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Introduction
Ensembles of large-numbers of particles, microscopically 

considered, do not have a unique homogeneous particle density 
( )  

l
n n l=  independent on spatial scales .l  In contrast, the smaller 
are the spatial scales l under consideration, the more pronounced 
is the expectation value of the occurring density fluctuation 

( ),n lδ  even though the density average over sufficiently large 
time periodsτ nevertheless is given by the expectation value

( ) ( ) ( )
0

    1 / , .
t

n l n l tn t d
τ

τ== ∫ This evidently also allows to conclude 
that the differential phase-space density ( ) ( ) 3 3, ,n r v f r v d vd rδ = is 
a fluctuating quantity, especially in the weakly populated wings of the 
distribution function ( ), ,f r v where this function attains the smallest 
values, there relative fluctuations become important. This means that 
comparing to the bulk densities the wing densities are showing higher 
relative fluctuation amplitudes. The stochastic expression for these 
probabilistically expectable density fluctuations can be worked out 
with the theory of Poissonian statistics1–3 which latter, however, is 
developed under the Boltzmann´ìan assumption that the distribution 
of particles in space is completely uncorrelated, meaning that the 
presence of a particle in a sub volume V∆ is completely uncorrelated 
with the probability to have other particles of different velocities in 
the same space volume at the same time. This can of course only 
then be considered as a reasonable assumption, if all particles, due 
to the exclusive existence of short-range forces (e.g. like hard-core 
atomic forces, polarization forces or Van der Waals forces), over 
the dimension V∆ effectively can be considered as non-interacting 
particles, - particles which - so to speak - do not “know” of their 

mutual, respective presence, i.e. they do not recognize each other. 
As soon, however, as long-range forces, e.g. like Coulomb forces or 
gravitational forces, are involved into the game on a dimension of 
3 ,V∆ the residence probability of a particle in that sub-volume V∆

is not anymore uncorrelated with the presence of other particles there. 

Usually in form of space plasmas one generally has in view a quasi-
neutral mixture with identical densities of negatively and positively 
charged particles (i.e. electrons and protons in most cases). Since 
the densities of electrons and protons on small scales are fluctuating, 
one has to expect uncorrelated electric field fluctuations. Under 
equilibrium conditions no large-scale electric fields are maintained 
in such quasi-neutral environments, however, on small scales of the 
order of Debye lengths Dλ or smaller,4 i.e. for ,Dl λ≤  electric micro-
fields evidently are present due to the manifestation of unshielded 
single electric charges in these subregions.5–7 Since in these small 
scale regions no quasi-neutrality, i.e. ,i en ñ can be assumed, for 
wavelengths Dλ λ≤  the dispersion relation for electrostatic waves 
differs substantially from the commonly used one and attains a more 
complicated form8,9 given by:

                      ( )2
1

1
e i

D

KT KTk
M Mk

ω
λ

= +
+

With ω and k denoting the wave frequency and the wave vector, 
with iT and eT being the ion and electron temperature, respectively, 
and M, denoting the ion mass. This interestingly enough shows that 
for wavelengths Dλ λ≤ electrostatic waves enter into a very specific 
propagation mode which commonly is not properly recognized.10 In 

Phys Astron Int J. 2020;4(5):182‒186. 182
©2020 Fahr . This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and build upon your work non-commercially.

The debye region in astrophysical plasmas: a new 
access to the problem

Volume 4 Issue 5 - 2020

Hans J Fahr 
Argelander Institute for Astronomy, University of Bonn, 
Germany

Correspondence: Hans J Fahr, Argelander Institute for 
Astronomy, University of Bonn, Germany, Auf dem Huegel 71, 
D53121 Bonn, Email 

