ga ey4kIipaaaa@5B15@ .

Aradhana distribution and length-biased Aradhana distribution are special cases of WAD at α=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaigdaaaa@3A6E@ and α=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaikdaaaa@3A6F@ , respectively. The pdf of weighted Aradhana distribution is also a convex combination of gamma ( θ,α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiabeg7aHbGaayjkaiaawMcaaaaa@3C9C@ , gamma ( θ,α+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaaaaa@3E39@ and gamma ( θ,α+2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiabeg7aHjabgUcaRiaaikdaaiaawIcacaGLPaaaaaa@3E3A@ which can be expressed as

f 1 ( x;θ,α )= p 1 g 1 ( x;θ,α )+ p 2 g 2 ( x;θ,α+1 )+( 1 p 1 p 2 ) g 3 ( x;θ,α+2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiabeg7aHbGaayjkaiaawMcaaiabg2da9iaadchadaWgaaWcbaGaaG ymaaqabaGccaaMc8Uaam4zamaaBaaaleaacaaIXaaabeaakmaabmaa baGaamiEaiaacUdacqaH4oqCcaGGSaGaeqySdegacaGLOaGaayzkaa Gaey4kaSIaamiCamaaBaaaleaacaaIYaaabeaakiaaykW7caWGNbWa aSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWG4bGaai4oaiabeI7aXj aacYcacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaGaey4kaSYa aeWaaeaacaaIXaGaeyOeI0IaamiCamaaBaaaleaacaaIXaaabeaaki abgkHiTiaadchadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaa caaMc8Uaam4zamaaBaaaleaacaaIZaaabeaakmaabmaabaGaamiEai aacUdacqaH4oqCcaGGSaGaeqySdeMaey4kaSIaaGOmaaGaayjkaiaa wMcaaaaa@720A@

 where

p 1 = θ 2 θ 2 +2θα+α( α+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiabeI7aXnaaCaaaleqa baGaaGOmaaaaaOqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgU caRiaaykW7caaIYaGaeqiUdeNaeqySdeMaaGPaVlabgUcaRiabeg7a HnaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMcaaaaaaa a@4EAB@ , p 2 = 2θα θ 2 +2θα+α( α+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaaikdacqaH4oqCcaaM c8UaeqySdegabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaS IaaGOmaiabeI7aXjaaykW7cqaHXoqycqGHRaWkcqaHXoqydaqadaqa aiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaaaaaaaa@5014@

g 1 ( x;θ,α )= θ α Γ( α ) e θx x α1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiabeg7aHbGaayjkaiaawMcaaiabg2da9maalaaabaGaeqiUde3aaW baaSqabeaacqaHXoqyaaaakeaacqqHtoWrdaqadaqaaiabeg7aHbGa ayjkaiaawMcaaaaacaWGLbWaaWbaaSqabeaacqGHsislcaaMc8Uaeq iUdeNaaGPaVlaadIhaaaGccaWG4bWaaWbaaSqabeaacqaHXoqycqGH sislcaaIXaaaaaaa@55AF@ g 2 ( x;θ,α+1 )= θ α+1 Γ( α+1 ) e θx x α+11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaaGOmaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaacqGH9aqpdaWcaa qaaiabeI7aXnaaCaaaleqabaGaeqySdeMaey4kaSIaaGymaaaaaOqa aiabfo5ahnaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawM caaaaacaWGLbWaaWbaaSqabeaacqGHsislcaaMc8UaeqiUdeNaaGPa VlaadIhaaaGccaWG4bWaaWbaaSqabeaacqaHXoqycqGHRaWkcaaIXa GaeyOeI0IaaGymaaaaaaa@5C24@

g 3 ( x;θ,α+2 )= θ α+2 Γ( α+2 ) e θx x α+21 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaaG4maaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiabeg7aHjabgUcaRiaaikdaaiaawIcacaGLPaaacqGH9aqpdaWcaa qaaiabeI7aXnaaCaaaleqabaGaeqySdeMaey4kaSIaaGOmaaaaaOqa aiabfo5ahnaabmaabaGaeqySdeMaey4kaSIaaGOmaaGaayjkaiaawM caaaaacaWGLbWaaWbaaSqabeaacqGHsislcaaMc8UaeqiUdeNaaGPa VlaadIhaaaGccaWG4bWaaWbaaSqabeaacqaHXoqycqGHRaWkcaaIYa GaeyOeI0IaaGymaaaaaaa@5C29@

Moments based measures

The r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@36ED@ th moment about origin of WAD (1.4) is given by

μ r = { θ 2 +2( α+r )θ+( α+r )( α+r+1 ) }Γ( α+r ) θ r { θ 2 +2θα+α( α+1 ) }Γ( α ) ;r=1,2,3,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaWaaiWaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaaIYaWaaeWaaeaacqaHXoqycqGHRaWkcaWGYbaacaGLOaGa ayzkaaGaaGPaVlabeI7aXjabgUcaRmaabmaabaGaeqySdeMaey4kaS IaamOCaaGaayjkaiaawMcaamaabmaabaGaeqySdeMaey4kaSIaamOC aiabgUcaRiaaigdaaiaawIcacaGLPaaaaiaawUhacaGL9baacqqHto Wrdaqadaqaaiabeg7aHjabgUcaRiaadkhaaiaawIcacaGLPaaaaeaa cqaH4oqCdaahaaWcbeqaaiaadkhaaaGcdaGadaqaaiabeI7aXnaaCa aaleqabaGaaGOmaaaakiabgUcaRiaaikdacaaMc8UaeqiUdeNaaGPa Vlabeg7aHjabgUcaRiabeg7aHnaabmaabaGaeqySdeMaey4kaSIaaG ymaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabfo5ahnaabmaabaGa eqySdegacaGLOaGaayzkaaaaaiaaykW7caaMc8Uaai4oaiaadkhacq GH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacaGGUaGa aiOlaiaac6caaaa@8793@

