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Introduction
Data gathered by space missions and ground experiments are 

increasingly used to create training data sets for machine learning 
algorithms. These tools are exploited to reach different objectives, 
as pattern recognition and variable prediction. Recent examples are 
the automatic detection of interplanetary coronal mass ejections,1 
the prediction of the North-South component of the magnetic field 
embedded within interplanetary coronal mass ejections2 and the 
prediction of the global solar radiation.3 A powerful exploitation of 
machine learning models is also the prediction of data gathered by 
space missions no more active, by using as training set the data taken 
by an experiment during its lifetime. An example may be the galactic 
cosmic-ray (GCR) data gathered on board the European Space 
Agency LISA Pathfinder (LPF) mission, ended in 2017. The large 
amount of available data make it possible to train machine learning 
models to reproduce the observed GCR flux variations on the basis 
of contemporaneous and preceding observations of the interplanetary 
medium, magnetic field and plasma parameters. Resulting models may 
be even more valuable if some kind of human-explainable knowledge-
extraction is provided together with the output predictions. This goal 
may be achieved by means of symbolic knowledge-extraction (SKE) 
techniques, explicitly designed to explain the behaviour of machine 
learning models in human-interpretable formats.

In this paper we report the results of two SKE techniques, namely 
CART and GridEx, applied to an ensemble predictor reproducing 
the GCR data gathered on board LPF. We focus in particular on the 
readability/fidelity trade-off, to show that it is possible to obtain high 
degrees of human-intelligibility for the predictions, but at the expense 
of the corresponding predictive performance. 

The LISA Pathfinder mission

LISA Pathfinder4 was an European Space Agency mission aimed 
at testing if the current technology for the detection in space of 

gravitational waves with interferometers was mature. The mission 
achieved exceptional results, demonstrating the feasibility of placing 
2 free falling masses in space with a residual acceleration smaller 
than a millionth of billionth of the gravitational acceleration. LPF was 
the precursor of the scientific mission LISA,5 which goal will be the 
detection of super massive black-hole coalescence. The LISA mission 
is scheduled to be launched in 2037.

LPF was launched at the end of 2015 from Kourou (French 
Guyana) on board a Vega rocket. Its final orbit around the Lagrangian 
point L1 was reached on January, 2016 and the mission lifetime 
ended on July, 2017. We recall that the L1 point is at 1.5 million km 
from Earth in the Earth-Sun direction. Mission orbit was inclined of 
45 degrees w.r.t. the ecliptic plane and required approximately six 
months to be completed by the satellite. Minor and major axes of the 
LPF orbit were about 0.5 and 0.8 millions of km, respectively. The 
spacecraft rotated around its own axis with a period of six months.

LPF was equipped with a particle detector to monitor the flux 
of GCRs and particles originated from the Sun energetic enough to 
traverse the spacecraft and reach the test masses. The test masses were 
cubes of platinum and gold, penetrated and charged by protons and 
ions having energies > 100 MeV n-1. The test-mass charging induced 
spurious forces on the test masses.6 Monte Carlo simulations have 
been exploited to study this process before the mission launch.7–9 
Noise control has been periodically performed by using ultraviolet 
light beams to discharge the test masses.10 The LPF particle detector 
enabled the observation of the GCR integral flux with a nominal 
statistical uncertainty of 1% on hourly binned data.

 GCR flux short-term variations observed with LISA 
Pathfinder

GCR flux short-term variations are characterised by duration 
shorter than the solar rotation period (27 days) and are associated 
with the passage of magnetic structures having solar or interplanetary 
origin. GCR flux is generally anti-correlated with increasing solar wind 
speed and interplanetary magnetic field amplitude. As a consequence, 
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Machine learning models are nowadays ubiquitous in space missions, performing a wide 
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ensemble predictor capable of reproducing cosmic-ray data gathered on board the LISA 
Pathfinder space mission. A discussion about the readability/fidelity trade-off of the 
extracted knowledge is also presented.
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GCR flux, interplanetary magnetic field, solar wind plasma and 
geomagnetic activity indices show nominal quasi-periodicities related 
to the Sun rotation period and higher harmonics equal to 27, 13.5 
and 9days.11,12 A quantitative assessment of the correlation between 
GCR flux depressions and increases of the solar wind speed and/
or interplanetary magnetic field intensity is still missing, since the 
evolution of single short-term depressions is unique and may differ 
even in presence of similar interplanetary medium conditions.The 
particle detector hosted by LPF allowed to study GCR short-term flux 
variations during Bartels rotations from 2490 through 2509 (from 
February 18th, 2016 through July 18th, 2017). We recall that Bartels 
rotations are 27-day periods defined as complete apparent rotations of 
the Sun viewed from Earth. Day 1 of rotation 1 is arbitrarily fixed to 
February 8, 1832.