Received: October 14, 2020 | Published: October 29, 2020

Abstract

We study the consequences of defining the Debye region in astrophysical plasmas as that 
region where purely stochastic Poissonian density fluctuations must be perturbed by the 
appearance of unscreened electric Coulomb forces. Here by we test a new definition of the 
charge screening length requiring that purely statistical density fluctuations in sub-volumes 
of the system can only be expected, if particle residence probabilities in those volumes are 
uncorrelated. We find that within Debye spheres where electric micro fields appear, this 
can evidently not anymore be guaranteed. We introduce a new definition of the charge-
screening length based on this requirement. It turns out that the newly defined charge 
screening length increases compared to its classical Debye value proportional to the so-
called Debye number, i.e. the number of particles in the Debye sphere, while the classical 
Debye length delivers one unique result independent on the Debye number. We discuss the 
astrophysical relevance of this new definition which has the consequence that the effective 
screening length increases with the square of the temperature and decreases inversely 
proportional to the density, instead of with their square roots as in classic representations. 
Based on this revised Debye concept we furthermore study the general dispersion relation 
for electrostatic waves and show, that these waves when propagating into the direction of 
increasing electron temperatures will grow nonlinear and thus dissipate their excess energy 
to the electrons, with the consequence of heating them further up. This naturally explains 
the occurence of observed electron temperature increases at space plasma passages over 
MHD shocks. Furthermore we study the radiowave scattering in a plasma environment due 
to density-fluctuations which induce dielectricity fluctuations exciting secondary dipolar 
radio waves which latter serve as a valuable diagnostic tool for plasma investigations.
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dielectricity fluctuations

Physics & Astronomy International Journal

Research Article Open Access

https://creativecommons.org/licenses/by-nc/4.0/
https://crossmark.crossref.org/dialog/?doi=10.15406/paij.2020.04.00220&domain=pdf


The debye region in astrophysical plasmas: a new access to the problem 183
Copyright:

©2020 Fahr 

Citation: Fahr HJ. The debye region in astrophysical plasmas: a new access to the problem. Phys Astron Int J. 2020;4(5):182‒186. 
DOI: 10.15406/paij.2020.04.00220

this article here we now want to look at these aspects from a different 
view, namely turning the above question to the inverse, - rather asking 
now - what region should be defined as Debye region, if it is just in 
this region that unshielded electric fields do compete with stochastic 
density or pressure force fluctuations, in other words defining the 
Debye region by that characteristic scale PDλ λ= where Poissonian 
density fluctuations are perturbed due to field-correlated residence 
probabilities of the particles.

Derivation of the poissonian debye screening
Let us first consider here the stochastic residence probabilities to 

find a sub number n∆  of particles in a sub volume V∆ of the system. 
The specific probability to have µ particles in a volume 0 ,V V V= + ∆
where 0V is the norm-volume of these µ particles given by the relation: 

0/ / ,V N V nµ = = is given by:11

                           
( ) 2

0
0

exp[ ( ) ]
2

VW v W
V

µ ∆
= −

In addition it can be well concluded for the Debye sphere, that the 
probability to have DN particles in a volume ,D DV V V= + ∆  where

DV  is the Debye norm-volume of DN particles (the so-called Debye 
number ( ) 34 / 3D D DN nV n π λ= = related to: / / ),D DN V N V n= =  
thus is given by

                     
( ) 2

0 exp[ ( ) ]
2

VD D
D VD

NW N W ∆= −

Where the probability weight 0 ( 0)DW W V= ∆ = is taken to be 
equal to 1! The above relation then leads to

        
( )

2
2exp[ ( ) ] exp[ ]

2 2
D D D

D
D

nV V n VW N
V D
∆ ∆

= − = −

With the probability ( )DW V∆ that DV∆ is the volume fluctuation 
of DN ions, one can calculate the most probable fluctuation volume

DV∆ as:

( )
2

2 2
0 0

exp[ ] exp[ ]
2 2

D D
D D D D D D D

D

n V NV V W V d V V d V V X X dX
V

ς ς ς
∞ ∞∆

∆ = ∆ ∆ ∆ = ∆ − ∆ = −∫ ∫ ∫
Where ς takes care of normalizing the probability function
( )DW V∆ and hence is calculated to

Be

                               

1 2 D

D

N
V

ς
π

=

which then yields the most-probable fluctuation volume as
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Where ( )xΓ is the well known Gamma function. This, with
( ) 1,xΓ = finally delivers

                            