Thus, we have

μ 1 = α{ θ 2 +2( α+1 )θ+( α+1 )( α+2 ) } θ{ θ 2 +2θα+α( α+1 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIXaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqySde2aaiWaaeaacqaH4oqCdaahaaWcbeqaaiaaik daaaGccqGHRaWkcaaIYaWaaeWaaeaacqaHXoqycqGHRaWkcaaIXaaa caGLOaGaayzkaaGaaGPaVlabeI7aXjabgUcaRmaabmaabaGaeqySde Maey4kaSIaaGymaaGaayjkaiaawMcaamaabmaabaGaeqySdeMaey4k aSIaaGOmaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaaqaaiabeI7aXn aacmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOm aiabeI7aXjaaykW7cqaHXoqycqGHRaWkcqaHXoqydaqadaqaaiabeg 7aHjabgUcaRiaaigdaaiaawIcacaGLPaaaaiaawUhacaGL9baaaaGa aGPaVdaa@6E53@ μ 2 = α( α+1 ){ θ 2 +2( α+2 )θ+( α+2 )( α+3 ) } θ 2 { θ 2 +2θα+α( α+1 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqySde2aaeWaaeaacqaHXoqycqGHRaWkcaaIXaaaca GLOaGaayzkaaWaaiWaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcaaIYaWaaeWaaeaacqaHXoqycqGHRaWkcaaIYaaacaGLOa GaayzkaaGaaGPaVlabeI7aXjabgUcaRmaabmaabaGaeqySdeMaey4k aSIaaGOmaaGaayjkaiaawMcaamaabmaabaGaeqySdeMaey4kaSIaaG 4maaGaayjkaiaawMcaaaGaay5Eaiaaw2haaaqaaiabeI7aXnaaCaaa leqabaGaaGOmaaaakmaacmaabaGaeqiUde3aaWbaaSqabeaacaaIYa aaaOGaey4kaSIaaGOmaiabeI7aXjaaykW7cqaHXoqycaaMc8Uaey4k aSIaeqySde2aaeWaaeaacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaay zkaaaacaGL7bGaayzFaaaaaiaaykW7aaa@759A@ μ 3 = α( α+1 )( α+2 ){ θ 2 +2( α+3 )θ+( α+3 )( α+4 ) } θ 3 { θ 2 +2θα+α( α+1 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqySde2aaeWaaeaacqaHXoqycqGHRaWkcaaIXaaaca GLOaGaayzkaaWaaeWaaeaacqaHXoqycqGHRaWkcaaIYaaacaGLOaGa ayzkaaWaaiWaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRa WkcaaIYaWaaeWaaeaacqaHXoqycqGHRaWkcaaIZaaacaGLOaGaayzk aaGaaGPaVlabeI7aXjabgUcaRmaabmaabaGaeqySdeMaey4kaSIaaG 4maaGaayjkaiaawMcaamaabmaabaGaeqySdeMaey4kaSIaaGinaaGa ayjkaiaawMcaaaGaay5Eaiaaw2haaaqaaiabeI7aXnaaCaaaleqaba GaaG4maaaakmaacmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaaGOmaiabeI7aXjaaykW7cqaHXoqycqGHRaWkcqaHXoqyda qadaqaaiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaaaiaawUha caGL9baaaaGaaGPaVdaa@78DA@

μ 4 = α( α+1 )( α+2 )( α+3 ){ θ 2 +2( α+4 )θ+( α+4 )( α+5 ) } θ 4 { θ 2 +2θα+α( α+1 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqySde2aaeWaaeaacqaHXoqycqGHRaWkcaaIXaaaca GLOaGaayzkaaWaaeWaaeaacqaHXoqycqGHRaWkcaaIYaaacaGLOaGa ayzkaaWaaeWaaeaacqaHXoqycqGHRaWkcaaIZaaacaGLOaGaayzkaa WaaiWaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI YaWaaeWaaeaacqaHXoqycqGHRaWkcaaI0aaacaGLOaGaayzkaaGaaG PaVlabeI7aXjabgUcaRmaabmaabaGaeqySdeMaey4kaSIaaGinaaGa ayjkaiaawMcaamaabmaabaGaeqySdeMaey4kaSIaaGynaaGaayjkai aawMcaaaGaay5Eaiaaw2haaaqaaiabeI7aXnaaCaaaleqabaGaaGin aaaakmaacmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaS IaaGOmaiabeI7aXjaaykW7cqaHXoqycqGHRaWkcqaHXoqydaqadaqa aiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaaaiaawUhacaGL9b aaaaGaaGPaVdaa@7DA6@ .

