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Introduction
Three dimensional (3D) printing has promising application 

in various fields of dentistry such as periodontics, implantology, 
orthodontic, endodontic, prosthodontics, maxillofacial surgery, 
and restorative dentistry. In the field of periodontology and implant 
dentistry, 3D scaffolds in the form of bone graft substitutes overcomes 
the disadvantages of commonly used grafting materials. Scaffold 
properties are influenced by the used biomaterials and must be specific 
for the application while in harmony with the native environment 
to ensure that the defect area is replaced with a healthy, functional 
tissue matching the original one, without reparative scar formation. 
In this review, we focus on different biomaterials suitable for 3D 
scaffold fabrication, with a focus on “3D-printed” ones as bone graft 
substitutes that might be convenient for various applications related 
to periodontal regeneration and implant therapy.A review by Farah 
et al presented an excellent compilation of 3D printed scaffold and 
biomaterial.1 In a recent literature review by Gul et aldiscussed about 
the applications of 3D printing in periodontology which includes 
use of 3D printed scaffold for socket preservation, periodontal 
regeneration, sinus and bone augmentation and maintenance of peri 

implant. Use of 3D printed surgical guide has increased the accuracy, 
reduced complications and working time. The only drawback of 
the 3D printing is its cost effectiveness and the time required for 
manufacturing.2 There are limited literature on the 3d printed scaffolds 
on the medline search using keywords Three dimensional printing, 
scaffolds, alveolar bone, periodontal ligament and regeneration. 
Hence, in this review an attempt is made to brief the biomaterials used 
in regeneration of alveolar bone ad periodontal ligament.

3d scaffold biomaterials for alveolar bone regeneration

The cellular affinity of a scaffold influences its overall properties3 
such as adhesion, proliferation and regeneration outcome. Intergrins 
are known to influence the adhesion. The first biomaterials are natural 
polymers such as protiens and polysaccharides which are utilized 
in the clinical applications. These biocompatibles have the cell 
recognition and cellular interactions in the tissue environment4 and 
hydrophilicity.5 In the tissue engineering, the hydrophilicity property 
that is hydrogels are responsible for cell encapsulation leading to 
successful out comes.6–10 The scaffold materials can be made up of 
natural materials, synthetic materials, bioceramics and metals. The 
various natural materials used for scaffold are presented in Table 1.
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Abstract

Periodontal applications of three dimensional(3D) printing included education models, 
scaffolds, socket preservation, and sinus and bone augmentation and guided implant 
placement. 3D scaffolds have been recently investigated in the field of dentistry and 
periodontics as a bone graft substitutes which could overcome the drawbacks of routinely 
employed grafting materials. In this review, we highlight different biomaterials suitable 
for 3D scaffold fabrication, with a focus on “3D-printed” ones as bone graft substitutes 
that might be convenient for various applications related to periodontal regeneration and 
implant therapy.
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Table 1 Natural biomaterials utilized for scaffolds

Natural material Properties

Collagen Most commonly expressed protein. Structural strength and stability is provided to several tissues such as bone and skin.

In vitro cell adhesion, proliferation and osteogenic differentiation of bone marrow stromal cells are demonstrated.39

Gelatin is the denatured collagen which facilitates osteoblastic migration , adhesion and mineralization due to presence of many 
biological and functional moleclules present in it.40

In Bone Tissue Engineering (BTE) application, collagen which is the major component of ECM serves as an important 
biomateraial.

Collage is preferred to be used in combination with bioceramic which has close resemblance to ECM of bone specially in non-
bearing areas.41

Chitosan
A polysaccharide is a popular biomaterial with antibacteial , antifungal activities , analgesic properties and rapid formation of clot 
property, rendering chitosan as a wound heal accumulation biomaterial.42 This property of Chitosan minimizes contamination of 
scaffold thus preventing postoperative infections, exposure and failure of scaffold.

Alginate The use of alginate is common because it can be highly processed into different types of scaffold and cell encapsulation 
property43 helping in regenerative medicine for BTE.44

  Both Chitosan and alginate are not present in the human body but have structural similarities to glycosaminoglycans in the 
ECM of human bone 45 which makes them impressive candidates in BTE.
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Disadvantages of natural polymers

Even though there is good biologic characters, the bioactivity is 
not present in these natural polymers which is required for hard tissue 
formation.11 Additional drawbacks are, weak mechanical property and 
fast degradation time12–14 through enzymatic reaction.15

The undesirable or disadvantages of natural polymer are overcome 
by use of bioceramics or synthetic polymers or metals which are 
mechanically strong ones depending on the area of scaffold application 

such as non-load bearing or load bearing. Although mechanically 
weak, bioceramics increase the compressive strength of natural 
polymer scaffolds.16 The low cost and possibility of its production in 
large quantities with longer shelf life than natural polymers are the 
main advantages of synthetic scaffold biomaterial.17 Various aliphatic 
polysters used are Polycaprolactone(PCL), Polylactic acid(PLA), 
Polyglycolic acid(PGA) ,Poly lactic co-glycolic acid( PLGA) which 
are described in Table 2.