GCR percent variations are compared to interplanetary magnetic 
field intensity and solar wind plasma contemporaneous observations 
for each Bartels rotations in order to focus on recurrent periodicities 
consistent with the Sun rotation period and higher harmonics.

Symbolic knowledge extraction
Machine learning models are currently adopted to face a 

wide variety of tasks, since they exhibit an impressive predictive 
performance.13 These models usually require a prior training 
phase, during which models learn from training data some kind 
of generalised knowledge to be used to draw predictions. A large 
subset of machine learning predictors store the acquired knowledge 
in the form of internal parameters (i.e., sub-symbolically), making 
it difficult for human users to understand the process leading to the 
model predictions. These predictors are commonly defined as opaque, 
or black boxes.14

There exist critical applications (e.g., those having great impact on 
human lives) that may benefit from the adoption of decision support 
systems, however these contexts require human awareness about the 
system internal behaviour. For this reason systems based on opaque 
models are not reliable, even if they provide accurate suggestions/
predictions. Amongst the various solutions,15,16 the explainable 
artificial intelligence community proposes SKE methods aimed 
at explaining the internal functioning and/or the outputs of opaque 
models.17 Amongst the available techniques to achieve the goal of 
explainability there is the creation of a surrogate model, that is a 
non-opaque predictor able to mimic the opaque one. In this case, the 
opaque predictor is called underlying model. Critical applications that 
benefit from SKE are, for instance, medical diagnosis,18,19 credit-risk 
evaluation20–22 and credit card screening.23

CART24 and GridEx25 are examples of algorithms applicable 
to black-box models. The former induces a decision tree having 
conditions on the input variables as nodes and output predictions as 
leaves. Paths from the tree root to single leaves represent human- 
intelligible rules mimicking the underlying model predictions. On 
the other hand, GridEx operates a hyper-cubic partitioning of the 
input feature space in order to find subregions of instances whose 
associated output predictions are similar. Each hyper-cubic region is 
then described in terms of the input variables (i.e., hyper-cube sides 
are equivalent to variables whose values lay in specific intervals) and 
is associated to an output value. The output value for a hyper-cube is 
calculated by averaging the predictions provided by the underlying 
model for the training data belonging to the hyper-cube. Thus, 
descriptions are human-understandable and may be used to draw 
interpretable predictions.

In this work we rely on the CART and GridEx implementations 
included in the PSyKE framework.26–28 PSyKE is a Python library 

providing several interchangeable SKE algorithms. Explainability in 
PSyKE is achieved via the extraction of rules in Prolog syntax.

Explaining an ensemble model for the LPF GCR data

Since the performance of knowledge extractors is usually bounded 
to the specific task at hand and there is not a universally best choice, 
a comparison between the CART and GridEx has been performed 
and reported here. Both algorithms have been applied to the same 
ensemble model reproducing the LPF GCR data. Information about 
the training data set and the ensemble predictor are also reported in the 
following. Design choices about the data set creation and the predictor 
hyper-parameters have been optimised and described in another work 
currently not yet published.

Data set

A data set has been created to train the ensemble predictor and the 
extractors. Since GCR flux variations show a strong correlation with 
solar wind speed and interplanetary magnetic field intensity, these 
parameters have been used as data set input variables. In particular, 
GCR observations have been temporally aligned with those of 
magnetic field and solar wind, then for each time instant the following 
input variables have been selected: 

i.	 2 variables representing the solar wind speed and the 
interplanetary magnetic field intensity at the considered time 
instant; 

ii.	 6 variables obtained by averaging every 36 hours solar wind 
speed observations during the 9 days preceding the considered 
time instant; 

iii.	 9 variables obtained by averaging every 24 hours interplanetary 
magnetic field intensity observations during the preceding 9 
days; 

iv.	 the GCR flux variation observed 9 days before the considered 
instant by LPF w.r.t. the average monthly value, for GCR 
normalization;

The data set has been completed by adding the output variable, that 
is the GCR flux decrease observed by LPF at the considered instant 
w.r.t. the flux value 9 days before. As for the number of instances, 
the data set encompasses all the available observations between the 
starting and ending time of LPF, resulting in about 11000 instances.

