Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 5 Issue 3

A general overview of response surface methodology

Andre I Khuri

Department of Statistics, University of Florida, USA

Correspondence: Andre I. Khuri, Department of Statistics, University of Florida, USA

Received: October 29, 2017 | Published: March 10, 2017

Citation: Khuri AI. A general overview of response surface methodology. Biom Biostat Int J. 2017;5(3):87-93. DOI: 10.15406/bbij.2017.05.00133

Download PDF

Response surface methodology

Response surface methodology (RSM) is a collection of statistical and mathematical techniques used for the purpose of

  1. Setting up a series of experiments (design) for adequate predictions of a response y.
  2. Fitting a hypothesized (empirical) model to data obtained under the chosen design.
  3. Determining optimum conditions on the model's input (control) variables that lead to maximum or minimum response within a region of interest.

Formal work on RSM began with the publication of the article On the Experimental Attainment of Optimum Conditions by Box et al.1

RSM review articles

  1. Hill and Hunter2
  2. Mead and Pike3
  3. Myers, Khuri, and Carter4

See also the article by Steinberg and Hunter.5

RSM books include

  1. Myers and Montgomery6
  2. Khuri and Cornell7
  3. Box and Draper8

The present article provides a general overview of response surface methodology (RSM).

Notation

Let η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE7aOb aa@3825@  denote the mean of a response variable y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhaaa a@3777@ . Let x 1 ,, x k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaaigdaaKqbagqaaiaacYcacqWIMaYscaGGSaGaamiE amaaBaaajuaibaGaam4Aaaqcfayabaaaaa@3E5A@ denote a set of input, or control, variables. Then,

η( x )=ϕ( x 1 ,, x k ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE7aOn aabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iabew9aMnaabmaa baGaamiEamaaBaaajuaibaGaaGymaaqcfayabaGaaiilaiablAcilj aacYcacaWG4bWaaSbaaKqbGeaacaWGRbaajuaGbeaaaiaawIcacaGL PaaacaGGUaaaaa@4795@

For example, we have the first-order model
η( x )= β 0 + i=1 k β i x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE7aOn aabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iabek7aInaaBaaa juaibaGaaGimaaqcfayabaGaey4kaSYaaabCaeaacqaHYoGydaWgaa qcfasaaiaadMgaaKqbagqaaaqcfasaaiaadMgacqGH9aqpcaaIXaaa baGaam4AaaqcfaOaeyyeIuoacaWG4bWaaSbaaKqbGeaacaWGPbaaju aGbeaaaaa@4C84@

or the second-order model

η( x )= β 0 + i=1 k β i x i + i=1 k j=1 k β ij x i x j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE7aOn aabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iabek7aInaaBaaa juaibaGaaGimaaqcfayabaGaey4kaSYaaabCaeaacqaHYoGydaWgaa qcfasaaiaadMgaaKqbagqaaaqcfasaaiaadMgacqGH9aqpcaaIXaaa baGaam4AaaqcfaOaeyyeIuoacaWG4bWaaSbaaKqbGeaacaWGPbaaju aGbeaacqGHRaWkdaaeWbqaamaaqahabaGaeqOSdi2aaSbaaKqbGeaa caWGPbGaamOAaaqcfayabaaajuaibaGaamOAaiabg2da9iaaigdaae aacaWGRbaajuaGcqGHris5aaqcfasaaiaadMgacqGH9aqpcaaIXaaa baGaam4AaaqcfaOaeyyeIuoacaWG4bWaaSbaaKqbGeaacaWGPbaaju aGbeaacaWG4bWaaSbaaKqbGeaacaWGQbaajuaGbeaaaaa@645D@
y=η+, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhacq GH9aqpcqaH3oaAcqGHRaWkcqGHiiIZcaGGSaaaaa@3D3F@

where E( )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada qadaqaaiabgIGiodGaayjkaiaawMcaaiabg2da9iaaicdaaaa@3C10@ and Var( )= σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGHbGaamOCamaabmaabaGaeyicI4macaGLOaGaayzkaaGaeyypa0Ja eq4Wdm3aa0baaKqbGeaacqGHiiIZaeaacaaIYaaaaaaa@4197@

Let x ui MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaadwhacaWGPbaajuaGbeaaaaa@3A3B@  denote the design setting of variable x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaadMgaaKqbagqaaaaa@3941@  at the uth experimental run ( u=1,2,,n;i=1,2,,k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamyDaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacqWIMaYscaGG SaGaamOBaiaacUdacaWGPbGaeyypa0JaaGymaiaacYcacaaIYaGaai ilaiablAciljaacYcacaWGRbaacaGLOaGaayzkaaaaaa@47EA@ . Let y u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhada WgaaqcfasaaiaadwhaaKqbagqaaaaa@394E@  denote the corresponding response value. By definition, the design matrix D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadseaaa a@3742@ is the n×k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad6gacq GHxdaTcaWGRbaaaa@3A73@ matrix

D=[ x 11 x 12 x 1k x 21 x 22 x 2k x n1 x n2 x nk ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadseacq GH9aqpdaWadaqaauaabeqaeqaaaaaabaGaamiEamaaBaaajuaibaGa aGymaiaaigdaaKqbagqaaaqaaiaadIhadaWgaaqcfasaaiaaigdaca aIYaaajuaGbeaaaeaacqWIMaYsaeaacaWG4bWaaSbaaKqbGeaacaaI XaGaam4AaaqcfayabaaabaGaamiEamaaBaaajuaibaGaaGOmaiaaig daaKqbagqaaaqaaiaadIhadaWgaaqcfasaaiaaikdacaaIYaaajuaG beaaaeaacqWIMaYsaeaacaWG4bWaaSbaaKqbGeaacaaIYaGaam4Aaa qcfayabaaabaGaeSOjGSeabaGaeSOjGSeabaGaeSOjGSeabaGaeSOj GSeabaGaamiEamaaBaaajuaibaGaamOBaiaaigdaaKqbagqaaaqaai aadIhadaWgaaqcfasaaiaad6gacaaIYaaajuaGbeaaaeaacqWIMaYs aeaacaWG4bWaaSbaaKqbGeaacaWGUbGaam4AaaqcfayabaaaaaGaay 5waiaaw2faaaaa@6165@

We have the linear model

y=Xβ+ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhacq GH9aqpcaWGybGaeqOSdiMaey4kaSIccqGHiiIZjuaGdaWgaaqaaiaa cYcaaeqaaaaa@3ECA@

where X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfaaa a@3756@  is n×p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad6gacq GHxdaTcaWGWbaaaa@3A78@ of rank p and β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabek7aIb aa@381A@ is a vector of unknown parameters.
The least-squares estimator of β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabek7aIb aa@381A@  is

β ^ = ( X ' X ) 1 X ' y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqbek7aIz aajaGaeyypa0ZaaeWaaeaacaWGybWaaWbaaeqabaGaai4jaaaacaWG ybaacaGLOaGaayzkaaWaaWbaaeqabaGaeyOeI0IaaGymaaaacaWGyb WaaWbaaeqabaGaai4jaaaacaWG5baaaa@41B2@
Var( β ^ )= ( X ' X ) 1 σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGHbGaamOCamaabmaabaGafqOSdiMbaKaaaiaawIcacaGLPaaacqGH 9aqpdaqadaqaaiaadIfadaahaaqabeaacaGGNaaaaiaadIfaaiaawI cacaGLPaaadaahaaqabKqbGeaacqGHsislcaaIXaaaaKqbakabeo8a ZnaaDaaajuaibaGaeyicI4mabaGaaGOmaaaaaaa@485A@
y ^ ( x )= f ' ( x ) β ^ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga qcamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadAgadaah aaqabeaacaGGNaaaamaabmaabaGaamiEaaGaayjkaiaawMcaaiqbek 7aIzaajaGaaiilaaaa@41B2@

where f ' ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgada ahaaqabeaacaGGNaaaamaabmaabaGaamiEaaGaayjkaiaawMcaaaaa @3AB7@ is a vector of order 1×p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaigdacq GHxdaTcaGGWbaaaa@3A3F@ of the same form as a row of X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfaaa a@3756@ , but
is evaluated at the point x= ( x 1 ,, x k ) ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhacq GH9aqpdaqadaqaaiaadIhadaWgaaqcfasaaiaaigdaaKqbagqaaiaa cYcacqWIMaYscaGGSaGaamiEamaaBaaajuaibaGaam4Aaaqcfayaba aacaGLOaGaayzkaaWaaWbaaeqabaGaai4jaaaaaaa@42B3@
For a first-order model, the predicted response is

y ^ ( x )= β ^ 0 + i=1 k β ^ i x i, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga qcamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iqbek7aIzaa jaWaaSbaaKqbGeaacaaIWaaajuaGbeaacqGHRaWkdaaeWbqaaiqbek 7aIzaajaWaaSbaaKqbGeaacaWGPbaajuaGbeaacaWG4bWaaSbaaeaa juaicaWGPbqcfaOaaiilaaqabaaajuaibaGaamyAaiabg2da9iaaig daaeaacaWGRbaajuaGcqGHris5aaaa@4CB6@
and for a second-order model we have

y ^ ( x )= β ^ 0 + i=1 k β ^ i x i, + i=1 k j=1 k β ^ ij x i x j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga qcamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iqbek7aIzaa jaWaaSbaaKqbGeaacaaIWaaajuaGbeaacqGHRaWkdaaeWbqaaiqbek 7aIzaajaWaaSbaaKqbGeaacaWGPbaajuaGbeaacaWG4bWaaSbaaeaa juaicaWGPbqcfaOaaiilaaqabaaajuaibaGaamyAaiabg2da9iaaig daaeaacaWGRbaajuaGcqGHris5aiabgUcaRmaaqahabaWaaabCaeaa cuaHYoGygaqcamaaBaaajuaibaGaamyAaiaadQgaaKqbagqaaiaadI hadaWgaaqaaKqbGiaadMgaaKqbagqaaiaadIhadaWgaaqcfasaaiaa dQgaaKqbagqaaaqcfasaaiaadQgacqGH9aqpcaaIXaaabaGaam4Aaa qcfaOaeyyeIuoaaKqbGeaacaWGPbGaeyypa0JaaGymaaqaaiaadUga aKqbakabggHiLdGaaiOlaaaa@6551@

The prediction variance is given by
Var[ y ^ ( x ) ]= σ 2 f ' ( x ) ( X ' X ) 1 f( x ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGHbGaamOCamaadmaabaGabmyEayaajaWaaeWaaeaacaWG4baacaGL OaGaayzkaaaacaGLBbGaayzxaaGaeyypa0Jaeq4Wdm3aa0baaKqbGe aacqGHiiIZaeaacaaIYaaaaKqbakaadAgadaahaaqabeaacaGGNaaa amaabmaabaGaamiEaaGaayjkaiaawMcaamaabmaabaGaamiwamaaCa aabeqaaiaacEcaaaGaamiwaaGaayjkaiaawMcaamaaCaaabeqcfasa aiabgkHiTiaaigdaaaqcfaOaamOzamaabmaabaGaamiEaaGaayjkai aawMcaaiaac6caaaa@5395@

Choice of a response surface design

Some important properties of a response surface design (Box and Draper)8:

  1. Generation of a satisfactory distribution of information throughout the region of interest, R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkfaaa a@3750@ .
  2. “Closeness" of y ^ ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga qcamaabmaabaGaamiEaaGaayjkaiaawMcaaaaa@3A0D@ to η( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE7aOn aabmaabaGaamiEaaGaayjkaiaawMcaaaaa@3AAB@ over R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkfaaa a@3750@ .
  3. Good detectibility of lack of fit.
  4. Insensitivity (robustness) to extreme observations and to violations of the usual normal theory assumptions.
  5. Ability to perform experiments in blocks.
  6. Extendibility to a higher-order design.
  7. Requiring a small number of experimental runs.

