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Introduction
The production or reproduction in animals mainly depends on the 

number of young ones born per litter and the number marketed each 
year. When compared to large ruminants, sheep and goats, which are 
considered as small ruminants, can produce more than one offspring 
per pregnancy. Normally, the lambing/kidding interval is around 8 
months and they give birth at least three times in 2 years. The gestation 
period of sheep and goats are around five months (sheep for 146 days 
and goats for 150 days). There is variation in reproduction between 
the two species. However, the variation between the various strains 
of sheep and goats are more when compared between the species. 
Hence, here we attempted to explore the various factors affecting the 
prolificacy in small ruminants (sheep and goat). Prolificacy is closely 
associated with follicular development and ovulation rate. Ovulation 
rate and litter size are crucial reproduction traits with high economic 
value.1 It is controlled by various factors like Single gene mutations, 
age, season and environmental change, nutrition, hormonal factors, 
fertilization rate, embryonic and foetal development. Out of these, 
some of the factors are dealt with in detail here.

a.	 Hormonal factors

b.	 Genetic factors

c.	 Seasonal and Environmental factors

d.	 Nutrition

Hormonal factors

By manipulation of specific hormonal inputs, follicle recruitment 
and development that results in ovulation can be increased.2 Even 
though, in many studies, the plasma concentrations of Luteinizing 
Hormone (LH) and Follicle Stimulating Hormone (FSH) between sheep 
and goat breeds differing inprolificacydid not significantly vary3–13 in 
one of our recent studies, there was a significant difference observed 
in the pituitary LHβ expression between low prolific Attappady Black 
and high prolific Malabari goat breeds, with a significantly (P<0.01) 
high level in Attappady Black.14 Also, the expression of Follicle 
Stimulating Hormone Receptor (FSHR) and Luteinizing Hormone/ 
Choriogonadotropin Receptors (LHCGR)during the periovulatory 
period and rate of ovulation was observed to be ambiguous in many 
studies.3,9,10,15,16 Ovulation rate can be increased in numerous ways, 

such asby lowering progesterone, injection of gonadotropins-FSH 
followed by LH, Equine Chorionic Gonadotropin (eCG)- FSH like, 
Human Chorionic Gonadotropin (hCG)- LH like, Combination of 
eCG and hCG (P.G. 600), sequential treatments with gonadotropin-
releasing hormone. In the process of follicular development, hormones 
play a significant role in morphological, physiological changes to the 
follicles. The experiment conducted for oestrus synchronization in 
Alpine and Saanen goats gave evidence that the treatments with too 
high progestagen level can decrease fertility but no effect in prolificacy. 
The fertility tended to be low in goats treated with a whole implant 
and was significantly lowered in goats, which received a half-implant 
of norgestomet.17 Oestrus synchronization and fertility after oestrus 
synchronization were studied in multiparous Mashona goat and 
found out that all the 4 treatments with intravaginalprogesterone (P4) 
sponges, norgestomet ear implants, cloprostenol or a combination of 
P4 sponges and cloprostenol were effective in synchronizing oestrus 
and none of the methods affected overall fertility of the does.18 The 
studies were conducted using Chronogest CR sponge, which allowed 
a reduction of the progestagen load from 45 to 20mg with high fertility 
and prolificacy without detrimental effects on synchronization, 
fertility, and prolificacy.19 The insemination effect on does in natural 
andcloprostenol-synchronized oestrus with frozen semen were studied 
in Egypt during breeding season of Damascus goats, and it was found 
that the kidding rates did not vary significantly among does in natural 
(55.26%) and synchronized (53.85%) oestrus and a higher (P < 0.05) 
prolificacy was obtained after their insemination in natural (1.81+/-
0.16) rather than in synchronized (1.22+/-0.11) oestrus.20 However, 
according to Panicker et al.21 using the progestagen (TRIU-C®) 
synchronization protocol, the prolific Malabari crossbred goats 
showed a higher conception rate. Also, a correlation was observed 
between the oestrus intensity and the conception rate in goats. In 
another study by Panicker et al.22 it was observed that the serum 
progesterone concentrations in prolific Malabari cross-bred goats 
on the day of insemination showed significant difference (P<0.05) 
between the goats those conceived and the ones that failed to conceive, 
with a significantly lower progesterone level in the conceived group.

