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Introduction
In the recent past decades, life time modeling has been becoming 

popular in distribution theory, where many statisticians are involved 
in introducing new models. Some of the life time models are very 
popular and applied in biological, engineering and agricultural areas, 
such as Lindley distribution of Lindley,1 weighted Lindley distribution 
introduced by Ghitany, Atieh, and Nadarajah,2 Akash distribution 
suggested by Shanker,3 Ishita distribution proposed by Shanker and 
Shukla,4 Pranav distribution introduced by Shukla,5 are some among 
others and extension of above mentioned distribution has also been 
becoming popular in different areas of statistics. 

Shanker3 proposed Akash distribution convex combination of 
exponential and gamma distributions which is defined by its pdf and 
cdf 
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The r th moment about origin rµ ′ of Akash distribution obtained 
by Shanker is 
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Shanker3 has discussed in details about its mathematical and 
statistical properties, estimation of parameters and applications to 
model lifetime data from engineering and biomedical engineering.

Truncated type of distribution are more effective for modeling 
life time data because its limits used as bound either upper or lower 
or both according to the given data. Truncated normal distribution 
is proposed by Johnson, Kotz, and Balakrishnan.6 It has wide 
application in economics and statistics. Many researchers have been 
proposed truncated type of distribution and applied in different areas 
of statistics, especially in censor data such as truncated Weibull 

distribution of Zange and Xie,12 truncated Lomax distribution of 
Aryuyuen and Bodhisuwan,8 truncated Pareto distribution of Janinetti 
and Ferraro,9 truncated Lindley distribution of Singh, Singh, and 
Sharma.10 Truncated version of a continuous distribution can be 
defined as:

Definition1. Let X be a random variable distributed according to some 
pdf ( ; )g x θ  and cdf ( ; )G x θ , where θ  is a parameter vector of X. 
Let X lies within the interval [ , ]a b , where a x b−∞ < ≤ ≤ < ∞ , then 
X , conditional on a x b≤ ≤  is distributed as truncated distribution. 

The pdf of truncated distribution as reported by Singh, Singh, and 
Sharma10 defined by: 
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where ( ; ) ( ; )f x g xθ θ=  for all a x b≤ ≤  and ( ; ) 0f x θ =  
elsewhere. 

Note that ( ; )f x θ  in fact is a pdf of X on interval [ , ]a b . We have 
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The cdf of truncated distribution is given by 
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The main objective of this paper is to propose new truncated 
distribution using Akash distribution, which is called as truncated 
Akash distribution. It has been divided in seven sections. Introduction 
about the paper is described in the first section. In the second section, 
truncated Akash distribution has been derived. Behavior of hazard 
rate has been presented in third section Statistical properties including 
its moment have been discussed in the fourth section.. Estimation of 
parameters of the proposed distribution has been discussed in the fifth 
section. Its application and comparative study with one parameter life 
time distribution have been illustrated in the section sixth. Finally the 
conclusion of the paper has been given in the seventh section.
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Figure 1 pdf plots of TAD for varying values of parameters.

Truncated Akash distribution
In this section, pdf and cdf of new truncated distribution is 

proposed and named Truncated Akash distribution, using (1.3) & (1.4) 
of definition1 and from (1.1) & (1.2), which is defined as:

Figure 2 cdf plots of TAD for varying values of parameter.

Definition 2: Let X be random variable which is distributed as 
Truncated Akash distribution (TAD) with location parameters a , b  
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and scale θ  and denoted by TAD ( , , )a b θ . The pdf and cdf of X are 
respectively:
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where a x b−∞ < ≤ ≤ < ∞ , and 0θ >

Performance of pdf and cdf of TAD for varying values of 
parameters has been illustrated in the figure 1&2 respectively.