Variance-related design criteria

  1. D-optimality: Maximization of | X ' X | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaaba GaamiwamaaCaaabeqaaiaacEcaaaGaamiwaaGaay5bSlaawIa7aaaa @3C22@
  2. | X ' X | 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaaba GaamiwamaaCaaabeqaaiaacEcaaaGaamiwaaGaay5bSlaawIa7amaa CaaabeqaaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaaaaaaa@3EB8@ is propotional to the volume of an ellipsoidal confidence region on β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabek7aIb aa@381A@ .

  3. A-optimality: Minimization of tr[ ( X ' X ) 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshaca WGYbWaamWaaeaadaqadaqaaiaadIfadaahaaqabeaacaGGNaaaaiaa dIfaaiaawIcacaGLPaaadaahaaqabeaacqGHsislcaaIXaaaaaGaay 5waiaaw2faaaaa@4035@
  4. E-optimality: Minimization of the largest eigenvalue of ( X ' X ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamiwamaaCaaabeqaaiaacEcaaaGaamiwaaGaayjkaiaawMcaamaa CaaabeqaaiabgkHiTiaaigdaaaaaaa@3C53@
  5. G-optimality: Minimization of Ma x R { Var[ y ^ ( x ) ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eaca WGHbGaamiEamaaBaaajuaibaGaamOuaaqcfayabaWaaiWaaeaacaWG wbGaamyyaiaadkhadaWadaqaaiqadMhagaqcamaabmaabaGaamiEaa GaayjkaiaawMcaaaGaay5waiaaw2faaaGaay5Eaiaaw2haaaaa@4551@
  6. The above are referred to as alphabetic optimality criteria. Some authors, including Box [9], have questioned the applicability of alphabetic optimality theory to response surface experiments, since such optimal designs are sensitive to the form of the model.
  7. Rotatability: A design D is rotatable if Var[ y ^ ( x ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGHbGaamOCamaadmaabaGabmyEayaajaWaaeWaaeaacaWG4baacaGL OaGaayzkaaaacaGLBbGaayzxaaaaaa@3EB7@ is constant at all points that are equidistant from the design center (Box and Hunter (1957)).
    1. A rotatable design has the uniform precision property (UP) if the prediction variance at x=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhacq GH9aqpcaaIWaaaaa@3936@ is equal to the prediction variance at a distance ρ=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYj abg2da9iaaigdaaaa@39FA@ from the origin. A design is rotatable if and only if the X ' X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfada ahaaqabeaacaGGNaaaaiaadIfaaaa@3900@  matrix has a particular form.
    2. Rotatability is a desirable property to have, especially when there is a need to optimize y ^ ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga qcamaabmaabaGaamiEaaGaayjkaiaawMcaaaaa@3A0D@ over the surface of a hypersphere, as is the case in ridge analysis.
  8. Orthogonality: A design is orthogonal if it can provide independent information about the effects of the various terms in the model.

Examples:

  1. 3 k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiodada ahaaqabKqbGeaacaWGRbaaaaaa@3876@ is orthogonal, but is not rotatable.
  2. Central composite design can be made rotatable and either have the
  3. UP property or the orthogonality property.

Bias-related design criteria

The fitted model is
y= f ' ( x )β+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhacq GH9aqpcaWGMbWaaWbaaeqabaGaai4jaaaadaqadaqaaiaadIhaaiaa wIcacaGLPaaacqaHYoGycqGHRaWkcqGHiiIZaaa@40C2@
The “True" model is
η( x )= f ' ( x )β+ g ' ( x )γ. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE7aOn aabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadAgadaahaaqa beaacaGGNaaaamaabmaabaGaamiEaaGaayjkaiaawMcaaiabek7aIj abgUcaRiaadEgadaahaaqabeaacaGGNaaaamaabmaabaGaamiEaaGa ayjkaiaawMcaaiabeo7aNjaac6caaaa@490A@

Integrated Mean Squared Error Criterion:10,11 This amounts to the minimization of J, where
J= nΩ σ 2 R E[ y ^ ( x )η( x ) ] 2 dx, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeacq GH9aqpdaWcaaqaaiaad6gacqqHPoWvaeaacqaHdpWCdaqhaaqcfasa aiabgIGiodqaaiaaikdaaaaaaKqbaoaapefabaGaamyramaadmaaba GabmyEayaajaWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyOeI0Ia eq4TdG2aaeWaaeaacaWG4baacaGLOaGaayzkaaaacaGLBbGaayzxaa aajuaibaGaamOuaaqcfayabiabgUIiYdWaaWbaaeqajuaibaGaaGOm aaaajuaGcaWGKbGaamiEaiaacYcaaaa@5324@

Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo Wvaaa@3813@ is the reciprocal of the volume of R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkfaaa a@3750@ .
J=V+B. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeacq GH9aqpcaWGwbGaey4kaSIaamOqaiaac6caaaa@3B84@
V= nΩ σ 2 R Var[ y ^ ( x ) ] dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfacq GH9aqpdaWcaaqaaiaad6gacqqHPoWvaeaacqaHdpWCdaqhaaqcfasa aiabgIGiodqaaiaaikdaaaaaaKqbaoaapefabaGaamOvaiaadggaca WGYbWaamWaaeaaceWG5bGbaKaadaqadaqaaiaadIhaaiaawIcacaGL PaaaaiaawUfacaGLDbaaaKqbGeaacaWGsbaajuaGbeGaey4kIipaca aMe8UaamizaiaadIhaaaa@4F42@

V=nΩ R f ' ( x ) ( X ' X ) 1 f( x )dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfacq GH9aqpcaWGUbGaeuyQdC1aa8quaeaacaWGMbWaaWbaaeqabaGaai4j aaaaaKqbGeaacaWGsbaajuaGbeGaey4kIipadaqadaqaaiaadIhaai aawIcacaGLPaaadaqadaqaaiaadIfadaahaaqabeaacaGGNaaaaiaa dIfaaiaawIcacaGLPaaadaahaaqabKqbGeaacqGHsislcaaIXaaaaK qbakaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGKbGaamiE aaaa@4ECB@
B= nΩ σ 2 R { E[ y ^ ( x ) ]η( x ) } 2 dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkeacq GH9aqpdaWcaaqaaiaad6gacqqHPoWvaeaacqaHdpWCdaqhaaqcfasa aiabgIGiodqaaiaaikdaaaaaaKqbaoaapefabaWaaiWaaeaacaWGfb WaamWaaeaaceWG5bGbaKaadaqadaqaaiaadIhaaiaawIcacaGLPaaa aiaawUfacaGLDbaacqGHsislcqaH3oaAdaqadaqaaiaadIhaaiaawI cacaGLPaaaaiaawUhacaGL9baadaahaaqabKqbGeaacaaIYaaaaaqa aiaadkfaaKqbagqacqGHRiI8aiaadsgacaWG4baaaa@53E1@
B= nΩ σ 2 R γ ' [ A ' f( x )g( x ) ][ f ' ( x )A g ' ( x ) ]γdx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkeacq GH9aqpdaWcaaqaaiaad6gacqqHPoWvaeaacqaHdpWCdaqhaaqcfasa aiabgIGiodqaaiaaikdaaaaaaKqbaoaapefabaGaeq4SdC2aaWbaae qabaGaai4jaaaaaKqbGeaacaWGsbaajuaGbeGaey4kIipadaWadaqa aiaadgeadaahaaqabeaacaGGNaaaaiaadAgadaqadaqaaiaadIhaai aawIcacaGLPaaacqGHsislcaWGNbWaaeWaaeaacaWG4baacaGLOaGa ayzkaaaacaGLBbGaayzxaaWaamWaaeaacaWGMbWaaWbaaeqabaGaai 4jaaaadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGbbGaeyOeI0Ia am4zamaaCaaabeqaaiaacEcaaaWaaeWaaeaacaWG4baacaGLOaGaay zkaaaacaGLBbGaayzxaaGaeq4SdCMaamizaiaadIhaaaa@60F5@

where A= ( X ' X ) 1 X ' Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeacq GH9aqpdaqadaqaaiaadIfadaahaaqabeaacaGGNaaaaiaadIfaaiaa wIcacaGLPaaadaahaaqabKqbGeaacqGHsislcaaIXaaaaKqbakaadI fadaahaaqabeaacaGGNaaaaiaadQfaaaa@4164@ is the alias matrix, and z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG6b aaaa@3784@ is the matrix corresponding to g ' ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEgada ahaaqabeaacaGGNaaaamaabmaabaGaamiEaaGaayjkaiaawMcaaaaa @3AB8@
The Box and Draper criterion for the minimization of B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqaa aa@374B@ is:
1 n X ' X=Ω R f( x ) f ' ( x )dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaaGymaaqaaiaad6gaaaGaamiwamaaCaaabeqaaiaacEcaaaGaamiw aiabg2da9iabfM6axnaapefabaGaamOzamaabmaabaGaamiEaaGaay jkaiaawMcaaiaadAgadaahaaqabeaacaGGNaaaamaabmaabaGaamiE aaGaayjkaiaawMcaaiaadsgacaWG4baajuaibaGaamOuaaqcfayabi abgUIiYdaaaa@4AAC@

1 n X ' Z=Ω R f( x ) g ' ( x )dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaaGymaaqaaiaad6gaaaGaamiwamaaCaaabeqaaiaacEcaaaGaamOw aiabg2da9iabfM6axnaapefabaGaamOzamaabmaabaGaamiEaaGaay jkaiaawMcaaiaadEgadaahaaqabeaacaGGNaaaamaabmaabaGaamiE aaGaayjkaiaawMcaaiaadsgacaWG4baajuaibaGaamOuaaqcfayabi abgUIiYdaaaa@4AAF@
Designs that minimize J have characteristics similar to those of designs which minimize B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqaa aa@374B@ alone (all bias designs).

