Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 7 Issue 1

A discrete lindley distribution with applications in biological sciences

Berhane Abebe, Rama Shanker

Department of Statistics, College of Science, Eritrea Institute of Technology, Eritrea

Correspondence: Rama Shanker, Department of Statistics, College of Science, Eritrea Institute of Technology, Asmara, Eritrea

Received: January 24, 2018 | Published: February 9, 2018

Citation: Abebe B, Shanker R. A discrete lindley distribution with applications in biological sciences. Biom Biostat Int J. 2018;7(1):48-52. DOI: 10.15406/bbij.2018.07.00189

Download PDF

Abstract

In this paper, a discrete Lindley distribution, a discrete analogue of continuous Lindley distribution using infinite series method of discretization, has been proposed and investigated. Its generating functions, moments and moments based measures including coefficients of variation, skewness, kurtosis, index of dispersion have been obtained and discussed. Both the method of moments and the method of maximum likelihood estimation have been discussed for estimating its parameter. Applications of the proposed distribution have been explained through two examples of observed real datasets from biological sciences.

Keywords: lindley distribution, discretization, moment generating function, moments, estimation, goodness of fit

Introduction

In the last few decades many papers appeared in the statistical literature on the discretization of continuous distributions. The main reasons for discretizing a continuous distributions are two fold, namely, (i) the discrete analogue of a continuous distribution provide probability mass function (pmf) that can compete with the classical discrete distributions commonly used in the statistical analysis of count data and (ii) the discrete analogue of a continuous distribution avoids the use of a continuous distribution in the case of strictly discrete data.

According to Lai,1 discretization of a continuous lifetime model is an interesting and intuitively appealing approach to derive a discrete lifetime model corresponding to the continuous one. It has been observed that many times in the real world the original variables may be continuous in nature but discrete by observation and , therefore, it is reasonable and convenient to model the situation by an appropriate discrete distribution generated from the underlying continuous distribution preserving one or more important characteristics including probability density function (pdf), moment generating function (mgf), moments, hazard rate function, mean residual life function etc., of the continuous distribution.

There are several methods available in Statistics literature to derive a discrete distribution from a continuous distribution. One of the first proposed discretization methods is based on the definition of pmf that depends on an infinite series. The method of discretization by an infinite series was firstly considered by Good2 who has proposed the discrete Good distribution to model the population frequencies of species and the estimation of parameters. A random variable Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamywaa aa@3762@ is said to have a discrete Good distribution if its pmf can be expressed as

P( Y=y )= α y y β j=1 α j j β ;y=0,1,2,....,βRandα( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiuam aabmaabaGaamywaiabg2da9iaadMhaaiaawIcacaGLPaaacqGH9aqp daWcaaqaaiabeg7aHTWaaWbaaKqbagqabaqcLbmacaWG5baaaKqbak aadMhadaahaaqabeaajugWaiabek7aIbaaaKqbagaadaaeWbqaaiab eg7aHTWaaWbaaKqbagqabaqcLbmacaWGQbaaaKqbakaadQgalmaaCa aajuaGbeqaaKqzadGaeqOSdigaaaqcfayaaKqzadGaamOAaiabg2da 9iaaigdaaKqbagaajugWaiabg6HiLcqcfaOaeyyeIuoaaaGaaGPaVl aaykW7caaMc8Uaai4oaiaadMhacqGH9aqpcaaIWaGaaiilaiaaigda caGGSaGaaGOmaiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiilai aaykW7caaMc8UaaGPaVlaaykW7cqaHYoGycqGHiiIZcaWGsbGaaGPa VlaaykW7caaMc8Uaaeyyaiaab6gacaqGKbGaaGPaVlaaykW7caaMc8 UaeqySdeMaeyicI48aaeWaaeaacaaIWaGaaiilaiaaigdaaiaawIca caGLPaaaaaa@864E@ (1.1)

The method of infinite series is characterized by the following definition

Definition 1.1: Let X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiwaa aa@3761@ be a continuous random variable having pdf f X ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aaBaaabaqcLbmacaWGybaajuaGbeaadaqadaqaaiaadIhaaiaawIca caGLPaaaaaa@3CAF@ with support on. Then the corresponding discrete random variable Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamywaa aa@3762@ has pmf given by

P( Y=y )=P( y;θ )= f X ( y;θ ) j= f X ( j;θ ) ;yZ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiuam aabmaabaGaamywaiabg2da9iaadMhaaiaawIcacaGLPaaacqGH9aqp caWGqbWaaeWaaeaacaWG5bGaai4oaiabeI7aXbGaayjkaiaawMcaai abg2da9maalaaabaGaamOzamaaBaaabaqcLbmacaWGybaajuaGbeaa daqadaqaaiaadMhacaGG7aGaeqiUdehacaGLOaGaayzkaaaabaWaaa bCaeaacaWGMbWaaSbaaeaajugWaiaadIfaaKqbagqaamaabmaabaGa amOAaiaacUdacqaH4oqCaiaawIcacaGLPaaaaeaajugWaiaadQgacq GH9aqpcqGHsislcqGHEisPaKqbagaajugWaiabg6HiLcqcfaOaeyye IuoaaaGaaGPaVlaaykW7caaMc8Uaai4oaiaadMhacqGHiiIZcaWGAb aaaa@690B@ (1.2)

where θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@ may be the vector of parameters indexing the distribution of X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiwaa aa@3761@ .

