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Introduction
There have been increasing research works in the past few years 

on analysis of flow of viscoelastic fluid. This is due to its various 
applications in gaseous diffusion, blood flow through oxygenators, 
flow in blood capillaries have continue to aroused the research interests. 
However, complex rheological fluids such as blood, paints, synovial 
fluid, saliva, jam which cannot be adequately described by Navier 
Stokes. Consequently, complex constitutive relations that capture the 
flow behaviour of the complex fluids have been developed.1 Among 
the newly developed integral and differential-type fluid flow models, 
Upper convected Maxwell fluid model has showed to be an effective 
fluid model that captures the complex flow phenomena of fluids 
especially of the fluid with high elastic behaviours such as polymer 
melts. Such highly elastic fluids have high Deborah number.2‒3 In the 
analysis of Maxwell flow, Fetecau4 presented a new exact solution for 
the flow of fluid through infinite microchannel while Hunt5 studied 
convective fluid flow through rectangular duct. Sheikholeslami et 
al.6 investigated magneto hydrodynamic field effect on flow through 
semi-porous channel utilizing analytical methods. Shortly after, 
Sheikholeslami7‒9 adopted numerical solutions in the investigations of 
nanofluid in semi-annulus enclosure. 

Flow of upper convected Maxwell fluid through porous 
stretch sheet was investigated by Raftari & Yildirim.10 Entophy 
generation in fluid in the presence of magnetic field was analyzed 
by Sheikholeslami & Ganji11 using lattice Boltzmann method while 
Ganji et al.12 explored analytical and numerical methods to analyze 
the fluid flow problems under the influence of magnetic field. The 

flow of viscoelastic fluid through a moving plate was analyzed by 
Sadeghy & Sharifi13 using local similarity solutions. Vajrevulu et al.14 
investigated the mass transfer and flow of chemically reactive upper 
convected Maxwell fluid under induced magnetic field. Not long 
after Raftari & Vajrevulu15 adopted the homotopy analysis method 
in the study of flow and heat transfer in stretching wall channels 
considering MHD. Hatami et al.16 presented forced convective MHD 
nanofluid flow conveyed through horizontal parallel plates. Laminar 
thermal boundary flow layer over flat plate considering convective 
fluid surface was analyzed by Aziz17 using similarity solution. Beg 
& Makinde18 examined the flow of viscoelastic fluid through Darcian 
microchannel with high permeability.

Most of the above reviews studies focused on the analysis of 
fluid flow under no slip condition. However, such an assumption 
of no slip condition does not hold in a flow system with small size 
characteristics size or low flow pressure. The pioneer work of flow 
with slip boundary condition was first initiated by Navier.19 The 
slip conditions occur in various flows such as nanofluids, polymeric 
liquids, fluids containing concentrated suspensions, flow on multiple 
interfaces, thin film problems and rarefied fluid problems.19‒31 Due 
to the practical implications of the condition on the flow processes, 
several studies on the effects of slip boundary conditions on fluids 
flow behaviours have been presented by many researchers.19‒35 
Abbasi et al.36 investigated the MHD flow characteristics of upper-
convected Maxwell viscoelastic flow in a permeable channel under 
slip conditions. However, an analytical study on simultaneous effects 
of slip, magnetic field, nanoparticle and porous medium on the flow 
characteristics of an upper-convected Maxwell viscoelastic nanofluid 
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Abstract

The continuous applications of viscoelastic fluids in biomedical engineering and 
industrial processes require some studies that provide better physical insights into 
the flow phenomena of the fluids. In this work, homotopy perturbation method is 
applied to investigate the simultaneous effects of slip and magnetic field on the flow of 
an upper convected Maxwell nanofluid through a permeable microchannel embedded 
in a porous medium. The results of the approximate analytical solution depict very 
good agreements with the results of the fourth order Runge-Kutta Fehlberg numerical 
method for the verification of the mathematical method used in analyzing the flow. 
Thereafter, the obtained analytical solutions are used to investigate the effects of 
pertinent rheological parameters on the flow process. It is observed from the results 
that increase in slip parameter, nanoparticle concentration and Darcy number lead to 
increase in the velocity of the upper-convected Maxwell fluid. However, when the 
Deborah’s number increases, the Hartmann, and Reynold numbers decrease the fluid 
flow velocity towards the lower plate but as the upper plate is approached, a reverse 
trend is observed. The study can be used to advance the application of upper convected 
Maxwell flow in the areas of in biomedical, geophysical and astrophysics.
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has not been carried out in literature. Therefore, in this work, 
homotopy perturbation method is used to analyze the slip flow of an 
upper-convected Maxwell viscoelastic nanofluid through a permeable 
microchannel embedded in porous medium under the influence 
of magnetic field is analyzed. Also, the effects of other pertinent 
parameters of the flow process are investigated and discussed.