Ensemble model reproducing LPF GCR data

The ensemble model29,30 adopted to reproduce the GCR data 
observed on board LPF consists of 10 support-vector machines.31,32 
These base regressors have been aggregated to obtain a bagging 
regressor providing output predictions by averaging the base 
model outputs. An ensemble approach has been preferred since the 
exploitation of multiple learning algorithms enables more robust 
and accurate predictions than single machine learning models. In 
this particular case, support-vector machines are supervised learning 
algorithms requiring 3 hyper-parameters to be tuned: 

i.	 a kernel function, 

ii.	 a regularization parameter, 

iii.	 a maximum error ε. 

For this work radial basis function kernels have been chosen as 
kernel functions, i.e., non-linear generalised kernels commonly 
exploited to perform linear separations of non-linearly separable 
data. This is achieved by mapping the input features into a new input 
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space having higher dimensionality. The regularization parameter, 
controlling the tolerance for outliers, has been fixed to 1. Finally, 
the maximum error ε has been chosen equal to 0.1, to not penalise 
predictions having error < 0.1 during the training phase of the models.

Since our goal is the knowledge extraction from the ensemble 
model, and not to obtain future predictions, all the available data have 
been used to train the model, without keeping apart a test set. This 
allowed us to obtain a predictor perfectly reproducing the GCR data 
gathered by LPF. Table 1 reports the mean absolute error measured 
for the ensemble model outputs averaged per Bartels rotation. In the 
Table are reported all the Bartels rotation during which LPF gathered 
data. As an example, model outputs are also reported in Figure 1 for 
the Bartels rotation 2497.

Table 1 Mean absolute error (MAE) and standard deviation measured for 
the ensemble model outputs for each Bartels rotation during the LPF mission

Bartels rotation MAE (%) Bartels rotation MAE (%)

2491 0.52±0.42 2500 0.48±0.38

2492 0.53±0.41 2501 0.49±0.37

2493 0.54±0.43 2502 0.47±0.35

2494 0.50±0.40 2503 0.46±0.36

2495 0.51±0.40 2504 0.45±0.34

2496 0.49±0.38 2505 0.43±0.31

2497 0.50±0.38 2506 0.51±0.42

2498 0.50±0.38 2507 0.49±0.39

2499 0.51±0.38 2508 0.46±0.37

All 0.49±0.38

Figure 1 LPF GCR flux data (top panel), solar wind speed (middle panel) and 
interplanetary magnetic field intensity (bottom panel) observed in L1 during 
the Bartels rotation 2497. Ensemble model predictions (red stars in the top 
panel) are reported superposed to the contemporaneous GCR data.

Knowledge extraction

The trained ensemble model is used as underlying predictor for 
the CART and GridEx extractors. Knowledge extraction from the 
model is preferred over direct rule induction from the data set, since it 

enables the adoption of the underlying model as an oracle to augment 
the training set.

CART

The predictive performance of CART strictly depends on the 
number of output leaves of the induced decision tree. Indeed, CART 
provides constant predictions and introduces an undesired output 
discretisation. The effects of the discretisation are limited if the output 
variable to be predicted is discrete or if there is a large amount of 
leaves. However, a large amount of leaves, and thus of output human-
readable rules, hinder the readability of the model.

We trained several instances of CART, with different values for the 
maximum allowed number of leaves. The readability/fidelity trade-off 
is problematic in the present applicative context, since it is possible to 
obtain a good fidelity (small predictive error w.r.t. the ensemble model 
predictions) only with a very large amount of leaves. In particular, a 
good agreement between LPF GCR data and CART predictions can 
be found with more than 200 leaves. Readability of CART rules is also 
hindered by the number of antecedents per rule.