2
D D

D
V V

Nπ
∆ =

With this above result for the most probable volume fluctuation 
one obtains, - assuming that volume and temperature fluctuations 
are uncorrelated -, and - for the moment here - that electron and 
ion temperatures are identical - , the associated Poissonian pressure 
fluctuations which then are given by	

( ) 2/D D D
D

P P P KT n KTn V V KT n
N

δ δ
π

= − = = − ∆ = − 

Within the Debye sphere this leads to a pressure force per particle 
of /D DP nδΠ = −∇ given by

             

1 1 2( )D
D

D D D

P KT
n N

δ
λ λ π

Π = = −

Now we have to respect that within the Debye sphere the 
Poissonian fluctuation pattern is perturbed due to competing electric 
Coulomb forces of unscreened electric charges. Hence we expect 
that just within this sphere, where the Poissonian pressure fluctuation 
force DΠ competes with the single-charge electric field force 

D DeE∈ = of an unscreened charge ,e  the normal Poissonian pressure 
fluctuation pattern is perturbed. This means we now and here consider 
the “effective Debye sphere” as to be that specific region with non-
Poissonian pressure fluctuations, defined by the following criterion:  
ÐD D= ∈ and thus consequently we obtain the following relation 

for the so-called “Poissonian Debye length” :PDλ

                         

2

2
1 2

PD DPD

e KT
Nλ πλ

=

which then further on leads to:

                         

2
2

2
3( )

2 PD

e
KT nπ λ

=

or finally to:

    

2
3

0 0 0 02 4  3( ) 3( )
42PD D D D D

KT n N
ne

λ λ λ λ
ππ

= = =

where in the above relation the classical Debye length has been 

introduced with 2
0 / (4 ).D KT neλ π=  This above formulation 

expresses the fact that the Poissonian Debye length DPλ is larger or 
smaller than the classical Debye length 0Dλ dependent on, whether the 
classical Debye number 0DN is larger or smaller than (4 / 3).π   This 
for the first time also now opens the opportunity to even obtain a value 
for λPD for the condition that the number of particles in the Debye 
region is not a statistically relevant one, which in fact does not allow 
to at all consider the charge screening on a statistical basis. 

While the classical Debye length shrinks as function of the density 
according to (1 / ),n  and increases as function of the temperature 
according to ,T  the above derived Poissonian Debye length DPλ
reacts to these quantities by

                  

3/2 2

0 0 1/2( ( )PD D D
T T TN
n nn

λ λ= ≈ ≈

i.e., compared to the classical Debye length 0,Dλ it thus decreases 
more strongly with the increase of the density, namely by (1 / ),n and 
also increases more strongly with temperature, namely by 2.T

We can also look here at the ratio , 0/P D PD DR λ λ= of the Poissonian 
over the classical Debye length and obtain for this ratio

 
3/2 3/2

3/2 3
, 0 0 02 1/2 1/2  4 4 3/ ( )[ ] 6.9 1376 1      376 328

3 3 44P D PD D D D
KT T TR n N N

ne n n
π

λ λ π
ππ

= = = = = =  

Where T must be measured in Kelvin and n in 3.cm− This means 
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that for a Debye number 0,DN which falls off  with density like1 / ,n
of  0 1 / 328,DN =  i.e. just for the case of statistical irrelevance, the 
two Debye lengths would become equal.

Scattering of electromagnetic waves in 
fluctuating dielectrica

It is well known that fluctuating dielectrica induce scatterings 
of electromagnetic wave power by causing secondary waves, e.g. 
Rayleigh scattering, aerosole scattering, or the blue-sky phenomenon. 
This is connected with the fact that propagating electromagnetic 
waves under fluctuating environmental dielectricity conditions 

