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Abbreviations: 2D, 2 dimensional; 3D, 3 dimensional; AG, 
average gradient; CNN, convolutional neural network; CF, column 
frequencies; CT, computed tomography; CTPA, computed tomography 
pulmonary angiography; DWT, discrete wavelet transform; FP, false-
positive; FN, false-negative; GFS, weighted average fusion; MI, 
mutual information; MST, multi-scale transform; PE, pulmonary 
embolism; RF, row frequencies; SF, spatial frequency; SD, standard 
deviation; SPECT, single photon emission computerized tomography; 
TN, true-negative; TP, true-positive

Introduction
Pulmonary embolism (PE) is one of the most dangerous diseases.1 

It is the partial or complete blockage of one or some of the pulmonary 
arteries. It occurs when a blood clot (embolus) arrives in pulmonary 
arteries.2,3 The thrombus often forms in the deep veins of the lower 
extremities, and then migrates through the venous system to achieve 
the right heart chambers and afterward the lungs.4 It is a frequent 
cause of death. Untreated PE can be deadly with a high mortality rate 
that can be decreased under rapid detection. It has well-recognized 
limitations.5 However, the symptoms and clinical signs of PE are 
nonspecific. The diagnosis is so difficult, particularly in patients with 
comorbidity factors.6 It requires additional tests, included imaging 
techniques. In recent years, there have been major developments 
regarding these diagnostic tests, raising new opportunities in the 
diagnosis of PE and implying new diagnostic strategies for acute 
PE Currently, the two most commonly used imaging techniques are 
the Computed Tomography Pulmonary Angiography (CTPA)7-9 and 
pulmonary scintigraphy6,10 

CTPA is a radiological imaging exam. It consists of injecting 
intravenously an iodine- contrast agent (opaque to X-rays), in order 
to individualize the blood vessels and to observe them with an X-ray 
scanner. It allows to obtain images in section of sufficient resolution. 
In a normal CTPA scan, the contrast filling the pulmonary vessels 
appear as a bright white. In case of PE, the CTPA scan shows a filling 
defect and the thrombus appear dark in place of the contrast. This 
makes it possible to diagnose the site of artery embolism.11 

Pulmonary scintigraphy is a nuclear medicine imaging technique. 
It consists of administering to the patient a radiopharmaceutical. 
The latter consists of a cold molecule with pulmonary tropism 
and a gamma-ray isotope tracer. It allows, thanks to a dedicated 
gamma-camera machine, the visualization of the distribution of 
this radiopharmaceutical. The standard protocol includes planar 
acquisitions. Depending on the radiopharmaceutical, there are two 
types of pulmonary scintigraphy. Pulmonary ventilation scintigraphy 
consists of inhaling a radioactive gas: krypton 81m or Technegas, which 
allows the visualization of ventilated regions. Pulmonary perfusion 
scintigraphy consists in injecting human albumin macroaggregates 
radiolabelled with 99mTc, which allows the visualization of perfused 
regions. For the diagnosis of PE, pulmonary perfusion scintigraphy 
has an excellent negative predictive value. Indeed, its normality makes 
it possible to exclude this diagnosis. However, its specificity is weak 
and depends on the existence of cardiorespiratory antecedents and 
especially of the presence or not of abnormalities on the radiography 
of thorax. The addition of pulmonary ventilation scintigraphy 
improves this specificity: a perfusional defect with normal ventilation 
is the characteristic sign of PE (mismatch).12-14 But, it cannot always 
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Abstract

Background: Pulmonary embolism is a serious disease, which can be life-threatening. 
Its treatment and its detection are sometimes complicated. The two most commonly 
used imaging techniques are the computed tomography pulmonary angiography and the 
pulmonary scintigraphy. Currently, hybrid imagery, combining single photon emission 
computerized tomography and computed tomography (SPECT/CT), play an important role 
in the diagnosis of pulmonary embolism. 

Objective: Our aim, in the analytical study, is to detect the pulmonary embolism. A whole 
new method based on the fusion of SPECT and CT images by the deep Siamese Neural 
Network is proposed to early detect this fatal disease.

Material and methods: This method consists of two main parts: fusion of SPECT and 
CT images and detection of the pathological lobes. It starts with the segmentation of both 
SPECT and CT images to obtain 3D binary images. Next, we detect the different pulmonary 
lobes in the CT images. Then, we merge the two SPECT and CT images by deep Siamese 
Neural Network. Afterward, they are compared to the image where the different lobes are 
identified to finally detect the pulmonary embolism and identify the pathological lobes.