Whereas shallow leaves are translated into rules having few 
antecedents, deeper leaves may result in rules having too many 
conditions to be still considered as human-readable. Since the number 
of antecedents in a rule is equal to the associated leaf depth, it is 
possible to limit this drawback by setting a maximum depth in the tree 
induction. However, this in turn worsens the extracted rule fidelity.
In Table 2 the predictive performance and the number of leaves of 
the tested CART instances are reported. Predictive performance is 
expressed as mean absolute error with respect to both the data and 
the ensemble model predictions. A visual comparison of CART with 
10, 100, 250 and 500 leaves is reported in Figure 2 for the Bartels 
rotation 2495.

Table 2 Number of leaves and mean absolute error measured for CART w.r.t. 
the data and the ensemble model predictions

# of leaves             MAE (%)

Data Model

10 1.70±1.32 1.57±1.24

25 1.52±1.20 1.39±1.11

50 1.37±1.07 1.23±0.98

100 1.18±0.94 1.03±0.85

150 1.07±0.85 0.91±0.75

250 0.91±0.74 0.74±0.62

500 0.73±0.58 0.51±0.43

https://doi.org/10.15406/aaoaj.2022.06.00145


Symbolic knowledge extraction from opaque predictors applied to cosmic-ray data gathered with LISA 
Pathfinder

93
Copyright:

©2022 Sabbatini et al.

Citation: Sabbatini F, Grimani C. Symbolic knowledge extraction from opaque predictors applied to cosmic-ray data gathered with LISA Pathfinder. Aeron Aero 
Open Access J. 2022;6(3):90‒95. DOI: 10.15406/aaoaj.2022.06.00145

Figure 2 CART output predictions for different values of the maximum leaf 
amount (equal to 10, 100, 250 and 500) (top panel) for the Bartels rotation 
2495. Panels are the same as in Figure 1.

Examples of CART rules are the following:

Variable GCR0 represents the GCR flux value 9 days before the 
considered instant. V is the solar wind speed in the same instant, while 
Vi is the average solar wind speed value taken in the i-th time window 
before the considered instant. Wind speed is always expressed in km 
s-1 and time windows have dimensions equal to 36 hours. The same 
holds for B1, that represents the interplanetary magnetic field intensity 
averaged in the 24 hours before the considered instant. Magnetic 
field is expressed in nT. It is evident how the first rule, with only 3 
antecedents, is more readable than the second, having 7 antecedents.

GridEx

To bypass the readability limitations of CART also the GridEx 
algorithm has been applied to the ensemble predictor. Thanks to the 
adaptive splitting of GridEx it is possible to create output rules by 
only involving the most relevant input features in the precondition, 
resulting in a more controlled rule readability. GridEx requires the fine 
tuning of a set of parameters, namely: 

i.	 the minimum amount of training instances to be considered in 
each input space region; 

ii.	 the depth of the recursive partitioning; 

iii.	 the error threshold for selecting regions to be further partitioned; 

iv.	 the splitting strategy. 

In all our experiments, the minimum amount of samples has been 
fixed equal to 100. This means that if less than 100 training instances 
are included in an input space subregion, during the training phase 
of GridEx the data set is augmented by generating random input 
samples inside the region and predicting them by using the underlying 
ensemble model as an oracle. The depth of the partitioning controls 
how many times the input space subregions have to be split. Regions 

are split only if the predictive error inside them is greater than the 
user-defined error threshold. Finally, adaptive strategies have been 
chosen as splitting strategies. In particular, in all the experiments 
the less relevant input features have not been split, while the more 
relevant ones have been split into 2 partitions at each iteration. 
Features are considered as more relevant if their relevance is greater 
than a relevance threshold, not constant for all the experiments. The 
parameter values adopted for the experiments are reported in Table 
3. A visual comparison of different instances of GridEx is reported in 
Figure 3 for the Bartels rotation 2493.