The central moments of WAD can be obtained as

μ 2 = α{ θ 4 +4( α+1 ) θ 3 +6( α 2 +2α+1 ) θ 2 +4( α 3 +3 α 2 +2α )θ+( α 4 +4 α 3 +5 α 2 +2α ) } θ 2 { θ 2 +2θα+α( α+1 ) } 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqySde2aaiWaaeaa cqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaI0aWaaeWaae aacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaGaeqiUde3aaWba aSqabeaacaaIZaaaaOGaey4kaSIaaGOnamaabmaabaGaeqySde2aaW baaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeg7aHjabgUcaRiaa igdaaiaawIcacaGLPaaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaaI0aWaaeWaaeaacqaHXoqydaahaaWcbeqaaiaaiodaaaGc cqGHRaWkcaaIZaGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaey4kaS IaaGOmaiabeg7aHbGaayjkaiaawMcaaiaaykW7cqaH4oqCcqGHRaWk daqadaqaaiabeg7aHnaaCaaaleqabaGaaGinaaaakiabgUcaRiaais dacqaHXoqydaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI1aGaeqyS de2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeg7aHbGaay jkaiaawMcaaaGaay5Eaiaaw2haaaqaaiabeI7aXnaaCaaaleqabaGa aGOmaaaakmaacmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaaGOmaiabeI7aXjaaykW7cqaHXoqycaaMc8Uaey4kaSIaeqyS de2aaeWaaeaacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaaaca GL7bGaayzFaaWaaWbaaSqabeaacaaIYaaaaaaakiaaykW7aaa@91F3@ μ 3 = 2α{ θ 6 +6( α+1 ) θ 5 +3( 5 α 2 +9α+4 ) θ 4 +10( 2 α 3 +5 α 2 +3α ) θ 3 +3( 5 α 4 +16 α 3 +13 α 2 +2α ) θ 2 +3( 2 α 5 +8 α 4 +10 α 3 +4 α 2 )θ +( α 6 +5 α 5 +9 α 4 +7 α 3 +2 α 2 ) } θ 3 { θ 2 +2θα+α( α+1 ) } 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakiabg2da9maalaaabaGaaGOmaiabeg7aHnaa cmaaeaqabeaacqaH4oqCdaahaaWcbeqaaiaaiAdaaaGccqGHRaWkca aI2aWaaeWaaeaacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaGa eqiUde3aaWbaaSqabeaacaaI1aaaaOGaey4kaSIaaG4mamaabmaaba GaaGynaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiMda cqaHXoqycqGHRaWkcaaI0aaacaGLOaGaayzkaaGaeqiUde3aaWbaaS qabeaacaaI0aaaaOGaey4kaSIaaGymaiaaicdadaqadaqaaiaaikda cqaHXoqydaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI1aGaeqySde 2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG4maiabeg7aHbGaayjk aiaawMcaaiabeI7aXnaaCaaaleqabaGaaG4maaaaaOqaaiabgUcaRi aaiodadaqadaqaaiaaiwdacqaHXoqydaahaaWcbeqaaiaaisdaaaGc cqGHRaWkcaaIXaGaaGOnaiabeg7aHnaaCaaaleqabaGaaG4maaaaki abgUcaRiaaigdacaaIZaGaeqySde2aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaaGOmaiabeg7aHbGaayjkaiaawMcaaiaaykW7cqaH4oqCda ahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIZaWaaeWaaeaacaaIYaGa eqySde2aaWbaaSqabeaacaaI1aaaaOGaey4kaSIaaGioaiabeg7aHn aaCaaaleqabaGaaGinaaaakiabgUcaRiaaigdacaaIWaGaeqySde2a aWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGinaiabeg7aHnaaCaaale qabaGaaGOmaaaaaOGaayjkaiaawMcaaiaaykW7cqaH4oqCaeaacqGH RaWkdaqadaqaaiabeg7aHnaaCaaaleqabaGaaGOnaaaakiabgUcaRi aaiwdacqaHXoqydaahaaWcbeqaaiaaiwdaaaGccqGHRaWkcaaI5aGa eqySde2aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaG4naiabeg7aHn aaCaaaleqabaGaaG4maaaakiabgUcaRiaaikdacqaHXoqydaahaaWc beqaaiaaikdaaaaakiaawIcacaGLPaaaaaGaay5Eaiaaw2haaaqaai abeI7aXnaaCaaaleqabaGaaG4maaaakmaacmaabaGaeqiUde3aaWba aSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeI7aXjaaykW7cqaHXo qycqGHRaWkcqaHXoqydaqadaqaaiabeg7aHjabgUcaRiaaigdaaiaa wIcacaGLPaaaaiaawUhacaGL9baadaahaaWcbeqaaiaaiodaaaaaaO GaaGPaVdaa@C6E6@ μ 4 = 3α{ ( α+2 ) θ 8 +8( α 2 +3α+2 ) θ 7 +4( 7 α 3 +38 α 2 +31α+10 ) θ 6 +8( 7 α 4 +52 α 3 +35 α 2 +24α ) θ 5 +2( 35 α 5 +210 α 4 +391 α 3 +244 α 2 +28α ) θ 4 +8( 7 α 6 +49 α 5 +111 α 4 +95 α 3 +26 α 2 ) θ 3 +4( 7 α 7 +56 α 6 +152 α 5 +174 α 4 +81 α 3 +10 α 2 ) θ 2 +8( α 8 +9 α 7 +29 α 6 +43 α 5 +30 α 4 +8 α 3 )θ +( α 9 +10 α 8 +38 α 7 +72 α 6 +73 α 5 +38 α 4 +8 α 3 ) } θ 4 { θ 2 +2θα+α( α+1 ) } 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakiabg2da9maalaaabaGaaG4maiabeg7aHnaa cmaaeaqabeaadaqadaqaaiabeg7aHjabgUcaRiaaikdaaiaawIcaca GLPaaacqaH4oqCdaahaaWcbeqaaiaaiIdaaaGccqGHRaWkcaaI4aWa aeWaaeaacqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIZa GaeqySdeMaey4kaSIaaGOmaaGaayjkaiaawMcaaiabeI7aXnaaCaaa leqabaGaaG4naaaakiabgUcaRiaaisdadaqadaqaaiaaiEdacqaHXo qydaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIZaGaaGioaiabeg7a HnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiodacaaIXaGaeqySde Maey4kaSIaaGymaiaaicdaaiaawIcacaGLPaaacaaMc8UaeqiUde3a aWbaaSqabeaacaaI2aaaaaGcbaGaey4kaSIaaGioamaabmaabaGaaG 4naiabeg7aHnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaiwdacaaI YaGaeqySde2aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG4maiaaiw dacqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaaGin aiabeg7aHbGaayjkaiaawMcaaiaaykW7cqaH4oqCdaahaaWcbeqaai aaiwdaaaGccqGHRaWkcaaIYaWaaeWaaeaacaaIZaGaaGynaiabeg7a HnaaCaaaleqabaGaaGynaaaakiabgUcaRiaaikdacaaIXaGaaGimai abeg7aHnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaiodacaaI5aGa aGymaiabeg7aHnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaikdaca aI0aGaaGinaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa ikdacaaI4aGaeqySdegacaGLOaGaayzkaaGaaGPaVlabeI7aXnaaCa aaleqabaGaaGinaaaaaOqaaiabgUcaRiaaiIdadaqadaqaaiaaiEda cqaHXoqydaahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaI0aGaaGyoai abeg7aHnaaCaaaleqabaGaaGynaaaakiabgUcaRiaaigdacaaIXaGa aGymaiabeg7aHnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaiMdaca aI1aGaeqySde2aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGOmaiaa iAdacqaHXoqydaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaaca aMc8UaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGinamaa bmaabaGaaG4naiabeg7aHnaaCaaaleqabaGaaG4naaaakiabgUcaRi aaiwdacaaI2aGaeqySde2aaWbaaSqabeaacaaI2aaaaOGaey4kaSIa aGymaiaaiwdacaaIYaGaeqySde2aaWbaaSqabeaacaaI1aaaaOGaey 4kaSIaaGymaiaaiEdacaaI0aGaeqySde2aaWbaaSqabeaacaaI0aaa aOGaey4kaSIaaGioaiaaigdacqaHXoqydaahaaWcbeqaaiaaiodaaa GccqGHRaWkcaaIXaGaaGimaiabeg7aHnaaCaaaleqabaGaaGOmaaaa aOGaayjkaiaawMcaaiaaykW7cqaH4oqCdaahaaWcbeqaaiaaikdaaa aakeaacqGHRaWkcaaI4aWaaeWaaeaacqaHXoqydaahaaWcbeqaaiaa iIdaaaGccqGHRaWkcaaI5aGaeqySde2aaWbaaSqabeaacaaI3aaaaO Gaey4kaSIaaGOmaiaaiMdacqaHXoqydaahaaWcbeqaaiaaiAdaaaGc cqGHRaWkcaaI0aGaaG4maiabeg7aHnaaCaaaleqabaGaaGynaaaaki abgUcaRiaaiodacaaIWaGaeqySde2aaWbaaSqabeaacaaI0aaaaOGa ey4kaSIaaGioaiabeg7aHnaaCaaaleqabaGaaG4maaaaaOGaayjkai aawMcaaiaaykW7cqaH4oqCaeaacqGHRaWkdaqadaqaaiabeg7aHnaa CaaaleqabaGaaGyoaaaakiabgUcaRiaaigdacaaIWaGaeqySde2aaW baaSqabeaacaaI4aaaaOGaey4kaSIaaG4maiaaiIdacqaHXoqydaah aaWcbeqaaiaaiEdaaaGccqGHRaWkcaaI3aGaaGOmaiabeg7aHnaaCa aaleqabaGaaGOnaaaakiabgUcaRiaaiEdacaaIZaGaeqySde2aaWba aSqabeaacaaI1aaaaOGaey4kaSIaaG4maiaaiIdacqaHXoqydaahaa WcbeqaaiaaisdaaaGccqGHRaWkcaaI4aGaeqySde2aaWbaaSqabeaa caaIZaaaaaGccaGLOaGaayzkaaaaaiaawUhacaGL9baaaeaacqaH4o qCdaahaaWcbeqaaiaaisdaaaGcdaGadaqaaiabeI7aXnaaCaaaleqa baGaaGOmaaaakiabgUcaRiaaikdacqaH4oqCcaaMc8UaeqySdeMaaG PaVlabgUcaRiabeg7aHnaabmaabaGaeqySdeMaey4kaSIaaGymaaGa ayjkaiaawMcaaaGaay5Eaiaaw2haamaaCaaaleqabaGaaGinaaaaaa GccaaMc8oaaa@42E6@