Results: The validation achieved an accuracy of 90.5%, with a sensitivity of 88.2% and a 
specificity of 91.5%.

Conclusion: The obtained results prove the effectiveness of the proposed method in the 
detection of pulmonary embolism.

Keywords: image fusion, image processing, deep siamese neural network, SPECT/CT, 
pulmonary lobes
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be performed: no krypton 81m in Tunisia and the majority of nuclear 
medicine services do not have Technegas. In addition, pulmonary 
scintigraphy is a functional imagery poor in anatomical landmarks.

Recently, hybrid machines make it possible to combine 
the functional data from single photon emission computerized 
tomography (SPECT) with the anatomical data from low-dose 
Computed Tomography (CT) scans. They are largely used in daily 
practice and have ameliorated the diagnostic performances, especially 
the specificity of the pulmonary scintigraphy by diagnosing the 
non-embolic abnormalities.15 However, it was only a few studies 
concerning the utility of SPECT/CT in the diagnosis of PE, and it 
still lacks official recommendations of scientific societies regarding 
this method.

In this paper, we present a new method based on the fusion of 
SPECT/CT images by Convolutional Neural Network (CNN) to 
diagnose the PE and to assess its extent. The rest of the manuscript is 
organized as follows: The interest of the merger by CNN is presented 
in Section 2. Section 3 describes the proposed method. Discussions 
and experimental results of the proposed approach are reported in 
Section 4. The conclusions are provided in Section 5.

CNN model for image fusion

The goal of medical image fusion is to enhance clinical diagnosis 
accuracy. Thus, the fused image is produced by preserving details 
and salient features of the two source images. The CT images 
provide excellent soft-tissue details with high-resolution anatomical 
information. While the SPECT images provide functional information, 
pulmonary perfusion in the case of our work. Thus the goal of medical 
image fusion is combining the complementary information contained 
in different source images by producing a composite image for 
visualization that can help doctors make easier and better decisions 
for various aims.

In these recent years, a diversity of medical image fusion way has 
been proposed that can be classified into two classes: transform domain 
methods and spatial domain methods. Because of the difference in 
imaging principle, the intensities at the same location of different 
source images often vary significantly. Therefore, most of these fusion 
algorithms are introduced in a multi-scale way to pursue perceptually 
good results. Generally, these MST (multi-scale transform) based 
fusion algorithms consist of three steps: decomposition, fusion, and 
reconstruction. One of the most important problems in image fusion 
is calculating a weight map that incorporates the pixel activity data 
from different sources. In most existing fusion methods, this target 
is achieved by two steps known as level measurement and weight 
assignment activity. This type of activity measurement and weight 
assignment is usually not very robust resulting from many factors 
as the difference between source pixel intensities, misregistration 
and noise. To overcome the difficulty in designing robust weight 
assignment strategies and activity level upgrades, a Convolutional 
Neural Network (CNN) is trained from source images to the weight 
map, to encode a direct mapping.16

CNN is a typical deep learning model, which attempts to learn 
a hierarchical feature representation mechanism for image/signal 
data with different levels of abstraction. More concretely, CNN is a 
trainable multi-stage feed-forward artificial neural network and each 
layer contains a certain number of feature maps corresponding to a 
level of abstraction for features. In a feature map, each coefficient is 
named a neuron. The operations such as non-linear activation linear 

convolution and spatial pooling applied to neurons are used to connect 
are used to connect the feature maps at different layers.

The creation of a focus map in image fusion can be viewed as a 
classification problem. More precisely, the activity level measurement 
is known like feature extraction, whereas the role of fusion is identical 
to that of a classifier used in general classification tasks. Thereby, it 
is theoretically feasible to employ CNNs for image fusion. The CNN 
architecture for visual classification is an end-to-end framework, in 
which the input is an image while the output is a label vector that 
indicates the probability for each category. Between these two ends, 
the network consists of several convolutional layers (a non-linear layer 
as ReLU always follows a convolutional layer, so we don’t explicitly 
mention it later), max-pooling layers and fully-connected layers. 
The convolutional and max-pooling layers are generally viewed as 
feature extraction parts in the system, while the fully-connected layers 
existing at the output end are regarded as the classification part.