This method of discretizing a continuous distribution has been studied by several researchers including Kulasekara and Tonkyn,3 Doray and Luong,4 Sato et al.,5 Nekoukhou et al.,6 are some among others, who proposed a version of the method when the continuous random variable of interest is defined R + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuam aaBaaabaqcLbmacqGHRaWkaKqbagqaaaaa@3A1A@ on. Thus, if the random variable X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiwaa aa@3761@ is defined on R + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuam aaBaaabaqcLbmacqGHRaWkaKqbagqaaaaa@3A1A@ , the pmf of Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamywaa aa@3762@ can be defined as

P( Y=y )=P( y;θ )= f X ( y;θ ) j=0 f X ( j;θ ) ;y Z + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiuam aabmaabaGaamywaiabg2da9iaadMhaaiaawIcacaGLPaaacqGH9aqp caWGqbWaaeWaaeaacaWG5bGaai4oaiabeI7aXbGaayjkaiaawMcaai abg2da9maalaaabaGaamOzamaaBaaabaqcLbmacaWGybaajuaGbeaa daqadaqaaiaadMhacaGG7aGaeqiUdehacaGLOaGaayzkaaaabaWaaa bCaeaacaWGMbWaaSbaaeaajugWaiaadIfaaKqbagqaamaabmaabaGa amOAaiaacUdacqaH4oqCaiaawIcacaGLPaaaaeaajugWaiaadQgacq GH9aqpcaaIWaaajuaGbaqcLbmacqGHEisPaKqbakabggHiLdaaaiaa ykW7caaMc8UaaGPaVlaacUdacaWG5bGaeyicI4SaamOwaSWaaSbaaK qbagaajugWaiabgUcaRaqcfayabaaaaa@6ABF@ (1.3)

Note that the discrete distribution generated using the method of infinite series may not always have a compact form due to the normalizing constant.

In the present paper, a discrete Lindley distribution (DLD), a discrete analogue of continuous Lindley distribution proposed by Lindlley7 has been introduced using a discretization method based on an infinite series. Its moment generating function, moments and moments based measures have been obtained and discussed. Both the method of moment and the method of maximum likelihood estimates give the same estimator of the parameter of DLD. The applications and the goodness of fit of the proposed distribution have been explained using two real datasets from biological sciences and the fit has been compared with other discrete distributions.

A Discrete lindley distribution

The pdf and the cdf of a continuous random variable X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiwaa aa@3761@ having Lindley distribution introduced by Lindlley7 are given by

f 1 ( x;θ )= θ 2 θ+1 ( 1+x ) e θx ;     x>0,   θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzaS WaaSbaaKqbagaajugWaiaaigdaaKqbagqaamaabmaabaGaamiEaiaa cUdacqaH4oqCaiaawIcacaGLPaaacaaMc8UaaGPaVlabg2da9iaayk W7caaMc8+aaSaaaeaacqaH4oqClmaaCaaajuaGbeqaaKqzadGaaGOm aaaaaKqbagaacqaH4oqCcqGHRaWkcaaIXaaaaiaaykW7caaMc8+aae WaaeaacaaIXaGaey4kaSIaamiEaaGaayjkaiaawMcaaiaaykW7caaM c8UaamyzamaaCaaabeqaaKqzadGaeyOeI0IaeqiUdeNaamiEaaaaju aGcaaMc8UaaGPaVlaacUdacaqGGaGaaeiiaiaabccacaqGGaGaaeii aiaadIhacqGH+aGpcaaIWaGaaiilaiaaysW7caqGGaGaaeiiaiaabc cacqaH4oqCcqGH+aGpcaaIWaaaaa@7131@ (2.1)

F 1 ( x;θ )=1[ 1+ θx θ+1 ] e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOraS WaaSbaaKqbagaajugWaiaaigdaaKqbagqaamaabmaabaGaamiEaiaa cUdacqaH4oqCaiaawIcacaGLPaaacqGH9aqpcaaMe8UaaGymaiabgk HiTmaadmaabaGaaGymaiabgUcaRmaalaaabaGaeqiUdeNaamiEaaqa aiabeI7aXjabgUcaRiaaigdaaaaacaGLBbGaayzxaaGaaGjbVlaadw gadaahaaqabeaajugWaiabgkHiTiabeI7aXjaadIhaaaqcfaOaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaai4oaiaadIhacqGH+a GpcaaIWaGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqiU deNaeyOpa4JaaGimaaaa@6DEF@ (2.2)

Ghitany et al.,8 has discussed its various mathematical and statistical properties including its shapes for varying values of parameter, moments based measures, hazard rate function, mean residual life function, stochastic ordering, mean deviations, order statistics, Renyi entropy measure, Bonferroni and Lorenz curves and stress-strength reliability along with estimation of parameter and application for modeling waiting time in a bank. Shanker et al.,9 have detailed comparative study on applications of Lindley distribution and exponential distribution for modeling lifetime data and observed that both distributions are competitor to each other for modeling lifetime data from various fields of knowledge. In fact, in some datasets exponential distribution gives much closer fit than the Lindley distribution and in some datasets Lindley distribution gives better fit than exponential distribution. 