    Thus the coefficient of variation (C.V), coefficient of skewness ( β 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaWaaO aaaeaacqaHYoGydaWgaaWcbaGaaGymaaqabaaabeaaaOGaayjkaiaa wMcaaaaa@3B39@ , coefficient of kurtosis ( β 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq OSdi2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@3B2A@ , and index of dispersion ( γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq 4SdCgacaGLOaGaayzkaaaaaa@3A3E@ of WAD are obtained as

C.V.= σ μ 1 = θ 4 +4( α+1 ) θ 3 +6( α 2 +2α+1 ) θ 2 +4( α 3 +3 α 2 +2α )θ+( α 4 +4 α 3 +5 α 2 +2α ) α { θ 2 +2( α+1 )θ+( α+1 )( α+2 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaGGUa GaamOvaiaac6cacqGH9aqpdaWcaaqaaiabeo8aZbqaaiabeY7aTnaa BaaaleaacaaIXaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaaaacq GH9aqpdaWcaaqaamaakaaabaGaeqiUde3aaWbaaSqabeaacaaI0aaa aOGaey4kaSIaaGinamaabmaabaGaeqySdeMaey4kaSIaaGymaaGaay jkaiaawMcaaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiaa iAdadaqadaqaaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabgUcaRi aaikdacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaGaeqiUde3a aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGinamaabmaabaGaeqySde 2aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG4maiabeg7aHnaaCaaa leqabaGaaGOmaaaakiabgUcaRiaaikdacqaHXoqyaiaawIcacaGLPa aacaaMc8UaeqiUdeNaey4kaSYaaeWaaeaacqaHXoqydaahaaWcbeqa aiaaisdaaaGccqGHRaWkcaaI0aGaeqySde2aaWbaaSqabeaacaaIZa aaaOGaey4kaSIaaGynaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiab gUcaRiaaikdacqaHXoqyaiaawIcacaGLPaaaaSqabaaakeaadaGcaa qaaiabeg7aHbWcbeaakmaacmaabaGaeqiUde3aaWbaaSqabeaacaaI YaaaaOGaey4kaSIaaGOmamaabmaabaGaeqySdeMaey4kaSIaaGymaa GaayjkaiaawMcaaiaaykW7cqaH4oqCcqGHRaWkdaqadaqaaiabeg7a HjabgUcaRiaaigdaaiaawIcacaGLPaaadaqadaqaaiabeg7aHjabgU caRiaaikdaaiaawIcacaGLPaaaaiaawUhacaGL9baaaaGaaGPaVdaa @9A30@ β 1 = μ 3 μ 2 3/2 = 2{ θ 6 +6( α+1 ) θ 5 +3( 5 α 2 +9α+4 ) θ 4 +10( 2 α 3 +5 α 2 +3α ) θ 3 +3( 5 α 4 +16 α 3 +13 α 2 +2α ) θ 2 +3( 2 α 5 +8 α 4 +10 α 3 +4 α 2 )θ +( α 6 +5 α 5 +9 α 4 +7 α 3 +2 α 2 ) } α { θ 4 +4( α+1 ) θ 3 +6( α 2 +2α+1 ) θ 2 +4( α 3 +3 α 2 +2α )θ+( α 4 +4 α 3 +5 α 2 +2α ) } 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakaaabaGaeq OSdi2aaSbaaSqaaiaaigdaaeqaaaqabaGccqGH9aqpdaWcaaqaaiab eY7aTnaaBaaaleaacaaIZaaabeaaaOqaaiabeY7aTnaaBaaaleaaca aIYaaabeaakmaaCaaaleqabaWaaSGbaeaacaaIZaaabaGaaGOmaaaa aaaaaOGaeyypa0ZaaSaaaeaacaaIYaWaaiWaaqaabeqaaiabeI7aXn aaCaaaleqabaGaaGOnaaaakiabgUcaRiaaiAdadaqadaqaaiabeg7a HjabgUcaRiaaigdaaiaawIcacaGLPaaacqaH4oqCdaahaaWcbeqaai aaiwdaaaGccqGHRaWkcaaIZaWaaeWaaeaacaaI1aGaeqySde2aaWba aSqabeaacaaIYaaaaOGaey4kaSIaaGyoaiabeg7aHjabgUcaRiaais daaiaawIcacaGLPaaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGH RaWkcaaIXaGaaGimamaabmaabaGaaGOmaiabeg7aHnaaCaaaleqaba GaaG4maaaakiabgUcaRiaaiwdacqaHXoqydaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaIZaGaeqySdegacaGLOaGaayzkaaGaeqiUde3aaW baaSqabeaacaaIZaaaaaGcbaGaey4kaSIaaG4mamaabmaabaGaaGyn aiabeg7aHnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaigdacaaI2a GaeqySde2aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGymaiaaioda cqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqySde gacaGLOaGaayzkaaGaaGPaVlabeI7aXnaaCaaaleqabaGaaGOmaaaa kiabgUcaRiaaiodadaqadaqaaiaaikdacqaHXoqydaahaaWcbeqaai aaiwdaaaGccqGHRaWkcaaI4aGaeqySde2aaWbaaSqabeaacaaI0aaa aOGaey4kaSIaaGymaiaaicdacqaHXoqydaahaaWcbeqaaiaaiodaaa GccqGHRaWkcaaI0aGaeqySde2aaWbaaSqabeaacaaIYaaaaaGccaGL OaGaayzkaaGaaGPaVlabeI7aXbqaaiabgUcaRmaabmaabaGaeqySde 2aaWbaaSqabeaacaaI2aaaaOGaey4kaSIaaGynaiabeg7aHnaaCaaa leqabaGaaGynaaaakiabgUcaRiaaiMdacqaHXoqydaahaaWcbeqaai aaisdaaaGccqGHRaWkcaaI3aGaeqySde2aaWbaaSqabeaacaaIZaaa aOGaey4kaSIaaGOmaiabeg7aHnaaCaaaleqabaGaaGOmaaaaaOGaay jkaiaawMcaaaaacaGL7bGaayzFaaaabaWaaOaaaeaacqaHXoqyaSqa baGcdaGadaqaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRi aaisdadaqadaqaaiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaa cqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI2aWaaeWaae aacqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqyS deMaey4kaSIaaGymaaGaayjkaiaawMcaaiabeI7aXnaaCaaaleqaba GaaGOmaaaakiabgUcaRiaaisdadaqadaqaaiabeg7aHnaaCaaaleqa baGaaG4maaaakiabgUcaRiaaiodacqaHXoqydaahaaWcbeqaaiaaik daaaGccqGHRaWkcaaIYaGaeqySdegacaGLOaGaayzkaaGaaGPaVlab eI7aXjabgUcaRmaabmaabaGaeqySde2aaWbaaSqabeaacaaI0aaaaO Gaey4kaSIaaGinaiabeg7aHnaaCaaaleqabaGaaG4maaaakiabgUca RiaaiwdacqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYa GaeqySdegacaGLOaGaayzkaaaacaGL7bGaayzFaaWaaWbaaSqabeaa daWcgaqaaiaaiodaaeaacaaIYaaaaaaaaaGccaaMc8oaaa@F6F3@ β 2 = μ 4 μ 2 2 = 3{ ( α+2 ) θ 8 +8( α 2 +3α+2 ) θ 7 +4( 7 α 3 +38 α 2 +31α+10 ) θ 6 +8( 7 α 4 +52 α 3 +35 α 2 +24α ) θ 5 +2( 35 α 5 +210 α 4 +391 α 3 +244 α 2 +28α ) θ 4 +8( 7 α 6 +49 α 5 +111 α 4 +95 α 3 +26 α 2 ) θ 3 +4( 7 α 7 +56 α 6 +152 α 5 +174 α 4 +81 α 3 +10 α 2 ) θ 2 +8( α 8 +9 α 7 +29 α 6 +43 α 5 +30 α 4 +8 α 3 )θ +( α 9 +10 α 8 +38 α 7 +72 α 6 +73 α 5 +38 α 4 +8 α 3 ) } α { θ 4 +4( α+1 ) θ 3 +6( α 2 +2α+1 ) θ 2 +4( α 3 +3 α 2 +2α )θ+( α 4 +4 α 3 +5 α 2 +2α ) } 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqiVd02aaSbaaSqa aiaaisdaaeqaaaGcbaGaeqiVd02aaSbaaSqaaiaaikdaaeqaaOWaaW baaSqabeaacaaIYaaaaaaakiabg2da9maalaaabaGaaG4mamaacmaa eaqabeaadaqadaqaaiabeg7aHjabgUcaRiaaikdaaiaawIcacaGLPa aacqaH4oqCdaahaaWcbeqaaiaaiIdaaaGccqGHRaWkcaaI4aWaaeWa aeaacqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIZaGaeq ySdeMaey4kaSIaaGOmaaGaayjkaiaawMcaaiabeI7aXnaaCaaaleqa baGaaG4naaaakiabgUcaRiaaisdadaqadaqaaiaaiEdacqaHXoqyda ahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIZaGaaGioaiabeg7aHnaa CaaaleqabaGaaGOmaaaakiabgUcaRiaaiodacaaIXaGaeqySdeMaey 4kaSIaaGymaiaaicdaaiaawIcacaGLPaaacaaMc8UaeqiUde3aaWba aSqabeaacaaI2aaaaaGcbaGaey4kaSIaaGioamaabmaabaGaaG4nai abeg7aHnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaiwdacaaIYaGa eqySde2aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG4maiaaiwdacq aHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaaGinaiab eg7aHbGaayjkaiaawMcaaiaaykW7cqaH4oqCdaahaaWcbeqaaiaaiw daaaGccqGHRaWkcaaIYaWaaeWaaeaacaaIZaGaaGynaiabeg7aHnaa CaaaleqabaGaaGynaaaakiabgUcaRiaaikdacaaIXaGaaGimaiabeg 7aHnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaiodacaaI5aGaaGym aiabeg7aHnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaikdacaaI0a GaaGinaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikda caaI4aGaeqySdegacaGLOaGaayzkaaGaaGPaVlabeI7aXnaaCaaale qabaGaaGinaaaaaOqaaiabgUcaRiaaiIdadaqadaqaaiaaiEdacqaH XoqydaahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaI0aGaaGyoaiabeg 7aHnaaCaaaleqabaGaaGynaaaakiabgUcaRiaaigdacaaIXaGaaGym aiabeg7aHnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaiMdacaaI1a GaeqySde2aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGOmaiaaiAda cqaHXoqydaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaaMc8 UaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGinamaabmaa baGaaG4naiabeg7aHnaaCaaaleqabaGaaG4naaaakiabgUcaRiaaiw dacaaI2aGaeqySde2aaWbaaSqabeaacaaI2aaaaOGaey4kaSIaaGym aiaaiwdacaaIYaGaeqySde2aaWbaaSqabeaacaaI1aaaaOGaey4kaS IaaGymaiaaiEdacaaI0aGaeqySde2aaWbaaSqabeaacaaI0aaaaOGa ey4kaSIaaGioaiaaigdacqaHXoqydaahaaWcbeqaaiaaiodaaaGccq GHRaWkcaaIXaGaaGimaiabeg7aHnaaCaaaleqabaGaaGOmaaaaaOGa ayjkaiaawMcaaiaaykW7cqaH4oqCdaahaaWcbeqaaiaaikdaaaaake aacqGHRaWkcaaI4aWaaeWaaeaacqaHXoqydaahaaWcbeqaaiaaiIda aaGccqGHRaWkcaaI5aGaeqySde2aaWbaaSqabeaacaaI3aaaaOGaey 4kaSIaaGOmaiaaiMdacqaHXoqydaahaaWcbeqaaiaaiAdaaaGccqGH RaWkcaaI0aGaaG4maiabeg7aHnaaCaaaleqabaGaaGynaaaakiabgU caRiaaiodacaaIWaGaeqySde2aaWbaaSqabeaacaaI0aaaaOGaey4k aSIaaGioaiabeg7aHnaaCaaaleqabaGaaG4maaaaaOGaayjkaiaawM caaiaaykW7cqaH4oqCaeaacqGHRaWkdaqadaqaaiabeg7aHnaaCaaa leqabaGaaGyoaaaakiabgUcaRiaaigdacaaIWaGaeqySde2aaWbaaS qabeaacaaI4aaaaOGaey4kaSIaaG4maiaaiIdacqaHXoqydaahaaWc beqaaiaaiEdaaaGccqGHRaWkcaaI3aGaaGOmaiabeg7aHnaaCaaale qabaGaaGOnaaaakiabgUcaRiaaiEdacaaIZaGaeqySde2aaWbaaSqa beaacaaI1aaaaOGaey4kaSIaaG4maiaaiIdacqaHXoqydaahaaWcbe qaaiaaisdaaaGccqGHRaWkcaaI4aGaeqySde2aaWbaaSqabeaacaaI ZaaaaaGccaGLOaGaayzkaaaaaiaawUhacaGL9baaaeaacqaHXoqyda GadaqaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaisda daqadaqaaiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaacqaH4o qCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI2aWaaeWaaeaacqaH XoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqySdeMaey 4kaSIaaGymaaGaayjkaiaawMcaaiabeI7aXnaaCaaaleqabaGaaGOm aaaakiabgUcaRiaaisdadaqadaqaaiabeg7aHnaaCaaaleqabaGaaG 4maaaakiabgUcaRiaaiodacqaHXoqydaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcaaIYaGaeqySdegacaGLOaGaayzkaaGaaGPaVlabeI7aXj abgUcaRmaabmaabaGaeqySde2aaWbaaSqabeaacaaI0aaaaOGaey4k aSIaaGinaiabeg7aHnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaiw dacqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqyS degacaGLOaGaayzkaaaacaGL7bGaayzFaaWaaWbaaSqabeaacaaIYa aaaaaakiaaykW7aaa@6F8C@