We further explain this point from the view of implementation. 
For most existing fusion algorithms, either in spatial or transform 
domains, the activity level measurement is essentially implemented to 
extract high-frequency details, by designing local filters. On the one 
hand, for most transform domain fusion methods, the images or image 
patches are represented using a set of predesigned bases like wavelet 
or trained dictionary atoms. From the view of image processing, 
this is generally equivalent to convolving them with those bases. 
For example, the implementation of the discrete wavelet transform 
is exactly based on filtering. On the other hand, for spatial domain 
fusion methods, the situation is even clearer that so many activity level 
measurements are based on high-pass spatial filtering. Furthermore, 
the fusion rule, which is usually interpreted as the weight assignment 
strategy for different source images based on the calculated activity 
level measures, can be transformed into a filtering-based form as well. 
Considering that the basic operation in a CNN model is convolution 
(the full connection process can be viewed like convolution with the 
kernel size that equals to the spatial size of input data), it is practically 
feasible to apply CNNs to image fusion.

Material and methods
It was performed the fusion of lung 3D SPECT functional images 

with the 3D CT ones, to obtain anatomical information from patients 
suspected of PE. The methodology starts with a segmentation 
procedure to extract relevant information from both CT and SPECT 
scans, i.e., to extract lungs, and producing a 3D binary image. This 
would allow a correspondence between the SPECT and CT images 
of the pulmonary lobes, in order to identify the lobes containing 
perfusion defects. The proposed method is described in Figure 1.

Pre-processing

CT images

1)	 Segmentation of CT scan to identify lungs. In order to attenuate 
the noise that could induce an incorrect detection of the lung 
contours during the segmentation, a Gaussian filter is applied. 
Then, to extract the lungs, we apply the method described 
below. This method consists of seven steps. First, thresholding 
and growing region algorithms are applied. Then we subtract 
the image obtained by the two algorithms. An active contour 
algorithm is applied to the resulting image. After, the growing 
region is applied another time. To smooth the edge, a median 
filter is applied. Finally, the morphological operation is used.
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The segmentation method is applied to each CT image slice. The 
3D CT binary image consists on associating all slices into a stack.

2.	 The pulmonary lobes are identified by the method described in.17 

By stacking all slices, a 3D CT image of lung lobes is created. 

The human lungs are subdivided into five lobes (Figure 2). There 
are three lobes in the right lung: upper, middle, and lower lobe. 
The left lung consists of two lobes: upper and the lower lobe.

Figure 1 Proposed method. 

Figure 2 (a) Identification of the five lung lobes, (b) 3D surface rendering of the lung: right upper lobe (purple), right middle lobe (blue), right lower lobe 
(orange), left upper lobe (blue) and left lower lobe (yellow). 

SPECT images

SPECT images were obtained from a hybrid machine combining 
an X-ray CT scanner and a dual-headed SPECT scanner juxtaposed 
to enable systematic registration of SPECT and X-ray CT images. 
Images were acquired, in tomographic mode 20 minutes after the 
injection of 55.5 MBq of macro aggregated human serum albumin 
radiolabelled with 99mTc.

To delineate the boundaries of the pulmonary region in the SPECT 
exam, the contour of the lungs is determined through a segmentation 
process.

Fusion

The fusion method is presented in Figure 3. The fusion method 
used in our work consists of four steps. In the first step, the two source 

images are fed to a pre-trained CNN model to output a score map. 
Every coefficient in this map indicates the focus property of a pair 
of corresponding patches from two source images. Next, a focus 
map with the same size of source images is obtained by averaging 
the overlapping patches from the score map. In the second step, the 
focus map is segmented (with a threshold of 0.5) into a binary map. In 
the third step, we refine the binary segmented map with two popular 
consistency verification strategies that are, guided image filtering and 
small region removal, to produce the final decision map. Finally, the 
fused image is obtained with the final decision map using the pixel-
wise weighted-average strategy.18

In this paper, we adapted the Siamese neural network in order to 
fuse our SPECT/CT images.