The immune reaction to eCG negatively influenced the percentage 
of ovulating females as well as kidding rate but showed no effect of 
antibodies on prolificacy in the studies conducted in alpine goats.23 

Prolificacy potential in goats was examined by recording the response 
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Abstract

Prolificacy is the ability to reproduce abundantly. Litter size, which is highly dependent 
on ovulation rate, has a high economic value and it is a fundamental reproductive trait, 
especially in small ruminants. Considering the low heritability of prolificacy, it is possible 
to improve the progress of the prolificacy trait selection using DNA markers and molecular 
biology techniques. In this article, an overview of the various factors affecting prolificacy 
in small ruminants has been emphasized.
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to Gonadotropin-Releasing Hormone (GnRH) challenge test and also 
suggested the single blood sampling at day 63 prior to parturition as 
the most suitable time for discriminating kidding size using plasma 
progesterone as a marker.24 The studies conducted with the hypothesis 
that increased Insulin-like Growth Factor- 1 (IGF-1) concentrations 
during preovulatory follicular and early embryonic development will 
improve prolificacy and lambing rate in sheep is a practical tool for the 
improvement of prolificacy in sheep.25 It also concluded that a single 
dose of bovine Somatotropin, 5 days before progestin withdrawal, 
increases the lambing rate. 

Gonadotropins in supra-physiological quantities resulted in 
different outcomes on the rate of ovulation and also the oocyte 
quality.26 The adjustment of threshold levels of gonadotropins 
defines differentiation between mono-ovulatory and poly-ovulatory 
species, and thereby, these hormones play a significant role in 
prolificacy. Follicle Stimulating Hormone Receptor (FSHR)and 
Luteinizing Hormone Receptor (LHR) expression induction and 
modulation of responsiveness to Follicle Stimulating Hormone (FSH) 
and Luteinizing Hormone (LH) are observed to be influenced by 
numerous intra-ovarian growth regulators.27–29 Growth Differentiation 
Factor 9 (GDF9), Bone Morphogenetic Proteins (BMPs), inhibins, 
Anti-Mullerian Hormone (AMH), activins and activin/BMP binding 
proteins have an in vivo effect directly or indirectly.30–33 The granulosa 
cells at an early stage acquire FSHR and LHR and mediate dominant 
follicle development in the declining phase of FSH levels during the 
follicular phase of the oestrus cycle.33,34 The selection of follicles 
occurs as a result of the reduction in pituitary FSH and only those 
follicles with the newly attained LHR can retain oestrogen production 
during the pre-ovulatory phase.36 The expression of FSHR, LHR 
and aromatase and synthesis of inhibin subunits (PA) in granulosa 
cells can be induced by FSH Jia et al.37 Adams et al.4 observed that 
plasma concentrations of FSH during the pre-ovulatory period were 
significantly elevated in the ewes of low-prolific Galway breed. 
The concentration of LH at the height of surge was significantly 
reduced in the prolific Finnish Landrace line compared to the low 
prolific Galway breed. There was no observable variation in plasma 
concentration of FSH and LH10,38–40 between breeds that differed in 
ovulation rates even if slightly greater plasma concentrations8,11,41,42 

and expression of FSH mRNA Abdennebi et al.3 had been observed 
in few prolific breeds. Similar to previous study in Boer goats which 
are prolific compared with low-prolific Yunling black goats Cui et 
al.,9 Zi et al.16 reported that FSHβ and LHβ mRNA expression levels 
were significantly greater (p<0.01) in pituitary of highly prolific Lezhi 
Black (LB) goats compared to low-prolific Tibetan (TB) goats. Their 
data provided evidence that a greater gonadotropin expression during 
the follicular phase was responsible for a higher ovulation rate in the 
LB goat compared to the TB goat. 

It was presumed that at an earlier size of the follicle, the 
follicles became more sensitive to FSH and this may be the reason 
for the increase in ovulation rate.43,44 In Small Tail Han sheep and 
Booroola sheep, an elevated FSH and LH concentrations in plasma 
was observed.45,46 Variation in FSHR and LHR mRNA levels could 
determine the response of follicles to gonadotropins and this might 
induce varied ovulation response and ovulation in mature follicles.47 
The follicles with a greater gonadotropin receptor density are 
considered to be more responsive to the gonadotropins and continue 
to increase in their size during a natural cycle.34,48,49 Various reports 
suggest that prolific sheep50,51 and goats9 have greater FSHR expression 
in ovaries and the FSHR mRNA levels in growing follicular cells 
is higher in prolific breeds than in low-prolific breeds,3,9 indicating 
that a higher gonadotropin responsiveness during the early follicular 

phase may be responsible for a higher ovulation rate in these breeds. 
However, Zi et al.16 reported that LHR and FSHR mRNA expression 
levels in the follicle of low-prolific TB goat were 7.3-fold and 5.1-fold 
(p<0.05) greater than those in high-prolific LB goats respectively. The 
reason for this variation is still unknown. 