Table 3 Parameters, number of extracted rules and mean absolute error 
measured for several instances of GridEx w.r.t. the data and the ensemble 
model predictions

# of 
rules            MAE (%)

Depth Error 
threshold

Relevance 
threshold Data Model

1 0.6 0.1 7 2.05±1.54 1.95±1.47
2 0.6 0.1 24 1.86±1.40 1.74±1.33
3 0.6 0.1 49 1.74±1.32 1.62±1.24
3 0.6 0.05 129 1.70±1.30 1.58±1.23
3 0.55 0.05 219 1.58±1.23 1.45±1.15
3 0.5 0.05 340 1.45±1.16 1.31±1.08
3 0.45 0.05 414 1.40±1.14 1.26±1.06
3 0.4 0.05 493 1.36±1.12 1.21±1.04

Figure 3 GridEx output predictions for different values of its parameters, 
resulting in different amounts of output rules (top panel) for the Bartels 
rotation 2493. Panels are the same as in Figure 1.

Examples of GridEx output rules are:

             2.75%  
7.72  %    0    0.73% ,  263       508,  285    1  502

 
         5.28%  

0.73  %    0    9.19% ,       508        752 ,       

GCR flux increment is if
GCR V V

GCR flux decrement is if
GCR V

− < < < < < <

< < < <     502    1  720V< <

Variables follow the same convention as for CART output rulesIn 
this case all the extracted rules have the same readability, since the 
number of rule antecedents is fixed to 3 via the splitting strategy 
parameter tuning.

GCR  flux increment is 0.91%  if

GCR0  <  2.52%,  V <  344,  V1 < 429

GCR  flux decrement is 4.15%  if

GCR0  <  6.51%,  V <  621,  V1 < 649,  V3<683,
V <  649,  V1 < 690,  B1< 13.8
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Comparison between CART and GridEx

By comparing the output models obtained via the CART and 
GridEx extractors, it is possible to notice that 

i.	 GridEx rules have a better readability than CART ones in terms 
of antecedents per rule; conversely, 

ii.	 fidelity and predictive performance of GridEx are worse than 
those of CART. 

Indeed, even by accepting growing amounts of output rules, 
GridEx is not able to provide predictions with sufficient quality. We 
believe that better results may be achieved by using an algorithm able 
to approximate local predictions with non-constant outputs, as for 
instance a linear combination of the input variables. At the moment an 
extraction algorithm capable of doing so when applied to a complex 
underlying predictor (as an ensemble model) is still missing in the 
literature. A comparison of the mean absolute error measured for 
both CART and GridEx w.r.t. the data as well as the ensemble model 
predictions is reported in Figure 4. It is clearly noticeable that CART 
performs better than GridEx and that the performance of the latter 
does not sensibly improve by increasing the number of extracted rules.

Figure 4 Comparison between the predictive performance w.r.t. the data and 
the fidelity w.r.t. the ensemble model measured via mean absolute error for 
CART and GridEx.

(a)	MAE (data).  

(b)	MAE (model).

Conclusions
In this work SKE techniques have been applied to a machine 

learning ensemble model capable of reproducing the GCR data 

gathered by LPF with an error smaller than the nominal uncertainty 
of LPF GCR hourly binned data. Namely, CART and GridEx have 
been applied to the model in order to extract human-readable 
rules expressing the intensity of GCR flux variations. The adopted 
extractors are able to provide good predictions only in limited regions 
of the input feature space. This is reasonable since the peculiarities 
of the interplanetary structures and solar wind high-speed streams 
make impractical a global approximation of the GCR flux variations 
for all the possible solar wind speed and interplanetary magnetic 
field intensity input values.33 Thus, only local human-readable 
approximations can be suited to substitute opaque predictions of 
an ensemble model. In our future works we plan to enhance the 
extraction of knowledge from machine learning models reproducing 
the LPF GCR data by obtaining fewer rules with smaller predictive 
error, i.e., we plan to obtain higher degrees of readability and fidelity. 
This goal can be achieved by substituting the constant output values 
of the extracted rules with local linear combinations (or other kinds of 
functions) of the input variables.

Acknowledgments
None.

Conflict of interest
The Authors declares that there is no Conflict of interest.

References
1.	 Hannah T Rüdisser, Andreas Windisch, Ute V Amerstorfer, et al. 

Automatic detection of interplanetary coronal mass ejections in solar 
wind in situ data. 2022.

2.	 Reiss MA, Möstl C, Bailey RL, et al. Machine learning for predicting 
the Bz magnetic field component from upstream in situ observations of 
solar coronal mass ejections. Space Weather. 2021;19(12).

