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Abstract

In this article, we estimate the parameters of the bivariate Inverse Lomax distribution
of Marshall-Olkin based on right censored sample. Utilizing EM algorithm is a priority
because the vector of the observed data is not complete but viewed as an observable
function of complete data. After that, the EM algorithm makes use of the simplicity of
maximum likelihood estimation for complete data. In addition, normal deviations of the

estimates of bivariate Lomax distribution are derived.

A comparison is conducted via a simulation study between estimates obtained by using the

EM algorithm and without the EM algorithm.
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Introduction

Inverse Lomax distribution that is one of the inverted distributions
which is very flexible to analyze the situation with non-monotonic
failure rate, Singh, etal.! Ifarandom variable Y has Lomax distribution,
then x=1/y has an Inverse Lomax distribution (ILD) Singh, et al.?
The Inverse Lomax Distribution (ILD) is used in random modeling
of life components that have a decreasing failure rate. Like other
distributions included in the family of generalized Beta distribution,
Inverse Lomax Distribution also has application in actuarial sciences
and economy and Kleiber and Kotz.?

Inverse Lomax was implemented on geophysical databases
McKenzie, et al. (2011)4 These databases were about sizes of land
fires in the state of California Rahman et al.,’ carried out research about
statistical inference and Prediction on inverse Lomax distribution via
Bayesian inferences. Kleiber® tackled Inverse Lomax distribution to
possess the Lorenz ordering relationship between ordered statistics.

In this article, maximum likelihood estimates (MLEs) of the
parameters of the bivariate Inverse Lomax distribution (MOBIL)
of Marshall-Olkin’ are obtained based on censored samples. The
censoring time (T) is supposed to be independent of the life times
X,Y of the two components. For example, this situation happens in
medical studies of organs with pairs like kidneys, eyes, lungs, or any
other paired organs of an individual like a two-component system
that is interdependent. Failure of an individual might censor failure of
either one of the paired organ or both.

This scheme of censoring is right censoring, There are similar
situation in engineering science whenever sub-systems are considered
having two components with life times (X,Y) being independent of
the life time (T) of the entire system. However, failure of the main
system may censor failure of either one component or both. Maximum
likelihood estimators of the parameters for the case of univariate right

censoring were derived by Hanagal (a,b).*’ In addition, censoring
might happen in different ways. Patients may not follow up during
the study. Some patients might decide to move somewhere else.
Thereupon, the experimenter may not follow them again, or the
patients may not continue to cooperate because of bad side effects
of the treatment. These cases are called withdrawal from the study.
Useful information is presented by patients with censored data.
Therefore, they should not be omitted from the analysis. Due to lack
of data about real processes, the data in this study are derived from
the BVL of Marshall-Olkin’ with Matlab software. Subsequently, the
parameters are assessed using EM algorithm.

Marshall-Olkin
distribution

bivariate inverse lomax

Let X be a random variable with the following CDF as follows;

Fy(x) :(14—%) x>0,a,0>0(1)

Thedistribution of this formis said to be a Inverse Lomaxdistribution

with parameters a and 6 , will be denoted by IL(«,8). The PDF and
the hazard function of Inverse Lomaxdistribution with parameter

(a,0) will be
—-a-1
f,L(x;a,k):H_?(ufj x>0(2)
x x
Suppose U, , U, and Uj are three independent random variables
such that U, ~IL(q;,0)for i = 1, 2 and 3 it is assumed that

a,,0,,05,0 >0 . Define X =max (u;,u;) and Y = max (u,,u;) .
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Then we say that the bivariate vector (X Y ) has a bivariate
InverseLomax distribution Marshall-Olkin.”