( , ( )) ( , ) ll E t r tδε ε ε= − on scales l  induce time-dependent local 
electric dipoles which by themselves radiate frequency-coherent 
secondary waves, i.e. scatter the original wave by parts. This means the 
propagation of electromagnetic radiowaves in a plasma environment, 
due to the coherent dielectricity fluctuations excites as well radiowave 
scatterings. If the scale of the fluctuation volume 3l V= ∆ is small 
compared to the wavelength λ  of the radiowave, then it can be 
assumed that the wave locally induces a homogeneous, dipole-
inducing electric field extended over the volume V∆  which would 
allow to apply Poissonian statistics, as long as the number of particles 
in this fluctuation volume, i.e. n V∆  is a statistically significant or 
relevant number. Hence, assuming 1mλ   and 10l cm  then, with an 
electron density of  31n cm−= this would yield a statistically relevant 
number of about 103 particles in the fluctuation volume, i.e. would 
permit to apply statistical considerations as carried out in section 2 of 
this paper. First we can calculate here the electric dipole moment of 
the volume V∆  and obtain

                0 0( , ) ll
r t V E V Eµ ε ε ε ε ε= − ∆ = ∆ ∆

 



 

Consequently connected with the time-dependent electric field 
( , )E E r t=

 

a co-herently time-dependent electric dipole ( , )r tµ µ=
 

is induced which by itself emits in its typical dipolar characteristics, 
like a dipolar antenna does as well, i.e. a secondary wave with a 
dipolar emission characteristic originates. At a distance r d  
(radiation zone!) one then obtains the following emission intensity 
(see e.g. Weizel, 1973b) 

            

2 2 2 2 2 2
2 2

4 2 4 2
0 0

( , )
2 2

c c V ES r sin sin
r r

π µ π εθ θ θ
ε λ ε λ

∆
= =

∆

Where θ  is the angle between the infalling and the scattered 
wave. The above expression can be written in the following 
form, then containing the intensity of the primary wave 

2
0 0(1 / 2)(D ) (1 / 2)S E Eεε= ⋅ =

 

 when given in the form 

                        
2 2 2

2
0 2 4 2

0
( , ) c VS r S sin

r
π εθ θ
ε λ

∆∆
=

Now we can make use of the density-dependence of the dielectricity 
in the form

                         1 d d
d d
ε ρ ερ δ

ε ε ρ ε ρ
ε
= ∆ =

∆

where the density fluctuation δ  has been defined by /δ ρ ρ= ∆  
Calculating next the statistical mean of δ  by using the expression 
developed in section 2 (Equ. 12), one finds

		

2
2

2
2

exp[ ] 12

exp[ ]
2

v d

vv d

δδ δ
δ

δ δ

−
= =

−

∫

∫

where v n V= ∆  is the expectation number of electrons in the 
volume V∆  then one obtains the intensity of scattered radiation in 
the form

		
 

2 2 2

2
0 2 4 2

0

( )
Δ( , )

d
V dS r S sin
n r

επ ρ
ρθ θ

ε λ
=

The change / (1 / ) /d d M d dnε ρ = ∈  of the dielectricty ε  with 
changing density n  hereby can be derived with the help of the well-
known Lorentzian formula of the optics.

The Poissonian average of the density fluctuation nδ over a Debye 
volume as derived in Equ. (12) of section 2 is given by

			 

2

D
n n

N
δ

π
= −

and consequently one can express the scattered radiation flux by

    
( )

2 2 2 2 3 2

2 2
0 02 4 2 2 4 2

0 0

( ) 2 ( )Ä 1,
D

d dn n nV dn dnS r S sin S sin
n Nr r

V

ε επ δ π
θ θ θ

ε λ ε λ
= = ∆

As becomes evident from the above expression, the relative 
intensity 0/S S of the scattered radiation depends on the Debye 
number DN being inversely proportional to it. The dependence on the 
effective (Poissonian) Debye length PDλ can even better be expressed 
by rewriting the above expression in the following form:

                  
2

2
0 2 4 2

0

3 ( )
2( , )

( / )

PD

PD

dn
dnS r S sin

r
V

ελ
θ θ

ε λ λ
∆=

Our conclusion thus is that by studying the spectral behaviour 
of the scattered intensity of radiowaves with wavelengths Dλ λ

propagating through a plasma environment with an electron density 
n  one should be able to find indications for the actual value of the 
effective Debye length PDλ and also the actual Debye number DN .