3.	 Yong Zhouab, Yanfeng Liu, DengjiaWang, et al. A review on global solar 
radiation prediction with machine learning models in a comprehensive 
perspective. Energy Convers. Manag. 2021;235:113960.

4.	 Armano M, Benedetti M, Bogenstahl J, et al. LISA Pathfinder: 
The experiment and the route to LISA. Class Quantum Gravity. 
2009;26(9):094001.

5.	 Pau Amaro-Seoane, Heather Audley, Stanislav Babak, et al. Laser 
interferometer Space Antenna. 2017.

6.	 Shaul DNA, Aplin KL, Araújo H, et al. Solar and cosmic ray physics and 
the space environment: Studies for and with LISA. AIP Proceedings. 
2006;873(1):172–178.

7.	 Araujo HM, Wass, Shaul, et al. Detailed calculation of test-mass 
charging in the LISA mission. Astropart Phys. 2005;22(5):451–469. 

8.	 Grimani C, Vocca H, G Bagni, et al. LISA test-mass charging process 
due to cosmic-ray nuclei and electrons. Class Quantum Gravity. 
2005;22(10):S327–S332.  

9.	 Grimani C, Fabi M, Lobo A, et al. LISA Pathfinder test-mass charging 
during galactic cosmic-ray flux short-term variations. Class Quantum 
Gravity. 2015;32(3):035001.

10.	 Armano M. Charge-induced force noise on free-falling test masses: 
Results from LISA Pathfinder. Phys Rev Lett. 2017;118(17):171101.

11.	 Storini M, Iucci N, Pase S. North-south anisotropy during the quasi-
stationary modulation of galactic cosmic rays. 1992;15(5):527–538. 

12.	 Sabbah I, Kudela, K. Third harmonic of the 27 day periodicity of galactic 
cosmic rays: Coupling with interplanetary parameters. J Geophys Res 
Space Phys. 2011;116(A4).

https://doi.org/10.15406/aaoaj.2022.06.00145
https://arxiv.org/abs/2205.03578
https://arxiv.org/abs/2205.03578
https://arxiv.org/abs/2205.03578
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021SW002859
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021SW002859
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021SW002859
https://www.sciencedirect.com/science/article/abs/pii/S0196890421001369?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0196890421001369?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0196890421001369?via%3Dihub
https://iopscience.iop.org/article/10.1088/0264-9381/26/9/094001
https://iopscience.iop.org/article/10.1088/0264-9381/26/9/094001
https://iopscience.iop.org/article/10.1088/0264-9381/26/9/094001
https://arxiv.org/abs/1702.00786
https://arxiv.org/abs/1702.00786
https://aip.scitation.org/doi/abs/10.1063/1.2405038
https://aip.scitation.org/doi/abs/10.1063/1.2405038
https://aip.scitation.org/doi/abs/10.1063/1.2405038
https://arxiv.org/abs/astro-ph/0405522
https://arxiv.org/abs/astro-ph/0405522
https://ui.adsabs.harvard.edu/abs/2005CQGra..22S.327G/abstract
https://ui.adsabs.harvard.edu/abs/2005CQGra..22S.327G/abstract
https://ui.adsabs.harvard.edu/abs/2005CQGra..22S.327G/abstract
https://iopscience.iop.org/article/10.1088/0264-9381/32/3/035001/meta
https://iopscience.iop.org/article/10.1088/0264-9381/32/3/035001/meta
https://iopscience.iop.org/article/10.1088/0264-9381/32/3/035001/meta
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.171101
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.171101
https://ui.adsabs.harvard.edu/abs/1992NCimC..15..527S/abstract
https://ui.adsabs.harvard.edu/abs/1992NCimC..15..527S/abstract
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010JA015922
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010JA015922
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010JA015922


Symbolic knowledge extraction from opaque predictors applied to cosmic-ray data gathered with LISA 
Pathfinder

95
Copyright:

©2022 Sabbatini et al.

