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Introduction
In many health studies, powerful tools for the statistical analysis 

are the survival analysis techniques that could be useful, for example, 
to identify risk factors or treatments that influences the survival or 
cure probability of a certain disease. In general, survival analysis 
consists in a set of techniques and statistical models commonly used 
when the random variable of interest is the time until the occurrence 
of a specific event, such as the time until the occurrence of a disease 
or the time until the patient’s death. A concept that differs survival 
analysis from others statistical analysis is the presence of censored 
data that occur when we have partial individual information about 
the time of occurrence of the variable of interest, however we do not 
know the exact time of occurrence of the event, that is, the real time 
of occurrence may exceed the observed time. The censored data can 
occur for a variety of reasons as the loss of monitoring of the patient 
over time and the non–occurrence of the event of interest until the 
end of the experiment. According to Colosimo and Giolo1 there are 
two reasons that justify the use of censored data in statistical analysis: 
(I) although these observations are not complete, they provide 
information about the patient’s lifetime and (II) the omission of the 
observations censored can lead to the calculation of biased estimates.

In survival analysis, usual parametric and non–parametric tools 
are widely used for analyzing data from time to event data. These 
tools are useful when some observations are censored and the event of 
interest was not seen in all patients during the follow–up period. The 
most used procedures include the mortality table, the Kaplan–Meier 
estimator for the survival function, the Cox proportional hazards 
model and parametric survival models. Parametric models are more 
flexible than Cox proportional hazards model, especially when there 
is no proportionality of risks between groups and are based mainly on 
two important functions, the survival function and the hazard function. 
These techniques are described in several textbooks as Kalbeisch and 
Prentice,2 Klein and Moeschberger3 and Kleinbaum and Klein.4

Let a non–negative random variable T related to the failure 
time, then the survival function is defined as the probability that an 
observation will not fail until a certain time t, that is, the probability 
that an observation will survive time t. In probabilistic terms,

                                   ( ) ( )S t P T t= ≥

On other hand, the hazard function ( )tλ represents the 
instantaneous failure rate at time t  conditional on survival time t  
and is very useful to describe the distribution of patient’s lifetime. In 
probabilistic terms,
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Nonetheless, a common situation in many lifetime studies, 

particularly in cancer research, occurs when it is expected that a 
fraction of individuals will not experience the event of interest, this 
fraction of individuals often are immune or are cured. The presence 
of immune or cured individuals in a data set is usually suggested by 
a Kaplan–Meier plot of the survival function, which shows a long 
and stable plateau, with several censored date at the extreme right of 
the plot.5–8 However, an efficient and commonly applied technique 
is to consider a mixture of two populations, one susceptible to the 
event of interest adopting a base probability distribution to model the 
survival time of susceptible patients, and one of the most common 
distributions as, for example, the Weibull distribution9–11 for the non–
susceptible population.

According to Hjorth,12 one or two parameters distributions have 
some important limitations such as the inability to model data that 
presents a bathtub risk function, for example. However, the most 
flexible distributions and with the largest number of parameters, 
may have inaccurate estimates, when there is a small sample size. 
In this way, this paper present a mixture cure rate model based on 
the Mirra distribution13 to estimate survival and hazard curves. The 
choice of Mirra distribution is justified due it number of parameters 
(two–parameters) and the bathtub shapes for the hazard function. Two 
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Abstract

In many applications related to time to event data, especially in the medical field, it is 
common the presence of a fraction of individuals not expecting to experience the event of 
interest, these individuals immune to the event or cured for the disease during the study are 
known as long–term survivors. To estimate survival and hazard curves, in this situation, it is 
common the use of Weibull cure rate model due to its great flexibility and simplicity. In this 
paper, we present the estimation of survival and hazard curves using a extension of Mirra 
model using the classical cure rate approach and applying it to gastric and breast cancer 
data. The inferences of interest were obtained using a Bayesian approach and the results 
achieved from this study showed that the Mirra model has a good fit and could be an useful 
alternative for estimation and shape prediction of survival and hazard curves for long–
term survivors, especially for cancer data. The results could be extended using regression 
approach in order to identify risk factor that affects the survival probability.
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dataset sets are considered to illustrate the proposed methodology. 
The first, related to gastric cancer, presents the bathtub shape for the 
empirical hazard function; and the second, related to breast cancer, 
presents a decreasing shape for the empirical hazard function.