The revised electrostatic dispersion for 
electron plasma oscillations

As already mentioned earlier in this paper the generalized 
dispersion relation for electrostatic electron plasma waves, when 
replacing Dλ  by PDλ  as setting the limit of validity of the plasma 
approximation, i.e. e in n n= = , is given by:4

                       
2

1
1 ( )

e i

PD

KT KTk
M Mk

ω
λ

= +
+

Introducing first now the electron plasma frequency 
24 /pe ne mω π= , the classical Debye length 2

0 / 4D eKT neλ π=

, the Debye wave vector 0 0/ ,2D Dk π λ= and the definition of 

the effective Poissonian Debye length 0PD PD DRλ λ= ⋅ , with 
3/2 1/2126 /PDR T n  we then find: 

            2 2
,

1/ ( )
4 1 ( )

e i
pe

eP D

KT Tmk
M Tne k

ω ω
π λ

= +
+

and furthermore

/ 2 ( / ) ( )
1 (2 ( / )

i
pe D

ePD D

Tmk k
M TR k k

ω ω π
π

= +
+
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When introducing now normalized quantities with / peω ω ω=  
and 0/ Dk k k=  one finds

                  
2

12
1 (2 k)

i

ePD

Tm k
M TR

ω π
π

= +
+

and finally denoting / / /pi pe M mω ω ω ωΩ = =  one can write  

2( k
12

1 2 )
i

ePD

Tk
TR

π
π

Ω = +
+

The above dispersion relation is displayed in Figure 1 and shows that 
always there exists a part of the relation connected with a vanishing or 

nearly vanishing group velocity with ( ) / 0g s s
v k ωω ω= ∂ ∂  . It turns 

out that this ”standing wave”- branch occurs at the higher frequencies 

sω , the higher is the effective Debye length , 0P D PD DRλ λ= ⋅ , or, so 
to say it in other words, the electron temperature eT . This for instance 
means that electrostatic turbulent waves at subcritical frequencies 

sω ω≤  when propagating into regions with increasing electron 
temperatures eT , then may naturally enter a region in which their 
frequencies ω  become equal to the local value of sω . This furtheron 
then, however, implies that the group velocity ( )g sv ω ω  by which 
turbulent wave energy is transported slows substantially down there, 
and turbulent fluctuation amplitudes consequently have to grow to 
keep the turbulent wave energy flow constant.12–14 Thus it can happen 
that in such regions of slowly increasing temperatures the pile-up of 
turbulent electrostatic energy leads to an amplitude growth from the 
linear to the nonlinear wave regime. As soon as electrostatic waves, 
however, grow to nonlinear amplitudes, they then start dissipating 
their wave energy to thermal degrees of freedom of the electrons (i.e. 
dissipation of wave energy into electron thermal energy), and thus 
will induce an additional electron heating, i.e. will drive the electron 

temperatures even higher in this region.

Figure 1 Shown is the electrostatic dispersion relation ( )kω ω= showing 
the normalized frequency / iω Ω on the ordinate as function of the normalized 
wavevector / Dk k on the abscissa. The parameter s is equal to the number 

PDR introduced in the text.

This form of electrostatic wave energy dissipation could perhaps 
be the reason why at shocks - like e.g. especially the solar wind 
termination shock - ions must be expected to behave differently from 
electrons what concerns their polytropic reactions to the downstream 
density increases, concerning their shock-induced specific temperature 
increases.15–18 Normally the Rankine-Hugoniot relations do consider 
electrons and ions as thermally reacting in identical forms. But even 
in case both species, according to the conventional Rankine-Hugoniot 
relations, were expected to first react according to identical polytropic 
relations, the electrons downstream of the shock might additionally 
be heated up via wave energy dissipation according dissipation of 
steepened electrostatic waves allong the aforementioned argument. 
This means that they are nevertheless then furtheron differentially 
heated up with respect to protons due to being additionally heated 
by the energy dissipation of the nonlinear electrostatic waves which 
are convected into the downstream region selectively heating 
electrons. (see illustration given in our).This could be an alternative 
or additional explanation for the strong electron heating predicted in 
papers like Chalov et al.15–18 Most recently there was even given a 
proof connected with Voyager-2 data  that KeV-energetic electrons are 
produced at the passage of solar wind electrons over the solar wind 
termination shock.19