γ= σ 2 μ 1 = { θ 4 +4( α+1 ) θ 3 +6( α 2 +2α+1 ) θ 2 +4( α 3 +3 α 2 +2α )θ+( α 4 +4 α 3 +5 α 2 +2α ) } θ{ θ 2 +αθ+α( α+1 ) }{ θ 2 +2( α+1 )θ+( α+1 )( α+2 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjabg2 da9maalaaabaGaeq4Wdm3aaWbaaSqabeaacaaIYaaaaaGcbaGaeqiV d02aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaakiadacUHYaIOaa aaaiabg2da9maalaaabaWaaiWaaeaacqaH4oqCdaahaaWcbeqaaiaa isdaaaGccqGHRaWkcaaI0aWaaeWaaeaacqaHXoqycqGHRaWkcaaIXa aacaGLOaGaayzkaaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4k aSIaaGOnamaabmaabaGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaaGOmaiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaacqaH 4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI0aWaaeWaaeaacq aHXoqydaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIZaGaeqySde2a aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeg7aHbGaayjkai aawMcaaiaaykW7cqaH4oqCcqGHRaWkdaqadaqaaiabeg7aHnaaCaaa leqabaGaaGinaaaakiabgUcaRiaaisdacqaHXoqydaahaaWcbeqaai aaiodaaaGccqGHRaWkcaaI1aGaeqySde2aaWbaaSqabeaacaaIYaaa aOGaey4kaSIaaGOmaiabeg7aHbGaayjkaiaawMcaaaGaay5Eaiaaw2 haaaqaaiabeI7aXnaacmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaa aOGaey4kaSIaeqySdeMaaGPaVlabeI7aXjabgUcaRiabeg7aHnaabm aabaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMcaaaGaay5Eaiaa w2haamaacmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaS IaaGOmamaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMca aiaaykW7cqaH4oqCcqGHRaWkdaqadaqaaiabeg7aHjabgUcaRiaaig daaiaawIcacaGLPaaadaqadaqaaiabeg7aHjabgUcaRiaaikdaaiaa wIcacaGLPaaaaiaawUhacaGL9baaaaGaaGPaVdaa@ADA3@ .

It should be noted that these moments reduce to the corresponding moments of Aradhana distribution and length-biased Aradhana distribution at α=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaigdaaaa@3A6E@ and α=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaikdaaaa@3A6F@ respectively. Graphs of coefficient of variation (C.V), coefficient of Skewness (S.K), coefficient of kurtosis (S.K.) and index of dispersion (I.D) of WAD for values of parameters  are shown in figure 1. The graph clearly explains the nature for variation in parameters.

Figure 1 Graphs of C.V., C.S., C.K., and I.D of WAD for varying values of parameters .

Mean residual life function

The mean residual life function m( x )=E( Xx|X>x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWGfbWaaeWaaeaacaWG ybGaeyOeI0IaamiEaiaacYhacaWGybGaeyOpa4JaamiEaaGaayjkai aawMcaaaaa@4488@ of the WAD can be obtained as

m( x;θ,α )= 1 S( x;θ,α ) x t f 1 ( t;θ,α ) dtx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9maalaaabaGaaGymaaqaaiaadofadaqadaqaaiaadIhaca GG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMcaaaaadaWdXbqa aiaadshacaaMc8UaamOzamaaBaaaleaacaaIXaaabeaakmaabmaaba GaamiDaiaacUdacqaH4oqCcaGGSaGaeqySdegacaGLOaGaayzkaaaa leaacaWG4baabaGaeyOhIukaniabgUIiYdGccaaMc8Uaamizaiaayk W7caWG0bGaeyOeI0IaamiEaaaa@60A6@