The joint cumulative function of X and Y is defined as

—-a] - —a3
FXY(x,y)=(1+gj (1+0] [1+,0]
: x ¥ min(x,y)

=F, (x0,0)Fy (v;0,,0) Fy (min(x,y).;a3,6’)(3)

Fl(x,y)0<x<y<oo

Fyy(xy)=1F(x,y)0<y<x<o(4)
Fy(x)0<x=y<w

where

—(o1+a3) —ay
Fl(x,y):F(y;az+a3,6?)F(x;a1,9):(1+;J (Hy]

Yy a
Fz(x,y):F(x;al+a3,€)F(y;a2,9):[l+j (1+—j
X

<

Fy(x) = F(x:a.0) :(HQJ_(Z

x
and )y ra, ta,
The joint probability density function fy y (x,y)of X and Y takes
the form

A(xy)ifx<y
Sry (x2)=1L(x0)if v <x(5)
fo(x)ifx=y
where
a +a;)a, 0 g\ re)t o) "
fl(x,y):(lzs)zz[l+j 1+—
Xy x y
( +a3)a 0* o) 2! AR
and

2 —a-1
folx) =2 i‘{ugj

x x
The density functions of X|{(x,y) | x> y},Y|{(x,y) |y > x} and

Z=min (X,Y)are given as follows:

0oy +ay)(, oY) g\
fXH(x,y)‘py}(x):7l 5 3 (1+—] 1+= X>y

X X ¥
dara)( o7 gy
fYH(X,y)\y>x}(y)_T 1+; 1+; y<x

0a(, o) .
fZ(z):—?(HfJ Z=min(x.y)
z z
This article aims at deriving an estimation method for the
parameters of a bivariate InverseLomax distribution of Marshall-Olkin
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by the EM algorithm. In Section 2, the EM algorithm is presented,
while in Section 3, the parameters are estimated by applying the EM
algorithm. Finally in Section 4, we present the results of a simulation
study.

The EM Algorithm

The expectation-maximization (EM) algorithm was introduced by
Dempster et al.!® The algorithm is considered a repeated procedure
used to find the maximum likelihood estimates of data that are
missing, incomplete, unobserved or censored data. Because it is easy
to implement, the impact of the EM algorithm has had great effect,
not only as a tool for computation but also as a method of solving
complicated statistical problems.

The basic idea behind the method is to transform a set of incomplete
data into a complete data problem for which the required maximization
is computationally more tractable and stable numerically. Each
repetition raises the likelihood, which is finally converged to a local
maximum. The complete data set x can be viewed as consisting of

vectors (z,t*) , where t is the observed incomplete data, and {"is the
missing data.

The EM Algorithm method has been applied by several authors,
for example, see Qin, et al.,'" Rudolf,> Ning, et al.,”* Zanini, et al.,'*
Acikgoz,”® Kalabatsos,'® Attia, et al.'” and Hanagal and Ahmadi.'®

The iterations

The objective is to draw inferences about the parameter vectors
a Q. We will use L(QH) to denote the likelihood function where t

is the vector of observed data. Lett represent the vector of missing

data. Starting with a guessed value for the parameter « , carry out the
following iterations:

* Replace the missing data t by their expectation given the
guessed value of the parameter vector and the observed data.

Let this conditional expectation be denoted by ? .

. MaximizeL(g,t*h‘) with respect to o replacing the missing

data t” by their expected values. This is equivalent to maximizing
L(g,E[T*|t]) .

*
* Re-estimate the missing values t using their conditional
expectation based on the updated « .

* Re-estimate ¢ and continue until the difference between a
new iterated value and the previous iterated value is less than
0.00001.

Execution of the algorithm
» Consider the logarithm of the likelihood log L(g,t*|t) .

» Let the conditional expectation of log L(g ,t*|t) with respect to

I3 |(g(k) ,t) at k" step be noted by Q g|g(k)) , where g(k) is the
current guess of @ .Then the EM-steps are as follows:
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1. E-step: Calculate QO g|g( ) , that is, that is, the expectation of
the log-likelihood with respect to the conditional distribution of the

missing data, given the observed data and the current guess of « .
2. M-step: Maximize Q(g|g(k)) with respect toa and set the

(k+1)

result equal tod" "/, the new value of the parameter vector.