Using the definition (1.1), the pmf of the discrete random variable Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamywaa aa@3762@ corresponding to a continuous random variable X following Lindley distribution (2.1) can be obtained as

P 1 ( Y=y )= P 1 ( y;θ )= ( e θ 1 ) 2 e 2θ ( 1+y ) e θy ;y=0,1,2,...,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiuaS WaaSbaaKqbagaajugWaiaaigdaaKqbagqaamaabmaabaGaamywaiab g2da9iaadMhaaiaawIcacaGLPaaacqGH9aqpcaWGqbWcdaWgaaqcfa yaaKqzadGaaGymaaqcfayabaWaaeWaaeaacaWG5bGaai4oaiabeI7a XbGaayjkaiaawMcaaiabg2da9maalaaabaWaaeWaaeaacaWGLbWaaW baaeqabaqcLbmacqaH4oqCaaqcfaOaeyOeI0IaaGymaaGaayjkaiaa wMcaaSWaaWbaaKqbagqabaqcLbmacaaIYaaaaaqcfayaaiaadwgada ahaaqabeaajugWaiaaikdacqaH4oqCaaaaaKqbaoaabmaabaGaaGym aiabgUcaRiaadMhaaiaawIcacaGLPaaacaWGLbWaaWbaaeqabaqcLb macqGHsislcqaH4oqCcaaMc8UaamyEaaaajuaGcaGG7aGaaGPaVlaa ykW7caWG5bGaeyypa0JaaGimaiaacYcacaaIXaGaaiilaiaaikdaca GGSaGaaiOlaiaac6cacaGGUaGaaiilaiaaykW7caaMc8UaeqiUdeNa eyOpa4JaaGimaaaa@79B5@ (2.3)

We would call this distribution, a discrete Lindley distribution (DLD). The nature and behavior of DLD for varying values of its parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@ has been shown graphically in figure 1.

Figure 1 The pmf plot of DLD for varying values of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@ .

The survival function S( y;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uam aabmaabaGaamyEaiaacUdacqaH4oqCaiaawIcacaGLPaaaaaa@3C58@ ,and the cumulative distribution function (cdf), F( y;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aabmaabaGaamyEaiaacUdacqaH4oqCaiaawIcacaGLPaaaaaa@3C4B@ of DLD can be obtained as

S( y;θ )=[ ( e θ 1 )y+( 2 e θ 1 ) e 2θ ] e θy ;y=0,1,2,...,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uam aabmaabaGaamyEaiaacUdacqaH4oqCaiaawIcacaGLPaaacqGH9aqp daWadaqaamaalaaabaWaaeWaaeaacaWGLbWaaWbaaeqabaqcLbmacq aH4oqCaaqcfaOaeyOeI0IaaGymaaGaayjkaiaawMcaaiaadMhacqGH RaWkdaqadaqaaiaaikdacaWGLbWaaWbaaeqabaqcLbmacqaH4oqCaa qcfaOaeyOeI0IaaGymaaGaayjkaiaawMcaaaqaaiaadwgadaahaaqa beaajugWaiaaikdacqaH4oqCaaaaaaqcfaOaay5waiaaw2faaiaadw gadaahaaqabeaajugWaiabgkHiTiabeI7aXjaaykW7caWG5baaaKqb akaacUdacaWG5bGaeyypa0JaaGimaiaacYcacaaIXaGaaiilaiaaik dacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaaykW7caaMc8UaeqiU deNaeyOpa4JaaGimaaaa@6EE0@ (2.4)

F 2 ( y;θ )=1[ ( e θ 1 )y+( 2 e θ 1 ) e 2θ ] e θy ;y=0,1,2,...,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOraS WaaSbaaKqbagaajugWaiaaikdaaKqbagqaamaabmaabaGaamyEaiaa cUdacqaH4oqCaiaawIcacaGLPaaacqGH9aqpcaaIXaGaeyOeI0Yaam WaaeaadaWcaaqaamaabmaabaGaamyzaSWaaWbaaKqbagqabaqcLbma cqaH4oqCaaqcfaOaeyOeI0IaaGymaaGaayjkaiaawMcaaiaadMhacq GHRaWkdaqadaqaaiaaikdacaWGLbWaaWbaaeqabaqcLbmacqaH4oqC aaqcfaOaeyOeI0IaaGymaaGaayjkaiaawMcaaaqaaiaadwgadaahaa qabeaajugWaiaaikdacqaH4oqCaaaaaaqcfaOaay5waiaaw2faaiaa dwgadaahaaqabeaajugWaiabgkHiTiabeI7aXjaaykW7caWG5baaaK qbakaacUdacaWG5bGaeyypa0JaaGimaiaacYcacaaIXaGaaiilaiaa ikdacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaaykW7caaMc8Uaeq iUdeNaeyOpa4JaaGimaaaa@7446@ (2.5)

Graph of cumulative distribution function of DLD for varying values of its parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@ has been shown in figure 2.

Figure 2 The cdf plot of DLD for varying values of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@ .