Survival and hazard function 

The survival function ( )S x  and the hazard function ( )h x  of TAD 
are defined as 

2

2
( 2) ( 2) ( 2)( )( ) 1 ( )
( 2) ( 2) ( 2)( )

x b x b

a b a b
x x e b b e e eS x F x
a a e b b e e e

θ θ θ θ

θ θ θ θ
θ θ θ θ θ
θ θ θ θ θ

− − − −

− − − −
+ − + + + −

= − =
+ − + + + −

3 2

2
( ) ( 1)( )
( ) ( 2) ( 2) ( 2)( )

x

x b x b
f x x eh x
S x x x e b b e e e

θ

θ θ θ θ
θ

θ θ θ θ θ

−

− − − −
+

= =
+ − + + + −

It is obvious that ( )h x is independent from parameter a . Behavior 
of hazard function of TAD for varying values of parameter is presented 
in figure 3.

Figure 3 h(x) plots of TAD for varying values of parameter.

Moments and Mathematical Properties 
Theorem: Suppose X follows doubly TAD ( ), ,a bθ . Then the r th 
moment about origin rµ ′  of TAD is 
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Now putting 1,2r =  in (4.1), mean and variance can be obtained as
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Similarly rest two moment of origin as well as coefficient of 
variation, coefficient of skewness, coefficient of kurtosis and Index of 
dispersion can be obtained, substituting 3,4r =  in the equation (4.1), 
which are as follows:
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Maximum Likelihood Method Estimation 
Let ( )1 2 3, , , .. , nx x x x  be a random sample of size n  from (1.1). 

The likelihood function, L of TAD is given by
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The  log likelihood function is thus obtained as

 ( )
3

2
2

1
ln ln ln 1

( 2) ( 2) ( 2)( )

n

ia b a b
i

L n x n x
a a e b b e e eθ θ θ θ

θ θ
θ θ θ θ θ− − − −

=

 
= + + −  + − + + + − 

∑  

Taking ( )1 2 3ˆ min , , , .., na x x x x= , ( )1 2 3
ˆ max , , , ... , nb x x x x= , the 

maximum likelihood estimate θ of parameter θ  is the solution of 

the log-likelihood equation 
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will not be in closed form and hence some numerical optimization 
technique can be used e the equation forθ . In this paper the nonlinear 
method available in R software has been used to find the MLE of the 
parameterθ . 

Applications on Life time data
In this section, TAD has been applied to three datasets using 

maximum likelihood estimates. Parameter θ  is estimated whereas 
another parameters a, and b are considered as lowest and highest values 
of data. i. e. ( )1 2 3ˆ min , , , .., na x x x x= and ( )1 2 3

ˆ max , , , ... , nb x x x x= . 
Goodness of fit has been decided using Akaike information criteria 
(AIC), Bayesian Information criteria (BIC) and Kolmogorov 
Simonov test (KS) values respectively, which are calculated for each 
distribution and also compared with p-value and given in the table 1,2 
&3. As we know that best goodness of fit of the distribution can be 
decided on the basis of minimum value of KS, AIC and BIC. 

Table 1 MLE’s, Standard Errors, - 2ln L, AIC, BIC, K-S and p-values of the fitted distributions for data set-5

Distributions ML Estimates Standard Errors 2 ln L− AIC BIC K-S p-value

TAD
 0.03917θ = 0.00303 939.13 941.13 942.05 0.153 0.017

TLD
 0.02199θ = 0.00273 958.88 960.88 962.31 0.186 0.001

Akash
 0.04387θ = 0.00253 950.97 952.97 954.40 0.194 0.001

Ishita
 0.04390θ = 0.002533 950.92 9952.92 954.35 0.194 0.001

Lindley
 0.02886θ = 0.002038 983.10 985.10 986.54 0.252 0.000

Exponential
 0.01463θ = 0.001457 1044.87 1046.87 1048.30 0.336 0.000

Table 2 MLE’s, Standard Errors, - 2ln L, AIC, BIC, K-S and p-values of the fitted distributions for data set-2