In granulosa cells of small and large follicles of Romanov (ROM) 
sheep (multi-ovulatory species), the number of FSHR was higher 
than those in follicles of Ile-de-France (IF) sheep (mono-ovulatory). 
In theca cells and granulosa cells of small follicles, LHR mRNA 
levels were also greater in ROM than in IF ewes, which increased 
with an increase in the size of the follicles.3 Downregulation of FSHR 
expression in granulosa cells was observed at the cyclic dominant 
follicle selection stage, happening between ~8-10 mm in the human 
and ~1-1.7 mm in the Merino sheep.15,52 In human and animal models, 
down regulation of FSHR and LHR expression was observed at the 
time of follicle maturation which was associated with a change from 
oestrogen to progesterone production in the ovulatory follicles and 
a decrease in proliferation.15,52–54 The FSHR and LHR density were 
elevated significantly in the developing antral follicle granulosa cells 
of prolific sheep breed compared to the non-prolific sheep breed. 
The pre-ovulatory follicle from both breeds had low receptor density 
compared to the subordinate follicles, which indicates a necessary 
prerequisite down-regulation prior to ovulation.15

Significantly fewer granulosa cells were observed in Booroola 
sheep follicles than the normal wild-type.43,55 Greater cAMP, 
oestrogen, and androstenedione were produced from the large antral 
follicle with the same number of cells when the granulosa cells 
were stimulated in vitro by FSH or LH.55 Here, an increased cellular 
capacity plays a major role to synthesize oestrogen compensating for 
the smaller number of granulosa cells. Hence, due to the attenuated 
BMPR1B signal, multiple follicles are produced by Booroola sheep 
because of greater density FSHR and LHR.15 Expression of FSHR and 
LHR on mature surface granulosa cells was significantly increased in 
the Booroola compared to the young wild-type Merino sheep.15 The 
plasma LH, P4, and E2 concentrations in the prolific breed was lower 
than the nonprolific breed, whereas mRNA expression levels in ovaries 
of these genes did not vary between the two breeds. Also, variations in 
the amino acid sequences of FSHB, LHCGR and Beta-1, 4-N-acetyl-
galactosaminyl transferase 2 (B4GALNT2)were observed.56

Driancourt et al.57 suggested that oestradiol production is 
determined by the number of granulosa cells and follicle size. 
However, they observed higher oestradiol output per granulosa cell 
in prolific ewes compared to low-prolific ones. Abhina58 observed 
that the serum oestradiol concentration (blood collected in follicular 
phase) was significantly higher in prolific Malabari breed when 
compared to the Attappady Black breed even though granulosa cell 
thickness was lesser in secondary and antral follicles of Malabari 
breed. Also, in prolific crossbred Malabari goats, the oestradiol level 
in the follicular fluid increased significantly as the size of the follicle 
increased.59 The concentration of FSH and oestradiol in the serum 
were higher in prolific Finn ewes than non-prolific western white-
faced ewes.5 Ruoss et al.60 using Radioimmunoassay (RIA) estimated 
serum progesterone. The concentration of progesterone between older 
(around five years) Merino and Booroola ewes showed a significant 
difference and it was higher in Booroola ewes. However, this pattern 
of steroidogenesis was not observed in the early ages in this breed.