In order to quantitatively check the efficiency of this latter 
heating process one should first of all know more about the wave 
amplitudes of the electrostatic noise level upstream of the termination 
shock, in order to judge the energy that is available for dissipation 
to electrons. Furthermore one also should be able to make sure that 
the wave-electron coupling periods are short enough to allow for the 
wave-induced heating of the electrons while passing over the shock 
structure. For the latter the so-called Landau damping periods may 
give a characteristic measure.8–10 Evaluated at the point of maximum 
growth one might find growth periods of  Kadomtsev et al.20–22

                         max

1 1 2 4 .
3L

pe

M
m

τ
γ ω

= ≈

With peω denoting the local electron plasma frequency and M and 
m being the masses of ions and electrons, respectively. This expression 
at the location of the solar wind termination shock evaluates to 

210 secLτ
−≈  which just is in the order of the electron passage time 

over the shock 310 / 8 10 sect D Uτ λ −≈ ≈ ⋅  and thus means that the 
wave-electron coupling during the shock passage is well possible. 
Similar results were also found earlier by Chashei et al.23 on the basis 
of studying the Buneman instability based on the counterstreaming of 
electrons and protons at the shock.24,25

Conclusion
In this article we have considered stochastic density fluctuations in 

astrophysical plasmas and have emphasized the important point that 
such fluctuations can only then be described by means of Poissonian 
statistics, if the particle residence times within the volumes of such 
density fluctuations are uncorrelated. This, however, cannot be 
expected being the case, if for instance electrical forces connected 
with unscreened electrical charges enforce the correlation of particle 
residence times. In order to define the Poissonian limit of permitted 
volumes of density fluctuations we compare forces due to pressure 
fluctuation forces with electric forces in these volumes due to 
uncreened electric charges. Following this idea we can define the 
so-called Poissonian Debye length which contains as a factor the 
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classical Debye length4 and the number of particles in the Debye 
sphere, the so-called Debye number. It turns out that this modification 
of the Debye length clearly expresses the statistical relevance of 
the number of charge-screening particles. This result has a broad 
astrophysical meaning as we demonstrate. On the basis of this newly 
defined “effective” Debye length we study the dispersion relation 
of electrostatic waves in astrophysical plasmas and do show that 
electrostatic waves with a specific frequency ω  when propagating 
into plasma regions with increasing electron temperature where the 
group velocity /d dkω  of this wave becomes small or even vanishes 
(i.e. standing waves !, see Figure1), then turbulent wave energy has 
to be dissipated and electron temperatures are even more increased 
there. This means that the wave amplitudes of such waves grow 
nonlinear and the waves start dissipating wave energyinto kinetic, 
i.e.thermal energy. By this mechanism electrostatic waves in regions 
of increasing electron temperatures do contribute to an additional 
heating of electrons. Especially at astrophysical MHD shocks17 this 
may help to strongly and selectively heat electrons compared to 
protons at their passage over the shock to the downstream region.

We furthermore discuss observational possibilities to measure the 
Poissonian Debye length in astrophysical plasmas by transmission 
of a radiowave through these plasmas observing the extinction of 
the wave intensity due to excitation of locally generated, secondary 
dipolar waves. When the radiowave length is larger than the local 
Poissonian Debye length, then the local excitation of secondary waves 
occurs and modifies the radiowave intensity of the penetrating wave, 
while at wavelengths shorter than the local Poissonian Debye length 
coherent secondary waves will not be excited.

Acknowledgments
None.

Conflicts of interest
The author declares there is no conflict f interest.

References
1.	 Joos G. Lehrbuch der Theoretischen Physik. 10. Auflage, Geest & Portig 

K.G., Leipzig. 1959. p. 539–554.

2.	 Weizel W. Lehrbuch der Theoretischen Physik. Zweiter Band 
(2.Auflage), Springer Verlag, Heidelberg. 1973A. p. 1480–1485.