Since g(k”)

Q(g(kﬂ)

maximizes Q(g|g(k))the M- Step results in

g(k)) > Q(g|g(k)) for allg € ), implying that g(k“) is a

aQ(gI@(")) 0

a
The two steps are repeated iteratively until the difference between
two successive iterations is less than 0.00001. This iterative procedure

solution to equation,

leads to a monotonic increase of log L(g JE [T t]) :

logL(g(k“) E[T \t])z logL (& . E [T" |1]) fork=1,2,..(8)

Since the likelihood increases in each step, the EM algorithm
converges generally to a local maximum. When there is no closed
form solution of the M-step, a numerical algorithm as, for example, the
Newton-Raphson procedure, may be used for iteratively computing

a® . In fact, in this paper the Newton-Raphson procedure is used to

obtam maximum likelihood estimates of ¢ at the (k +1)™ iteration
as follows:

a(k+l)

=g -

The iterative procedure is carried out until the difference

(k+1)

a - g(k) <0.0001, For more detail see Hanagal and Ahmadi.'

Parameter estimation

The density function of (X,Y) is given by

~(ay+az)-1 —ay-1
(o +a3)a, 07 0 14
—— 5|1+ 1+— for0<x<y<ow

2y x y
2 —(az+az)-1 —a1-1
ij(x,y): %[1*’%] (1+§) f()r0<y<x<oo(10)

For the bivariate life time distribution, we use the univariate
censoring plan presented by Hanagal(a,b)*°as the persons do not join
the study at the same time and withdrawal or death of a person or
ending the study will censor life times of both components. The time
of censoring is independent of life times of both components, This is
the standard univariate right.

Copyright:

©2019 Abdelhady 225

Suppose that there are n independent pairs of components, for
example, paired kidneys, lungs, eyes, ears in an individual under study

and i"pair of the components have life times (X

%

Y;) and censoring

tlme( ) The life times associated with i-th pair of the components
are given by

(X..Y,)if max(X,,Y,)<T,
(X, ly)zfX <T, <Y,
(T.%)if Y, <T, < X,

(T T, )zfmln(X Y,)>T,,

ixy > "ixy 27

(11)

fori=1,2,...n
where 7., T;, and T, represent the unobserved random variables
X<y, X>y, X=y respectively.

The likelihood of the sample of size n after discarding factors
which do not contain any of the parameters of interest is given as
follows

6 "j

L(a Liestips lxy) HHf)?Y (x:,3:)(12)

Jj=i i=1

where
4 P ~(ag+a3)-1 —ay-1
f)(y(xy) %[ng l+g O<x<y<t
y x y
+ o? —(az+az)-1 —ap-1
fzx,y(x)’) %(l+g] [1+€] O<x<y<t
y X
Lxy(xy)= [ ] O<x=y<t
(e +a3)-1 ay-1
+
f4X,Y(x’y) (0!1 0!3 az [ ) [ } ,0<x<t<t),.=y (13)
(ap+a3)-1 —a1-1
o, +a aH
Ly (xy)= (e 3 [ ) [Hf] O<y<t<t =x
2
oy (xy)= an[“_ti] 0<t<t, =min(x,y)
xy w

6
where >'n; =n ,m,ny,ny,ny,nsand ng e the

= .
realizations falling in the range corresponding to 7, (x,y)and

fzx,y (x,y) 5 f4X,Y (XJ)

and f3 X’Y(x, y) are density functions with respect to the Lebesque

numbers  of

j=1,2,...,6, respectively. le’Y(x,y),

measure on R2, while , f3X’Y (x,), and fGX’Y (x,y) are density
functions with respect to the Lebesque measure on R.

Let the range of variability corresponding to /7y ,(x,y) be

denoted by 4;, =1, 2, , 6.and 4,,..., 4, are disjoint sets and

letting B, =A4U4, . Ey=4UA E=4U4,.E,=EUE, .