Citation: Sabbatini F, Grimani C. Symbolic knowledge extraction from opaque predictors applied to cosmic-ray data gathered with LISA Pathfinder. Aeron Aero 
Open Access J. 2022;6(3):90‒95. DOI: 10.15406/aaoaj.2022.06.00145

13.	 Rocha A, Papa JP, Meira LAA. How far do we get using machine 
learning black-boxes?. Int J Pattern Recognit Artif Intell. 2012;26:1–23. 

14.	 Lipton ZC. The mythos of model interpretability. Queue. 2018;16(3):31–
57.

15.	 Guidotti R. A survey of methods for explaining black box models. ACM 
Comput Surv. 2018;51(5):1– 42.

16.	 Rudin C. Stop explaining black box machine learning models for high 
stakes decisions and use interpretable models instead. Nat Mach Intell. 
2019;1(5):206–215.

17.	 Kenny EM. Explaining black-box classifiers using post-hoc 
explanations-by-example: The effect of explanations and error-rates in 
XAI user studies. Artif Intell. 2021;294:103459.

18.	 Hayashi Y, Setiono R, Yoshida K. A comparison between two neural 
network rule extraction techniques for the diagnosis of hepatobiliary 
disorders. Artif Intell Med. 2000;20(3):205–216.

19.	 Bologna G, Pellegrini C. Three medical examples in neural network rule 
extraction. Phys Med. 1997;13:183–187.

20.	 Baesens B. Building credit-risk evaluation expert systems using neural 
network rule extraction and decision tables. International Conference in 
Information Systems. 2001;159–168.

21.	 Bart Baesens, Rudy Setiono, Christophe Mues, et al. Using neural 
network rule extraction and decision tables for credit-risk evaluation. 
Manag Sci. 2003;49(3):312–329.

22.	 Steiner MTA, Steiner Neto PD, Nei Yoshihiro Soma, et al. Using neural 
network rule extraction for credit-risk evaluation. Int J Netw Secur. 
2006;6(5A):6–16.

23.	 Setiono R, Baesens B, Mues C. Rule extraction from minimal neural 
networks for credit card screening. Int J Neural Syst. 2011;21(04):265–
276.

24.	 Breiman L, Jerome Friedman, Charles J Stone, et al. Classification and 
regression trees. 1st ed. New York: Routledge; 1984.

25.	 Sabbatini F, Ciatto G, Omicini A. GridEx: An algorithm for knowledge 
extraction from black-box regressors. Proceedings of the 3rd 
International Workshop on Explainable and Transparent AI and Multi-
Agent Systems. 202;18–38.

26.	 Sabbatini F, et al. On the design of PSyKE: A platform for symbolic 
knowledge extraction. In: Calegari R, Ciatto G, Denti E, et al. editors. 
WOA 2021: Proceedings of the 22nd Workshop “From Objects to 
Agents”; 2021 September 1–3; Bologna, Italy; Aachen: Sun SITE 
Central Europe, RWTH Aachen University.  2021.  p.29–48.

27.	 Sabbatini F, Giovanni Ciatto, Calegari Roberta, et al. Symbolic 
knowledge extraction from opaque ML predictors in PSyKE: Platform 
design & experiments. Intelligenza Artificiale. 2022;16(1):27–48.

28.	 Sabbatini F, Ciatto G, Omicini A. Semantic Web-based interoperability 
for intelligent agents with PSyKE. EXTRAAMAS. 2022.

29.	 Dietterich TG. Ensemble Methods in Machine Learning. Multiple 
Classifier Systems. 2000;1–15.  

30.	 Zhou Z-H. Ensemble methods: Foundations and algorithms. 1st ed. 
United Kingdom: Chapman and Hall/CRC. 2012.

31.	 Suthaharan S. Support vector machine. In: Machine learning models 
and algorithms for big data classification: Thinking with examples for 
effective learning. New York: Springer. 2016. p. 207–235.