Since P( y+1;θ ) P( y;θ ) =[ 1+ 1 1+y ] e θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGqbWaaeWaaeaacaWG5bGaey4kaSIaaGymaiaacUdacqaH4oqC aiaawIcacaGLPaaaaeaacaWGqbWaaeWaaeaacaWG5bGaai4oaiabeI 7aXbGaayjkaiaawMcaaaaacqGH9aqpdaWadaqaaiaaigdacqGHRaWk daWcaaqaaiaaigdaaeaacaaIXaGaey4kaSIaamyEaaaaaiaawUfaca GLDbaacaWGLbWaaWbaaeqabaqcLbmacqGHsislcqaH4oqCaaaaaa@50AB@ is a decreasing function of y0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyEai abgwMiZkaaicdaaaa@3A02@ , P( y;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiuam aabmaabaGaamyEaiaacUdacqaH4oqCaiaawIcacaGLPaaaaaa@3C55@ is log-concave and therefore, the DLD has an increasing hazard rate. Further, [ P( y;θ ) ] 2 P( y1;θ )P( y+1;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaae aacaWGqbWaaeWaaeaacaWG5bGaai4oaiabeI7aXbGaayjkaiaawMca aaGaay5waiaaw2faamaaCaaabeqaaKqzadGaaGOmaaaajuaGcqGHLj YScaWGqbWaaeWaaeaacaWG5bGaeyOeI0IaaGymaiaacUdacqaH4oqC aiaawIcacaGLPaaacqGHflY1caWGqbWaaeWaaeaacaWG5bGaey4kaS IaaGymaiaacUdacqaH4oqCaiaawIcacaGLPaaaaaa@53D8@ for y0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyEai abgwMiZkaaicdaaaa@3A02@ , which implies unimodality, by theorem 3 of Keilson and Gerber.10 The interrelationship between log-concavity, unimodality and increasing hazard rate of discrete distributions are available in Grandell.11

Moments, skewness, kurtosis and index of dispersion

The probability generating function (G(t)) and the moment generating function (M(t)) of DLD can be obtained as

G( t )= ( e θ 1 e θ t ) 2 ,fort e θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4ram aabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9maabmaabaWaaSaa aeaacaWGLbWaaWbaaeqabaqcLbmacqaH4oqCaaqcfaOaeyOeI0IaaG ymaaqaaiaadwgadaahaaqabeaajugWaiabeI7aXbaajuaGcqGHsisl caWG0baaaaGaayjkaiaawMcaaSWaaWbaaKqbagqabaqcLbmacaaIYa aaaKqbakaaykW7caaMc8UaaGPaVlaaykW7caGGSaGaaeOzaiaab+ga caqGYbGaaGPaVlaaykW7caWG0bGaeyiyIKRaamyzamaaCaaabeqaaK qzadGaeqiUdehaaaaa@5FA0@ (3.1)

 and 

M( t )= ( e θ 1 ) 2 e 2θ ( 1 e ( θt ) ) 2 ,fortθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytam aabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9maalaaabaWaaeWa aeaacaWGLbWaaWbaaeqabaqcLbmacqaH4oqCaaqcfaOaeyOeI0IaaG ymaaGaayjkaiaawMcaamaaCaaabeqaaKqzadGaaGOmaaaaaKqbagaa caWGLbWaaWbaaeqabaqcLbmacaaIYaGaeqiUdehaaKqbaoaabmaaba GaaGymaiabgkHiTiaadwgadaahaaqabeaajugWaiabgkHiTSWaaeWa aKqbagaajugWaiabeI7aXjabgkHiTiaadshaaKqbakaawIcacaGLPa aaaaaacaGLOaGaayzkaaWcdaahaaqcfayabeaajugWaiaaikdaaaaa aKqbakaaykW7caaMc8UaaGPaVlaaykW7caGGSaGaaeOzaiaab+gaca qGYbGaaGPaVlaaykW7caWG0bGaeyiyIKRaeqiUdehaaa@6CAE@ (3.2)

It can be easily verified that the function in (3.2) is infinitely differentiable with respect to t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDaa aa@377D@ , since it involves exponential terms of its argument. This means that all moments about origin μ r ,r1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 2cdaWgaaqcfayaaKqzadGaamOCaaqcfayabaWcdaahaaqcfayabeaa jugWaiadacUHYaIOaaqcfaOaaGPaVlaaykW7caGGSaGaamOCaiabgw MiZkaaigdaaaa@4844@ of DLD can be obtained. The first four moments about origin of DLD can thus be obtained as

μ 1 = 2 ( e θ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 2cdaWgaaqcfayaaKqzadGaaGymaaqcfayabaWcdaahaaqcfayabeaa jugWaiadacUHYaIOaaqcfaOaeyypa0ZaaSaaaeaacaaIYaaabaWaae WaaeaacaWGLbWaaWbaaeqabaqcLbmacqaH4oqCaaqcfaOaeyOeI0Ia aGymaaGaayjkaiaawMcaaaaaaaa@4A4B@

μ 2 = 2( e θ +2 ) ( e θ 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 2cdaWgaaqcfayaaKqzadGaaGOmaaqcfayabaWcdaahaaqcfayabeaa jugWaiadacUHYaIOaaqcfaOaeyypa0ZaaSaaaeaacaaIYaWaaeWaae aacaWGLbWcdaahaaqcfayabeaajugWaiabeI7aXbaajuaGcqGHRaWk caaIYaaacaGLOaGaayzkaaaabaWaaeWaaeaacaWGLbWcdaahaaqcfa yabeaajugWaiabeI7aXbaajuaGcqGHsislcaaIXaaacaGLOaGaayzk aaWcdaahaaqcfayabeaajugWaiaaikdaaaaaaaaa@55C8@