Design robustness

A design is robust if it helps reduce the impact of nonideal conditions on data analysis. Some of these conditions include

  • Nonnormal errors
  • Missing observations
  • Outliers

Box12 introduced the word “robust" when examining the effect of departure from normality on the analysis of variance. Some relevant articles are:13,15,16,48

Designs for the slope

These are designs for the estimation of the partial derivatives of the mean response η( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE7aOn aabmaabaGaamiEaaGaayjkaiaawMcaaaaa@3AAB@ with respect x 1 ,, x k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaaigdaaKqbagqaaiaacYcacqWIMaYscaGGSaGaaiiE amaaBaaajuaibaGaam4Aaaqcfayabaaaaa@3E59@
Myers and Lahoda17 extended the Box-Draper integrated mean squared error criterion to find appropriate designs for the joint estimation of the partial derivatives of η( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE7aOn aabmaabaGaamiEaaGaayjkaiaawMcaaaaa@3AAB@ .
Hader and Park18 introduced the concept of design rotatability for second-order models. Under this design criterion, Var[ y ^ ( x ) x i ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGHbGaamOCamaadmaabaWaaSaaaeaacqGHciITceWG5bGbaKaadaqa daqaaiaadIhaaiaawIcacaGLPaaaaeaacqGHciITcaWG4bWaaSbaaK qbGeaacaWGPbaajuaGbeaaaaaacaGLBbGaayzxaaaaaa@445B@ is constant at all points that are equidistant from the design center ( i=1,2,,k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacqWIMaYscaGG SaGaam4AaaGaayjkaiaawMcaaaaa@3F8F@
Park19 considered “slope rotatability over all directions": 
y ^ ( x )= f ' ( x ) β ^ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga qcamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadAgadaah aaqabeaacaGGNaaaamaabmaabaGaamiEaaGaayjkaiaawMcaaiqbek 7aIzaajaGaaiOlaaaa@41B4@

y ^ v = v ' grad[ y ^ ( x ) ]= v ' G β ^ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaeyOaIyRabmyEayaajaaabaGaeyOaIyRaamODaaaacqGH9aqpcaWG 2bWaaWbaaeqabaGaai4jaaaacaWGNbGaamOCaiaadggacaWGKbWaam WaaeaaceWG5bGbaKaadaqadaqaaiaadIhaaiaawIcacaGLPaaaaiaa wUfacaGLDbaacqGH9aqpcaWG2bWaaWbaaeqabaGaai4jaaaacaWGhb GafqOSdiMbaKaacaGGSaaaaa@4D5F@

where v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG2b aaaa@3780@ is a unit vector.
Var[ y ^ ( x ) v ]= σ 2 v ' G ( X ' X ) 1 G ' v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGHbGaamOCamaadmaabaWaaSaaaeaacqGHciITceWG5bGbaKaadaqa daqaaiaadIhaaiaawIcacaGLPaaaaeaacqGHciITcaWG2baaaaGaay 5waiaaw2faaiabg2da9iabeo8aZnaaDaaajuaibaGaeyicI4mabaGa aGOmaaaajuaGcaWG2bWaaWbaaeqabaGaai4jaaaacaWGhbWaaeWaae aacaWGybWaaWbaaeqabaGaai4jaaaacaWGybaacaGLOaGaayzkaaWa aWbaaeqajuaibaGaeyOeI0IaaGymaaaajuaGcaWGhbWaaWbaaeqaba Gaai4jaaaacaWG2baaaa@5433@

Av g v Var[ y ^ ( x ) v ]=c s Var[ y ^ ( x ) v ] dA, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeaca WG2bGaam4zamaaBaaajuaibaGaamODaaqcfayabaGaamOvaiaadgga caWGYbWaamWaaeaadaWcaaqaaiabgkGi2kqadMhagaqcamaabmaaba GaamiEaaGaayjkaiaawMcaaaqaaiabgkGi2kaadAhaaaaacaGLBbGa ayzxaaGaeyypa0Jaam4yamaapefabaGaamOvaiaadggacaWGYbWaam WaaeaadaWcaaqaaiabgkGi2kqadMhagaqcamaabmaabaGaamiEaaGa ayjkaiaawMcaaaqaaiabgkGi2kaadAhaaaaacaGLBbGaayzxaaaaju aibaGaam4CaaqcfayabiabgUIiYdGaamizaiaadgeacaGGSaaaaa@5B5B@

where S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofaaa a@3751@  denotes the surface of a hypersphere of unit radius, c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadogaaa a@3761@  is the reciprocal of the surface of S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofaaa a@3751@ .

W( x )=Ave.Slop e Var.= σ 2 k tr[ G ( X ' X ) 1 G ' ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEfada qadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWGbbGaamODaiaa dwgacaGGUaGaam4uaiaadYgacaWGVbGaamiCaiaadwgadaahaaqabe aaaaGaamOvaiaadggacaWGYbGaaiOlaiabg2da9maalaaabaGaeq4W dm3aa0baaKqbGeaacqGHiiIZaeaacaaIYaaaaaqcfayaaiaadUgaaa GaamiDaiaadkhadaWadaqaaiaadEeadaqadaqaaiaadIfadaahaaqa beaacaGGNaaaaiaadIfaaiaawIcacaGLPaaadaahaaqabKqbGeaacq GHsislcaaIXaaaaKqbakaadEeadaahaaqabeaacaGGNaaaaaGaay5w aiaaw2faaaaa@5A2A@

A design D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadseaaa a@3742@ is slope rotatable over all directions if W( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEfada qadaqaaiaadIhaaiaawIcacaGLPaaaaaa@39DB@ is constant at all points equidistant from the design center.
Park gave necessary and sufficient conditions for a design to be slope rotatable over all directions for second-order models.
Rotatabilit y Slop e Rotatabilit y Ove r al l Directions MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkfaca WGVbGaamiDaiaadggacaWG0bGaamyyaiaadkgacaWGPbGaamiBaiaa dMgacaWG0bGaamyEamaaCaaabeqaaaaacqGHshI3daahaaqabeaaaa Gaam4uaiaadYgacaWGVbGaamiCaiaadwgadaahaaqabeaaaaGaamOu aiaad+gacaWG0bGaamyyaiaadshacaWGHbGaamOyaiaadMgacaWGSb GaamyAaiaadshacaWG5bWaaWbaaeqabaaaaiaad+eacaWG2bGaamyz aiaadkhadaahaaqabeaaaaGaamyyaiaadYgacaWGSbWaaWbaaeqaba aaaiaadseacaWGPbGaamOCaiaadwgacaWGJbGaamiDaiaadMgacaWG VbGaamOBaiaadohaaaa@6464@

Related articles

  • Huda and Mukerjee20
  • Mukerjee and Huda,21
  • Park22

Designs to increase the power of the lack of fit test

These are designs that induce a certain degree of sensitivity to possible inadequacy of the fitted model.
Construction of such designs is done by the maximization of
λ= γ ' Lγ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSj abg2da9iabeo7aNnaaCaaabeqaaiaacEcaaaGaamitaiabeo7aNjaa cYcaaaa@3ECF@

L= Z ' [ IX ( X ' X ) 1 X ' ]Z. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYeacq GH9aqpcaWGAbWaaWbaaeqabaGaai4jaaaadaWadaqaaiaadMeacqGH sislcaWGybWaaeWaaeaacaWGybWaaWbaaeqabaGaai4jaaaacaWGyb aacaGLOaGaayzkaaWaaWbaaeqajuaibaGaeyOeI0IaaGymaaaajuaG caWGybWaaWbaaeqabaGaai4jaaaaaiaawUfacaGLDbaacaWGAbGaai Olaaaa@4857@

Λ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaaGymaaqcfayabaaaaa@3986@ optimality: Maximize Λ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaaGymaaqcfayabaaaaa@3986@ , the minimum of λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSb aa@382D@ over a specified region
ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew9aMb aa@3841@  in the γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNb aa@3820@  space.
Λ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaaGOmaaqcfayabaaaaa@3987@ optimality: Maximize Λ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaaGOmaaqcfayabaaaaa@3987@ , the average value of λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSb aa@382D@ over the boundary of ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew9aMb aa@3841@ .

Response surface analysis

Estimation of Optimum Conditions.
The Method of Steepest Ascent This is a maximum-region-seeking procedure introduced by Box and Wilson1 for RSM: To maximize
y ^ ( x )= β ^ 0 + i=1 k β ^ i x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga qcamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iqbek7aIzaa jaWaaSbaaeaacaaIWaaabeaacqGHRaWkdaaeWbqaaiqbek7aIzaaja WaaSbaaKqbGeaacaWGPbaajuaGbeaacaWG4bWaaSbaaKqbGeaacaWG PbaajuaGbeaaaKqbGeaacaWGPbGaeyypa0JaaGymaaqaaiaadUgaaK qbakabggHiLdaaaa@4B4A@

subject to the constraint i=1 k x i 2 = r 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqadaba GaamiEamaaDaaajuaibaGaamyAaaqaaiaaikdaaaaabaGaamyAaiab g2da9iaaigdaaeaacaWGRbaajuaGcqGHris5aiabg2da9iaadkhada ahaaqabKqbGeaacaaIYaaaaKqbakaac6caaaa@43D0@

x i =r υ i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaadMgaaKqbagqaaiabg2da9iaadkhacqaHfpqDdaWg aaqcfasaaiaadMgaaKqbagqaaiaacYcaaaa@3F80@

where υ= ( υ 1 ,, υ k ) ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew8a1j abg2da9maabmaabaGaeqyXdu3aaSbaaKqbGeaacaaIXaaajuaGbeaa caGGSaGaeSOjGSKaaiilaiabew8a1naaBaaajuaibaGaam4Aaaqcfa yabaaacaGLOaGaayzkaaWaaWbaaeqabaGaai4jaaaaaaa@4511@ is a unit vector in the direction of grad[ y ^ ( x ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEgaca WGYbGaamyyaiaadsgadaWadaqaaiqadMhagaqcamaabmaabaGaamiE aaGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@3FB1@ A related article is Myers and Khuri.23