3.	 Landau LD, Lifshitz EM. Statistical Physics, Part 1 (3rd Edition, Course 
of Theoretical Physics, Volume 5). New York 1998.

4.	 Chen FF. Introduction to plasma physics. 1974, New York, Plenum Press 
Debye, Phys. Z. 1920. p. 21–181.

5.	 Hunger K, Larenz RW. Das Mikrofeld im Plasma. Zeitschr f Physik. 
1961;163:245–261.

6.	 Ichimaru S. Basic Principles of Plasma Physics: A statistical approach. 
Benjamin Publ., New York, 1973.

7.	 Spatschek KH. Theoretische Plasmaphysik. Teubner Studienbücher, 
Physik, B.G.Teubner, Stuttgart, 1990.

8.	 Baumjohann W, Treumann RA. Basic space plasma physics. London 
Imperial College Press. 1996.

9.	 Goedbloe H, Poedts S. Principles of Magnetohydrodynamics. Cambridge 
University Press, Cambridge (UK). 2004.

10.	 Fahr HJ, Richardson JD, Verscharen D. Probing the thermodynamic 
conditions of the heliosheath plasma by shock wave propagation. Astron 
& Astropyhs. 2015;579:A18.

11.	 Weizel W. Lehrbuch der Theoretischen Physik. Erster Band (2.Auflage), 
Springer Verlag, Heidelberg. 1973B. p. 480–485.

12.	 Scudder JD. On the causes of temperature changes in inhomogeneous 
low-density astrophysical plasmas. Astrophys J. 1992;389:299.

13.	 Schwartz SJ, Thomsen MF, Bame SJ, et al. Electron heating and the 
potential jump across fast mode shocks. J Geophys Res. 1988;93:12923.

14.	 Leubner MP. Wave induced suprathermal tail generation of electron 
velocity space distributions. Plan Space Sci. 2000;48:133.

15.	 Chalov SV, Fahr HJ. On the effect of transport coefficient anisotropy on 
the plasma flow in heliospheric interface. MNRAS. 2013;433:L40–L45.

16.	 Fahr HJ, Siewert M, Chashei IV. On the electron temperature 
downstream of the solar wind termination shock. Astrophys Space Sci.  
2012;341:265–276.

17.	 Fahr HJ, Siewert M. Probing the thermodynamic conditions of the 
heliosheath plasma by shock wave propagation. Astron & Astrophys. 
2013;558:A41.

18.	 Fahr HJ, Verscharen D. The behavior of electrons at the heliospheric 
shock transition. Astron & Astrophys. 2016;587:L1.

19.	 Fahr HJ, Krimigis SM, Fichtner H, et al. The behavior of electrons at the 
heliospheric shock transition. Astrophys J Lett. 2017;848:L3.

20.	 Kadomtsev BB. Plasma turbulence. Academic Press, New York, 1965.

21.	 Sagdeev RZ, Galeev AA. Nonlinear Plasma Theory. In: D.O ‘Neill, T. 
Benjamin et al. editors. Book, New York, 1969.

22.	 Papadopoulos K. A review of anomalous resistivity for the ionosphere. 
Rev Geophys Space Physics. 201977;15:113.

23.	 Chapman S, Cowling TG. Mathematical Theory of Non-Uniform Gases. 
Cambridge University Press, Cambridge 1961.

24.	 Chashei IV, Fahr HJ. On the electron temperature downstream of the 
solar wind termination shock. Ann Geophys. 2013;31:1205–1212.