The paper is organized as follows: in Section 2, it is presented 
the mixture Mirra cure rate model as its likelihood function. A brief 
description of the Bayesian approach and some discrimination criteria 
are also presented in Section 2. Section 3 presents the statistical 
analysis based on mixture Mirra cure rate model for two cancer data: 
gastric and breast cancer. The estimation of the survival and hazard 
curves are also presented in Section 3. Finally, Section 4 close the 
paper with some concluding remarks.

Material and methods
The Mirra distribution

A first approach of the Mirra distribution (TPM) was introduced 
in the literature by Subhradev Sen.13 These authors studied most of it 
properties and illustrate how the Mirra distribution was synthesized 
as a special finite mixture of exponential and gamma distributions. 
In this way, let T  be a continuous random variable following Mirra 
distribution with parameters α andθ . The probability density 
function (pdf) and survival function (sf) of the random variable T  is 
given, respectively, by, 
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 where 0t > and , 0α θ > . Thus, the hazard function (hf) is 
represented by, 
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As noted by Subhradev Sen13 the hf of this distribution has the 

shape of a bathtub, decreasing to 2t
α

< and increasing to 2t
α

>

. Moreover, these authors also showed that the hf is limited with the 
following limits, 
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In Figure 1, it is illustrated the shape of pdf, sf and hf. From those 
plots, it is possible to see the bathtub shape for the hf (green line). 
Also, for example, assuming 5, 2α θ= =  (green line), we have that 
the limits of the hf are given by 0.828 ( ) 2.000tλ< < .

A great advantage for the use of TPM distribution is that the 
special cases maintain the bathtub shape for the hf. These cases are 
described by,  

 1.  When we consider 1α = , we get the Mirra–silence distribution 
(MSI), with probability density function and survival function 
respectively given by 
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2.  In case of 1θ = , is obtained the Mirra–surrender distribution 
(MSII), with probability density function and survival function 
respectively given by 
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3.  If we considerα θ β= = , we have in this case the the xgamma 
distribution (XG), proposed by Sen et al.,14 with probability density 
function and survival function respectively given by 
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Figure  1 Behavior of the pdf (left panel), sf (middle panel) and hf (right-panel) for TPM distribution assuming arbitrary values for the parameters α  and β .
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Mixture mirra cure rate model

Let us denote by T  the event of interest. Following Maller and 
Zhou,15 the standard cure rate model (or mixture cure rate model) 
assuming that the probability of the time–to–event to be greater than a 
specified time  is given by the survival function, 

	                      0( ) (1 ) ( )S t S tρ ρ= + − 	                     (10)

where (0,1)ρ ∈ is the mixing parameter which represents the 
proportion of “long–term survivors”, “non–susceptible” or “cured 
patients”, and 0( )S t denotes a proper survival function for the non–
cured or susceptible group in the population. Observe that if t →∞
, then ( )S t ρ→ , that is, the survival function has an asymptote at 
the cure rate ρ . The probability density and the hazard functions 
corresponding to (10) are given, respectively, by, 
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Now, assuming TPM distribution by the Equation (4) as the 
baseline sf for the susceptible individuals in the Equation (10), we get 
the mixture TPM cure rate model with sf and pdf given, respectively, 
by
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The likelihood function

Let T  be a positive random variable denoting the survival time 
of a patient and U  another positive random variable denoting the 
censoring or dropout time of the patient. Also define an indicator 
variable (binary variable) of censoring for the  thi patient defined by, 