32.	 Steinwart I, Christmann A. Support vector machines. Springer. 2008.

33.	 Grimani C, Andrea Cesarini, Michele Fabi, et al. Recurrent galactic 
cosmic-ray flux modulation in L1 and geomagnetic activity during the 
declining phase of the solar cycle 24. Astrophys. J. 2020;904(1):14.

https://doi.org/10.15406/aaoaj.2022.06.00145
https://hi.booksc.org/book/37562166/739351
https://hi.booksc.org/book/37562166/739351
https://queue.acm.org/detail.cfm?id=3241340
https://queue.acm.org/detail.cfm?id=3241340
https://dl.acm.org/doi/10.1145/3236009
https://dl.acm.org/doi/10.1145/3236009
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122117/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122117/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122117/
https://linkinghub.elsevier.com/retrieve/pii/S0004370221000102
https://linkinghub.elsevier.com/retrieve/pii/S0004370221000102
https://linkinghub.elsevier.com/retrieve/pii/S0004370221000102
https://pubmed.ncbi.nlm.nih.gov/10998587/
https://pubmed.ncbi.nlm.nih.gov/10998587/
https://pubmed.ncbi.nlm.nih.gov/10998587/
https://archive-ouverte.unige.ch/unige:121360
https://archive-ouverte.unige.ch/unige:121360
https://aisel.aisnet.org/icis2001/20/
https://aisel.aisnet.org/icis2001/20/
https://aisel.aisnet.org/icis2001/20/
https://pubsonline.informs.org/doi/10.1287/mnsc.49.3.312.12739
https://pubsonline.informs.org/doi/10.1287/mnsc.49.3.312.12739
https://pubsonline.informs.org/doi/10.1287/mnsc.49.3.312.12739
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.570.4480&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.570.4480&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.570.4480&rep=rep1&type=pdf
https://pubmed.ncbi.nlm.nih.gov/21809474/
https://pubmed.ncbi.nlm.nih.gov/21809474/
https://pubmed.ncbi.nlm.nih.gov/21809474/
https://www.routledge.com/Classification-and-Regression-Trees/Breiman-Friedman-Sto ne-Olshen/p/book/9780412048418
https://www.routledge.com/Classification-and-Regression-Trees/Breiman-Friedman-Sto ne-Olshen/p/book/9780412048418
https://link.springer.com/chapter/10.1007/978-3-030-82017-6_2
https://link.springer.com/chapter/10.1007/978-3-030-82017-6_2
https://link.springer.com/chapter/10.1007/978-3-030-82017-6_2
https://link.springer.com/chapter/10.1007/978-3-030-82017-6_2
http://ceur-ws.org/Vol-2963/paper14.pdf
http://ceur-ws.org/Vol-2963/paper14.pdf
http://ceur-ws.org/Vol-2963/paper14.pdf
http://ceur-ws.org/Vol-2963/paper14.pdf
http://ceur-ws.org/Vol-2963/paper14.pdf
https://content.iospress.com/articles/intelligenza-artificiale/ia210120
https://content.iospress.com/articles/intelligenza-artificiale/ia210120
https://content.iospress.com/articles/intelligenza-artificiale/ia210120
https://extraamas.ehealth.hevs.ch/media/2022/presentations/pres-16.pdf
https://extraamas.ehealth.hevs.ch/media/2022/presentations/pres-16.pdf
https://web.engr.oregonstate.edu/~tgd/publications/mcs-ensembles.pdf
https://web.engr.oregonstate.edu/~tgd/publications/mcs-ensembles.pdf
https://dl.acm.org/doi/10.5555/2381019
https://dl.acm.org/doi/10.5555/2381019
https://link.springer.com/book/10.1007/978-1-4899-7641-3
https://link.springer.com/book/10.1007/978-1-4899-7641-3
https://link.springer.com/book/10.1007/978-1-4899-7641-3
https://link.springer.com/book/10.1007/978-0-387-77242-4
https://iopscience.iop.org/article/10.3847/1538-4357/abbb90
https://iopscience.iop.org/article/10.3847/1538-4357/abbb90
https://iopscience.iop.org/article/10.3847/1538-4357/abbb90

	Title
	Abstract
	Keywords
	Abbreviations
	Introduction 
	The LISA Pathfinder mission 
	GCR flux short-term variations observed with LISA Pathfinder 
	Symbolic knowledge extraction 
	Explaining an ensemble model for the LPF GCR data 
	Data set 
	Ensemble model reproducing LPF GCR data 
	Knowledge extraction 
	CART 
	GridEx 
	Comparison between CART and GridEx

	Conclusions 
	Acknowledgements 
	Conflict of interest 
	References 
	Figure 1
	Figure 4
	Table 1
	Table 2