25.	 Fahr HJ, Heyl M. Quasi-thermal noise spectroscopy: The art and 
thepractice. Astron & Astrophys. 2016;589:A85.

https://doi.org/10.15406/paij.2020.04.00220
https://www.zvab.com/buch-suchen/titel/lehrbuch-der-theoretischen-physik/autor/joos/
https://www.zvab.com/buch-suchen/titel/lehrbuch-der-theoretischen-physik/autor/joos/
https://www.springer.com/de/book/9783662220870
https://www.springer.com/de/book/9783662220870
https://www.worldcat.org/title/introduction-to-plasma-physics/oclc/915890/
https://www.worldcat.org/title/introduction-to-plasma-physics/oclc/915890/
https://link.springer.com/article/10.1007/BF01342486
https://link.springer.com/article/10.1007/BF01342486
https://www.taylorfrancis.com/books/9780429502118
https://www.taylorfrancis.com/books/9780429502118
https://www.springer.com/kr/book/9783519030416
https://www.springer.com/kr/book/9783519030416
https://ui.adsabs.harvard.edu/abs/1996bspp.book.....B/abstract
https://ui.adsabs.harvard.edu/abs/1996bspp.book.....B/abstract
https://assets.cambridge.org/97805216/26071/copyright/9780521626071_copyright.pdf
https://assets.cambridge.org/97805216/26071/copyright/9780521626071_copyright.pdf
https://www.aanda.org/articles/aa/abs/2020/10/aa38453-20/aa38453-20.html
https://www.aanda.org/articles/aa/abs/2020/10/aa38453-20/aa38453-20.html
https://www.aanda.org/articles/aa/abs/2020/10/aa38453-20/aa38453-20.html
https://www.springer.com/in/book/9783662011980
https://www.springer.com/in/book/9783662011980
https://ui.adsabs.harvard.edu/abs/1992ApJ...398..299S/abstract
https://ui.adsabs.harvard.edu/abs/1992ApJ...398..299S/abstract
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JA093iA11p12923
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JA093iA11p12923
https://ui.adsabs.harvard.edu/abs/2000P&SS...48..133L/abstract
https://ui.adsabs.harvard.edu/abs/2000P&SS...48..133L/abstract
https://watermark.silverchair.com/stt1267.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAqUwggKhBgkqhkiG9w0BBwagggKSMIICjgIBADCCAocGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMKBX-hUWySzlwuvw1AgEQgIICWPyYern0lZyZaEGHFSMlNuu_c0nCgKDxZT_Wq1UiUMl35_NP
https://watermark.silverchair.com/stt1267.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAqUwggKhBgkqhkiG9w0BBwagggKSMIICjgIBADCCAocGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMKBX-hUWySzlwuvw1AgEQgIICWPyYern0lZyZaEGHFSMlNuu_c0nCgKDxZT_Wq1UiUMl35_NP
https://cyberleninka.org/article/n/167468
https://cyberleninka.org/article/n/167468
https://cyberleninka.org/article/n/167468
https://www.aanda.org/articles/aa/abs/2020/10/aa38453-20/aa38453-20.html
https://www.aanda.org/articles/aa/abs/2020/10/aa38453-20/aa38453-20.html
https://www.aanda.org/articles/aa/abs/2020/10/aa38453-20/aa38453-20.html
https://link.springer.com/article/10.1007/s10509-019-3667-0?shared-article-renderer
https://link.springer.com/article/10.1007/s10509-019-3667-0?shared-article-renderer
https://link.springer.com/article/10.1007/s10509-019-3667-0?shared-article-renderer
https://link.springer.com/article/10.1007/s10509-019-3667-0?shared-article-renderer
https://ui.adsabs.harvard.edu/abs/1977RvGSP..15..113P/abstract
https://ui.adsabs.harvard.edu/abs/1977RvGSP..15..113P/abstract
https://www.abebooks.com/book-search/title/mathematical-theory-non-uniform-gases/
https://www.abebooks.com/book-search/title/mathematical-theory-non-uniform-gases/
https://angeo.copernicus.org/articles/31/1205/2013/angeo-31-1205-2013.html
https://angeo.copernicus.org/articles/31/1205/2013/angeo-31-1205-2013.html
https://hal.sorbonne-universite.fr/hal-01628354/document
https://hal.sorbonne-universite.fr/hal-01628354/document

	Title
	Abstract
	Keywords
	Introduction
	Derivation of the poissonian debye screening 
	Scattering of electromagnetic waves in fluctuating dielectrica 
	The revised electrostatic dispersion for electron plasma oscillations 
	Conclusion
	Acknowledgments
	Conflicts of interest 
	References
	Figure 1