= 1 S( x;θ,α ) [ θ α+2 { θ 2 +2αθ+α( α+1 ) }Γ( α ) x t α ( 1+2t+ t 2 ) e θt dt ]x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaaGymaaqaaiaadofadaqadaqaaiaadIhacaGG7aGaeqiUdeNa aiilaiabeg7aHbGaayjkaiaawMcaaaaadaWadaqaamaalaaabaGaeq iUde3aaWbaaSqabeaacqaHXoqycqGHRaWkcaaIYaaaaaGcbaWaaiWa aeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeq ySdeMaaGPaVlabeI7aXjabgUcaRiabeg7aHnaabmaabaGaeqySdeMa ey4kaSIaaGymaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabfo5ahn aabmaabaGaeqySdegacaGLOaGaayzkaaaaamaapehabaGaamiDamaa CaaaleqabaGaeqySdegaaaqaaiaadIhaaeaacqGHEisPa0Gaey4kIi pakmaabmaabaGaaGymaiabgUcaRiaaikdacaWG0bGaey4kaSIaamiD amaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiaaykW7caWGLb WaaWbaaSqabeaacqGHsislcqaH4oqCcaaMc8UaamiDaaaakiaadsga caaMc8UaamiDaaGaay5waiaaw2faaiabgkHiTiaadIhaaaa@7BC9@ = [ ( θx ) α { θx+θ( θ+2α+2 )+( α+1 )( α+2 ) } e θx ] +[ α θ 2 +2θα( α+1 )+α( α+1 )( α+2 )θx{ θ 2 +2θα+α( α+1 ) } ]Γ( α,θx ) θ[ { θ 2 +2αθ+α( α+1 ) }Γ( α,θx )+{ e θx ( θx+2θ+α+1 ) ( θx ) α } ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aaeaqabeaacaaMc8UaaGPaVlaaykW7caaMc8+aamWaaeaadaqadaqa aiabeI7aXjaadIhaaiaawIcacaGLPaaadaahaaWcbeqaaiabeg7aHb aakmaacmaabaGaeqiUdeNaaGPaVlaadIhacqGHRaWkcqaH4oqCdaqa daqaaiabeI7aXjabgUcaRiaaikdacqaHXoqycqGHRaWkcaaIYaaaca GLOaGaayzkaaGaey4kaSYaaeWaaeaacqaHXoqycqGHRaWkcaaIXaaa caGLOaGaayzkaaWaaeWaaeaacqaHXoqycqGHRaWkcaaIYaaacaGLOa GaayzkaaaacaGL7bGaayzFaaGaamyzamaaCaaaleqabaGaeyOeI0Ia eqiUdeNaaGPaVlaadIhaaaaakiaawUfacaGLDbaaaeaacqGHRaWkda Wadaqaaiabeg7aHjaaykW7cqaH4oqCdaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcaaIYaGaeqiUdeNaaGPaVlabeg7aHnaabmaabaGaeqySde Maey4kaSIaaGymaaGaayjkaiaawMcaaiabgUcaRiabeg7aHnaabmaa baGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMcaamaabmaabaGaeq ySdeMaey4kaSIaaGOmaaGaayjkaiaawMcaaiabgkHiTiabeI7aXjaa dIhadaGadaqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRi aaikdacqaH4oqCcaaMc8UaeqySdeMaaGPaVlabgUcaRiabeg7aHnaa bmaabaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMcaaaGaay5Eai aaw2haaaGaay5waiaaw2faaiabfo5ahnaabmaabaGaeqySdeMaaiil aiabeI7aXjaadIhaaiaawIcacaGLPaaaaaqaaiabeI7aXnaadmaaba WaaiWaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI YaGaeqySdeMaaGPaVlabeI7aXjabgUcaRiabeg7aHnaabmaabaGaeq ySdeMaey4kaSIaaGymaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaiab fo5ahnaabmaabaGaeqySdeMaaiilaiabeI7aXjaadIhaaiaawIcaca GLPaaacqGHRaWkdaGadaqaaiaadwgadaahaaWcbeqaaiabgkHiTiab eI7aXjaaykW7caWG4baaaOWaaeWaaeaacqaH4oqCcaaMc8UaamiEai abgUcaRiaaikdacqaH4oqCcqGHRaWkcqaHXoqycqGHRaWkcaaIXaaa caGLOaGaayzkaaWaaeWaaeaacqaH4oqCcaWG4baacaGLOaGaayzkaa WaaWbaaSqabeaacqaHXoqyaaaakiaawUhacaGL9baaaiaawUfacaGL Dbaaaaaaaa@E2CA@

Graphs of of WAD for values of parameters  are shown in figure 2.

 

Figure 2  of WAD for varying values of parameters.

Estimation of parameters using method of maximum likelihood

Suppose ( x 1 , x 2 , x 3 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iEamaaBaaaleaacaaIXaaabeaakiaacYcacaaMc8UaamiEamaaBaaa leaacaaIYaaabeaakiaacYcacaaMc8UaamiEamaaBaaaleaacaaIZa aabeaakiaacYcacaaMc8UaaGPaVlaac6cacaGGUaGaaiOlaiaaykW7 caaMc8UaaiilaiaadIhadaWgaaWcbaGaamOBaaqabaaakiaawIcaca GLPaaaaaa@4EA2@ be a random sample of size  from WAD (1.4). The log likelihood function, of WAD is given by

lnL= i=1 n ln f 1 ( x i ;θ,α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGUb Gaamitaiabg2da9maaqahabaGaciiBaiaac6gacaWGMbWaaSbaaSqa aiaaigdaaeqaaOWaaeWaaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaO Gaai4oaiabeI7aXjaacYcacqaHXoqyaiaawIcacaGLPaaaaSqaaiaa dMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaaa@4CDB@ =n[ ( α+2 )lnθln( θ 2 +2θα+ α 2 +α )lnΓ( α ) ]+( α1 ) i=1 n ln( x i ) + i=1 n ln( 1+2 x i + x i 2 ) nθ x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9iaad6 gadaWadaqaamaabmaabaGaeqySdeMaey4kaSIaaGOmaaGaayjkaiaa wMcaaiGacYgacaGGUbGaeqiUdeNaeyOeI0IaciiBaiaac6gadaqada qaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqaH 4oqCcaaMc8UaeqySdeMaey4kaSIaeqySde2aaWbaaSqabeaacaaIYa aaaOGaey4kaSIaeqySdegacaGLOaGaayzkaaGaeyOeI0IaciiBaiaa c6gacqqHtoWrdaqadaqaaiabeg7aHbGaayjkaiaawMcaaaGaay5wai aaw2faaiabgUcaRmaabmaabaGaeqySdeMaeyOeI0IaaGymaaGaayjk aiaawMcaamaaqahabaGaciiBaiaac6gadaqadaqaaiaadIhadaWgaa WcbaGaamyAaaqabaaakiaawIcacaGLPaaaaSqaaiaadMgacqGH9aqp caaIXaaabaGaamOBaaqdcqGHris5aOGaey4kaSYaaabCaeaaciGGSb GaaiOBamaabmaabaGaaGymaiabgUcaRiaaikdacaWG4bWaaSbaaSqa aiaadMgaaeqaaOGaey4kaSIaamiEamaaBaaaleaacaWGPbaabeaakm aaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaWcbaGaamyAaiab g2da9iaaigdaaeaacaWGUbaaniabggHiLdGccqGHsislcaWGUbGaaG PaVlabeI7aXjaaykW7ceWG4bGbaebaaaa@89CC@