μ 3 = 2( e 2θ +7 e θ +4 ) ( e θ 1 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 2cdaWgaaqcfayaaKqzadGaaG4maaqcfayabaWcdaahaaqcfayabeaa jugWaiadacUHYaIOaaqcfaOaeyypa0ZaaSaaaeaacaaIYaWaaeWaae aacaWGLbWcdaahaaqcfayabeaajugWaiaaikdacqaH4oqCaaqcfaOa ey4kaSIaaG4naiaadwgadaahaaqabeaajugWaiabeI7aXbaajuaGcq GHRaWkcaaI0aaacaGLOaGaayzkaaaabaWaaeWaaeaacaWGLbWaaWba aeqabaqcLbmacqaH4oqCaaqcfaOaeyOeI0IaaGymaaGaayjkaiaawM caamaaCaaabeqaaKqzadGaaG4maaaaaaaaaa@5B77@

μ 4 = 2( e 3θ +18 e 2θ +33 e θ +8 ) ( e θ 1 ) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 2cdaWgaaqcfayaaKqzadGaaGinaaqcfayabaWcdaahaaqcfayabeaa jugWaiadacUHYaIOaaqcfaOaeyypa0ZaaSaaaeaacaaIYaWaaeWaae aacaWGLbWaaWbaaeqabaqcLbmacaaIZaGaeqiUdehaaKqbakabgUca RiaaigdacaaI4aGaamyzamaaCaaabeqaaKqzadGaaGOmaiabeI7aXb aajuaGcqGHRaWkcaaIZaGaaG4maiaadwgadaahaaqabeaajugWaiab eI7aXbaajuaGcqGHRaWkcaaI4aaacaGLOaGaayzkaaaabaWaaeWaae aacaWGLbWaaWbaaeqabaqcLbmacqaH4oqCaaqcfaOaeyOeI0IaaGym aaGaayjkaiaawMcaaSWaaWbaaKqbagqabaqcLbmacaaI0aaaaaaaaa a@63D0@

Using the relationship μ r =E ( Y μ 1 ) r = k=0 r ( r k ) μ k ( μ 1 ) rk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 2cdaWgaaqcfayaaKqzadGaamOCaaqcfayabaGaeyypa0Jaamyramaa bmaabaGaamywaiabgkHiTiabeY7aTTWaaSbaaKqbagaajugWaiaaig daaKqbagqaaSWaaWbaaKqbagqabaqcLbmacWaGGBOmGikaaaqcfaOa ayjkaiaawMcaaSWaaWbaaKqbagqabaqcLbmacaWGYbaaaKqbakabg2 da9maaqahabaWaaeWaaeaafaqabeGabaaabaGaamOCaaqaaiaadUga aaaacaGLOaGaayzkaaaabaqcLbmacaWGRbGaeyypa0JaaGimaaqcfa yaaKqzadGaamOCaaqcfaOaeyyeIuoacqaH8oqBlmaaBaaajuaGbaqc LbmacaWGRbaajuaGbeaalmaaCaaajuaGbeqaaKqzadGamai4gkdiIc aajuaGdaqadaqaaiabgkHiTiabeY7aTTWaaSbaaKqbagaajugWaiaa igdaaKqbagqaaSWaaWbaaKqbagqabaqcLbmacWaGGBOmGikaaaqcfa OaayjkaiaawMcaaSWaaWbaaKqbagqabaqcLbmacaWGYbGaeyOeI0Ia am4Aaaaaaaa@783F@ between central moments and moments about origin, the central moments of DLD are obtained as

μ 2 = 2 e θ ( e θ 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 2cdaWgaaqcfayaaKqzadGaaGOmaaqcfayabaGaeyypa0ZaaSaaaeaa caaIYaGaamyzaSWaaWbaaKqbagqabaqcLbmacqaH4oqCaaaajuaGba WaaeWaaeaacaWGLbWaaWbaaeqabaqcLbmacqaH4oqCaaqcfaOaeyOe I0IaaGymaaGaayjkaiaawMcaaSWaaWbaaKqbagqabaqcLbmacaaIYa aaaaaaaaa@4CA9@

μ 3 = 2 e θ ( e θ +1 ) ( e θ 1 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 2aaSbaaeaajugWaiaaiodaaKqbagqaaiabg2da9maalaaabaGaaGOm aiaadwgadaahaaqabeaajugWaiabeI7aXbaajuaGdaqadaqaaiaadw galmaaCaaajuaGbeqaaKqzadGaeqiUdehaaKqbakabgUcaRiaaigda aiaawIcacaGLPaaaaeaadaqadaqaaiaadwgadaahaaqabeaajugWai abeI7aXbaajuaGcqGHsislcaaIXaaacaGLOaGaayzkaaWaaWbaaeqa baqcLbmacaaIZaaaaaaaaaa@531D@

μ 4 = 2 e θ ( e 2θ +10 e θ +1 ) ( e θ 1 ) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 2aaSbaaeaajugWaiaaisdaaKqbagqaaiabg2da9maalaaabaGaaGOm aiaadwgadaahaaqabeaajugWaiabeI7aXbaajuaGdaqadaqaaiaadw gadaahaaqabeaajugWaiaaikdacqaH4oqCaaqcfaOaey4kaSIaaGym aiaaicdacaWGLbWaaWbaaeqabaqcLbmacqaH4oqCaaqcfaOaey4kaS IaaGymaaGaayjkaiaawMcaaaqaamaabmaabaGaamyzaSWaaWbaaKqb agqabaqcLbmacqaH4oqCaaqcfaOaeyOeI0IaaGymaaGaayjkaiaawM caaSWaaWbaaKqbagqabaqcLbmacaaI0aaaaaaaaaa@5B49@