E;=EUA4,U4;and Eg = E,J4,, the log-likelihood function

lnL(at toot

o liys uy) can be written as follows:
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InL =(m+n,)(In(e + )+, )+ (my +ns)(In(@, + o) + Iney ) + (m; + ng ) Inars

—ZZln ZZIn i)

icEs icEg icE] X

i

a+1 Zln(l+£]

iedy X

—(a+a;+1) Zln[l+£]

(ay +1) ZIn[H—z]

icdg Vi

%+1zm@+ﬁ](%+%+mzmp+ﬁj

icdy icE) i

(e +1) ZIn[Hi]

icdy i

2 In(t,)-2> In(t,)- “l”zln[ tj

i€y ieds ieds

23 In(ty)-(a+1) Y 1:1[1+i]+nln(9)+2(nl +my+ny +n5)In(0)(14)
icdg iedg i
Estimation parameter with EM algorithm
The E-step and M- step are obtained as follow:

E- step:

The unobserved random variables, 7,7, and T, follow

the distributions as stated in (7). The conditional distributions

(et )1 (2> 1> y)} L {(80.2) (1, > 0> %)} and
T, {(txy,t) | (txy > t)} are given as follows:
(a1 +a3)-1 a+as
(o +a 4 0
ﬂw%wﬂ“*’lf74ﬁp+4) @+7J sk
—(az+a3)-1 o
_O(ay +a3) 0 9\
ny‘(w’x)(ty)_? 1+g 1-¢—7 X<t<t, (15)
e (@)
Oa o 0
iy (ty)= lxyz[l + txy] (1 + 7) >t
The values of the first moments of the
conditional unobserved random variables

[1+%) {(tet.2) (1, > 1> )} ,[1+%] {(tv,t,x) [ (ty >t> x)}and(1+TU, /k)‘{(lxy’t) \ (trL > t)}

are as follows.

EQ+T /k)|{(tt.) (e, > 1> )} % 1+§]:7I(1+§](w)
E(1+Ty/k)‘{(ty,t,x)|(ty>t>x)}:%[thj:}’z(]*g)(WY) (16)

E(1+7, 1K) (1) (1> 1)} =%(l+£]=73[1+§](say)

The conditional expectation Q(g|g(k)) is obtained as follows:

Q(g\g(”) =(m+ny)(In(on +a5) +Inay )+ (ny +m5)(In(ey + ;) + Iney ) + (my + g ) Inery

al+a3+1 Zx - a+1 Zx

iek| iedy

(o +1) >3,

iedg

ZZln i)

ieEg

—22 ln(

ieks

—(aq+1) 2% = (

iedy

%+%+UZ%*
ieEz
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o +1) Z(yl +t)

icds

(k) (k) (k) (k)
n -1 7n n -1 n
22 In| 2——+22— 22 Inf &——
+. 1’1[ 0 + p J‘F 1’1[ 0 + . J

icdy i icds i

()

(k) _
(i +1) (ygk) +i,)+22 ln[}ﬁgl+7ij—(a+l) > (;é” +t'l.)

icdy iedg iedg
+nln(0)+2(n +n, +n, +ns)In(0) 17)
suppose is & known and 71(k),}/2(k),}/3(k) are expressed
in terms  of al(k),az(k),a3(k) at k™ iteration, and

X; = ln[l +€],yi = ln(l +9jandii = ln[l +9J.
X Vi 4

M-step:

The following equations are obtained by equating the partial

derivatives of Q(g|g(k)) with respect to ¢, a,and a5 to zero:

Mo ths Mt n ( ) ( (k) 4 ),
'+ —0(18
o 0‘1*“3 zgl tezAs 1 :;:6 )
mAng  mtns i - )_ ( () '):
Yi— +1;)=0(19
a a taoy 152143 zg):z z§4( igﬁ ’ (19)
mtng | mytns st % PR T y()+t1 ~0(20
otay ot a3 ,;:3 iezF;l t igi:z L igél:(;( : 1) (20)

Where D, =E,U4,U4; and D, =E, U 4.