Siamese neural network: A Siamese Network (sometimes called 
a twin neural network) is an artificial neural network that uses the 
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same weights while working in tandem on two different input vectors 
to compute comparable output vectors.19,20 The main idea behind 
Siamese networks is that they can learn useful data descriptors that 
can be further used to compare between the inputs of the respective 
subnet-works. Hereby, inputs can be anything from numerical data 
(in this case the subnetworks are usually formed by fully-connected 
layers), image data (with CNNs as subnetworks) or even sequential 
data such as sentences or time signals (with RNNs as subnetworks). 
Table 1 shows the Siamese neural network model used in fusion 
algorithm. It can be seen that each branch in the network has three 

convolutional layers and one max-pooling layer. The kernel size and 
stride of each convolutional layer are set to 3×3 and 1, respectively. 
The kernel size and stride of the max-pooling layer are set to 2×2 and 
2, respectively. The 256 feature maps obtained by each branch are 
concatenated and then fully-connected with a 256 dimensional feature 
vector. The output of the network is a 2 dimensional (2D) vector that 
is fully connected with the 256-dimensional vectors. In fact, the 2D 
vector is fed to a 2-way softmax layer that produces a probability 
distribution over two classes. The schematic diagram of the used 
algorithm is shown in Figure 4.

Figure 3 The fusion method. 

Figure 4 Architecture of the Siamese network for training.

Table 1 Used parameters for all layers of the CNN Model

Layer Layer name Kernel*Unit Other layer 
parameter

0 Input Layer 256x256 -

1 Convolution 3x3 Stride=1

2 Convolution 3x3 Stride=1 Stride=1

3 Max Pooling 2x2 Stride=2 Stride=2

4 Convolution Stride=1 Stride=1

5 Final Layers 1 x (2 output) softmax

 Registration: Before merging SPECT and CT images, a registration 
step is necessary in order to align them. The registration method used 

in this paper register two 2-D or 3-D images using intensity metric 
optimization. Its principle is described as follows: it passes by an 
image similarity metric and an optimizer technique to register two 
images. An image similarity metric takes two images and returns a 
scalar value that describes how similar the images are. The optimizer 
you pass to register defines the methodology for minimizing or 
maximizing the similarity metric.21

Results
Evaluation of the fusion method

The purpose of image fusion is to preserve all useful information 
in the source images. During this process, it should not produce any 
artifacts. To verify the effectiveness of a given fusion algorithm, we 
need some quantitative measures. Many fusion metrics have been 
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proposed in the literature. Latest among them is the Petrovic Metric. 
A brief discussion of performance evaluation is presented below. 
Consider an input image f (m,n) is of size p×q.

1. Spatial frequency (SF)

This metric is used to find overall information level (activity level) 
present in the regions of the fused image. It is given by the square 
root of summation of squares of row frequencies (RF) and column 
frequencies (CF).

                               ( )
1

2 2 2SF RF CF= + ,                                       (1)

                Where
( ) ( )( )2, , 1

m n
f m n f m n
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pq
− −
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Based on the gradient information representation, an objective 
image fusion performance characterization is considered in addition to 
above fusion performance evaluation metrics. This method provides 
much deeper insight into the benefits and drawbacks of image fusion 
methods by estimating information contribution of every source 
image and by measuring the fusion gain.

2. Average gradient (AG)

The degree of clarity and sharpness in the fused image is given by 
average gradient as
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3. Mutual information (MI) or fusion factor

It measures the overall information present in the fused image with 
respect to the source images and is given by

                                         XF YFMI MI MI= + ,                                        (3)

Where XF
m n
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 is the 

mutual information between source image X and fused image F . xp  
(m) and Fp  (n) indicate the probability density functions of source 
images X and Y, respectively.

(m, n) is the joint probability density function of source image 
X and the fused image F. Similarly YFMI  is the mutual information 
between Y and F.

And, YFr represents the correlation coefficient between source 
image Y and fused image F.

4. Standard deviation

It indicates spread in the data, that is, the variation of the current 
pixel intensity value with respect to the average pixel intensity value 
in the fused image.

                   

( )( )1 1
,

− −
−
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pq
σ                       (4)

In order to analyze quantitatively the proposed method, we 
compared the four metrics (SF, AG, MI and SD) to those of two 
other fusion methods: Weighted average fusion (GFS)22 and Discrete 
wavelet transform (DWT) based fusion23 (Table 2). We notice that 
the GFS based fusion method has the lowest values of metrics MI 
and SD and that the DWT based fusion method has the lowest values 
of metrics SF and AG. Whereas, the CNN based fusion method has 
the best values of the four metrics. We can conclude that our method 
has the best image contrast (best SD), the best image clarity and 
sharpness (best AG), the best overall mutual information of fused 
image compared to the source images (best MI) and the best overall 
activity level present in the fused image (best SF). This shows the 
superiority of the proposed method.