 The expressions for coefficient of variation (C.V), coefficient of skewness ( β 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aadaGcaaqaaiabek7aITWaaSbaaKqbagaajugWaiaaigdaaKqbagqa aaqabaaacaGLOaGaayzkaaaaaa@3CEF@ , coefficient of kurtosis ( β 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacqaHYoGydaWgaaqaaKqzadGaaGOmaaqcfayabaaacaGLOaGaayzk aaaaaa@3C47@ and index of dispersion ( γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacqaHZoWzaiaawIcacaGLPaaaaaa@39B4@ of DLD are expressed as

C.V= σ μ 1 = e θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qai aac6cacaWGwbGaeyypa0ZaaSaaaeaacqaHdpWCaeaacqaH8oqBlmaa BaaajuaGbaqcLbmacaaIXaaajuaGbeaalmaaCaaajuaGbeqaaKqzad Gamai4gkdiIcaaaaqcfaOaeyypa0ZaaSaaaeaadaGcaaqaaiaadwga daahaaqabeaajugWaiabeI7aXbaaaKqbagqaaaqaamaakaaabaGaaG Omaaqabaaaaaaa@4C68@

β 1 = μ 3 ( μ 2 ) 3/2 = ( e θ +1 ) 2 e θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaae aacqaHYoGydaWgaaqaaKqzadGaaGymaaqcfayabaaabeaacqGH9aqp daWcaaqaaiabeY7aTTWaaSbaaKqbagaajugWaiaaiodaaKqbagqaaa qaamaabmaabaGaeqiVd02aaSbaaeaajugWaiaaikdaaKqbagqaaaGa ayjkaiaawMcaamaaCaaabeqaaSWaaSGbaKqbagaajugWaiaaiodaaK qbagaajugWaiaaikdaaaaaaaaajuaGcqGH9aqpdaWcaaqaamaabmaa baGaamyzaSWaaWbaaKqbagqabaqcLbmacqaH4oqCaaqcfaOaey4kaS IaaGymaaGaayjkaiaawMcaaaqaamaakaaabaGaaGOmaiaadwgadaah aaqabeaajugWaiabeI7aXbaaaKqbagqaaaaaaaa@5B03@

β 2 = μ 4 μ 2 2 = e 2θ +10 e θ +1 2 e θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi 2aaSbaaeaajugWaiaaikdaaKqbagqaaiabg2da9maalaaabaGaeqiV d02aaSbaaeaajugWaiaaisdaaKqbagqaaaqaaiabeY7aTTWaaSbaaK qbagaajugWaiaaikdaaKqbagqaaSWaaWbaaKqbagqabaqcLbmacaaI YaaaaaaajuaGcqGH9aqpdaWcaaqaaiaadwgadaahaaqabeaajugWai aaikdacqaH4oqCaaqcfaOaey4kaSIaaGymaiaaicdacaWGLbWcdaah aaqcfayabeaajugWaiabeI7aXbaajuaGcqGHRaWkcaaIXaaabaGaaG OmaiaadwgalmaaCaaajuaGbeqaaKqzadGaeqiUdehaaaaaaaa@5CE0@

γ= σ 2 μ 1 = e θ ( e θ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0ZaaSaaaeaacqaHdpWCdaahaaqabeaajugWaiaaikdaaaaa juaGbaGaeqiVd02cdaWgaaqcfayaaKqzadGaaGymaaqcfayabaWcda ahaaqcfayabeaajugWaiadacUHYaIOaaaaaKqbakabg2da9maalaaa baGaamyzamaaCaaabeqaaKqzadGaeqiUdehaaaqcfayaamaabmaaba GaamyzaSWaaWbaaKqbagqabaqcLbmacqaH4oqCaaqcfaOaeyOeI0Ia aGymaaGaayjkaiaawMcaaaaaaaa@55C0@ .

Since γ>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC MaeyOpa4JaaGymaaaa@39EE@ always for θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde NaeyOpa4JaaGimaaaa@39FC@ , a DLD is over dispersed ( σ 2 > μ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai abeo8aZnaaCaaabeqaaKqzadGaaGOmaaaajuaGcqGH+aGpcqaH8oqB lmaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaalmaaCaaajuaGbeqaaK qzadGamai4gkdiIcaajuaGcaGGPaaaaa@4788@ . This means that DLD can be used to model over-dispersed data from any fields of knowledge.

Table 1 summarizes the nature and behavior of coefficient of variation (C.V), coefficient of skewness, coefficient of kurtosis and index of dispersion (ID) of DLD for selected values of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@ .

 

Values of descriptive statistics

Mean

Variance

C.V

Skewness

Kurtosis

ID

0.5

3.0380

7.8354

0.9079

1.4586

6.1276

2.5415

1

1.6400

1.8413

1.1658

1.5947

6.5431

1.5820

1.5

0.5744

0.7394

1.4969

1.8310

7.3524

1.2872

2

0.3131

0.3620

1.9221

2.1822

8.7622

1.1565

2.5

0.1789

0.1948

2.4680

2.6706

11.1323

1.0894

3

0.1048

0.1103

3.1690

3.3268

15.0677

1.0524

3.5

0.0623

0.0642

4.0691

4.1920

21.5728

1.0314

4

0.0373

0.0380

5.2248

5.3205

32.3082

1.0187

Table 1 Values of descriptive statistics of DLD for varying values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@

It is obvious from above table that the mean, variance, and index of dispersion of DLD are decreasing for increasing values of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@ , while coefficient of variation, coefficient of skewness and coefficient of kurtosis of DLD are increasing for increasing values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@ . Since σ 2 >μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3cdaahaaqcfayabeaajugWaiaaikdaaaqcfaOaeyOpa4JaeqiVd0ga aa@3E38@ , DLD is a suitable model for over-dispersed data.  