Ridge analysis

Related articles include Hoerl,24 Draper25
To maximize (minimize)
y ^ ( x )= β ^ 0 + i=1 k β ^ i x i + i=1 k j=1 k β ij x i x j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga qcamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iqbek7aIzaa jaWaaSbaaKqbGeaacaaIWaaajuaGbeaacqGHRaWkdaaeWbqaaiqbek 7aIzaajaWaaSbaaKqbGeaacaWGPbaajuaGbeaaaKqbGeaacaWGPbGa eyypa0JaaGymaaqaaiaadUgaaKqbakabggHiLdGaamiEamaaBaaaju aibaGaamyAaaqcfayabaGaey4kaSYaaabCaeaadaaeWbqaaiabek7a InaaBaaajuaibaGaamyAaiaadQgaaKqbagqaaaqcfasaaiaadQgacq GH9aqpcaaIXaaabaGaam4AaaqcfaOaeyyeIuoaaKqbGeaacaWGPbGa eyypa0JaaGymaaqaaiaadUgaaKqbakabggHiLdGaamiEamaaBaaaju aibaGaamyAaaqcfayabaGaamiEamaaBaaajuaibaGaamOAaaqcfaya baaaaa@63DF@

y ^ ( x )= β ^ 0 + x ' b+ x ' Bx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga qcamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iqbek7aIzaa jaWaaSbaaKqbGeaacaaIWaaajuaGbeaacqGHRaWkcaWG4bWaaWbaae qabaGaai4jaaaacaWGIbGaey4kaSIaamiEamaaCaaabeqaaiaacEca aaGaamOqaiaadIhaaaa@465E@

subject to the constraint i=1 k x i 2 = r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqadaba GaamiEamaaDaaajuaibaGaamyAaaqaaiaaikdaaaaabaGaamyAaiab g2da9iaaigdaaeaacaWGRbaajuaGcqGHris5aiabg2da9iaadkhada ahaaqabKqbGeaacaaIYaaaaaaa@4290@
h( x )= y ^ ( x )μ( i=1 k x i 2 r 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIgada qadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpceWG5bGbaKaadaqa daqaaiaadIhaaiaawIcacaGLPaaacqGHsislcqaH8oqBdaqadaqaam aaqahabaGaamiEamaaDaaajuaibaGaamyAaaqaaiaaikdaaaqcfaOa eyOeI0IaamOCamaaCaaabeqcfasaaiaaikdaaaaabaGaamyAaiabg2 da9iaaigdaaeaacaWGRbaajuaGcqGHris5aaGaayjkaiaawMcaaiaa cYcaaaa@502E@

where μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeY7aTb aa@382F@  is a Lagrange multiplier.
For a maximum, μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeY7aTb aa@382F@ should be larger than e max ( B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwgada WgaaqcfasaaiGac2gacaGGHbGaaiiEaaqcfayabaWaaeWaaeaacaWG cbaacaGLOaGaayzkaaaaaa@3D64@ .
For a minimum, μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeY7aTb aa@382F@ should be smaller than e min ( B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwgada WgaaqcfasaaiGac2gacaGGPbGaaiOBaaqcfayabaWaaeWaaeaacaWG cbaacaGLOaGaayzkaaaaaa@3D62@ .
By selecting several values of μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeY7aTb aa@382F@ as shown above, we obtain plots of
max. y ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga qcaaaa@3787@  vs. r and plots of x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaadMgaaKqbagqaaaaa@3941@  vs. r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb aaaa@377C@  for i=1,2,...,k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaiOlaiaac6cacaGGUaGa aiilaiaacUgaaaa@3EF9@
Khuri and Myers26 introduced a certain modification to the method of ridge analysis in cases in which the design is not rotatable and may even be ill conditioned. In such cases, Var[ y ^ ( x ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGHbGaamOCamaadmaabaGabmyEayaajaWaaeWaaeaacaWG4baacaGL OaGaayzkaaaacaGLBbGaayzxaaaaaa@3EB7@ can vary appreciably on a hypersphere S( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofada qadaqaaiaadkhaaiaawIcacaGLPaaaaaa@39D1@ centered at the origin inside a region of interest. The proposed modification optimizes y ^ ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga qcamaabmaabaGaamiEaaGaayjkaiaawMcaaaaa@3A0D@ on S( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofada qadaqaaiaadkhaaiaawIcacaGLPaaaaaa@39D1@ subject to maintaining certain a constraint on the size of Var[ y ^ ( x ) ]: MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGHbGaamOCamaadmaabaGabmyEayaajaWaaeWaaeaacaWG4baacaGL OaGaayzkaaaacaGLBbGaayzxaaGaaiOoaaaa@3F75@
Var[ y ^ ( x ) ]= σ 2 f ' ( x ) ( X ' X ) 1 f( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGHbGaamOCamaadmaabaGabmyEayaajaWaaeWaaeaacaWG4baacaGL OaGaayzkaaaacaGLBbGaayzxaaGaeyypa0Jaeq4Wdm3aa0baaKqbGe aacqGHiiIZaeaacaaIYaaaaKqbakaadAgadaahaaqabeaacaGGNaaa amaabmaabaGaamiEaaGaayjkaiaawMcaamaabmaabaGaamiwamaaCa aabeqaaiaacEcaaaGaamiwaaGaayjkaiaawMcaamaaCaaabeqcfasa aiabgkHiTiaaigdaaaqcfaOaamOzamaabmaabaGaamiEaaGaayjkai aawMcaaaaa@52E3@

Var[ y ^ ( x ) ]= σ 2 i=1 p [ f ' ( x ) ω i ] 2 v i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGHbGaamOCamaadmaabaGabmyEayaajaWaaeWaaeaacaWG4baacaGL OaGaayzkaaaacaGLBbGaayzxaaGaeyypa0Jaeq4Wdm3aa0baaKqbGe aacqGHiiIZaeaacaaIYaaaaKqbaoaaqahabaWaaSaaaeaadaWadaqa aiaadAgadaahaaqabeaacaGGNaaaamaabmaabaGaamiEaaGaayjkai aawMcaaiabeM8a3naaBaaajuaibaGaamyAaaqcfayabaaacaGLBbGa ayzxaaWaaWbaaeqajuaibaGaaGOmaaaaaKqbagaacaWG2bWaaSbaaK qbGeaacaWGPbaajuaGbeaaaaaajuaibaGaamyAaiabg2da9iaaigda aKqbagaacaWGWbaacqGHris5aaaa@5960@

f ' ( x ) ω i = a i + x ' τ i + x ' T i x, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgada ahaaqabeaacaGGNaaaamaabmaabaGaamiEaaGaayjkaiaawMcaaiab eM8a3naaBaaajuaibaGaamyAaaqcfayabaGaeyypa0JaamyyamaaBa aajuaibaGaamyAaaqcfayabaGaey4kaSIaamiEamaaCaaabeqaaiaa cEcaaaGaeqiXdq3aaSbaaKqbGeaacaWGPbaajuaGbeaacqGHRaWkca WG4bWaaWbaaeqabaGaai4jaaaacaWGubWaaSbaaKqbGeaacaWGPbaa juaGbeaacaWG4bGaaiilaaaa@4F3F@

where p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCaa aa@3779@ is the number of parameters in the model, ω 1 ,..., ω p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3n aaBaaajuaibaGaaGymaaqcfayabaGaaiilaiaac6cacaGGUaGaaiOl aiaacYcacqaHjpWDdaWgaaqcfasaaiaadchaaKqbagqaaaaa@40F3@ are orthonor-mal eigenvectors of X ' X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfada ahaaqabeaacaGGNaaaaiaadIfaaaa@3900@ , and v 1 ,...., v p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAhada WgaaqcfasaaiaaigdaaKqbagqaaiaacYcacaGGUaGaaiOlaiaac6ca caGGUaGaaiilaiaadAhadaWgaaqcfasaaiaadchaaKqbagqaaaaa@4001@ are the corresponding eigenvalues of X ' X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfada ahaaqabeaacaGGNaaaaiaadIfaaaa@3900@ . Let v min MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAhada WgaaqcfasaaiGac2gacaGGPbGaaiOBaaqcfayabaaaaa@3B23@ be the smallest eigenvalue of X ' X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfada ahaaqabeaacaGGNaaaaiaadIfaaaa@3900@  and let ω m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3n aaBaaajuaibaGaamyBaaqcfayabaaaaa@3A15@ be the corresponding eigenvector. To optimize y ^ ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga qcamaabmaabaGaamiEaaGaayjkaiaawMcaaaaa@3A0D@ subject to the constraints
i=1 k x i 2 = r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqahaba GaamiEamaaDaaajuaibaGaamyAaaqaaiaaikdaaaaabaGaamyAaiab g2da9iaaigdaaeaacaWGRbaajuaGcqGHris5aiabg2da9iaadkhada ahaaqabKqbGeaacaaIYaaaaaaa@42D0@

| f ' ( x ) ω m |q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaaba GaamOzamaaCaaabeqaaiaacEcaaaWaaeWaaeaacaWG4baacaGLOaGa ayzkaaGaeqyYdC3aaSbaaKqbGeaacaWGTbaajuaGbeaaaiaawEa7ca GLiWoacaaMf8UaeyizImQaaGzbVlaadghaaaa@473C@

where q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghaaaa@379B@ is a small positive constant, or equivalently,
| a m + x ' τ m + x ' T m x |q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaaba GaamyyamaaBaaajuaibaGaamyBaaqcfayabaGaey4kaSIaamiEamaa CaaabeqaaiaacEcaaaGaeqiXdq3aaSbaaKqbGeaacaWGTbaajuaGbe aacqGHRaWkcaWG4bWaaWbaaeqabaGaai4jaaaacaWGubWaaSbaaKqb GeaacaWGTbaajuaGbeaacaWG4baacaGLhWUaayjcSdGaaGzbVlabgs MiJkaaywW7caWGXbaaaa@4EA8@

Confidence intervals and confidence regions associated with the optimum response

The estimated optimum of a mean response and the location of the optimum are obtained by using y ^ ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga qcamaabmaabaGaamiEaaGaayjkaiaawMcaaaaa@3A0D@ . They are therefore random variables. In order to have a better assessment of optimum conditions, confidence intervals on the optimum of the mean response as well as confidence regions on the location of the optimum are needed. Relevant references include

  1. Box and Hunter27
  2. Stablein, Carter, and Wampler28
  3. Carter, Chinchilli, Campbell, and Wampler29
  4. Carter, Chinchilli, Myers, and Campbell30

Measure of rotatability31

A design is rotattable if and only if the X ' X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfada ahaaqabeaacaGGNaaaaiaadIfaaaa@3900@ matrix has a particular form, which we denote by X ' X rot MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfada ahaaqabeaacaGGNaaaaiaadIfadaWgaaqcfasaaiaadkhacaWGVbGa amiDaaqcfayabaaaaa@3CC1@ . For any given design D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadseaaa a@3742@ , the “closeness" of the corresponding X ' X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfada ahaaqabeaacaGGNaaaaiaadIfaaaa@3900@  matrix to X ' X rot MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfada ahaaqabeaacaGGNaaaaiaadIfadaWgaaqcfasaaiaadkhacaWGVbGa amiDaaqcfayabaaaaa@3CC1@ can be determined. On this basis, a measure ψ( D ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI8a5n aabmaabaGaamiraaGaayjkaiaawMcaaaaa@3A99@ , which quantifies the percent rotatability that is inherent in D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadseaaa a@3742@ , can be derived. A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadgeaaaa@376B@  design D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadseaaa a@3742@ is rotatable if and only if ψ( D )=100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI8a5n aabmaabaGaamiraaGaayjkaiaawMcaaiabg2da9iaaigdacaaIWaGa aGimaaaa@3DCE@ .

For example, the 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiodada ahaaqabKqbGeaacaaIYaaaaaaa@3842@ factorial design is 93.08% rotatable.
Properties of ψ( D ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI8a5n aabmaabaGaamiraaGaayjkaiaawMcaaaaa@3A99@ :

  • It is invariant to a change of scale (same change for all the input variables).
  • It is invariant to the addition of experimental runs at the design center (design augmentation at the center).
  • It applies to any response surface model and design.
  • It is not invariant to design rotation.