The maximum likelihood estimates (MLE’s) ( θ ^ , α ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafq iUdeNbaKaacaaMc8UaaGPaVlaacYcacaaMc8UaaGPaVlqbeg7aHzaa jaaacaGLOaGaayzkaaaaaa@42E8@ of the parameters ( θ,α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaGPaVlaaykW7caGGSaGaaGPaVlaaykW7cqaHXoqyaiaawIca caGLPaaaaaa@42C8@ of WAD are the solutions of the following log likelihood equations 

lnL θ = n( α+2 ) θ 2n( θ+α ) θ 2 +2θα+ α 2 +α n x ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac6gacaWGmbaabaGaeyOaIyRaeqiUdehaaiabg2da 9maalaaabaGaamOBamaabmaabaGaeqySdeMaey4kaSIaaGOmaaGaay jkaiaawMcaaaqaaiabeI7aXbaacqGHsisldaWcaaqaaiaaikdacaWG UbWaaeWaaeaacqaH4oqCcqGHRaWkcqaHXoqyaiaawIcacaGLPaaaae aacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqiU deNaaGPaVlabeg7aHjabgUcaRiabeg7aHnaaCaaaleqabaGaaGOmaa aakiabgUcaRiabeg7aHbaacqGHsislcaWGUbGaaGPaVlaaykW7ceWG 4bGbaebacqGH9aqpcaaIWaaaaa@662D@ lnL α =nlnθ n( 2θ+2α+1 ) θ 2 +2θα+ α 2 +α nψ( α )+ i=1 n ln( x i ) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac6gacaWGmbaabaGaeyOaIyRaeqySdegaaiabg2da 9iaad6gaciGGSbGaaiOBaiabeI7aXjabgkHiTmaalaaabaGaamOBam aabmaabaGaaGOmaiabeI7aXjabgUcaRiaaikdacqaHXoqycqGHRaWk caaIXaaacaGLOaGaayzkaaaabaGaeqiUde3aaWbaaSqabeaacaaIYa aaaOGaey4kaSIaaGOmaiabeI7aXjaaykW7cqaHXoqycqGHRaWkcqaH XoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaHXoqyaaGaeyOeI0 IaamOBaiaaykW7caaMc8UaeqiYdK3aaeWaaeaacqaHXoqyaiaawIca caGLPaaacqGHRaWkdaaeWbqaaiGacYgacaGGUbWaaeWaaeaacaWG4b WaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaleaacaWGPbGa eyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoakiabg2da9iaaicdaaa a@75BC@

 where ψ( α )= d dα lnΓ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI8a5naabm aabaGaeqySdegacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaWGKbaa baGaamizaiabeg7aHbaaciGGSbGaaiOBaiabfo5ahnaabmaabaGaeq ySdegacaGLOaGaayzkaaaaaa@46FF@ is the digamma function.

These log likelihood equations cannot be solved analytically because they are not in closed form and hence can be solved using R-software. The Newton-Raphson method available in R-software has been used to estimates the parameters.

A numerical example

Application and the goodness of fit of WAD has been discussed with the following lifetime data relating to waiting time data (in minutes) before service of 100 bank customers used by Ghitany et al.5 to fit Lindley distribution, proposed by Lindley.6

0.8          0.8          1.3          1.5          1.8          1.9          1.9          2.1          2.6          2.7          2.9          3.1

3.2          3.3          3.5          3.6          4.0          4.1          4.2          4.2          4.3          4.3          4.4          4.4

4.6          4.7          4.7         4.8          4.9          4.9          5.0          5.3          5.5          5.7          5.7          6.1

6.2          6.2          6.2          6.3          6.7          6.9          7.1          7.1          7.1          7.1          7.4          7.6

7.7          8.0          8.2          8.6          8.6         8.6          8.8          8.8          8.9          8.9          9.5          9.6

9.7          9.8          10.7        10.9        11.0        11.0        11.1        11.2        11.2        11.5        11.9        12.4

12.5        12.9        13.0        13.1        13.3        13.6        13.7        13.9        14.1        15.4        15.4        17.3

17.3        18.1        18.2        18.4        18.9        19.0        19.9        20.6        21.3        21.4        21.9        23.0

 27.0 31.6 33.1 38.5

The goodness of fit of one parameter exponential distribution, Lindley distribution, Aradhana distribution and Sujatha distribution by Shanker,7 two-parameter weighted Sujatha distribution (WSD) proposed by Shanker and Shukla,8 Weibull distribution introduced by Weibull,9 lognormal distribution and WAD has been conducted for the above dataset. The pdf and cdf of WSD, Lognormal, Weibull, Sujatha, Lindley and exponential distributions are presented in table 1. The ML estimates, values of 2lnL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaaiOBaiaadYeaaaa@3B6C@ , Akaike Information criteria (AIC), K-S and p-value of the fitted distributions are presented in table 2. The AIC and K-S are computed using the following formulae: AIC=2lnL+2k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacaWGjb Gaam4qaiabg2da9iabgkHiTiaaikdaciGGSbGaaiOBaiaadYeacqGH RaWkcaaIYaGaam4Aaaaa@415C@ and K-S= Sup x | F n ( x ) F 0 ( x ) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabUeacaqGTa Gaae4uaiabg2da9maaxababaGaae4uaiaabwhacaqGWbaaleaacaWG 4baabeaakmaaemaabaGaamOramaaBaaaleaacaWGUbaabeaakmaabm aabaGaamiEaaGaayjkaiaawMcaaiabgkHiTiaadAeadaWgaaWcbaGa aGimaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawEa7ca GLiWoaaaa@4B33@ , where k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgaaaa@37FE@ = the number of parameters, n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gaaaa@3801@ = the sample size , F n ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamOBaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaaaaa@3B88@ is the empirical (sample) cumulative distribution function, and F 0 ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaGimaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaaaaa@3B4F@ is the theoretical cumulative distribution function. The distribution corresponding to lower values of 2lnL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaaiOBaiaadYeaaaa@3B6C@ , AIC, and K-S are the best fit.

 The following table 3 presents the variance-covariance matrix and the 95% confidence intervals (CI’s) of the ML estimates of the parameters θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@ and α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@ of WAD.

The profile of likelihood estimates of parameters θ ^ and α ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja GaaGPaVlaaykW7caaMc8Uaaeyyaiaab6gacaqGKbGaaGPaVlaaykW7 caaMc8UafqySdeMbaKaaaaa@4681@ of WAD for the given dataset is shown in figure 3. Also the fitted plots of the considered dataset for WAD are shown in figure 4.

Figure 3 Profile of the likelihood estimates  of WAD for the given dataset.

Figure 4 Fitted plots of the two-parameter distributions for the given dataset .

From table 2 and the fitted plots of the distributions in figure 4, it is quite obvious that WAD gives much better fit as compared to the considered distribution and hence we can say that WAD can be considered an important weighted distribution for modeling real lifetime data from engineering and medical sciences.

Concluding remarks

Some important properties of weighted Aradhana distribution including mean residual life function, coefficients of skweness, kurtosis and index of dispersion has been derived and discussed. A numerical example has been presented to test its goodness of fit.

Acknowledgments

None.

Conflicts of interest

Author declares there are no conflicts of interest.

Funding

None.

References

Creative Commons Attribution License

©2022 Shanker, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.