Genetic factors

In order to improve reproductive efficiency, marker-assisted 
selection (MAS) and molecular genetics have great importance.61 
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Studies in sheep revealed the presence of three major fecundity genes 
namely Bone Morphogenetic Protein Receptor type- 1B (BMPR1B) 
also known as FecB on chromosome 6,62 Bone Morphogenetic 
Protein 15 (BMP15) known as FecX on chromosome and Growth 
Differentiation Factor-9 (GDF9) known as FecG on chromosome 5.63 

These genes are found to be involved in controlling fertility in sheep. 
The findings from the mutation studies in Inverdale sheep established 
that BMP15 is essential for female fertility and the natural mutations 
in an ovary-derived factor can cause both increased ovulation 
rate in heterozygotes and infertility in homozygotes.64 A naturally 
occurring point mutation on the BMPR1B gene in Booroola Merino 
sheep resulted in an increased ovulation rate.47,62,66,65 Polymorphism 
studies of fecundity genes were performed in Indian prolific Black 
Bengal goat in which BMPR1B was found to be polymorphic and 
influencing prolificacy in this breed.67 Pramod et al.68 have studied 
differential ovarian morphometry and expression of prolificacy 
genes in relation to prolificacy in Black Bengal and Sirohi goats. 
Reduced concentrations of active BMP15 and GDF9 in the antral 
follicles decrease granulosa cell proliferation leading to a decrease in 
steroid and inhibin production. Consequently, an additional number 
of follicles are selected, and more ovulation occurs in prolific sheep 
breeds.69–72 Differential ovarian morphometry and expression of 
prolificacy genes serve as important indicators for prolificacy in Black 
Bengal and Sirohi goats.68

In China, the Growth Hormone (GH) gene polymorphism on goat 
production was first studied in Matou (a high prolificacy breed) and 
Boer (low prolificacy breed). The two polymorphisms of the goat 
GH gene at the loci A 781 G and A 1575 G were detected and the 
results showed that the two loci of GH gene are highly associated 
with abundant prolificacy and super ovulation response in goat 
breeds.73 Alpine, Damascus and Murciano-Granadina goat breeds 
were imported and used as paternal genotypes by crossing with the 
local population in southern Tunisia and reported that kid’s mortality 
and reproductive performances are largely related to the genotype 
adaptative potentialities.74 The polymorphism studies by PCR-SSCP, 
PCR-RFLP and sequencing established thatInhibin, alpha(INHA) 
may be a major gene controlling the prolificacy of goat and allele G 
is positively correlated with litter size.75 The studies were undertaken 
to find the association between FecB and high prolificacy in Raighar 
goats could not detect the affinity of the FecB gene for greater 
prolificacy.76

The single nucleotide polymorphisms in exon 1 and exon 2 of the 
BMP15 gene in both high fecundity breed (Jining Grey goats) and low 
fecundity breeds were detected and the BMP15 gene was identifiedas 
a major gene that influenced the prolificacy of Jining Grey goats.77 The 
polymorphism of Bone Morphogenetic Protein Receptor 1B (BMPR-
1B) gene was studied as a candidate gene for the prolificacy of goats 
in high prolificacy breed (Jining Grey goat) and low prolificacy 
breeds (Wendeng Dairy and Inner Mongolia Cashmere goats) 
using polymerase chain reaction (PCR)-single strand conformation 
polymorphism (SSCP) method. These results preliminarily identified 
that the detected loci of the BMPR-1B gene had no significant effect on 
the prolificacy of Jining Grey goats. 78 The polymorphism of Growth 
differentiation factor 9 (GDF9) was detected by PCR-SSCP in five 
goat breeds which differ in prolificacy and the findings suggested that 
prolificacy in Jining Grey goats may be due to the allele A. 79 BMP4 
is one of the most important genes in prolificacy due to its major part 
in growth and differentiation of the follicles, cumulus expansion and 
ovulation and the first report of a mutation in the coding region of the 
caprine BMP4 gene in India was given by a study in nine different 
goat breeds (Barbari, Beetal, Black Bengal, Malabari, Jakhrana 

(Twinning>40%), Osmanabadi, Sangamneri (Twinning 20-30%), 
Sirohi and Ganjam (Twinning<10%)) differing in prolificacy by 
Sharma et al.80. The genetic basis of caprine prolificacy was explored 
by screening indigenous goats for prolificacy associated markers of 
sheep BMPR1B, GDF9 and BMP15 genes, performing extraction 
of DNA and PCR amplification was done using primers designed. It 
resulted in the identification of three non-synonymous SNPs (C818T, 
A959C and G1189A).81 In a recent study, ectopic expression of the 
beta-1, 4-N-acetyl-galactosaminyl transferase 2 (B4GALNT2) gene 
was observed within the ovary in the highly prolific Lacaune sheep.82 
Transgenic technology is a method to rapidly introduce “new” 
genes into livestock without crossbreeding. Enhanced prolificacy, 
reproductive performance, feed utilization and growth rate, improved 
carcass composition, improved milk production and/or composition 
and increased disease resistance are some of the practical applications 
of transgenesis in livestock production.83