1id = for iT t= and iU t≥ and 0id = for iT t> and iU t= , where
min( , )i i it T U= . For the  thi  patient, 1,2, ,i n= … , the contribution for 

the log–likelihood function is given by, 
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where ( )if t and ( )iS t denotes, respectively, the pdf and sf 
associated to the  thi patient. Now, assuming the mixture TPM cure 
rate model with a parameter vector ( , , )ψ α θ ρ= , we have, for the  thi
patient, 1,2, ,i n= … , the contribution for the log–likelihood function 
is given by, 
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Bayesian analysis

In general, the statistical inference is the process of data analysis 
to deduce properties of a population from a sampled data of that 
population. According to Ibrahim et al.,16 the Bayesian paradigm is 
based on specifying a probability model for the observed data D
, given a vector of unknown parameters θ  and provides a rational 

method for updating the new information using the Bayes’ rule 
and prior distributions for the uncertainty about θ . That is, the 
Bayesian paradigm is the process of fitting a probability model to a 
set of data and summarizing the result by a probability distribution, 
called posterior distribution, on the parameters of the model and 
on unobserved quantities such as predictions for new observations. 
In this way, assuming the proposed mixture TPM cure rate model, 
we simulate samples from the joint posterior distribution using the 
MCMC (Markov Chain Monte Carlo) algorithm implemented in the 
OpenBUGS software, a free version of WinBUGS software,17 by the 
package “BRugs”18 from R software.19 

For the Bayesian analysis, as prior distributions, we adopted 
approximately non–informative gamma prior distributions, ( , )G a b , 
for the parameters ,α θ , where a  and b  are known hyperparameters, 
and ( , )G a b denotes a gamma distribution with mean /a b  and 
variance 2/a b . Moreover, for the parameter ρ  we assume a 
prior beta distribution (1,1)Betaρ ∼ since (0,1)ρ ∈ . The posterior 
summaries of interest are computed adopting a burn–in sample of 
size 50,000 to eliminate the effect of the initial values and a final 
Gibbs sample of size 4,000 taking every 50th sample from 250,000 
simulated Gibbs samples. Also, the 95% highest probability density 
(95% HPD)20 interval was considered for the Bayesian estimates. The 
convergence procedures based on traceplots were verified using the 
“coda”21 package from R software.

To discriminate between models in the statistical analysis, two 
criteria are considered here: the deviance information criterion 
(DIC) and the extended Bayesian information criteria (EBIC). The 
DIC is a criterion specially useful for selection models under the 
Bayesian approach where samples of the posterior distribution for 
the parameters of the model are obtained using MCMC methods. It 
is similar to AIC criteria with two changes: replace the maximum 
likelihood estimate θ



with posterior mean | yBayes θθ =


   and 
replace k  with a data–based bias correction. The new measure of 
predictive accuracy, according to Spiegelhalter et al.,22 is, 

	               DICDIC log (y | ) ,Bayeselpd p pθ= −


	    (17)

 where PDIC is the effective number of parameters, defined as, 

	        ( )DIC 2 log (y | (log (y | ) ,Bayes postp p p θθ= −


 	   (18)

 where the expectation in the second term is an average of θ  over 
its posterior distribution. The posterior mean of θ  will produce the 
maximum log predictive density when it happens to be the same as 
the mode, and negative DICp  can be produced if posterior mean is 
far from the mode (Spiegelhalter et al.,22). Finally, the actual quantity 
called DIC is defined in terms of the deviance rather than the log 
predictive density. Thus, 

	                  DICDIC 2log (y | ) 2Bayesp pθ= − +


	    (19)

 Smaller values of DIC indicate better models with a difference at 
least 5 by each model in DIC values.23 Note that these values could be 
negative. On other hand, the extended Bayesian information criteria 
(EBIC), proposed by Chen and Chen24, is given 

	                            EBIC ( ) ln( ),D k nθ= + 	      (20)

 where, [ ( )]E DD θ= is the posterior mean of the deviance, k  
is the number of model parameters and n  is the sample size. The 
EBIC has the advantage of penalizing the model by the number of 
parameters.
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Applications in cancer data
In this section, we present the usefulness of the proposed mixture 

TPM cure rate to estimate survival and hazard curves in cancer 
research under a Bayesian approach. For the hyperparameters of the 
gamma prior distributions, we adopted a=b=1. The results showed 
that the mixture TPM cure rate model is great do describe the survival 
probabilities as well the bathtub shape from the empirical hazard 
function of the data. The model also shows good lengths (small values 
for the difference between lower and upper bound) for the 95% HPD 
interval which is a indication of good fit.