Draper and Pukelsheim32 introduced a similar measure that is invariant to design rotation, but it applies only to second-order models.

Advantages of a measure of rotatability

  • Can be used to compare designs with respect to their degree of rotatability.
  • Can be used to construct a design that satisfies a certain desirable criterion, such as a bias or a variance criterion, in addition to having a relatively high percent rotatability.
  • Can be used to “repair" rotatability by the addition of properly chosen experimental runs to a given design.

Variance dispersion graphs

Giovannitti-jensen and myers (1989)

They plotted maximum and minimum values of 1 σ 2 Var| y ^ ( x ) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaaGymaaqaaiabeo8aZnaaDaaajuaibaGaeyicI4mabaGaaGOmaaaa aaqcfaOaamOvaiaadggacaWGYbWaaqWaaeaaceWG5bGbaKaadaqada qaaiaadIhaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@4593@ , on a hyperspher S( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofada qadaqaaiaadkhaaiaawIcacaGLPaaaaaa@39D1@ , against r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkhaaaa@379C@ .
Relevant Reference are Khuri33 used the measure of rotatability ψ( D ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI8a5n aabmaabaGaamiraaGaayjkaiaawMcaaaaa@3A99@  to derive several upper bounds on the range of 1 σ 2 Var| y ^ ( x ) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaaGymaaqaaiabeo8aZnaaDaaajuaibaGaeyicI4mabaGaaGOmaaaa aaqcfaOaamOvaiaadggacaWGYbWaaqWaaeaaceWG5bGbaKaadaqada qaaiaadIhaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@4593@ . These bounds are easy to compute since they only require determining eigenvalues and traces associated with the matrices X ' X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfada ahaaqabeaacaGGNaaaaiaadIfaaaa@3900@ and F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAeaaaa@3770@ , where
F= ( X ' X ) 1 U rot 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeacq GH9aqpdaqadaqaaiaadIfadaahaaqabeaacaGGNaaaaiaadIfaaiaa wIcacaGLPaaadaahaaqabKqbGeaacqGHsislcaaIXaaaaKqbakabgk HiTiaaysW7caaMe8UaamyvamaaDaaajuaibaGaamOCaiaad+gacaWG 0baabaGaeyOeI0IaaGymaaaaaaa@489D@

and U rot MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwfada WgaaqcfasaaiaadkhacaWGVbGaamiDaaqcfayabaaaaa@3B14@  is the “rotatable" portion of X ' X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfada ahaaqabeaacaGGNaaaaiaadIfaaaa@3900@ .

Measuring slope rotatability

Park and Kim34 defined a measure Q k ( D ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgfada WgaaqcfasaaiaadUgaaKqbagqaamaabmaabaGaamiraaGaayjkaiaa wMcaaaaa@3B6E@ to quantify the degree of slope rotatability over axial directions18 for second-order models. It takes the value zero if and only if the design is slope rotatable. It can also be used to “repair" slope rotatability by design augmentation.

Jang and Park35 considered the maximum, Vmax( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGTbGaamyyaiaadIhadaqadaqaaiaadkhaaiaawIcacaGLPaaaaaa@3CA9@ , and minimum, Vmin( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGTbGaamyAaiaad6gadaqadaqaaiaadkhaaiaawIcacaGLPaaaaaa@3CA7@ , values of 1 σ 2 W( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaaGymaaqaaiabeo8aZnaaDaaajuaibaGaeyicI4mabaGaaGOmaaaa aaqcfaOaam4vamaabmaabaGaamiEaaGaayjkaiaawMcaaaaa@3F87@  over a hypersphere S( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofada qadaqaaiaadkhaaiaawIcacaGLPaaaaaa@39D1@ , where

W( x )= σ 2 k tr[ G ( X ' X ) 1 G ' ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEfada qadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeo8a ZnaaDaaajuaibaGaeyicI4mabaGaaGOmaaaaaKqbagaacaWGRbaaai aadshacaWGYbWaamWaaeaacaWGhbWaaeWaaeaacaWGybWaaWbaaeqa baGaai4jaaaacaWGybaacaGLOaGaayzkaaWaaWbaaeqajuaibaGaey OeI0IaaGymaaaajuaGcaWGhbWaaWbaaeqabaGaai4jaaaaaiaawUfa caGLDbaaaaa@4D9F@

The quantity
Δ( r )=Vmin( r )Vmax( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgs5aen aabmaabaGaamOCaaGaayjkaiaawMcaaiabg2da9iaadAfacaWGTbGa amyAaiaad6gadaqadaqaaiaadkhaaiaawIcacaGLPaaacqGHsislca WGwbGaamyBaiaadggacaWG4bWaaeWaaeaacaWGYbaacaGLOaGaayzk aaaaaa@48B1@
is zero if and only if the design is slope rotatable over all directions. Jang and Park plotted Vmax( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGTbGaamyyaiaadIhadaqadaqaaiaadkhaaiaawIcacaGLPaaaaaa@3CA9@ and  Vmin( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGTbGaamyAaiaad6gadaqadaqaaiaadkhaaiaawIcacaGLPaaaaaa@3CA7@ against r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOCaa aa@39C0@ (slope variance dispersion graphs).

Achievement of target conditions

Khuri and vining36

Specification Problem: To determine conditions on the input variables in a process that cause the mean response η( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE7aOn aabmaabaGaamiEaaGaayjkaiaawMcaaaaa@3AAB@   to fall within specified bounds, e.g.,  α < η ( x ) < b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg7aHn aaCaaabeqaaaaacqGH8aapdaahaaqabeaaaaGaeq4TdG2aaeWaaeaa caWG4baacaGLOaGaayzkaaWaaWbaaeqabaaaaiabgYda8maaCaaabe qaaaaacaWGIbaaaa@3FC1@ , where a and b are given, with a specified degree of confidence.

Procedure

Start with an initial n-point design D n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadseada Wgaaqcfasaaiaad6gaaKqbagqaaaaa@3912@
Calculate β ^ n = ( X n ' X n ) 1 X n ' y n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqbek7aIz aajaWaaSbaaKqbGeaacaWGUbaajuaGbeaacqGH9aqpdaqadaqaaiaa dIfadaqhaaqcfasaaiaad6gaaKqbagaacaGGNaaaaiaadIfadaWgaa qcfasaaiaad6gaaKqbagqaaaGaayjkaiaawMcaamaaCaaabeqcfasa aiabgkHiTiaaigdaaaqcfaOaamiwamaaDaaajuaibaGaamOBaaqcfa yaaiaacEcaaaGaamyEamaaBaaajuaibaGaamOBaaqcfayabaaaaa@4B3C@ y ^ ( x )= f ' ( x ) β ^ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga qcamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadAgadaah aaqabeaacaGGNaaaamaabmaabaGaamiEaaGaayjkaiaawMcaaiqbek 7aIzaajaWaaSbaaKqbGeaacaWGUbaajuaGbeaaaaa@42D2@

Compute
y 1n ( x )= y ^ ( x )ST D n t α/2,np MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhada WgaaqcfasaaiaaigdacaWGUbaajuaGbeaadaqadaqaaiaadIhaaiaa wIcacaGLPaaacqGH9aqpceWG5bGbaKaadaqadaqaaiaadIhaaiaawI cacaGLPaaacqGHsislcaWGtbGaamivaiaadseadaWgaaqcfasaaiaa d6gaaKqbagqaaiaadshadaWgaaqcfasaaiabeg7aHjaac+cacaaIYa Gaaiilaiaad6gacqGHsislcaWGWbaajuaGbeaaaaa@4EC2@

y 2n ( x )= y ^ ( x )+ST D n t α/2,np , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhada WgaaqcfasaaiaaikdacaWGUbaajuaGbeaadaqadaqaaiaadIhaaiaa wIcacaGLPaaacqGH9aqpceWG5bGbaKaadaqadaqaaiaadIhaaiaawI cacaGLPaaacqGHRaWkcaWGtbGaamivaiaadseadaWgaaqcfasaaiaa d6gaaKqbagqaaiaadshadaWgaaqcfasaaiabeg7aHjaac+cacaaIYa Gaaiilaiaad6gacqGHsislcaWGWbaajuaGbeaacaGGSaaaaa@4F68@

Where
ST D n = [ M S E f ' ( x ) ( X n ' X n ) 1 f( x ) ] 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofaca WGubGaamiramaaBaaajuaibaGaamOBaaqcfayabaGaeyypa0ZaamWa aeaacaWGnbGaam4uamaaBaaajuaibaGaamyraaqcfayabaGaamOzam aaCaaabeqaaiaacEcaaaWaaeWaaeaacaWG4baacaGLOaGaayzkaaWa aeWaaeaacaWGybWaa0baaKqbGeaacaWGUbaajuaGbaGaai4jaaaaca WGybWaaSbaaKqbGeaacaWGUbaajuaGbeaaaiaawIcacaGLPaaadaah aaqabKqbGeaacqGHsislcaaIXaaaaKqbakaadAgadaqadaqaaiaadI haaiaawIcacaGLPaaaaiaawUfacaGLDbaadaahaaqabKqbGeaacaaI XaGaai4laiaaikdaaaaaaa@554A@

If there is a point x 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaaicdaaKqbagqaaaaa@390D@  such that α< y 1n ( x 0 ), y 2n ( x 0 )<b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg7aHj abgYda8iaadMhadaWgaaqcfasaaiaaigdacaWGUbaajuaGbeaadaqa daqaaiaadIhadaWgaaqcfasaaiaaicdaaKqbagqaaaGaayjkaiaawM caaiaacYcacaWG5bWaaSbaaKqbGeaacaaIYaGaamOBaaqcfayabaWa aeWaaeaacaWG4bWaaSbaaKqbGeaacaaIWaaajuaGbeaaaiaawIcaca GLPaaacqGH8aapcaWGIbaaaa@4B04@ , then x 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaaicdaaKqbagqaaaaa@390D@ has a probability of at least 1α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaigdacq GHsislcqaHXoqyaaa@39C0@ of satisfying
α<η( x 0 )<b, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg7aHj abgYda8iabeE7aOnaabmaabaGaamiEamaaBaaajuaibaGaaGimaaqc fayabaaacaGLOaGaayzkaaGaeyipaWJaamOyaiaacYcaaaa@4180@

x 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaaicdaaKqbagqaaaaa@390D@  is a solution to the specification problem.
Khuri and Vining presented a sequential procedure of adding points to D n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadseada Wgaaqcfasaaiaad6gaaKqbagqaaaaa@3912@ , if necessary, until a solution can be found to the inequalities
α< y 1n ( x ), y 2n ( x )<b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg7aHj abgYda8iaadMhadaWgaaqcfasaaiaaigdacaWGUbaajuaGbeaadaqa daqaaiaadIhaaiaawIcacaGLPaaacaGGSaGaamyEamaaBaaajuaiba GaaGOmaiaad6gaaKqbagqaamaabmaabaGaamiEaaGaayjkaiaawMca aiabgYda8iaadkgaaaa@47D6@

for a sufficiently large n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOBaa aa@39BC@ .