The above likelihood equations are solved for the maximum
likelihood estimates d,(k),dz(k),d3(k) using the Newton-Raphson
procedure. Below the observed elements of the symmetric information

matrix at the current guess @ = g(k) are given which is required in the
Newton-Raphson iterative procedure.

0 Q(a‘ ) n2+n5)+ (m+ny)
60{1 alz (a] + a3)2
62Q(g\q“))
- dada,
_ 62Q(g‘g(k)) _ (m+ny)
60{160(3 (al +ay )2
(21
0 Q(“‘ ) n,+n4)+ (my +ns)
oa; @ (a, +0‘3)2
_azQ(g\gm) ()
6a26a3 (az +oy )2
_52Q(g‘g(k)) _ (m+ny) + (my +15) L +"6)
da? (g +ay )2 (ar+ a3) o
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As mentioned above the iterative process is carried out until the
following condition is met by two subsequent solutions:

L(g(“‘),E[t. toot,

ix>tiy2tixy

x,-,y,-,tf])*L(Q(”,E[tu,z,.y,tm, x,»,y[,t,-]) <0.0001(22)

Estimation parameter without EM algorithm

The likelihood of the sample of size n after discarding factors
which do not contain any of the parameters of interest is given as
follows

6 j .
L(Q’t) = HHf)?y (xi’yl')(23)
j=i i=1
where
2 —(a+a3)-1 —ap-1
flxy(x’y)=w®+g] [1+g] O<x<y<t
’ x°y X y
2 ~(ay+a3)-1 —ap-1
fzx,y(x’y):wp+g] (1+g] O<x<y<t
Xy y X
2 —a-1
flxvy(x’y){?(“gj O<x=y<t

(24)

+ 32 —(a)+a3)-1 —ap-1
fAX,y(X,y)=%(l+gj (1+§) LO<x<t<y
X

X t
o +a. )0 —(ep+a3)-1 —a1-1
fsxy(x,y)zg( : 232 12 (ng O<y<i<x
’ t"y y t
6’ AN .
Fory(xy)= [?3(1+7] ,0<t<min(x,y)

The log-likelihood function InZ, (g,t) can be written as follows:

InL=(m+n,)(In(c + o3+ Iney )+ (my + ng)(In (e, + o3 )+ Inety )+ (5 + g ) In

=23 In(x)-2> In(y,)— (o + oz +1) D% = (a+1) D %

ieEs iekg iek] ieds
(o +1) Y %= (o + g +1) Yy, —(ay +1) Dy
icdy icEy iede
=23 In(5) =2 In(t;)—(e +1) D i —(ay +1) Dy
icdy icds ieds icAy
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_ZZA: ln(t,.)—(a+l)zA:6ii +nln(0)+2(n +ny +n, +ng)In(6)(25)

The following likelihood equations are obtained by equating the
partial derivatives of In(L) with respect to &;,a,and a; to zero:

- Y x%- Y §=0(26)

ieDy ieds UA6

mytns  mtny

) o+ o

M BT Sy oS- Y i=0(27)

a O+ Q5 oy icDy  icAqUdg
m+n,  ny+ns  ny+ng . . . .

I S o2
ogta; atos a; iedy ik icEy  iedg

Simulation Study and Conclusions

The sample data are generated based on following algorithms:

Step 1: Generate u; using the Lomax distribution white parameters

o, 0,and oy

Step 2: Take X =min(u;,u;)and ¥ =min(u,,u;) and, therefore

(X Y ) follows a bivariate Inverse Lomax distribution of Marshall-
Olkin type.

Step 3: Generate t; using the Inverse Lomax distribution with

B.6 , where t;s are the censoring times.

For two cases with respect to the ¢;s, we generated 1000 sets
of samples. Each set consisted of three samples with sizes n = 20,
35,50 and 100. The corresponding maximum likelihood estimates are
displayed in Table 1 together with the empirical standard deviation.