Table 2 Biodegradable polymers and its features as scaffold material

Synthetic scaffold materials Properties

Polycaprolactone (PCL)
It is the most popular material used in medical devices over 30 years46 which is used in craniofacial 
repair.47

It is biocompatible, suitable to fabricate various scaffold technique, slow degradation rate and mechanically 
stable. The maintenance of regenerated bone volume and its outcome is possible owing to slow 
degradation rate and mechanical stability.48

The hydrophobic nature of PCL49 is responsible for the poor cell affinity and inferior cellular responses 
and surface interactions.50

Polylactic acid (PLA), Polyglycolic acid (PGA) 
,Poly (lactic-co-glycolic) acid( PLGA) 

These are hydrophobic except the PGA which is hydrophilic .These have higher degradation rates as 
compared to PCL.51

Degradation of synthetic aliphatic polymers

Generally they exhibit slow degradation as compared to natural 
polymers and bio ceramics.18 They degrade by hydrolysis either as 
bulk degradation or erosion of surface. Most often, the interior 
aspect of biomaterial degrade and leaves an empty shell formation by 
maintaining the size for a significant time period.19 This characteristic 
feature is suitable when used for BTE than drug delivery treatment.

Acidic products released during its degradation cause necrosis 
of tissue and later scaffold exposue.20 The acidic byproducts can 

be counteracted and ph buffering can be achieved by combining 
polyesters with bioceramics21 and metals.22 Good moldability of 
polyesters into any shape and mechanical properties are best suitable 
despite their acid by products and lack of bioavailability.

Bioceramics

These are inorganic materials namely calcium phosphate 
bioceramics and bioactive glass that are used as bone fillers in 
dentistry23 as described in Table 3.

Table 3 Bioceramics and its characteristic features

Material Properties

Calcium phosphate 
bioceramic

It consists of hydroxyapatite (HAP), tricalciumphosphate(α-TCP and β-TCP ) and biphasic calcium phosphate (BCP) in the 
injectable form of cement material (pastes) which are easily moldable ,easy to handle and harden when left in place. There is an 
intimate adaptation of moldable calcium phosphate materials to complex defects which is not possible with conventional bone 
grafts.52

Hydroxyapatite 
(HAP)

It is the popular material used in BTE because it shows the same chemical composition of native bone minerals , which influences 
adhesion and osteoblast proliferation positively.53 The main disadvantage is its prolonged degradation in the crystalline form 
which impedes the complete bone formation and thus increasing the rise for infection and exposure in oral surgical situations.54 

This disadvantage of crystalline HAP form is overcome by amorphous hydroxyapatite.55 The crystalline HAP degradation can be 
modified by addition of the natural polymers with faster kinetics.56

β–tricalcium 
phosphate (β-TCP)

The second commonly used is β-TCP due to its faster rate of degradation and ability to form a strong calcium phosphate band 
in bone. Biphasic calcium phosphate (BCP) is formed by combining β-TCP with HAP.57 The controlled bioactive and stability. 
Significant advantages when large bone defects require bone in growth47 in a controllable degradation rate58 as BCP is known to 
have higher rate of degradation than HAP and slower than the β-TCP.59

Bioactive glass

It is a silicon oxide with calcium being substituted. A calcium phosphate larger is formed on the bioactive glass surface after 
getting exposed to body fluids and this gets chemically bound to bone.60 The synthetic bioglass and specifically in intra oral 
application bioglass.61 It has a slow degradation rate as it sets to a converted HAP like material in internal physiologic situation.62,63 

The mechanism of bioceramic degradation are multiple ways: Dissolution physiochemically accompanied by possible phase 
transformation, multinucleated cell-mediated degradation and mechanical fragmentation due to structural integrity loss by the 
above two mechanisms.64
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Mechanism of action of bioceramics

Various biologic activities that is gaining attention in bone 
reconstruction are due to bioactivity, biocompatibility, hydrophilicity 
similar to native inorganic bone composition and its unlimited 
availability.24

It hasosteoconductive and potential osteoinductive property that 
is the potential to induce bone formation ectopically by stimulation 
of the immediate in vivo environment.25 The osteoinductive activity 
is attributed either to the bioceramics surface which absorbs 
osteoconductive exhibiting factor or stimulating the differentiation of 
osteoprogeniter cell into osteoblasts by gradual release of calcium and 
phosphate ions into the surrounding environment.26 The incorporation 
of calcium phosphate in 3D scaffolds for regeneration of alveolar 
bone already exists in literature.27

Disadvantages of bioceramics

The required structure is difficult to shape due to extreme 
brittleness, stiffness, low flexibility and molding property.28 The 
mechanical strength is weak,29 fracture toughness30 which restricts its 
usage in non loading ones. The above disadvantages are overcome by 
addition of synthetic polyesters or metals.31,32

Metals
In the field of dentistry and orthopaedics, the bone replacement 
is extensively treated by using metallic biomaterials, due to its 
mechanical properties.33,34 They are suitable for load bearing areas due 
to its high strength, toughness and hardness in comparison to polymers 
and ceramics. The size of scaffold is enhanced by metals to improve 
the mechanical properties. Various metals used as biomaterials are 
described in Table 4. 