Distributions ML Estimates Standard Errors 2 ln L− AIC BIC K-S p-value

TAD
 0.08776θ = 0.024241 201.96 203.96 205.58 0.112 0.786

TLD
 0.05392θ = 0.023917 202.18 204.18 205.61 0.117 0.738

Akash
 0.09706θ = 0.01004 240.68 242.68 242.67 0.298 0.005

Ishita
 0.097328θ = 0.01008 240.48 242.48 243.48 0.297 0.006

Lindley
 0.06299θ = 0.00800 253.98 255.98 256.98 0.365 0.000

Exponential
 0.032452θ = 0.00582 274.52 276.52 277.52 0.458 0.000

Table 3 MLE’s, Standard Errors, - 2ln L, AIC, BIC, K-S and p-values of the fitted distributions for data set-3

Distributions ML Estimates Standard Errors 2 ln L− AIC BIC K-S p-value

TAD
 0.70314θ = 0.18671 110.76 112.76 114.68 0.152 0.079

TLD
 0.28986θ = 0.184873 112.19 114.19 115.63 0.157 0.065

Akash
 0.96472θ = 0.06460 224.27 226.27 227.27 0.362 0.000

Ishita
 0.93156θ = 0.05602 223.14 225.14 226.13 0.330 0.000

Lindley
 0.65450θ = 0.05803 238.38 240.38 241.37 0.401 0.000

Exponential
 0.40794θ = 0.04911 261.73 263.73 264.73 0.448 0.000
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Data Set 1: The data is given by Birnbaum and Saunders11 on the fatigue life of 6061 – T6 aluminum coupons cut parallel to the direction of 
rolling and oscillated at 18 cycles per second. The data set consists of 100 observations with maximum stress per cycle 31,000 psi. The data (
× 310− ) are presented below (after subtracting 65).

5 25 31 32 34 35 38 39 39 40 42     43

43 43       44 44 47 47 48 49 49 49             51 54      55

55      55      56 56 56 58 59 59           59 59 59     63

63 64   64 65 65 65 66          66 66 66 66 67     67

67 68   69 69 69          69 71 71 72 73 73 73     74

74 76 76    77 77 77 77 77 77 79 79 80     81

83      83    84 86 86 87 90 91 92 92 92 92  93 94

97 98 98 99 101 103 105 109 136   147

Data Set 2: This data set is the strength data of glass of the aircraft window reported by Fuller, Frieman, Quinn, Quinn, and Carter:12

18.83 20.8 21.657 23.03 23.23 24.05 24.321 25.5 25.52 25.8 26.69 26.77   

26.78 27.05 27.67 29.9 31.11 33.2 33.73 33.76 33.89 34.76 35.75 35.91 36.98 37.08 37.09 
39.58 44.045 45.29 45.381

Data Set 3: The following data represent the tensile strength, measured in GPa, of 69 carbon fibers tested under tension at gauge lengths of 
20mm, Bader and Priest:13

             1.312      1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 1.966 1.997 

              2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179 2.224 2.240 2.253 2.270 2.272                               
2.274 2.301 2.301 2.359 2.382 2.382 2.426 2.434 2.435 2.478 2.490 2.511 2.514 2 . 5 3 5  
2.554 2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684 2.697 2.726 2.770 2.773 2 . 8 0 0  
2.809 2.818 2.821 2.848 2.880 2.954 3.012 3.067 3.084 3.090 3.096 3.128 3.233 3 . 4 3 3  
3.585 3.858

Fitted plots of the considered distributions are presented in Figure 4, 5 and 6, respectively. 

Figure 4 Fitted plots of distributions for the dataset-1.

Figure 5 Fitted plot of distributions for data set-2.

Figure 6 Fitted plot of distribution for data set-3.

Conclusion
In this paper, truncated Akash distribution (TAD) has been 

proposed. Its statistical properties including survival function and 
hazard rate have been discussed. Its moments including Coefficient of 
variation, Skewness, Kurtosis and Index of dispersion have derived. 
Maximum likelihood method has been used for estimation of its 
parameter. Goodness of fit of TAD has been discussed with three life 
time datasets and compared with truncated Lindley, Akash, Ishita, 
Lindley and exponential distributions. It has been observed that TAD 
gives good fit over TLD (truncated Lindley Distribution), Akash, 
Ishita, Lindley and exponential distribution.
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