Model development and analytical solution 
Consider a laminar slip flow of an electrically conducting fluid in 

a microchannel is considered. Along the y axis, magnetic fields are 
imposed uniformly, as described in the physical model diagram Figure 
1. It is assumed external electric field is zero and constant of electrical 
conductivity is constant. Therefore, magnetic Reynolds number is 
small and magnetic field induced by fluid motion is negligible. 

Figure 1 Flow of upper-convected Maxwell fluid between in permeable 
channel embedded in porous medium.

Based on the assumptions, the governing equation for the Maxwell 
fluid is presented as8

-P= +T I S                   (1)

where the Cauchy stress tensor is T and S is the extra-stress Tensor 
which satisfies
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 The Rivlin-Ericksen tensor is defined by                           
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The continuity and momentum equations for steady, incompressible 
two dimensional flows are expressed in Eqs. (4) -(6) as
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where the effective density  and effective dynamic viscosity

 of the nanofluid are defined as follows:
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and

Sxx,Sxy,Syx and Syy are extra stress tensors and ρ is the density of the 
fluid. Using the shear-stress strain for a upper-convected liquid, The 
governing equations of fluid motion is easily expressed as16
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where flow velocity component (u,v) are velocity component 
along the x and y directions respectively. Since flow is symmetric 
about channel center line, attention is given to the flow region 0<y<H. 
Appropriate boundary conditions are given as

0 : 0, 0
u

y v
x

∂
= = =

∂                   (9)

                          
: , w

u
y H u v V

y
β

∂
= = − =

∂       
                                                                    (10)
where Vw and β are the wall characteristic suction velocity and 

sliding friction respectively.
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The physical and thermal properties of the base fluid and 
nanoparticles are given in Table 1 and Table 2, respectively. 

The similarity variables are introduced as:

', ( ); ( );w w

y
u V xf y v V f y k

H H

µ
η

β
= = − = =

             (11)

With the aid of the dimensionless parameters in Eq.(11), the 

constitutive relation is satisfied. Equation (2-4) can be expressed as:
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µ
=  is the Hartman parameter, 

pK
Da

H
=  is the Darcy’s number. For Rew>0 corresponds to suction 

flow while Rew<0 correspond to injection flow respectively.

Equ. (13) is a third-order differential equation with four boundary 
conditions. Through a creative differentiation of Eq. (12). Hence 
introducing fourth order equation as:
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Table 1 Physical and thermal properties of the base fluid

Base fluid                           ρ(kg/m3)             Cp (J/kgK)             k(W/mK)             σ(Ω-1m-1) 

Pure water                            997.1 4179 0.613 5.5

Ethylene Glycol                   1115 2430 0.253 1.07

Engine oil                            884 1910 0.144 4.02

Kerosene    783 2010 0.145 4.01

Table 2 Physical and thermal properties of nanoparticles

Nanoparticles  ρ(kg/m3)             Cp(J/kgK)             k(W/mK)             σ(Ω-1m-1) 

Copper (Cu)                                          8933 385 401 59.6

Aluminum oxide (Al2O3)                     3970 765 40 16.7

SWCNTs 2600 42.5 6600 1.26

Silver (Ag)                                           10500 235 429

Titanium dioxide (TiO2)                      4250 686.2 8.9538

Copper (II) Oxide (CuO)                     783 540 18  

Taking boundary condition as

The above Eq. (14) study satisfies all the four boundary conditions

Principles of homotopy perturbation method

The following equation is considered in explaining the 

fundamentals of the homotopy perturbation method [10]