Table 4 Various metals used as biomaterials

Metal- biomaterial Properties

Titanium alloy
These are used commonly on the basis of good biocompatibility, mechanical properties and elasticity.65 The major disadvantage is 
its nondegradability which requires to be removed. This could affect patient satisfaction and enhance the cost of health care.66

Magnesium and its 
alloy

These have good potential in BTE special orthopaedic application. Their biodegradability by corrosion and the biocompatibility of 
its degraded products which doesn’t involve adverse reactions in surrounding tissues. There is no need for its retrieval through 
second surgery making it a popular material for scaffold construction.64,67 These are osteoconductive so as to increase expression 
of osteogenic marker invitro.68 The faster in vivo biodegradability of pure magnesium can be controlled by use of magnesium alloy 
or coated with titanium69or ceramics.70 There is no bioactivity by this metal, magnesium.

Composite or hybrid 
scaffolds

To incorporate the advantage and restriction of limitation of various biomaterial, two or more materials are combined to produce 
synergestic effect in the overall combined properties71 so as to enhance the biological mechanical and scaffold degradation 
kinectics.72 The synergistic property can also simulate the complex target bone tissue characteristics which is otherwise not 
possible with single biomaterial. The term ternary can be used when three biomaterial are used.

 

Composite scaffolds for BTE can be divided in to polymer/ceramic, ceramic/metal and polymer/ metal. The polymer/ceramic is 
the most commonly used in recent five years in orthopaedic field. Various composite scaffold maintain the shape of newly formed 
bone and favour osteoblast attachment, proliferation and its differentiation.73 The composite scaffold comprise of matrix which is 
less than 50% of the total content and a filler which is minor component ( less than 50% of the content).74

Periodontal regeneration using scaffold

For the GTR applications, a dual role is served by scaffold that 
is a membrane and agrafting material. To serve as membrane a 
mechanically strong scaffold should be used. PCL is not used as a 
scaffold because of its slow degradation which can lead to wound 
dehiscence and failure of tissue regeneration. Magnesium/ PLGA can 
be applied in socket preservation. Chitosan, natural polymer is the 
best choice as GTR which has antibacterial properties. Gelatin can 
also serve the purpose but has decreased mechanical weakness. 

In case of alveolar bone regeneration, augmentation and 
socket preservation, scaffolds made of bioceramics are used. In 
load bearing areas, collagen should be preferred. Collagen along 
with hydroxyapatite helps in bone tissue regeneration due to the 
compositional similarities and reasonable degradation rate. The effect 
of 3D scaffolds in blood clot stabilization should be looked at as a 
factor in alveolar bone regeneration. Scaffold stabilization is also an 
important and compromised regeneration outcome.

In periodontics, 3D printed scaffolds studies have concentrated on 
biomatrix, functional formation and spatial organization when multiple 
tissues for regeneration is attempted. However, the related issues that 
needs to be thoroughly addressed are vascularization, landscape to 
geographic analysis, degradation profile to kinetics.35 In periodontal 
regeneration, use of 3D scaffold requires critical evaluation of 

biologic and mechanical properties as well the degradation kinetics. 
The blood clot stabilization effect by the 3D scaffold requires to 
be assessed which serves as an important prognostic factor in bone 
regeneration.36 Along with bone regeneration technique for soft tissue 
management plays an important role in regenerative outcome.37 The 
scaffold fabrication technique needs further investigation to develop 
required scaffolds to suit the type of tissue regeneration. The scaffold 
stabilization without micro movement is an important issue to prevent 
compromised regenerative results/outcomes. To overcome the 
compromise integrity of scaffold in large defects caused by screws 
and pins could be further investigated with fibrin glue or press fit graft.

Currently, multi-layered 3D scaffold are being experimented in 
periodontal regeneration using non dental(bone marrow) stem cells 
along with platelet rich plasma(PRP). In such situations, the role played 
by nondental stem cells and PRP in periodontal regeneration cannot 
be discriminated. Instead, use of autologous PDLSCs along with its 
niche, a natural scaffold is being tried in human rat and has proved 
to be successful in both clinical and radiographic measurements in 
SAIPRT procedure.38 The use of this technique to be incorporated into 
3D scaffolds could serve a constructive avenue in 3D scaffold related 
stem cell approach in periodontics. There is a scarcity of clinical 
trials literature on 3D scaffolds in bone regeneration/periodontal 
regeneration. Those published animal studies are not a representation 
or validated due to the small defect areas and graft size which hinders 
the extrapolation of the animal study results to human studies.

https://doi.org/10.15406/ijmboa.2020.05.00135
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Conclusion
3D printing has revolutionized the field of periodontology. A 

scaffold should be biocompatible, biodegradable, and bioactive and 
should be made of a hybrid of biomaterials, as the combination of 
different biomaterials is superior to a pure material. 3D‑printed 
scaffolds show predictable outcome for bone and tissue regeneration 
as well as sinus and bone augmentation. 
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