Gastric cancer data

The gastric cancer is one of the leading causes of cancer–related 
death. Several studies are carried out to advance our understanding 
of the biologic behavior of gastric cancer and improve surgical 
management and outcome.25 To illustrate the usefulness of the 
proposed methodology, we considered a dataset related to the times 
until death in months since surgery of 201 patients of different clinical 
stages, obtained by Jacome et al.26 who carried out a retrospective 
study in patients with gastric adenocarcinoma who underwent curative 
resection with D2 lymphadenectomy in the Barretos Cancer Hospital 
(Brazil) between January 2002 and December 2007. For more details 
of the dataset, the reader should consult Martinez et al.27 The posterior 
summaries of interest for parameters of the mixture TPM cure rate 
model are presented in Table 1 and the fit of mixture TPM cure rate 
model was compared to the fit of the mixture MSI, MSII and XG 
cure rate models (the special cases of the TPM model). By the both 
discrimination criteria, it could be concluded that the mixture TPM 
cure rate model is the best model fitted for the dataset.

In Figure 2, it is presented the estimated survival (left panel) and 
hazard (right panel) curves for each model considered in the analysis. 
From the Kaplan–Meier curve for the empirical survival function, it 
could be seen a plateau close to the value 0.5 which was great estimated 
by all models. However, assuming the MSII model, the survival curve 
is poorly estimated. On other hand, for the hazard curve, only the TPM 
model has a good fit to capture the bathtub shape from the empirical 
hazard function (obtained using the package “bshazard”).28 The other 
models present some values out of the confidence bounds from the 
empirical hazard function. Finally, in 3, it is present the probability 
plots for each model where it could be seen that the TPM model has a 
good fit for the gastric cancer data.

Table 1 Posterior summaries for the parameters of the models including the 
cure fraction for the gastric cancer data 

Model Parameter Posterior 
Median 95% HPD DIC EBIC

TPM  α  0.0700  (0.0086, 0.1573)  894.2  907.4 

 θ  0.1731  (0.1265, 0.2154)   

 ρ  0.4675  (0.3794, 0.5588)   

MS I  θ  0.2314  (0.1990, 0.2603)  924.5  932.6 

 ρ   0.4954  (0.4203, 0.5697)   

MS II  α  5.8830  (3.1216, 9.1146)  1851  1859,6 

 ρ  0.5272  (0.4583, 0.5967)   

XG  β  0.1983  (0.1670, 0.2296)  898.8  907,5 

 ρ  0.4805  (0.4013, 0.5555)   

Figure  2 Plots of the survival functions estimated by Kaplan-Meier method 
and from the mixture cure fraction model based on TPM distribution and 
special cases (left panel) and respective hazard functions (right panel), 
considering gastric cancer data.

Figure 3 Plots of the Kaplan-Meier estimates for the survival function versus 
the respective predict values obtained from the mixture models based on TPM 
distribution and special cases, considering gastric cancer data.

In conclusion, the proposed mixture TPM cure rate model is 
adequate to model the lifetime of the patients with gastric cancer and 
the shape of the hazard function which could be useful in medical 
studies that the main interest is how to describe or predict hazard 
curves. In addition, comparing with the results obtained by Martinez 
et al.,27 no significant differences were found in the estimated cure 
fraction, however, it is worth mentioning that the model proposed in 
this manuscript has simpler equation, less number of parameters and 
flexibility of the hazard function which could be more useful that the 
model adopted in Martinez et al.,27 especially for the bathtub shape of 
hazard function of the data.
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Figure  4 Plots of the survival functions estimated by Kaplan-Meier method 
and from the models based on TPM distribution and special cases (left panel) 
and respective hazard functions (right panel), considering breast cancer data.