( ) ( ) 0A u f r− =  ( , ) 0
u

B u
η

∂
=

∂      
                                                                                                       (15)
Utilizing the boundary condition 
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( , ) 0
u

B u
η

∂
=

∂
 r ∈ Γ       

                                                 (16)
A is the general differential operator, B is the boundary operator, 
f(r) is the analytical function and Γ is the boundary domain of Ω. 
Separating A into two components of linear and nonlinear terms L and 
N respectively. The Eq. (21) is reconstructed as 

( ) ( ) ( ) 0L u N u f r+ − =  r ∈Ω      
                                                                                                           (17)

Homotopy perturbation structure takes the form
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Where
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                                (19)
p ϵ (0, 1) is the embedding parameter and U0 is taken as the initial 

term that satisfies boundary condition. The power series of Eq. (24) 

can be expressed as:

 2 3
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Most appropriate solution for the problem takes the form 
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Application of the homotopy perturbation method to the 
flow problem

The homotopy pertubation method which is an analytical scheme 

for providing approximate solutions to the ordinary differential 

equations, is adopted in generating solutions to the coupled ordinary 

nonlinear differential e quation .Upon constructing the homotopy, the 

Eqs. (11)- (12) can be expressed as
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Taking power series of velocity and rotation fields yields
1 2 3

0 1 2 3 . ..f f p f p f p f= + + + +                                           (23)  

Substituting Eq. (23) into (22) and collecting the like terms of the 
various order yields
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The boundary conditions are

0 1 2 0 1 20 : ... 0, ... 0f f f f f fη ′′ ′′ ′′= = = = = = = = =          (27)  

0 1 2 0 0 1 1 2 21 : ... 1, , , , ...f f f f kf f kf f kfη ′′ ′′′ ′′ ′ ′= = = = = = − = − = −  
    On solving Eq. (24) applying the boundary conditions yields
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Also, solving Eq. (25) applying the corresponding boundary 

conditions yields
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By the definition of homotopy perturbation method, we have
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Results and discussion
The results of the homotopy perturbation method for the 

problem investigated have been with the results of the fourth-order 
Runge-Kutta Fehlberg numerical method (for the simplified case) 
as shown in Table 3. As observed from the Table, good agreements 
are established between the results of the numerical and homotopy 
analysis methods. Using copper nanoparticle and water, the results 
obtained from the analytical solution are shown graphically in Figures 
2-9, when Rew = 8, De = 0.1, M = 2, 0.1= ,Da = 2 and 0.01φ = , 
unless otherwise stated. Figure 2 depicts the influence of nanoparticle 
concentration ( )φ  on the flow process. As shown from the Figure, 
as the nanoparticle concentration increases, there is an increase in 
the velocity distribution. It is very important to indicate viscoelastic 
nature of the fluid. Therefore, the effects of Deborah’s number on the 
flow process are depicted in Figure 3. In the Figure, it illustrated in 
that increase in Deborah’s number (De) which illustrates the UCM 
as highly elastic fluid (such as polymeric melts) depicts decrease in 
fluid flow velocity. The influence of magnetic field parameter on flow 
of the UCM fluid under is depicted in Figure 4. As observed in the 
figure, the numerical increase of the magnetic or Hartmann parameter 
(M) shows decreasing velocity profile. This is because the applied 
magnetic field produces a damping effect (Lorentz force) on the 
flow process. This damping affects increases as the quantitative or 
numerical value of the Hartmann number increases. It should be noted 
that the effects magnetic field parameter is maximum towards the 
upper flow channel. In order to shown the effect of the permeability 
of the porous medium on the flow, effect of Darcy parameter (Da) 
on fluid transport is illustrated in Figure 5. Increasing Darcy number 
demonstrates increasing velocity profile as shown in the figure. 