Multiresponse experiments

An experiment in which a number of responses can be measured for each setting of a group of input variable, x 1 ,..., x k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaaigdaaKqbagqaaiaacYcacaGGUaGaaiOlaiaac6ca caGGSaGaamiEamaaBaaajuaibaGaam4Aaaqcfayabaaaaa@3F4E@ , is called a multiresponse experiment.

When several responses are considered simultaneously, any statistical investigation of the responses should take into consideration the multi- variate nature of the data. The response variables should not be analyzed individually or independently of one another. This is particularly true when the response variables are correlated.

Traditional response surface techniques that apply to single response models are, in general, not adequate to analyze multiresponse models.

Linear multiresponse models

In particular, if the individual response models are linear, then

y i = X i β i + i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhada WgaaqcfasaaiaadMgaaKqbagqaaiabg2da9iaadIfadaWgaaqcfasa aiaadMgaaKqbagqaaiabek7aInaaBaaajuaibaGaamyAaaqcfayaba Gaey4kaSIaeyicI48aaSbaaKqbGeaacaWGPbaajuaGbeaaaaa@448D@       i=1,2,,r. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaeSOjGSKaaiilaiaadkha caGGUaaaaa@3EBF@

Box draper37 determinant criterion

Y=F( D,B )+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMfacq GH9aqpcaWGgbWaaeWaaeaacaWGebGaaiilaiaadkeaaiaawIcacaGL PaaacqGHRaWkcqGHiiIZaaa@3F57@

An estimate of β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabek7aIb aa@381A@ is obtained by minimizing the determinant of
S( D,β )= [ YF( D,β ) ] ' [ YF( D,β ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofada qadaqaaiaadseacaGGSaGaeqOSdigacaGLOaGaayzkaaGaeyypa0Za amWaaeaacaWGzbGaeyOeI0IaamOramaabmaabaGaamiraiaacYcacq aHYoGyaiaawIcacaGLPaaaaiaawUfacaGLDbaadaahaaqabeaacaGG NaaaamaadmaabaGaamywaiabgkHiTiaadAeadaqadaqaaiaadseaca GGSaGaeqOSdigacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@501D@

Relevant articles include Box, Hunter, MacGregor, and Erjavec;38 Khuri.39

Estimation for linear multiresponse models

The r linear response models,

y i = X i β i + i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhada WgaaqcfasaaiaadMgaaKqbagqaaiabg2da9iaadIfadaWgaaqcfasa aiaadMgaaKqbagqaaiabek7aInaaBaaajuaibaGaamyAaaqcfayaba Gaey4kaSIaeyicI48aaSbaaKqbGeaacaWGPbaajuaGbeaacaGGSaaa aa@453D@ i=1,2,...,r, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaiOlaiaac6cacaGGUaGa aiilaiaadkhacaGGSaaaaa@3FB1@

can be represented as a single linear multiresponse model
y=XΘ+δ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhacq GH9aqpcaWGybGaeuiMdeLaey4kaSIaeqiTdqMaaiilaaaa@3E08@
Where  y= [ y 1 ' , y 2 ' ,, y r ' ] ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhacq GH9aqpdaWadaqaaiaadMhadaqhaaqcfasaaiaaigdaaKqbagaacaGG NaaaaiaacYcacaWG5bWaa0baaKqbGeaacaaIYaaajuaGbaGaai4jaa aacaGGSaGaeSOjGSKaaiilaiaadMhadaqhaaqcfasaaiaadkhaaKqb agaacaGGNaaaaaGaay5waiaaw2faamaaCaaabeqaaiaacEcaaaaaaa@4871@

X is a block-diagonal matrix diag( X 1 , X 2 ,, X r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsgaca WGPbGaamyyaiaadEgadaqadaqaaiaadIfadaWgaaqcfasaaiaaigda aKqbagqaaiaacYcacaWGybWaaSbaaKqbGeaacaaIYaaajuaGbeaaca GGSaGaeSOjGSKaaiilaiaadIfadaWgaaqcfasaaiaadkhaaKqbagqa aaGaayjkaiaawMcaaaaa@4679@ ,

Θ= [ β 1 ' , β 2 ' ,, β r ' ] ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfI5arj abg2da9maadmaabaGaeqOSdi2aa0baaKqbGeaacaaIXaaajuaGbaGa ai4jaaaacaGGSaGaeqOSdi2aa0baaKqbGeaacaaIYaaajuaGbaGaai 4jaaaacaGGSaGaeSOjGSKaaiilaiabek7aInaaDaaajuaibaGaamOC aaqcfayaaiaacEcaaaaacaGLBbGaayzxaaWaaWbaaeqabaGaai4jaa aaaaa@4AD3@    and,

δ= [ 1 ' , 2 ' ,, r ' ] ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes7aKj abg2da9maadmaabaGaeyicI48aa0baaKqbGeaacaaIXaaajuaGbaGa ai4jaaaacaGGSaGaeyicI48aa0baaKqbGeaacaaIYaaajuaGbaGaai 4jaaaacaGGSaGaeSOjGSKaaiilaiabgIGiopaaDaaajuaibaGaamOC aaqcfayaaiaacEcaaaaacaGLBbGaayzxaaWaaWbaaeqabaGaai4jaa aaaaa@4AAA@

The variance-covariance matrix of is given by the direct (Kronecker) product I n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqaeaba Gaey4LIqSaamysamaaBaaajuaibaGaamOBaaqcfayabaaabeqabiab ggHiLdaaaa@3D1C@

Θ ^ = [ X ' ( 1 I n )X ] 1 X ' ( 1 I n )y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqbfI5arz aajaGaeyypa0ZaamWaaeaacaWGybWaaWbaaeqabaGaai4jaaaadaqa daqaamaaqaeajuaibaqcfa4aaWbaaeqajuaibaGaeyOeI0IaaGymaa aaaKqbagqabeGaeyyeIuoacqGHxkcXcaWGjbWaaSbaaKqbafaacaWG UbaajuaGbeaaaiaawIcacaGLPaaacaWGybaacaGLBbGaayzxaaWaaW baaeqajuaibaGaaGymaaaajuaGcaWGybWaaWbaaeqabaGaai4jaaaa daqadaqaamaaqaeabaWaaWbaaeqajuaibaGaeyOeI0IaaGymaaaaju aGcqGHxkcXaeqabeGaeyyeIuoacaWGjbWaaSbaaKqbGeaacaWGUbaa juaGbeaaaiaawIcacaGLPaaacaWG5baaaa@5800@
If MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqaeaba aabeqabiabggHiLdaaaa@3875@ is unknown, an estimate = ( σ ^ ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqaeaba Gaeyypa0dabeqabiabggHiLdWaaeWaaeaacuaHdpWCgaqcamaaBaaa baqcfaIaamyAaiaadQgaaKqbagqaaaGaayjkaiaawMcaaaaa@3F91@ can be used, where

σ ^ ij = 1 n y i ' [ I n P j ] y j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqbeo8aZz aajaWaaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaGaeyypa0ZaaSaa aeaacaaIXaaabaGaamOBaaaacaWG5bWaa0baaKqbGeaacaWGPbaaju aGbaGaai4jaaaadaWadaqaaiaadMeadaWgaaqcfasaaiaad6gaaKqb agqaaiabgkHiTiaadcfadaWgaaqcfasaaiaadQgaaKqbagqaaaGaay 5waiaaw2faaiaadMhadaWgaaqcfasaaiaadQgaaKqbagqaaiaacYca aaa@4CD7@ i,j=1,2,...,r, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgaca GGSaGaamOAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaGGUaGa aiOlaiaac6cacaGGSaGaamOCaiaacYcaaaa@4150@

and
P i = X i ( X i ' X i ) 1 X i ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadcfada WgaaqcfasaaiaadMgaaKqbagqaaiabg2da9iaadIfadaWgaaqcfasa aiaadMgaaKqbagqaamaabmaabaGaamiwamaaDaaajuaibaGaamyAaa qcfayaaiaacEcaaaGaamiwamaaBaaajuaibaGaamyAaaqcfayabaaa caGLOaGaayzkaaWaaWbaaeqajuaibaGaaGymaaaajuaGcaWGybWaa0 baaKqbGeaacaWGPbaajuaGbaGaai4jaaaaaaa@4939@ i=1,2,,r. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaeSOjGSKaaiilaiaadkha caGGUaaaaa@3EBF@
Zelner40
In particular, if X 1 = X 2 == X r = X 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfada WgaaqcfasaaiaaigdaaKqbagqaaiabg2da9iaadIfadaWgaaqcfasa aiaaikdaaKqbagqaaiabg2da9iabl+Uimjabg2da9iaadIfadaWgaa qcfasaaiaadkhaaKqbagqaaiabg2da9iaadIfadaWgaaqcfasaaiaa icdaaKqbagqaaaaa@468F@ , then,

β ^ i = ( X 0 ' X 0 ) 1 X 0 ' y i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqbek7aIz aajaWaaSbaaKqbGeaacaWGPbaajuaGbeaacqGH9aqpdaqadaqaaiaa dIfadaqhaaqcfasaaiaaicdaaKqbagaacaGGNaaaaiaadIfadaWgaa qcfasaaiaaicdaaKqbagqaaaGaayjkaiaawMcaamaaCaaabeqcfasa aiabgkHiTiaaigdaaaqcfaOaamiwamaaDaaajuaibaGaaGimaaqcfa yaaiaacEcaaaGaamyEamaaBaaajuaibaGaamyAaaqcfayabaGaaiil aaaa@4B37@

Designs for multiresponse models

Draper and Hunter,41 Fedorov):42 D-optimal designs. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqaeaba aabeqabiabggHiLdaaaa@3875@ must be known. Wijesinha and Khuri43 used an estimate of MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqaeaba aabeqabiabggHiLdaaaa@3875@ . Wijesinha and Khuri44 considered designs that maximize the power of the multi variate lack fit test.
Khuri:45 Multiresponse rotatability for linear multirespose models.
A design is multiresponse rotatable if Var[ y ^ ( x ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGHbGaamOCamaadmaabaGabmyEayaajaWaaeWaaeaacaWG4baacaGL OaGaayzkaaaacaGLBbGaayzxaaaaaa@3EB7@  is constant at all points x that are equidistant from the origin, where y ^ ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga qcamaabmaabaGaamiEaaGaayjkaiaawMcaaaaa@3A0D@ is the vector of r predicted responses.
This design property can be achieved if and only if the design is rotatable for a single-response model having the highest degree among all the r response models.

