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computational simulation is the use of experimental data to estimate 
different material model parameters, resorting for that purpose to a 
strain energy function (SEF), all included in the continuum theory 
of large deformation hyper-elasticity. The constitutive modelling of 
soft biological tissues has recently constituted a very active field of 
research.8 These materials have commonly been modelled as hyper-
elastic continua embedded into continuum mechanical formulations. 
In this line, one of the main tasks considers the determination 
of appropriate strain energy density functions, from which local 
mechanical quantities are obtained. Several constitutive laws have 
been proposed for soft tissue modelling.1,9‒11, which may be suitable 
depending on the kind of soft biological tissue at stake. Holzapfel et 
al.12,13 proposed the most common SEFs for modelling the behavior of 
blood vessels accounting for two preferred directions, incorporating 
fiber dispersion with respect to the deterministic preferred orientation 
direction, and the work presented by Gasser et al.14 which includes 
microstructural information in the model by means of the assumption 
of a fiber orientation distribution function.

Constant search for effective solutions to the problem of the 
parameter fitting of soft biological tissues has been put forward 
by Cilla et al.15 proposing the use of machine learning techniques 
(MLTs) among which are: support vector machines (SVMs), bagged 
or bootstrap-aggregated decision trees (BDTs) and artificial neural 
networks (ANNs). Machine learning techniques consider algorithms 
able to learn and make predictions from data. Complex algorithms, 
which can be trained to reproduce the behavior of a model,16,17 
represent the main feature. MLT’s are quite multidisciplinary, with 
applicability to many different areas, such as electronics,18 industry,19 
earth sciences,20,21 space science22 or language23 among many 
others. These techniques have also been applied to different clinical 
applications like the assessment of electrocardiograms, diagnosis of 
breast cancer, prediction of femur loads, or optimization of hip implant 
geometries.24‒28 They have also been used for treating cardiovascular 
diseases.29‒33 MLT’s can be proposed as good candidates to identify 
different material model parameters, and we strongly believe that the 
use of these mathematical tools could successfully help to improve 

the characterization of soft biological tissues. Moreover, the use of 
MLTs also presents certain advantage in terms of computational costs, 
reducing computation time in comparison to gradient-base methods, 
where this time becomes indefinite, searching for an appropriate initial 
seed. Therefore, MLTs can be likely positioned as good candidates 
to replace gradient optimization methods that lead to fit the material 
parameters in the experimental testing of samples of soft biological 
tissues.34
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The experimental study of the mechanical properties of biological 

tissues is of paramount importance. A good knowledge of the 
mechanical response of biological materials (like tissues or organs) is 
needed as a source of information to be introduced into computational 
models that can serve to correctly reproduce the associated mechanical 
behavior. Classical engineering testing has been applied to biological 
materials1‒3 to obtain their properties. Simple tension, planar biaxial 
and inflation tests are considered the main techniques for the 
measurement of the mechanical response of blood vessels. The most 
resorted one, regarding its simplicity and versatility, is the uniaxial 
test, with particular application to soft biological tissues.4‒7 This 
technique also presents the feature of being applicable to very small 
samples. A common practice in the field of mathematical modelling or 
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