Seasonal and environmental factors

Thermoregulation studies on British Anglo-Nubian and Saanen 
goats reared in an intensive system in Trinidad concluded that Anglo 
Nubian is more suitable for the tropical environment with good 
prolificacy and kidding interval (Lallo et al., 2012).84 Johansson and 
Hansson (1943),85 studied the seasonal variation in prolificacy and 
seasonal distribution of births in Europe, in the Swedish strains of 
Shropshire and Cheviots and established that the average number of 
births per ewe increases until the middle of the mating season and then 
decreases. Hammond,86 studied in a small flock of ewes and found that 
the number of lambs per fertile service peaked in the autumn season 
and then declined steadily. Roberts87 also found that the frequency of 
multiple births was highest in the second to the fourth month of the 
lambing season, but other authors88–91 concluded that greater multiple 
births occurred early in the season.

Kumar et al.92 studied the factors affecting the reproductive traits 
in Sirohi goats and the results indicated that the season of kidding 
had no significant effect. In contrast, weight at kidding and service 
has a significant role in reproduction and also suggested that the 
improvement in management and grazing can contribute to better 
production. Notter93 studied the effects of ewe age and season of 
lambing on prolificacy in three US sheep breeds: Targhee, Suffolk 
and Polypay. He could observe the difference in Prolificacy (P<0.001) 
among ewe age groups in all breeds. Nevertheless, the prolificacy 
of young Suffolk ewes was higher in relation to that of adult ewes 
than that observed in Targhee and Polypay and this can be due to 
the high levels of management and nutrition commonly observed in 
purebred Suffolk. As per the study, the seasonal effects on prolificacy 
were substantial, but differences within the main winter and spring 
lambing seasons were minor since the animals lambing in different 
seasons would normally be placed in different contemporary groups. 
In the experiment conducted in Majorera goat, the kidding rate and 
prolificacy were significantly higher in multiparous than in nulliparous 
goats. They confirmed the efficiency of the Ultra-Low Freezing (ULF) 
technique for freezing and storage of goat semen.94 The practice of 
sterile service reduces the duration of oestrus and increases fertility in 
artificially inseminated dairy goats.95

Nutrition or flushing

In most cases, a positive effect of nutrition on reproduction 
is reported and there is a direct relationship between nutrition and 
reproduction. Supplementation during the mating period (shortly 
before the mating period and afterwards) could increase the ova shed 
and improve embryo survival. This practice is called flushing. The 
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manipulation of reproduction in relation with the nutrition is a vital 
tool to be considered in management practice which has a direct effect 
on ovulation rate and litter size particularly with a low cost when 
compared with the marker-assisted selection done after polymorphism 
studies and gene expression in prolific breeds of sheep and goat96 
conducted a study on the nutritional effect on reproduction and the 
treatment group of animals was supplemented with lotus corniculatus 
for 12 days prior to ovulation and the control provided the normal 
feed. Both the groups attained oestrus on the ninth day, but the 
supplemented group had an increase in ovulation rate and more twins 
were born (p=0.09). Also, the supplementation with corn grain and 
soybean meal for seven days prior to ovulation increased the ovulation 
by 14% in supplement animals. The effects of improved energy and 
protein diet upon reproductive outcomes of adult goats were studied 
under marginal rangeland grazing conditions and the animals were 
exposed to the male effect during the anoestrous-dry season. Results 
suggested that nutritional supplementation and the male effect were 
able to strongly invoke neurophysiological pathways to cause a rise 
in ovarian activity and to promote a uterine environment prone to the 
establishment of pregnancy during the anoestrus season.97

Conclusion
The factors affecting sheep and goat prolificacy when studied 

efficiently could improve their reproduction mechanisms and also 
provides a piece of prospective information for selective breeding. This 
review article has highlighted some of the major research concerning 
the possible prolificacy mechanisms in sheep and goats. Most of the 
studies associated with prolificacy are concentrated on identifying 
mutations in growth factors and their differential expressions. Recent 
studies are  targeting  genome, transcriptome and proteome analysis 
to gather more information on molecular mechanisms controlling 
prolificacy. 
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