Lack of fit of a multiresponse model

Khuri46

The models

y i = X i β i + i, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhada WgaaqcfasaaiaadMgaaKqbagqaaiabg2da9iaadIfadaWgaaqcfasa aiaadMgaaKqbagqaaiabek7aInaaBaaajuaibaGaamyAaaqcfayaba Gaey4kaSIaeyicI48aaSbaaeaajuaicaWGPbqcfaOaaiilaaqabaaa aa@453D@ i=1,2,,r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaeSOjGSKaaiilaiaadkha aaa@3E0D@

can be written as
Y= X * B+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMfacq GH9aqpcaWGybWaaWbaaeqajuaibaGaaiOkaaaajuaGcaWGcbGaey4k aSIaeyicI4maaa@3DF3@

where
Y=[ y 1 : y 2 :...: y r ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMfacq GH9aqpdaWadaqaaiaadMhadaWgaaqcfasaaiaaigdaaKqbagqaaiaa cQdacaaMc8UaamyEamaaBaaajuaibaGaaGOmaaqcfayabaGaaiOoai aaykW7caaMc8UaaGPaVlaac6cacaGGUaGaaiOlaiaaykW7caaMc8Ua aGPaVlaacQdacaWG5bWaaSbaaKqbGeaacaWGYbaajuaGbeaaaiaawU facaGLDbaaaaa@516B@

X * =[ X 1 : X 2 :: X r ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaacIfada ahaaqabKqbGeaacaGGQaaaaKqbakabg2da9maadmaabaGaaiiwamaa BaaajuaibaGaaGymaaqcfayabaGaaiOoaiaaykW7caaMc8Uaaiiwam aaBaaajuaibaGaaGOmaaqcfayabaGaaiOoaiaaykW7caaMc8UaaGjb VlablAciljaaysW7caaMe8UaaiOoaiaaysW7caGGybWaaSbaaKqbGe aacaWGYbaajuaGbeaaaiaawUfacaGLDbaaaaa@532E@

B=diag( β 1 , β 2 ,..., β r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkeacq GH9aqpcaWGKbGaamyAaiaadggacaWGNbWaaeWaaeaacqaHYoGydaWg aaqcfasaaiaaigdaaKqbagqaaiaacYcacqaHYoGydaWgaaqcfasaai aaikdaaKqbagqaaiaacYcacaaMc8UaaiOlaiaac6cacaGGUaGaaGPa VlaacYcacqaHYoGydaWgaaqcfasaaiaadkhaaKqbagqaaaGaayjkai aawMcaaaaa@4E9C@

=[ 1 : 2 :...: r ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgIGiol abg2da9maadmaabaGaeyicI48aaSbaaKqbGeaacaaIXaaajuaGbeaa caaMe8UaaiOoaiaaysW7cqGHiiIZdaWgaaqcfasaaiaaikdaaKqbag qaaiaaysW7caGG6aGaaGjbVlaac6cacaGGUaGaaiOlaiaaysW7caGG 6aGaaGjbVlabgIGiopaaBaaajuaibaGaamOCaaqcfayabaaacaGLBb Gaayzxaaaaaa@5224@

Assume that replicated observations are available on all the responses at some points in a region of interest.

The above model suffers from lack of fit if and only if there exists a linear combination of the responses that suffers from lack of fit.

The multivariate lack of fit test is Roy's largest-root test, e max ( G 2 1 G 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwgada Wgaaqcfasaaiaad2gacaWGHbGaamiEaaqcfayabaWaaeWaaeaacaWG hbWaaSbaaeaajuaicaaIYaqcfa4aaWbaaeqajuaibaGaeyOeI0IaaG ymaaaajuaGcaWGhbWaaSbaaKqbGeaacaaIXaaajuaGbeaaaeqaaaGa ayjkaiaawMcaaaaa@43ED@

Where
G 1 = Y ' [ I n X ( X ' X) 1 X ' K ]Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaaigdaaKqbagqaaiabg2da9iaadMfadaahaaqabeaa caGGNaaaamaadmaabaGaamysamaaBaaajuaibaGaamOBaaqcfayaba GaeyOeI0IaamiwaiaacIcacaWGybWaaWbaaeqabaGaai4jaaaacaWG ybGaaiykamaaCaaabeqaaiabgkHiTiaaigdaaaGaamiwamaaCaaabe qaaiaacEcaaaGaeyOeI0Iaam4saaGaay5waiaaw2faaiaadMfaaaa@4BD7@

G 2 = Y ' KY MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaadMfadaahaaqabeaa caGGNaaaaiaadUeacaWGzbaaaa@3D3D@

K=diag( K 1 , K 2 ,, K m ,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeacq GH9aqpcaWGKbGaamyAaiaadggacaWGNbWaaeWaaeaacaWGlbWaaSba aKqbGeaacaaIXaaajuaGbeaacaGGSaGaam4samaaBaaajuaibaGaaG OmaaqcfayabaGaaiilaiaaykW7cqWIMaYscaaMc8UaaiilaiaadUea daWgaaqcfasaaiaad2gaaKqbagqaaiaacYcacaaIWaaacaGLOaGaay zkaaaaaa@4CA3@

K i = I v i 1 v i J v i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeada WgaaqcfasaaiaadMgaaKqbagqaaiabg2da9iaadMeadaWgaaqcfasa aiaadAhajuaGdaWgaaqcfasaaiaadMgaaeqaaaqcfayabaGaeyOeI0 YaaSaaaeaacaaIXaaabaGaamODamaaBaaajuaibaGaamyAaaqcfaya baaaaiaadQeadaWgaaqcfasaaiaadAhajuaGdaWgaaqcfasaaiaadM gaaeqaaaqcfayabaaaaa@477B@ i=1,2,,m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaeSOjGSKaaiilaiaad2ga aaa@3E08@

( v i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAhada WgaaqcfasaaiaadMgaaKqbagqaaaaa@393F@ repeated observations are taken at the i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyAaa aa@3772@ th design point ( i=1,2,,m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaaMc8UaeSOj GSKaaGPaVlaacYcacaWGTbaacaGLOaGaayzkaaaaaa@42A7@ ).
Large values of the test statistic are significant.
Note: The test may be significant even though the response models do not individually exhibit a significant lack of fit.

A numerical example

Richert, et al.47 investigated the effects of heating temperature ( x 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamiEamaaBaaajuaibaGaaGymaaqcfayabaaacaGLOaGaayzkaaaa aa@3A97@ , pH level ( x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamiEamaaBaaajuaibaGaaGOmaaqcfayabaaacaGLOaGaayzkaaaa aa@3A98@ , redox potential ( x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamiEamaaBaaajuaibaGaaG4maaqcfayabaaacaGLOaGaayzkaaaa aa@3A99@ , sodium oxalate ( x 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamiEamaaBaaajuaibaGaaGinaaqcfayabaaacaGLOaGaayzkaaaa aa@3A9A@ , and sodium lauryl sulfate ( x 5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamiEamaaBaaajuaibaGaaGynaaqcfayabaaacaGLOaGaayzkaaaa aa@3A9B@  on foaming properties of whey protein concentrates. The responses are y 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhada WgaaqcfasaaiaaigdaaKqbagqaaaaa@390F@ =whipping time

y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhada WgaaqcfasaaiaaikdaaKqbagqaaaaa@3910@ =maximum overrun

y 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhada WgaaqcfasaaiaaiodaaKqbagqaaaaa@3911@ =percent soluble protein.

A second-order model was assumed for each response.

Multiresponse optimization

Khuri and Conlon48

The purpose of a multiresponse optimization technique is to find operating conditions on the input variables that lead to optimal, or near optimal, values of several response functions.

y i = X 0 β i + i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhada WgaaqcfasaaiaadMgaaKqbagqaaiabg2da9iaadIfadaWgaaqcfasa aiaaicdaaKqbagqaaiabek7aInaaBaaajuaibaGaamyAaaqcfayaba Gaey4kaSIaeyicI48aaSbaaKqbGeaacaWGPbaajuaGbeaacaGGSaaa aa@4509@ i=1,2,,r. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaeSOjGSKaaiilaiaackha caGGUaaaaa@3EBE@

In this case, an unbiased estimate of MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqaeaba aabeqabiabggHiLdaaaa@3875@ , the variance-covariance matrix of ther response variables, is given by

u = Y ' [ I n X 0 ( X 0 ' X 0 ) 1 X 0 ' ]Y/( np ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqaeaba WaaSbaaKqbGeaacaWG1baajuaGbeaaaeqabeGaeyyeIuoacqGH9aqp caWGzbWaaWbaaeqabaGaai4jaaaadaWadaqaaiaadMeadaWgaaqcfa saaiaad6gaaKqbagqaaiabgkHiTiaadIfadaWgaaqcfasaaiaaicda aKqbagqaamaabmaabaGaamiwamaaDaaajuaibaGaaGimaaqcfayaai aacEcaaaGaamiwamaaBaaajuaibaGaaGimaaqcfayabaaacaGLOaGa ayzkaaWaaWbaaeqajuaibaGaeyOeI0IaaGymaaaajuaGcaWGybWaa0 baaKqbGeaacaaIWaaajuaGbaGaai4jaaaaaiaawUfacaGLDbaacaWG zbGaai4lamaabmaabaGaamOBaiabgkHiTiaadchaaiaawIcacaGLPa aacaGGSaaaaa@5850@

rnp. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkhacq GHKjYOcaWGUbGaeyOeI0IaamiCaiaac6caaaa@3CAC@

y ^ i ( x )= f ' ( x ) β ^ i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga qcamaaBaaajuaibaGaamyAaaqcfayabaWaaeWaaeaacaWG4baacaGL OaGaayzkaaGaeyypa0JaamOzamaaCaaabeqaaiaacEcaaaWaaeWaae aacaWG4baacaGLOaGaayzkaaGafqOSdiMbaKaadaWgaaqcfasaaiaa dMgaaKqbagqaaiaacYcaaaa@4548@ i=1,2,,r. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaeSOjGSKaaiilaiaackha caGGUaaaaa@3EBE@

Let y ^ ( x )= [ y ^ 1 ( x ), y ^ 2 ( x ),, y ^ r( x ) ] ' . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga qcamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9maadmaabaGa bmyEayaajaWaaSbaaKqbGeaacaaIXaaajuaGbeaadaqadaqaaiaadI haaiaawIcacaGLPaaacaGGSaGabmyEayaajaWaaSbaaKqbGeaacaaI YaaajuaGbeaadaqadaqaaiaadIhaaiaawIcacaGLPaaacaGGSaGaaG PaVlablAciljaaykW7caGGSaGabmyEayaajaWaaSbaaeaajuaicaWG Ybqcfa4aaeWaaeaacaWG4baacaGLOaGaayzkaaaabeaaaiaawUfaca GLDbaadaahaaqabeaacaGGNaaaaiaac6caaaa@548D@

Let φ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeA8aQn aaBaaajuaibaGaamyAaaqcfayabaaaaa@3A01@ be the optimum value of y ^ i ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga qcamaaBaaajuaibaGaamyAaaqcfayabaWaaeWaaeaacaWG4baacaGL OaGaayzkaaaaaa@3BD8@ optimized individually over a region of interest R ( i=1,2,,r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaaMc8UaeSOj GSKaaGPaVlaacYcacaGGYbaacaGLOaGaayzkaaaaaa@42AB@ .