Parameter estimation

Method of moment estimate (MOME): Equating the population mean to the corresponding sample mean, the MOME θ ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqiUde NbaGaaaaa@3849@ of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@ of DLD is given by

θ ˜ =ln( y ¯ +2 y ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaacaae aacqaH4oqCaiaawoWaaiabg2da9iGacYgacaGGUbWaaeWaaeaadaWc aaqaaiqadMhagaqeaiabgUcaRiaaikdaaeaaceWG5bGbaebaaaaaca GLOaGaayzkaaaaaa@4149@ , where y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmyEay aaraGaaGPaVdaa@3925@ is the sample mean.

maximum likelihood estimate (MLE): Let ( y 1 , y 2 , y 3 ,..., y n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaWG5bWcdaWgaaqcfayaaKqzadGaaGymaaqcfayabaGaaiilaiaa ykW7caWG5bWcdaWgaaqcfayaaKqzadGaaGOmaaqcfayabaGaaiilai aaykW7caWG5bWaaSbaaeaajugWaiaaiodaaKqbagqaaiaacYcacaaM c8UaaGPaVlaac6cacaGGUaGaaiOlaiaaykW7caaMc8UaaiilaiaadM hadaWgaaqaaKqzadGaamOBaaqcfayabaaacaGLOaGaayzkaaaaaa@55EA@ be a random sample from DLD (2.3)). The likelihood function, L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitaa aa@3755@ of (2.3) is given by

L= ( ( e θ 1 ) 2 e 2θ ) n e nθ y ¯ i=1 n ( 1+ y i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitai abg2da9maabmaabaWaaSaaaeaadaqadaqaaiaadwgadaahaaqabeaa jugWaiabeI7aXbaajuaGcqGHsislcaaIXaaacaGLOaGaayzkaaWaaW baaeqabaqcLbmacaaIYaaaaaqcfayaaiaadwgadaahaaqabeaajugW aiaaikdacqaH4oqCaaaaaaqcfaOaayjkaiaawMcaamaaCaaabeqaaK qzadGaamOBaaaajuaGcaWGLbWaaWbaaeqabaqcLbmacqGHsislcaWG UbGaaGPaVlaaykW7cqaH4oqCcaaMc8UaaGPaVlqadMhagaqeaaaaju aGdaqeWbqaamaabmaabaGaaGymaiabgUcaRiaadMhadaWgaaqaaKqz adGaamyAaaqcfayabaaacaGLOaGaayzkaaaabaqcLbmacaWGPbGaey ypa0JaaGymaaqcfayaaKqzadGaamOBaaqcfaOaey4dIunacaaMc8oa aa@6B95@ .

The natural log likelihood function is thus obtained as

lnL=2nln( e θ 1 )+ i=1 n ln( 1+ y i ) nθ y ¯ 2nθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaciiBai aac6gacaWGmbGaeyypa0JaaGOmaiaaykW7caWGUbGaciiBaiaac6ga daqadaqaaiaadwgalmaaCaaajuaGbeqaaKqzadGaeqiUdehaaKqbak abgkHiTiaaigdaaiaawIcacaGLPaaacqGHRaWkdaaeWbqaaiGacYga caGGUbWaaeWaaeaacaaIXaGaey4kaSIaamyEaSWaaSbaaKqbagaaju gWaiaadMgaaKqbagqaaaGaayjkaiaawMcaaaqaaKqzadGaamyAaiab g2da9iaaigdaaKqbagaajugWaiaad6gaaKqbakabggHiLdGaeyOeI0 IaamOBaiaaykW7caaMc8UaeqiUdeNaaGPaVlaaykW7ceWG5bGbaeba cqGHsislcaaIYaGaaGPaVlaad6gacaaMc8UaeqiUdehaaa@6D77@

The maximum likelihood estimates (MLE) θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqiUde NbaKaaaaa@384A@ of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@ is the solution of the log-likelihood equation dlnL dθ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGKbGaciiBaiaac6gacaWGmbaabaGaamizaiabeI7aXbaacqGH 9aqpcaaIWaaaaa@3E91@ and is given by

dlnL dθ = 2n e θ 1 e θ 2nn y ¯ =0,whichgives θ ^ =ln( y ¯ +2 y ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGKbGaciiBaiaac6gacaWGmbaabaGaamizaiabeI7aXbaacqGH 9aqpdaWcaaqaaiaaikdacaWGUbaabaGaamyzamaaCaaabeqaaKqzad GaeqiUdehaaKqbakabgkHiTiaaigdaaaGaamyzaSWaaWbaaKqbagqa baqcLbmacqaH4oqCaaqcfaOaeyOeI0IaaGOmaiaad6gacqGHsislca WGUbGaaGPaVlqadMhagaqeaiabg2da9iaaicdacaGGSaGaaGPaVlaa bEhacaqGObGaaeyAaiaabogacaqGObGaaGPaVlaaykW7caqGNbGaae yAaiaabAhacaqGLbGaae4CaiaaykW7caaMc8UaaGPaVlaaykW7cuaH 4oqCgaqcaiabg2da9iGacYgacaGGUbWaaeWaaeaadaWcaaqaaiqadM hagaqeaiabgUcaRiaaikdaaeaaceWG5bGbaebaaaaacaGLOaGaayzk aaaaaa@728F@ .