Table 2 Quantitative analysis of the different CT and SPECT image fusion algorithms

Metric Weighted average fusion Discrete wavelet transform Convolutional Neural Networks

Spatial frequency 0.66 0.21 0.72

Mutual information 3.263 4.371 6.447

Average gradient 9.926 7.041 10.756

Standard deviation 13.991 16.621 21.415

Evaluation of the proposed method

Our proposed method was applied on 21 pulmonary SPECT/CT 
exams. The results obtained by our method were compared to those 
obtained by the reference method (gamma-camera).

Our evaluation consisted of three stages. We started with the 
evaluation of the effectiveness of our method in the detection of 
emboli (evaluation by exam and evaluation by lobe). Finally, we 
evaluated the identification of pathological lobes.

Firstly, we built the confusion matrix for the evaluation by exam 
(Table 3). Secondly, we built the confusion matrix for the evaluation 
by lobe (Table 4). The correct interpretation of SPECT/CT exams 

can be either a true-negative (TN) response (i.e., the correct decision 
that there is no PE) or a true-positive (TP) response (i.e., the correct 
detection of PE). On the other hand, the false interpretation of SPECT/
CT exams is described as either a false-negative (FN) response (i.e., 
the PE is missed) or a false-positive (FP) response (i.e., the false 
suggestion of PE that does not exist).

The results of the confusion matrix are presented in the Table 3 and 
the Table 4. From these results, we can calculate the metrics presented 
in the Table 5.

                       
TP TNAccuracy

TP FP FN TN
+

=
+ + +

                         (5)
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TPPrecision
TP FP

=
+

                                (6)

                                         

TPSensitivity
TP FN

=
+                                     

(7)

                                        

TNSpecificity
TN FP

=
+                                     

(8)

From Table 5, we can conclude that 86% of patients with PE are 
correctly detected and that 90.5% of lobes with at least one perfusion 
defect are correctly diagnosed. Secondly, we were able to correctly 
identify, from the images SPECT/CT obtained by our method, the 
suspected pathological lobes. Figure 5 shows two examples: a PE 
in the right middle lobe (Figure 5b) and a PE in the left lower lobe 
(Figure 5c).

Table 3 Confusion matrix for the evaluation by SPECT/CT exam

                                                        Reference method

Proposed method
Pulmonary embolism

Not pulmonary 
embolism

Total

Pulmonary embolism Not pulmonary embolism Total

6 

1 

7

2 

12 

14

8

13

21

Table 4 Confusion matrix for the evaluation by lobe

                                                        Reference method

Proposed method

Pulmonary embolism

Not pulmonary 
embolism

Total

Pulmonary embolism Not pulmonary embolism Total

30

4

34

6

65

71

36

69

105

Table 5 Evaluation parameters

Metrics Accuracy Precision Specificity Sensitivity AUC

Values (by exam) 86% 75% 86% 86% 0.86

Values (by lobe) 90.5% 83.3% 91.5% 88.2% 0.88

Figure 5 Identification of pathologic lobes (PE is indicated by white color). (a) Pulmonary lobes, (b) Case1: PE right middle lobe (c) Case2: PE left lower lobe. 

Discussion
This study aims to early detect pulmonary embolism that is a 

very dangerous disease. The main character of this anomaly is the 
difficulty of detection. We proposed a new method based on CNN 
algorithm. We evaluated, first, the CNN based fusion method that 
gives the best values of the four metrics MI, SD, SF and AG. This 
shows the superiority of the proposed method. Then, we detected 
and identified the suspected pathological lobes. The validation of this 
method achieved an accuracy of 90.5%, with a sensitivity of 88.2% 
and a specificity of 91.5%.

Conclusion
In this paper, we presented a new method to detect PE based on the 

fusion of SPECT and CT images using deep Siamese Neural Network. 
The main novelty of this method is learning a CNN model to achieve a 
direct mapping between source images and the focus map. We firstly, 
evaluated the effectiveness of the fusion method used. It has been 
compared to two literature methods which are GFS and DWT. The 
results showed that the used method gives the best results of SF, MI, 
AG and SD. Secondly, we evaluated the effectiveness of this method 
in the detection of the emboli (evaluation by exam and evaluation by 
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lobe) and in the identification of the pathological lobes. We compared 
our results to those obtained by the expert. They were satisfactory.
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