Figure  5 Plots of the Kaplan-Meier estimates for the survival function versus 
the respective predict values obtained from the mixture models based on TPM 
distribution and special cases, considering breast cancer data.

Breast Cancer Data

According Bray et al.29 the breast cancer is the most common 
cancer in women worldwide, other than non–melanoma skin cancer. 
However, with the advancement of treatments the proportion of cure 
increased considerably.30 To illustrate the usefulness of the proposed 
methodology, we considered now a dataset related related to a cohort 
study where 97 patients underwent surgical treatment for breast 
cancer followed up for a period ranging from the year 2000 to 2011. 
More details of this study can be found in Shigemizu et al.,31 For 
more details of the dataset, the reader should consult Shigemizu et 
al.31 As lifetime, it was considered the overall survival time (OS), that 
is, the lifetime after the diagnosis or started treatment. The posterior 
summaries of interest for parameters of the mixture TPM cure rate 
model are presented in Table 2. By the both discrimination criteria, 
it could be concluded that there is no significant difference for DIC 

values among the considered models and, by the EBIC criteria, the 
mixture TPM cure model may not be the most suitable for this data. 
This fact occurs due to the penalty that the EBIC put on the number of 
parameters of the model.

Table 2 Posterior summaries for the parameters of the models including the 
cure fraction for the breast cancer data

Model Parameter Posterior 
Median 95% HPD DIC EBIC

TPM  α  0.9817  (0.0003, 3.3707) 172.3 184.0 

 θ   0.6964  (0.3061, 1.0197)   

 θ  0.7765  (0.6783, 0.8640)   

MS I  ρ  0.7180  (0.5257, 0.9524) 172,0 179.1 

 α  0.7794  (0.6842, 0.8622)   

MS II  ρ  2.4050  (0.6351, 5.3031) 172.5  179.9 

 ρ   0.7910  (0.7087, 0.8698)   

XG  β   0.6762  (0.4270, 0.9452) 172.4 179.6 

 ρ   0.7759  (0.6773, 0.8605)   

In Figure 2, it is presented the estimated survival (left panel) and 
hazard (right panel) curves for each model considered in the analysis. 
From the Kaplan–Meier curve for the empirical survival function, it 
could be seen a plateau close to the value 0.8 which was great estimated 
by all models. For the hazard curve, all the models have a good fit 
to capture the decreasing shape from the empirical hazard function. 
Finally, in 3, it is present the probability plots for each model where it 
could be seen that the probability plots are basically identical for each 
model and implying in a reasonable fit for each model assuming the 
breast cancer data.

Conclusion
In this study, it was introduced a new univariate cure rate model 

using the mixture approach and the TPM distribution introduced by 
Subhradev Sen13 in order to estimate the survival and hazard curves in 
medical application related to cancer data. The main advantage of the 
proposed model is the number of parameters and the incorporation of 
the bathtub shape from hazard function that is common in cancer data.

In the applications considered here, we can conclude that the 
proposed cure rate model could be really useful. For example, in the 
application with gastric cancer, the proposed mixture TPM cure model 
showed a good fit and was the only one that captured the bathtub shape 
from the empirical hazard function within the confidence bounds. On 
other hand, despite the good fit from all considered models in the breast 
cancer application, the proposed model also capture the shape of the 
empirical hazard function within confidence bounds. Now, assuming 
the survival curves, in both applications, the proposed model captured 
the cure rate as well the entire survival curve, being great to predict 
survival probabilities.

In conclusion, the results emerging from this study reinforce 
the fact that the search of appropriate lifetime distribution could be 
extremely difficult, especially, depending on the shape of the empirical 
hazard function of the data. However, the proposed methodology 
could be very useful in the medical data analysis where the interest 
is the estimation of the fraction of patients in the studied population 
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who never experience the event of interest. The results could be also 
extended to other cross–over trials in clinical research; reliability 
analysis in engineering; risk analysis in economics; among many 
others areas. 
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