Table 3 Comparison of results of numerical and homotopy analysis method 
for f(η), when De=0.1, Da-1=φ =M=0, K=0.1, Rew=4

  η      RKFNM  HPM  |RKFNM-HPM|

0 0 0 0

0.05 0.070154 0.0701 5.46E-05

0.1 0.139997 0.139899 9.76E-05

0.15 0.209217 0.209199 1.77E-05

0.2 0.259219 0.259201 1.76E-05

0.25 0.344546 0.344499 4.76E-05

0.3 0.410038 0.409999 3.96E-05

0.35 0.473672 0.473598 7.37E-05

0.4 0.535148 0.535102 4.59E-05

0.45 0.594153 0.594098 5.51E-05

0.5 0.650402 0.650348 5.37E-05

0.55 0.7036 0.703084 5.16E-05

0.6 0.75345 0.753398 5.19E-05

0.65 0.79968 0.799599 8.18E-05

0.7 0.842013 0.841977 3.56E-05

0.75 0.880181 0.88013 5.06E-05

0.8 0.913929 0.913899 2.94E-05

0.85 0.94301 0.942976 3.41E-05

0.9 0.967193 0.967159 3.45E-05

0.95 0.986257 0.9862 5.74E-05

1 1 1 0

Figure 2 Effecct of nanoparticle concentration number (φ ) on the axial 
velocity of the flow process.

Figure 3 Effect of Deborah’s number (De) on the axial velocity of the flow 
process.

Figure 4 Effect of Hartmann parameter (M) on the axial velocity of the flow 
process.
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Figure 5 Effect of Darcy’s number (Da) on the axial velocity of the flow 
process.

Figure 6 Effect of slip parameter (k) on the axial velocity of the flow process.

Figure 7 Effect of Reynold’s number (Rew) on the axial velocity of the flow 
process.

Figure 8 Effect of Reynold’s number (Rew) on the radial velocity of the flow 
process

Figure 9 Effect of Hartman parameter (M) on the radial velocity of the flow 
process.

Figure 6 shows the effect of fluid slip parameter (k) on the velocity 
of the fluid flow. It should be noted that the slip parameter depicts 
that the fluid velocity at the boundary is not at equal velocity with 
fluid particles closest to flow boundary due to large variance in macro 
and micro fluid flow. As observed from the Figure 6, increasing 
the slip parameter leads to decreasing velocity distributions of the 
process. In order to show the relative significance of the inertia effect 
as compared to the viscous effect, the effect of Reynolds number on 
the flow phenomena is illustrated in the Figure 7. It is established 
form the graphical display that increasing Reynolds number (Rew) 
causes decrease in flow profile which effect is maximum towards the 
upper plate. Figure 8 shows the effect of Reynolds number on the 
radial velocity component of the flow. It is shown that increasing the 
Reynolds number causes decrease in velocity distribution but as flow 
reaches the mid plate around 0.5η =  (not determined accurately) an 
increasing velocity distribution is seen. However, effect is minimal 
towards the upper plate. Also, influence of magnetic field on radial 
velocity is depicted in Figure 9, as shown significant increase in 
velocity is seen due to quantitative increase of Hartmann parameter 
(M) towards the lower plate while as upper plate is approached a 
reverse trend is observed.
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Conclusion
In this work, homotopy perturbation method is used to analyze 

the flow of an upper convective Maxwell (UCM) nanofluid through 
a permeable microchannel embedded in a porous medium and under 
the influence of slip condition has been presented. Important fluid 
parameter effect such as Deborah’s number, Darcy parameter and 
Hartman parameter on the fluid flow was investigated. that increase 
in slip parameter, nanoparticle concentration and Darcy number lead 
to increase in the velocity of the upper-convected Maxwell fluid while 
increase in Deborah’s, Hartmann and Reynold numbers decrease 
the fluid flow velocity towards the lower plate but as the upper plate 
is approached, a reverse trend is observed. The results obtained in 
this work can be used to further the applications of UCM fluid in 
biomedical, astrophysics, geosciences etc.
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Nomenclature
Rew  Reynolds number

M  Hartman parameter

K  Slip parameter

De  Deborah’s number

HAM Homotopy analysis method

    Auxilliary parameter

 *v   y axis velocity component

 *u   x axis velocity component

 x   Dimensionless horizontal coordinate

 y   Dimensionless vertical coordinate
*x   Distance in x axis parallel to plate

 *y   Distance in y axis parallel to plate

Da  Darcy number

Symbols
 ρ   Fluid density

 λ   Relaxation time

 υ   Kinematic viscosity

 β   Sliding friction

 φ   Nanoparticle concentration
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