φ= ( φ 1 , φ 2 ,, φ r ) ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeA8aQj abg2da9maabmaabaGaeqOXdO2aaSbaaKqbGeaacaaIXaaajuaGbeaa caGGSaGaeqOXdO2aaSbaaKqbGeaacaaIYaaajuaGbeaacaGGSaGaaG PaVlablAciljaaykW7caGGSaGaeqOXdO2aaSbaaKqbGeaacaWGYbaa juaGbeaaaiaawIcacaGLPaaadaahaaqabeaacaGGNaaaaaaa@4C16@

Var[ y ^ ( x ) ]= f ' ( x ) ( X 0 ' X 0 ) 1 f( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGHbGaamOCamaadmaabaGabmyEayaajaWaaeWaaeaacaWG4baacaGL OaGaayzkaaaacaGLBbGaayzxaaGaeyypa0JaamOzamaaCaaabeqaai aacEcaaaWaaeWaaeaacaWG4baacaGLOaGaayzkaaWaaeWaaeaacaWG ybWaa0baaKqbGeaacaaIWaaajuaGbaGaai4jaaaacaWGybWaaSbaaK qbGeaacaaIWaaajuaGbeaaaiaawIcacaGLPaaadaahaaqabKqbGeaa cqGHsislcaaIXaaaaKqbakaadAgadaqadaqaaiaadIhaaiaawIcaca GLPaaadaaeabqaaaqabeqacqGHris5aaaa@530B@

An “ideal” optimum occurs when y ^ i ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga qcamaaBaaajuaibaGaamyAaaqcfayabaWaaeWaaeaacaWG4baacaGL OaGaayzkaaaaaa@3BD8@ , for i=1,2,,r, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaeSOjGSKaaiilaiaackha caGGSaaaaa@3EBC@ , attain their individual optima at the same set of conditions.

To find “compromise conditions" that are somewhat favorable to all the responses, we consider the metric (distance function)

ρ[ y ^ ( x ),φ ]= [ ( y ^ ( x )φ ) ' { Var[ y ^ ( x ) ] } 1 ( y ^ ( x )φ ) ] 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYn aadmaabaGabmyEayaajaWaaeWaaeaacaWG4baacaGLOaGaayzkaaGa aiilaiabeA8aQbGaay5waiaaw2faaiabg2da9maadmaabaWaaeWaae aaceWG5bGbaKaadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGHsisl cqaHgpGAaiaawIcacaGLPaaadaahaaqabeaacaGGNaaaamaacmaaba GaamOvaiaadggacaWGYbWaamWaaeaaceWG5bGbaKaadaqadaqaaiaa dIhaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaiaawUhacaGL9baada ahaaqabKqbGeaacqGHsislcaaIXaaaaKqbaoaabmaabaGabmyEayaa jaWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyOeI0IaeqOXdOgaca GLOaGaayzkaaaacaGLBbGaayzxaaWaaWbaaeqajuaibaGaaGymaiaa c+cacaaIYaaaaaaa@62EE@

Multiresponse optimization is then reduced to minimizing ρ[ y ^ ( x ),φ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYn aadmaabaGabmyEayaajaWaaeWaaeaacaWG4baacaGLOaGaayzkaaGa aiilaiabeA8aQbGaay5waiaaw2faaaaa@402C@ with respect to x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhaaa a@3776@  over R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkfaaa a@3750@ .

Future directions in RSM

  • Research workers in RSM should provide the means to facilitate the use of RSM by data analysts, practitioners, and experimenters.
  • Research workers in RSM need feedback from experimenters. This can help create methodology that applies to realistic situations.
  • Better software support. The software currently available for RSM is limited. This is particularly true in the multiresponse area.
  • More research work is needed in the multiresponse case, especially in the design area.
  • Multiresponse techniques should be modified to allow the presence of a block effect in the model.
  • There is a need to explore new RSM techniques suitable for more general models under less restrictive assumptions (generalized linear models).
  • Develop designs which are robust with respect to several criteria.
  • There is a need for nonparametric techniques in RSM (model-free techniques).

Acknowledgments

None.

Conflicts of interest

None.

References

  1. Box GEP, Wilson KB. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society B. 1951;13:1–45.
  2. Hill WJ, Hunter WG. A review of response surface methodology: A literature survey. Technometrics. 1996;8(4):571–590.
  3. Mead R, Pike DJ. A review of response surface methodology from a biometric point of view. Biometrics. 1975;31(4):803–851.
  4. Myers RH, Khuri AI, Carter WH. Response surface methodology: 1966-1988. Technometrics. 1989;31(2):137–157.
  5. Steinberg DM, Hunter WG (1984) Experimental design: review and comment: (with Discussion and Response). Technometrics 26(2):105–109.
  6. Myers RH, Montgomery DC. Response surface methodology: process and product optimization using designed experiments.  Wiley, New York; 1995.
  7. Khuri AI, Cornell JA. Response surfaces. 2nd ed. Dekker, New York; 1996.
  8. Box GEP, Draper NR. Response surfaces, mixtures, and ridge analyses. 2nd ed. Wiley, Hoboken, New Jersey; 2007.
  9. Box GEP. Choice of response surface design and alphabetic optimality. Utilitas Mathematica. 1982;21B:11–55.
  10. Box GEP, Draper NR. A basis for the selection of a response surface design. Journal of the American Statistical Association. 1959;54(287):622–654.
  11. Box GEP, Draper NR. The choice of a second order rotatable design. Biometrika. 1963;50(3/4):335–352.
  12. Box GEP. Non-normality and tests on variances. Biometrika. 1953;40(3/4):318–335.
  13. Herzberg AM, Andrews DF. Some considerations in the optimal design of experiments in non-optimal situations. Journal of the Royal Statistical Society. 1976;38(3):284–289.
  14. Khuri AI, Conlon M. Simultaneous optimization of multiple responses represented by polynomial regression functions. Technometrics. 1981;23(4):363–375.
  15. McKee B, Kshirsagar AM. Effect of missing plots in some response surface designs. Communications in Statistics - Theory and Methods. 1982;11(14):1525–1549.
  16. Akhtar M, Prescott P. Response surface designs robust to missing observations. Communications in Statistics - Simulation and Computation. 1986;15(2):345–363.
  17. Myers RH, Lahoda SJ. A generalization of the response surface mean square error criterion with a specific application to the slope. Technometrics. 1975;17(4):481–486.
  18. Hader RJ, Park SH. Slope rotatable central composite designs. Technometrics. 1978;20(4):413–417.
  19. Park SH. A class of multifactor designs for estimating the slope of response surfaces. Technometrics. 1987;29(4):449–453.
  20. Huda S, Mukerjee R. Minimizing the maximum variance of the difference between two estimated responses. Biometrika. 1984; 71(2):381–385.
  21. Mukerjee R, Huda S.  Minimax second- and third- order designs to estimate the slope of a response surface. Biometrika. 1985; 72(1):173–178.
  22. Park JY. Designs for estimating the difference between two responses. Communications in Statistics - Theory and Methods. 1990;19(12):4773–4787.
  23. Khuri AI, Myers RH. Modified ridge analysis. Techno-metrics. 1979;21(4):467–473.
  24. Hoerl AE. Optimum solution of many variables equations. Chemical Engineering Progress. 1953;55:67–78.
  25. Draper NR. “Ridge analysis” of response surfaces. Technometrics. 1963;5(4):469–479.
  26. Myers RH, Khuri A. A new procedure for steepest ascent. Communications in Statistics - Theory and Methods. 1979;8(14): 1359–1376.
  27. Box GEP, Hunter JS. A confidence region for the solution of a set of simultaneous equations with an application to experimental design. Biometrika. 1954;41(1/2):190–199.
  28. Stablein DM, Carter WH, Wampler GL. Confidence regions for constrained optima in response-surface experiments. Biometrics. 1983;39(3):759–763.
  29. Carter WH, Chinchilli VM, Campbell ED, et al. Confidence interval about the response at the stationary point of a response surface, with an application to preclinical cancer therapy. Biometrics. 1984;40(4):1125–1130.
  30. Carter WH, Chinchilli VM, Myers RH, et al. Confidence intervals and improved ridge analysis of response surfaces. Technometrics. 1986;28(4):339–346.
  31. Khuri AI. A measure of rotatability for response surface designs. Technometrics. 1988;30:95–104.
  32. Draper NR, Pukelsheim F. Another look at rotatability. Technometrics. 1990;32(2):195–202.
  33. Khuri AI. Response surface models with random block effects. Technometrics. 1992;34(1):26–37.
  34. Park SH, Kim HJ. A measure of slope-rotatability for second order response surface experimental designs. Journal of Applied Statistics. 1992;19(3):391–404.
  35. Jang DH, Park SH. A measure and a graphical method for evaluating slope rotatability in response surface designs. Communications in Statistics - Theory and Methods. 1993;22:1849–1863.
  36. Khuri AI, Vining GG. Conditions required for the mean response to fall within specified bounds. Journal of Statistical Planning and Inference. 1991;28(1):125–136.
  37. Box GEP, Draper NR. The Bayesian estimation 0f common parameters from several responses. Biometrika. 1965;52(3/4):355–365.
  38. Box GEP, Hunter WG, MacGregor JF, et al. Some problems associated with the analysis of multiresponse data. Technometrics. 1973;15(1):33–51.
  39. Khuri AI. Multiresponse rotatability. Journal of Statistical Plan- ning and Inference.1990;25(1):1–6.
  40. Zelner A. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American Statistical Association. 1962;57:348–368.
  41. Draper NR, Hunter WG. Design of experiments for parameter estimation in multiresponse situations. Biometrika. 1966;53(3/4): 525–533.
  42. Fedorov VV. Theory of optimal experiments. Academic Press, New York; 1972.
  43. Wijesinha MC, Khuri AI. The sequential generation of multiresponse D-optimal designs when the variance-covariance matrix is not known. Communications in Statistics-Simulation and Computation. 1987;16(1):239–259.
  44. Wijesinha MC. Construction of optimal designs to increase the power of the multiresponse lack of fit test. Journal of Statistical Planning and Inference. 1987;16:179–192.
  45. Khuri AI. The analysis of multiresponse experiments: A review. in statistical design and analysis of industrial experiments, In: Subir Ghosh, editor. New York; 1990;231–246.
  46. Khuri AI. A test for lack of fit of a linear multiresponse model.  Technometrics. 1985;27(3):213–218.
  47. Richert SH, Morr CV, Conney CM. Effect of heat and other factors upon foaming properties of whey protein concentrates. Journal of Food Science. 1974;39(1):42–48.
  48. Khuri AI, Myers RH. Design related robustness of tests in regression models. Communications in Statistics - Theory and Methods. 1981;10(3):223–235.
Creative Commons Attribution License

©2017 Khuri. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.