This means that both MOME and MLE give the same estimator for the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@ .

Goodness of fit

As we have seen that DLD is over-dispersed and hence it can be applied to model over-dispersed data. In general, the discrete data in biological sciences are over-dispersed and due to this we have taken two examples of observed real datasets from biological sciences. The first dataset is the data regarding number of Homocytometer yeast cell counts per square, available in Gosset.12 The second dataset is the data regarding the number of European corn borer available in Mc Guire et al.,13 The goodness of fit of DLD has been compared with one parameter Poisson distribution (PD) which is equi-dispersed and Poisson-Lindley distribution (PLD) which is over-dispersed and proposed by Sankaran14 as a Poisson mixture of Lindley distribution, introduced by Lindley.7 It should be noted that Shanker and Hagos15 has detailed study on applications of PLD in biological sciences and observed that for biological sciences data, PLD is the appropriate choice (Table 2&3). 

Number of red mites

Observed

Expected frequency

 

frequency

PD

PLD

DLD

0

213

202.10

234.00

222.35

1

128

138.00

99.40

113.14

2

37

47.10

40.50

43.18

3

18

10.70

16.00

14.65

4

3

1.80

6.20

4.66

5

1

0.20

2.40

1.42

6

0

0.10

1.50

0.59

Total

400

400.00

400.00

400.00

ML Estimate

 

0.6825

1.9502

1.3687

 

 

10.0900

11.0610

3.2511

d.f.

 

2

2

2

p-value

 

0.0178

0.0114

0.3545

Table 2 Observed and expected number of homocytometer yeast cell counts per square observed by gosset12

Number of European corn-borer

Observed
frequency

Expected frequency

PD

PLD

DLD

0

188

169.40

194.00

184.80

1

83

109.80

79.50

90.47

2

36

35.60

31.30

33.24

3

14

7.80

12.00

10.84

4

2

1.20

4.50

3.32

5

1

0.20

2.70

1.36

Total

324

324.00

324.00

324.00

ML Estimate

 

0.6481

2.0425

1.4075

 

 

15.2000

1.2970

1.0425

d.f.

 

2

2

2

p-value

 

0.0040

0.7297

0.7910

Table 3 Observed and expected number of European corn-borer of McGuire et al13

It is obvious from the values of chi-square that DLD gives much closer fit than both PD and PLD, and hence DLD can be considered an important discrete distribution for modeling discrete data in biological sciences.

Conclusions

In this paper, a discrete Lindley distribution (DLD), a discrete analogue of continuous Lindley distribution, has been proposed and investigated. Its moment generating function, moments and moments based measures including coefficients of variation, skewness, kurtosis, and index of dispersion have been obtained and their nature have been discussed numerically. Both the method of moments and the method of maximum likelihood estimation have been discussed for estimating its parameter. The applications of DLD have been discussed with two examples of observed real datasets from biological sciences. The DLD gives much closer fit over Poisson distribution (PD) and Poisson Lindley distribution (PLD).

Acknowledgements

None.

Conflicts of interest

None.

References

  1. Lai CD. Issues concerning constructions of discrete lifetime models. Qual Techno Quant Mang. 2013;10(2):251‒262.
  2. Good LJ. The population frequencies of species and the estimation of population parameters. Biometrika. 1953;40:237‒264.
  3. Kulasekara KB, Tonkyn DW. A new discrete distribution with application to survival, dispersal and dispersion. Commun Stat Simul Comput. 1992;21:499‒518.
  4. Doray LG, Luong A. Efficient estimator s for the Good family. Commun Stat Simul Comput. 1997;21:499‒518.
  5. Sato H, Ikota M, Aritoshi S. A new defect distribution in meteorology with a consistent discrete exponential formula and its applications. IEEE Trans Semicond Manufactur. 1999;12(4):409‒418.
  6. Nekoukhou VM, Alamatsaz MH, Bidram H. Discrete Generalized exponential distribution. Communications in Statistics-Theory & Methods. 2012;41:2000‒2013.
  7. Lindley DV. Fiducial distributions and Bayes’ theorem. Journal of the Royal Statistical Society. Series B. 1958;20:102‒107.
  8. Ghitany ME, Atieh B, Nadarajah S. Lindley distribution and its Application. Mathematics Computing and Simulation. 2008;78:493‒506.
  9. Shanker R, Hagos F, Sujatha S. On Modeling of Lifetimes data using Exponential and Lindley distributions. Biometrics & Biostatistics International Journal. 2015;2(5):1‒9.
  10. Keilson J, Gerber H. Some resilts for Discrete Unimodality, Journal of the American Statistical Association 1971;66:386‒389.
  11. Grandell J. Mixed Poisson Processes, CRC Press. 1997.
  12. Gosset WS. The probable error of the mean. Biometrika. 1908;6(1):1‒25.
  13. Mc Guire JU, Brindley TA, Bancroft TA. The distribution of European corn-borer larvae pyrausta in field corn. Biometrics. 1957;13:65‒78.
  14. Sankaran M. The discrete Poisson-Lindley distribution. Biometrics. 1970;26:145‒149.
  15. Shanker R, Hagos F. On Poisson-Lindley distribution and its Applications to Biological Sciences. Biometrics & Biostatistics International Journal. 2015;2(4):1‒5.
Creative Commons Attribution License

©2018 Abebe, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.