The estimates denoted by MLE,, and SE,, are obtained by using
the EM algorithm, while the estimates denoted by MLE and SE are
obtained without the EM algorithm.

Table | Comparison of MLEs obtained using the EM algorithm and without EM algorithm

Parameters % % % % % %

1.6 1.4 1.8 0.6 0.5 0.4
n=20
MLE,_, 1.6113 1.3882 1.8154 0.6131 0.4812 0.3874
SE.. 0.0771 0.0682 0.0854 0.0865 0.0967 0.0793
MLE 1.6173 1.3845 1.8193 0.6216 0.4735 0.3818
SE 0.0943 0.0817 0.0975 0.0972 0.1076 0.0926
n=35
MLE_, 1.6092 1.3914 1.8122 0.6092 0.4885 0.3917
SE.. 0.0723 0.0637 0.0761 0.0782 0.0913 0.0725
MLE 1.6117 1.3902 1.8164 0.6173 0.4834 0.3861
SE 0.0788 0.0636 0.0826 0.0841 0.1015 0.0844
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Table Continues...

Copyright:
©2019 Abdelhady

Parameters % % % Gl % %
1.6 1.4 1.8 0.6 0.5 0.4
n=>50
MLE,, 1.6064 1.3931 1.8093 0.6062 0.4921 0.3943
SE., 0.0681 0.0586 0.0717 0.0726 0.0813 0.0637
MLE 1.6113 1.3915 1.8124 0.6125 0.4876 0.3903
SE 0.0714 0.0622 0.0773 0.0796 0..0972 0.0779
n=100
MLE,, 1.6033 1.3947 1.8068 0.6046 0.4969 0.3973
SE.m 0.0655 0.0561 0.0693 0.0597 0.0772 0.0589
MLE 1.6055 1.3968 1.8059 0.6071 0.4934 0.3942
SE 0.0658 0.0572 0.0714 0.0615 0.0786 0.0603
Table 1 and Table 2 shows that the estimates obtained by using  obtained without the EM algorithm.
the EM algorithm gave a smaller empirical standard error than those
Table 2 Comparison of MLEs obtained using the EM algorithm and without EM algorithm
Parameters % % %3 il % %
25 2 22 I.1 0.9 1.4
n=20
MLE_, 2613 2.221 2414 1.289 1.089 1.603
SE.., 0.141 0.135 0.157 0.167 0.149 0.163
MLE 2.777 2.335 2.575 1.432 1.176 1.699
SE 0.173 0.169 0.189 0.192 0.176 0.194
n=35
MLE_, 2.587 2.198 2.385 1.176 1.054 1.547
SE., 0.109 0.119 0.132 0.123 0.135 0.152
MLE 2711 2.282 2513 1.356 1.103 1.621
SE 0.148 0.135 0.159 0.184 0.161 0.183
n=50
MLE,_ 2.534 2.145 2.313 1.142 0.987 1.498
SE., 0.089 0.097 0.114 0.114 0.119 0.124
MLE 2.665 2214 2.478 1.258 1.067 1.557
SE 0.123 0.123 0.137 0.162 0..149 0.168
n=100
MLE,, 2516 2.061 2.257 1.122 0.931 1.433
SE., 0.078 0.068 0.096 0.079 0.088 0.104
MLE 2.608 2,111 2.319 1.207 0.987 1.519
SE 0.117 0.109 0.121 0.123 0.117 0.147
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Moreover, the estimates MLE _em are close to the true parameter
values and the standard errors (SE_em) decrease as the sample size
increases. The estimates for both methods are obtained by taking the
mean of the 1000 maximum likelihood estimates and the mean of the
1000 standard errors from the 1000 samples of size n = 20, 35,50 and
100.

Also note that with a large sample size estimates of the values
of both methods (with and without EM algorithm) from each other
as well as the standard error, which means that when the sizes of
large samples may give both methods convergent results and then fit
whichever is applicable.
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